JP3794785B2 - 燃料噴射スタブ - Google Patents

燃料噴射スタブ Download PDF

Info

Publication number
JP3794785B2
JP3794785B2 JP16616997A JP16616997A JP3794785B2 JP 3794785 B2 JP3794785 B2 JP 3794785B2 JP 16616997 A JP16616997 A JP 16616997A JP 16616997 A JP16616997 A JP 16616997A JP 3794785 B2 JP3794785 B2 JP 3794785B2
Authority
JP
Japan
Prior art keywords
fuel injection
fuel
thin film
coolant
injection stub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16616997A
Other languages
English (en)
Other versions
JPH1061497A (ja
Inventor
パトリック・ペール
ジュリアン・ランサロ
クリストフ・バレムボワ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aerospatiale Matra
Original Assignee
Aerospatiale Matra
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aerospatiale Matra filed Critical Aerospatiale Matra
Publication of JPH1061497A publication Critical patent/JPH1061497A/ja
Application granted granted Critical
Publication of JP3794785B2 publication Critical patent/JP3794785B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K7/00Plants in which the working fluid is used in a jet only, i.e. the plants not having a turbine or other engine driving a compressor or a ducted fan; Control thereof
    • F02K7/10Plants in which the working fluid is used in a jet only, i.e. the plants not having a turbine or other engine driving a compressor or a ducted fan; Control thereof characterised by having ram-action compression, i.e. aero-thermo-dynamic-ducts or ram-jet engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば約12〜15の高マッハ数で動作するラムジェットの燃料噴射装置に関するものである。
【0002】
【従来の技術】
ラムジェットは、例えば2から15までの広いマッハ数範囲にわたる動作を可能とするものであると共に、燃料消費率が低いので、極超音速の航空機(ミサイル、飛行機等)を推進するために特に有利であることが知られている。航空機に特有の用途に応じて、或いはその航空機の飛行局面で、使用される燃料は、例えば軽油等の液状炭化水素、又は例えば水素やメタンなどのガスである。
【0003】
ラムジェットは、普通はエアダクト又は空気取入口からなっていて酸化剤流(即ち、空気)を燃焼室へ導く少なくとも1つの酸化剤入口と、前記燃焼室で燃やされる酸化剤/燃料・混合物の流れを得るために燃料を前記酸化剤流に噴射することを可能とする少なくとも1つの噴射装置とを含むことも知られている。
【0004】
比較的に小さいマッハ数(例えばマッハ2まで)で動作するように設計されているラムジェットでは、ラムジェットの内壁の、酸化剤流の外周に配置された多数の別個の燃料噴射器で燃料噴射装置を構成することができる。
【0005】
しかし、大マッハ数での動作については、ラムジェット内での燃焼が超音速又は極超音速の流れの中で行われるときには、燃料をラムジェットの内壁から注入することは最早不可能である。その理由は、この場合には、噴出した燃料の酸化剤流の中への浸透が浅すぎて、前記流れの中で酸化剤と燃料とが良く混合しないために燃焼が不十分或いは不可能でさえあることである。勿論、酸化剤流の横断方向寸法が大きいほど、この欠点は益々深刻となる。
【0006】
このような状況を改善するために、列の形態の燃料噴射装置が既に提供されており、それらの燃料噴射装置は、その長さ方向に沿って分散され、前記酸化剤流の中にこの流れを横断する方向に配置された多数の個々の噴射器を有し、前記列の端部は前記ラムジェットの向かい合う壁に締結されている。このような燃料噴射装置は一般に“燃料噴射スタブ(injection stub)”と呼ばれていて、単独で、或いは壁での燃料噴射と組み合わされて、使用される。
【0007】
燃料噴射スタブを用いれば、酸化剤流の横断面全体にわたって満足できる酸化剤/燃料・混合物を得ることができる。一般に、極超音速ラムジェットに燃料噴射スタブを設置すれば、
− 極超音速における燃料のジェット流の酸化剤流中への浸透度が低くても、燃料を酸化剤流の全体へ送り込むこと、
− 酸化剤/燃料・混合物における燃料の割合を高めること、
− 酸化剤/燃料・混合物の点火が容易となると共に火炎を安定させること、
− ラムジェットが消費する燃料の流量を減少させることにより、酸化剤流を圧縮しやすくする、
ことが可能になる。
【0008】
このような燃料噴射スタブは、酸化剤流の作用にさらされ、従って空気力学の見地からは、両端がラムジェットの2つの対峙する壁に埋設されている翼として各々振る舞う。また、燃料噴射スタブの先端部の、酸化剤流を受ける側には、ラムジェットの推進作用を制限して酸化剤流を塞ぐ結果になりかねないような圧力降下を制限するために小半径の前縁が無ければならない。酸化剤流は、上流側の酸化剤の速度が充分に大きい場合に限って燃焼室内で極超音速を維持できる。
【0009】
しかし、極超音速の酸化剤流により生じる先端部の昇温は、該先端部の前縁の半径の平方根にほぼ反比例する。従って、前縁の半径の小さな先端部の昇温は大幅となる。更に、燃料噴射スタブはラムジェットの内側に配置されるので、該ラムジェットにより推進される航空機が飛んでいる空気での放熱によって燃料噴射スタブを冷却することは不可能である。従って、そのような先端部は、高度約30kmをマッハ12で飛行する航空機では約5000Kもの非常に高い温度にさらされる。従って、燃料噴射スタブをセラミック等の材料で作る必要があり、前記前縁の半径は約3〜5mmとなる。しかし、セラミック部品を製造する方法の現状を考えれば、セラミック製燃料噴射スタブの精密製造には長い時間を要すると共に高価であることが容易に想像できる。
【0010】
【発明が解決しようとする課題】
本発明の目的は、これらの欠点を克服することである。本発明は、小半径の前縁を有し、炭素ー炭素複合材料から作ることのできる、極超音速ラムジェット用の燃料噴射スタブに関するものである。
【0011】
【課題を解決するための手段】
この目的のために、本発明によれば、酸化剤流が導入される燃焼室を有する、高マッハ数で動作するように設計されているラムジェットのために、前記酸化剤流を受けるようになっていて個々の燃料噴射器の列を形成する先端部を有し、前記燃料噴射器の列は、前記酸化剤流の中に、この酸化剤流を横断する方向に設けられて、前記燃料を前記酸化剤流の中に分配するようになっている燃料噴射スタブにおいて、
ー 該燃料噴射スタブは、
・前記燃料噴射器の列が内部に配設されると共に、少なくとも前記先端部が配置される側にくさびの形状の断面を有する炭素ー炭素複合材の本体を含み、該くさびの角度は大きくても15°に等しく、且つ該くさびの縁部は、少なくとも1つの端部切断面を形成するために該縁部の長さの少なくとも一部が切り欠かれており、
・少なくともほぼ二面体の形状の炭素ー炭素複合材の薄膜からなる先端部材を含み、該先端部材の縁部が高々2mmに等しい曲率半径を有すると共に、該縁部の角度が前記くさびの角度に等しく、
ー 前記薄膜は、その面を前記くさびの面に圧接して、封止態様で前記本体に接続されていて、該薄膜と前記本体の前記端部切断面との間で前記薄膜の凹所に封止された室が画成されるようになっており、
ー 前記本体内には、
・少なくとも前記薄膜の前記縁部の領域において、前記端部切断面に沿って分布して前記薄膜の凹面に衝突する加圧冷却剤の多数のジェット流を生成するため、前記本体の前記端部切断面に配設されたノズルからなり、冷却剤を前記封止された室内に噴射する冷却剤噴射手段と、
・前記ジェット流が前記薄膜の前記凹面に対して衝突した後、前記冷却剤を除去するための冷却剤除去手段と、
が設けられていることを特徴とするものである。
【0012】
このように、前記先端部は薄膜によって形成されており、その内側の凹面は冷却剤のジェット流の衝突によって効果的に冷却されるので、先端部は薄くて(二面角は15゜)、小さな前縁半径(2mm以下)を持っているにも拘わらず、薄膜の外側の凸面即ち先端部の前縁も該薄膜の厚みを通して熱伝導によって効果的に冷却され、先端部がさらされる温度は(上記の5000Kと比べて)約1000℃〜2000℃程度でしかない。この効果的な冷却のため、燃料噴射スタブは炭素ー炭素複合材から製作しうる。
【0013】
このように先端部を効果的に冷却し得るためには、
− 該先端部の前記薄膜の厚みは2mm以下であり、
− 前記薄膜を構成する炭素ー炭素複合材が、使用温度の範囲において、この厚みで約70W/(m・K)の熱伝導率を有し、
− 冷却剤は、例えば水素等の約100K〜300Kの温度の低温ガスである、
ことが有利であることが分かった。
【0014】
勿論、以上の記述から、前記薄膜の厚み、熱伝導率及び性質と、冷却剤の温度、圧力、流量及び性質とは、全て、前記薄膜の温度を調整することを可能とするパラメータであることが理解されよう。
【0015】
例えば、厚みが1mmで、構成材料が約70W/(m・K)の横断方向熱伝導率(厚みに対して平行である)を持っており、二面角が12゜で、前縁の半径が1.5mmである先端部材は、冷却ガスとして水素が温度100K〜300K、圧力約10〜15バールで、前縁の長さ1cmあたり約2〜5g/sの流量で使用された場合には、マッハ数12では1500℃に近い温度に上昇する。
【0016】
このような構成では、例えば、下記の事項、
− 水素を異なる温度で使用する場合には、他の条件が同じならば、前記流量を変更することによって薄膜の温度を維持することができ、
− 薄膜の構成材料が1500℃より高い温度、例えば2000℃に耐えることができるならば、この構成材料の熱伝導率は70W/(m・K)より低くても良く、或いは冷却の強度を弱めても良い、
− 等々、
が全く明らかである
【0017】
更に、本発明の燃料噴射スタブは、10より大きなマッハ数に限定されない。その理由は、航空機が10未満のマッハ数で飛行しているときには冷却剤はエルゴル(ergol)であってもよく、これは、冷却能では水素より劣るが、問題のマッハ数で先端部を冷却するには十分であることである。この場合、残る問題は、航空機のどの飛行段階でも燃料噴射スタブが適当な冷却剤を受けるように燃料噴射スタブへの冷却剤供給を設計することだけである。冷却剤は、ラムジェットの燃料からなることが有利である。従って、特別の冷却剤タンクを航空機に搭載する必要はなく、この冷却剤は燃料供給系から直接取り出される。更に、冷却剤が先端部の内側の凹面に衝突した後、冷却剤除去手段は該冷却剤を回収し、それをラムジェットの燃焼室内に再噴射して、ラムジェットの推進能力を向上させる。
【0018】
冷却剤の回収は燃料噴射スタブの内側で行われても外側で行われても良く、回収された冷却剤を直接に、或いは燃料噴射スタブの個々の燃料噴射器を通して燃焼室内に噴射することができる。随意に、その回収と、燃焼室内への再噴射との間に、例えば空気取入口のシュラウドなどのラムジェットの要素を冷却するために前記冷却剤を使用することができる。
【0019】
勿論、冷却剤を良く回収するためには、噴射される燃料と、膨張して低圧となっている回収される燃料との圧力差を考慮する必要がある。低圧の回収される燃料に高圧の燃料を確実に流入させなければならない。随意に、回収された燃料の回路に、圧力を高めるために過給器を設けることができる。
【0020】
好適な実施形態においては、先端部材を形成する炭素ー炭素複合材の薄膜は、
ー 緯糸(T)が前記薄膜の厚み(e)における複数のレベルのところに分散しており、各経糸(c)が異なるレベルにある緯糸(T)の回りを通過する織物繊維構造と、
ー 該織物繊維構造を封入すると共に、熱分解し黒鉛化したピッチからなるマトリクスと、
からなっている。
【0021】
このような構成により、薄く殆ど浸透性のない薄膜を得ながら、前述した熱伝導率の値に到達することが可能である。織物繊維構造は、フランス特許FR−A−2,610,951明細書に記載された形式のものでよい。
【0022】
先端部材を得るには、緯糸に平行な方向の回りに繊維構造を折り曲げ(これにより折り曲げによる損傷の可能性を排除する)、その後、折り曲げた繊維構造をピッチに含浸させてから熱分解し黒鉛化すればよいことを指摘しておく。このようにして得られた剛な薄膜では、先端部材の縁部は、織物繊維構造の緯糸に平行である。
【0023】
更に、燃料噴射スタブの複合材本体は、ピッチを基剤とした炭素マトリクス内に同様に封入した三次元繊維構造から形成することができる。従って、この複合材本体の熱伝導率も高く、また、該本体は、膨張に関する限り薄膜に適合しうる。
【0024】
燃料噴射スタブの薄膜及び本体は、炭素系接着剤結合により相互に接続することが有利である。この接続を行うため、炭素粒子を含むフェノール樹脂系接着剤を用いると、熱分解により接着剤は炭素に変換される。このような接着剤は、燃料噴射スタブが受ける機械的応力及び加工熱応力や、酸化防止熱処理(後述する)に適合する機械的及び化学的特性を示す。
【0025】
希望により、本体への薄膜の黒鉛接着剤結合は、前記薄膜を貫通して本体内に固定される炭素製固定手段(クギ、ネジ)により補強される。
【0026】
薄膜を本体に結合した後、炭化珪素の1回又はそれ以上の付着により抗酸化保護のための熱処理が行われる。これらの付着は、薄膜の熱伝導率を目に見えて減少させないように、厚み及び多孔性の点から調節される。
【0027】
従って、本発明によると、全体的に炭素から製作された均一噴射の燃料噴射スタブが得られる。この燃料噴射スタブは、熱伝導率、機械的結着性及び剛性の諸要件に合致する薄膜で酸化を防止されていると共に、三次元構成の本体を有していて、熱伝導率や、外部及び内部機械抵抗、特にガスの噴射圧力に対する抵抗等の諸要件に適応することを可能とする。
【0028】
特定の実施形態においては、マッハ12で飛行しようとする航空機のために、燃料噴射スタブの先端部が1500℃に近い温度に耐えなければならない燃料噴射スタブは、本発明によると、
ー 前記薄膜が12°の二面角もしくは上反角をなすと共に1.5mmに等しい前縁半径rを有し、
ー 前記薄膜は約1mmの厚みeを有すると共に、その構成成分である炭素ー炭素複合材の材料は約70W/(m・k)の横方向熱伝導度を有し、
ー 前記冷却剤は、温度が100K〜300K、圧力が約10〜15バールの水素であり、
ー 該冷却剤の流量は、前縁の長さ各1cmについて約2〜5g/sである、
ことを特徴としている。
【0029】
冷却剤を除去するための前記冷却剤除去手段は、
− 前記本体の表面に作られていて前記先端部材の1面により閉じられる少なくとも1つの長手方向溝と、
− 前記封止室を前記長手方向溝と連通させて前記先端部材により閉じられる横断方向表面溝の列と、
を含むことができる。
【0030】
同じく、前記燃料噴射器列及び前記冷却剤噴射手段は長手方向の給送チャンネルと横断方向の噴射チャンネルとを含むことができ、該給送チャンネル及び該噴射チャンネルの全ては前記燃料噴射スタブの前記本体に作られる。
【0031】
燃料を酸化剤流の中により良好に噴射するために、前記燃料噴射器列を燃料噴射スタブの、先端部とは反対の側に配設するのが有利である。更に、酸化剤及び燃料/酸化剤・混合物の中への燃料の噴射を更に改善するために、燃料噴射器列は数組の連続する別々の噴射器を持つことができ、その一部は燃料を酸化剤流の方向に噴射させ、他は燃料を前記酸化剤流に斜めに噴射させる。
【0032】
この場合、燃料噴射スタブの本体は、前記先端部とは反対の側に、長手方向の中央突出リブを有することができ、少なくとも1組の個々の噴射器がこの中央突出リブに配設されて燃料を酸化剤流の方向に噴射し、燃料を酸化剤流の中に斜めに噴射する少なくとも2組の個々の噴射器が中央突出リブの各側に配設される。
【0033】
更に、通常の態様で、燃料噴射スタブの本体は、その両端に、該燃料噴射スタブをラムジェットの対峙する壁に固定するように設計されていて前記燃料噴射スタブに燃料及び冷却剤を供給するようになっているヘッドを有することができる。
【0034】
この場合、先端部材がラムジェットの対峙する壁に固定されることによって定位置に保持されるように、先端部材が少なくとも部分的にヘッドを覆うと有利である。このようにすれば、先端部材と本体とが一層しっかりと互いに締着されることになる。
【0035】
添付図面は、本発明を実現する方法を明らかにする。これらの図において、同じ参照符号は同様の要素を示す。
【0036】
【発明の実施の形態】
図1に示されているラムジェット1は、例えばほぼマッハ6からマッハ12〜15までの非常に広いマッハ数範囲にわたって飛行しなければならない極超音速航空機(図示せず)を推進するためのものである。
【0037】
ラムジェット1は、酸化剤として使用される空気流(矢Fで象徴的に示されている)のための空気取入口3を1端に備え、ノズル4を他端に備えているケーシング2を含んでいる。空気取入口3の下流側に、ケーシング2は噴射室5を形成しており、この中に2個の燃料噴射スタブ6が酸化剤流Fを横断する方向に配設されている。燃料噴射スタブ6は、酸化剤流を受ける先端部7を有すると共に、その端部6A及び6Bが噴射室5の2つの向かい合う壁5A及び5Bの内面に固定されることにより、ケーシング2にしっかりと締着されている。ケーシング2は、噴射室5とノズル4との間に燃焼室8を画定しており、その上流側の部分に点火装置(図示せず)が設けられている。燃料噴射スタブ6の後部(即ち、燃焼室8に面する部分)には長手方向の噴射列がある(図1では見えないが、図3、図4及び図6に示されている)。
【0038】
燃料は燃料噴射スタブ6で酸化剤流Fの全体にわたって分配され、酸化剤/燃料・混合物の流れの燃焼は燃焼室8で起こり、その後に燃焼ガスはノズル4を通して排出される。最低飛行マッハ数(マッハ8まで)の場合には軽油を燃料として使うことが可能であり(希望により、ラムジェットの点火とジェット流の整流とを容易にするために水素散布を行っても良い)、もっと大きなマッハ数の場合には水素を燃料として使用することができる。メタン、吸熱性炭化水素及び合成燃料等の他の燃料をこの種のラムジェットに使用することもできる。
【0039】
図1に示されている特定の実施形態では、ラムジェットのケーシング2は、全体として、長方形又は正方形の横断面を有するダクトの形をなしており、概して4つの壁からなっていて、各対毎に向かい合っている(図1ではその壁は透明であると仮定されている)。このような構成は、決して限定的なものではないことを理解されたい。
【0040】
上述したように、酸化剤流が極超音速飛行に対応するときには、燃料噴射スタブ6の先端部7の前縁は非常に高い熱流束にさらされる。マッハ12では、先端部7は約5000Kの温度まで上昇する。
【0041】
図2〜図7は、そのような高い熱応力に耐えることのできる本発明の燃料噴射スタブ6の実施形態を示す。
【0042】
これらの図に示されているように、この実施形態では、燃料噴射スタブ6は、一部材構成の本体10を含んでおり、その中に、後述するように、燃料噴射装置、冷却剤噴射手段、及びこの冷却剤を除去するための冷却剤除去手段が加工されている。本体10自体は炭素ー炭素複合材料のブロックから機械加工されていて、その繊維構造は三次元であり、また、そのマトリクスは圧縮されたピッチのものである。
【0043】
更に、この燃料噴射スタブ6は、先端部材11を含んでいる。この先端部材は、その厚さを介する熱伝導率が約70W/(m・K)の材料からなるものであって、二面体の形状を持っており、その角度Aは15゜以下であり、例えば12゜に等しい。更に、これらの先端部材11の面の厚みeは2mm以下であって、例えば1.5mmに等しく、該先端部材11の縁部11Aの半径rは2mm以下である。先端部材11は、燃料噴射スタブ6の先端部7を形成するべきものであり、その縁部11Aは先端部の前縁である。
【0044】
図8に略図的に示すように、先端部材11は炭素ー炭素複合材の薄膜により形成され、該薄膜の繊維構造は織成されていて、緯糸Tが薄膜の厚みeにおける幾つかのレベルに分散しており、各経糸Cが異なるレベルにある緯糸Tの周りを通っている。また、縁部11Aは緯糸Tと平行である。先端部材11のマトリクスも圧縮されたピッチのものである。
【0045】
本体10は、その全長の大部分にわたって、くさび形横断面を持っており、くさびの角度は先端部材11の角度Aに等しい。
【0046】
図3〜図7に示されているように、例えば溶接又はネジにより(図示しない態様で)2つの部材10及び11が互いに封止結合されているときには、先端部材11の面12及び13は、本体10の面14及び15に当接している。
【0047】
本体10のくさびの縁部16は、端部切断面17を形成するために本体の中央部分10Mが切り取られている。従って、部材10及び11が互いに結合されると、先端部材11の凹所に、面12及び13の内側表面と本体10の端部切断面17との間に封止室18が画定される。
【0048】
噴射室5の2つの向かい合う壁5A及び5Bに固定されるべき燃料噴射スタブ6の端部6A及び6Bは、同燃料噴射スタブの三角形の中央部分10Mの、縁部16とは反対の側の、先端部材11の面12及び13により覆われる幅広の部分10A及び10Bに対応すると共に、この大きくなった部分10A及び10Bによりそれぞれ支持される平行六面体状の端部ヘッド19A及び19Bにも対応する。
【0049】
本体10の中央部分Mは、端部切断面17の反対側に長手方向の中央突出リブ20を有し、このリブはヘッド6A及び6Bから突出して該ヘッドに結合されている。
【0050】
本体10には、長手方向に流路もしくはチャンネル21、22及び23が穿孔されている。
【0051】
長手方向チャンネル21は、リブ20に形成されて本体10の中央部分10Mに沿って分布している多数の横断方向チャンネル24と連通している(図3及び図6を参照)。
【0052】
長手方向チャンネル22は、中央突出リブ20の各側に現れる多数の横断方向チャンネル25及び26と連通している(図3及び図4を参照)。
【0053】
長手方向チャンネル23は、端部切断面17に現れ従って封止室18に現れる多数の横断方向チャンネル27と連通している(図3及び図7を参照)。
【0054】
更に、本体10の中央部分Mの壁14及び15は、ヘッド6A及び6Bの端部に現れる長手方向チャンネル30に端部が結合されている長手方向の表面溝29に端部切断面17を結合させる多数の横断方向表面溝28を有する。表面溝28及び29は先端部材11によって閉じられる(図3及び図5を参照)。
【0055】
燃料がチャンネル21及び22に注入されると、同燃料は、個々の噴射器としてそれぞれ振る舞う横断方向チャンネル24及び25によって、噴射室5の中にも燃焼室8の方向に注入されることが容易に分かる。同じく、冷却剤が長手方向チャンネル23に注入されると、この冷却剤は横断方向チャンネル27を介して封止室18に注入されることになる。封止室18に注入された冷却剤は、横断方向表面溝28を介して回収されると共に該表面溝を介して長手方向の表面溝29に流入する。従って、それをチャンネル30を介して排出することができる。
【0056】
勿論、図3では流路もしくはチャンネル21、22、23及び30は両端が開いている状態で図示されているが、どちらか一方の端部を閉じることも可能である。
【0057】
本発明の重要な特徴によると、例えば低温の水素である冷却剤は、チャンネル27から出た冷却剤のジェット流が封止室18を通って、先端部材11の面12及び13の内側表面に少なくとも縁部11A付近で衝突するように、圧力(例えば約10バール)を持っている。勿論、上述したように、大マッハ数での飛行条件下で先端部材11の温度を1000℃と2000℃との間に保つために充分な冷却剤流量がなければならない。冷却剤が水素である場合には、その流量は、縁部11Aの長さ1cmあたり毎秒数グラムでなければならない。
【0058】
冷却剤は、燃焼室8に供給される燃料であってもよい。その場合、冷却剤噴射手段23、27に供給される冷却剤は、噴射列21、22、24、25及び26に供給を行う回路から取り出される。好ましくは、冷却剤として使用される燃料の流量は、燃焼室8に注入される燃料の総流量の20%未満である。
【図面の簡単な説明】
【図1】 燃料噴射スタブを備えたラムジェットの実施形態の極めて模式的な斜視図であり、ラムジェットのケーシングは透明であると仮定されている。
【図2】 本発明の燃料噴射スタブの実施形態の分解斜視図である。
【図3】 図2の、互いに結合された燃料噴射スタブの、中央縦断面図である。
【図4】 図3の切断線IV−IVに対応する燃料噴射スタブの横断面図である。
【図5】 図3の切断線V−Vに対応する燃料噴射スタブの横断面図である。
【図6】 図3の切断線VI−VIに対応する燃料噴射スタブの横断面図である。
【図7】 図3の切断線VII−VIIに対応する燃料噴射スタブの横断面図である。
【図8】 先端部材の補強を行う織物を略図的に示すため先端部材の先端部近傍を部分的に拡大して示す図である。
【符号の説明】
1…ラムジェット、5A,5B…ラムジェットの対峙する壁体、6…燃料噴射スタブ、6A,6B…ヘッド、7…先端部、8…燃焼室、10…本体、11…熱伝導性の薄膜(先端部材)、11A…先端部の前縁もしくは縁部、12,13…薄膜の面、14,15…くさびの面、16…くさびの縁、17…端部切断面、18…封止室、20…中央突出リブ、21,22,23…長手方向の流路もしくは給送チャンネル(23は冷却剤噴射手段をも構成する)、24,25,26,27…個々の燃料噴射器もしくは横断方向の流路もしくは噴射チャンネル(27は冷却剤噴射手段となる噴射ノズルをも構成する)、28,29…表面溝(冷却剤除去手段)、30…流路もしくはチャンネル(冷却剤除去手段)、F…酸化剤流、r…前縁の半径。

Claims (17)

  1. 高マッハ数で作動するように設計されると共に燃焼室(8)を含み、該燃焼室(8)内に酸化剤流(F)が導入されるラムジェット(1)のため、前記酸化剤流を受けると共に個々の燃料噴射器の列を形成する先端部(7)を含み、前記燃料噴射器の列が、前記酸化剤流を横断するように該酸化剤流中に配設されて燃料を該酸化剤流中に分散させている燃料噴射スタブ(6)であって、
    ・前記燃料噴射器の列が内部に配設されると共に、少なくとも前記先端部が配置される側にくさびの形状の断面を有する炭素ー炭素複合材の本体(10)を含み、該くさびの角度は大きくても15°に等しく、且つ該くさびの縁部(16)は、少なくとも1つの端部切断面(17)を形成するために該縁部の長さの少なくとも一部が切り欠かれており、
    ・少なくともほぼ二面体の形状の炭素ー炭素複合材の薄膜からなる先端部材(11)を含み、該先端部材の縁部(11A)が高々2mmに等しい曲率半径(r)を有すると共に、該縁部の角度が前記くさびの角度に等しい、
    燃料噴射スタブにおいて、
    ー 前記薄膜は、その面(12,13)を前記くさびの面(14,15)に圧接して、封止態様で前記本体に接続されていて、該薄膜と前記本体の前記端部切断面(17)との間で前記薄膜の凹所に封止された室(18)が画成されるようになっており、
    ー 前記本体(10)内には、
    ・少なくとも前記薄膜の前記縁部(11A)の領域において、前記端部切断面に沿って分布して前記薄膜(11)の凹面に衝突する加圧冷却剤の多数のジェット流を生成するため、前記本体の前記端部切断面(17)に配設されたノズルからなり、冷却剤を前記封止された室(18)内に噴射する冷却剤噴射手段(23,27)と、
    ・前記ジェット流が前記薄膜の前記凹面に対して衝突した後、前記冷却剤を除去するための冷却剤除去手段(28,29,30)と、
    が設けられている、ことを特徴とする燃料噴射スタブ。
  2. 前記先端部材を形成する前記炭素ー炭素複合材の薄膜は、
    ー 緯糸(T)が前記薄膜の厚み(e)における複数のレベルのところに分散しており、各経糸(c)が異なるレベルにある緯糸(T)の回りを通過する織物繊維構造と、
    ー 該織物繊維構造を封入すると共に、熱分解し黒鉛化したピッチからなるマトリクスと、
    からなる請求項1記載の燃料噴射スタブ。
  3. 前記先端部材の前記縁部(11A)は前記薄膜の前記緯糸(T)と平行である請求項2記載の燃料噴射スタブ。
  4. 前記薄膜の前記厚み(e)は高々2mmに等しい請求項1記載の燃料噴射スタブ。
  5. 前記薄膜(11)の構成成分である炭素ー炭素複合材の材料の、該薄膜を横断する方向の熱伝導度は、約70W/(m・k)である請求項1記載の燃料噴射スタブ。
  6. 炭素ー炭素複合材の材料からなる前記本体(10)は、熱分解し黒鉛化したピッチのマトリクスに封入された三次元繊維構造から形成されている請求項1記載の燃料噴射スタブ。
  7. 炭素ー炭素複合材の材料からなる前記本体(10)及び前記薄膜(11)は、炭素系接着剤による接着結合で互いに接続されている請求項1記載の燃料噴射スタブ。
  8. 前記本体に接着結合された前記薄膜の全てが酸化から保護されている請求項7記載の燃料噴射スタブ。
  9. 前記冷却剤は低温ガスである請求項1記載の燃料噴射スタブ。
  10. マッハ12で飛行しようとする航空機のために、前記燃料噴射スタブの前記先端部が1500℃に近い温度に耐えなければなせない燃料噴射スタブであって、
    ー 前記薄膜(11)が12°の上反角をなすと共に1.5mmに等しい前縁半径(r)を有し、
    ー 前記薄膜は約1mmの厚み(e)を有すると共に、その構成成分である炭素ー炭素複合材の材料は約70W/(m・k)の横方向熱伝導度を有し、
    ー 前記冷却剤は、温度が100K〜300K、圧力が約10〜15barの水素であり、
    ー 該冷却剤の流量は前記前縁の長さ各1cmについて約2〜5g/sである、
    請求項1記載の燃料噴射スタブ。
  11. 前記冷却剤は燃料である請求項1記載の燃料噴射スタブ。
  12. 前記冷却剤除去手段は、
    ー 前記本体(10)の表面上に形成され、前記薄膜(11)の1つの面により仕切られている少なくとも1つの長手方向の溝(29)と、
    ー 前記封止された室(18)を前記長手方向の溝(29)に連通させると共に、前記薄膜により仕切られている一列の横断方向の表面溝(28)と、
    を含む請求項1記載の燃料噴射スタブ。
  13. 前記燃料噴射器の列及び前記冷却剤噴射手段は、長手方向の給送チャンネル(21,22,23)と横断方向の噴射チャンネル(24〜27)とを含み、該給送チャンネル及び該噴射チャンネルの全てが前記本体に形成されている請求項1記載の燃料噴射スタブ。
  14. 前記燃料噴射器の列は、前記先端部とは反対の前記燃料噴射スタブの側に配設されている請求項1記載の燃料噴射スタブ。
  15. 前記燃料噴射器の列は、数組の連続する別個の燃料噴射器を含み、該連続する別個の燃料噴射器のうちのあるもの(24)が燃料を前記酸化剤流の方向に噴射し、該連続する別個の燃料噴射器のうちの他のもの(25,26)が燃料を前記酸化剤流内に斜めに噴射する請求項14記載の燃料噴射スタブ。
  16. 前記本体(10)は、前記先端部とは反対側に、長手方向の中央突出リブ(20)を含み、該中央突出リブ内に、燃料を酸化剤流の方向に噴射する少なくとも1組の別個の燃料噴射器が配設されると共に、該中央突出リブの各側方に、燃料を前記酸化剤流内に斜めに噴射する少なくとも2組の別個の燃料噴射器(25,26)が配設されている請求項1記載の燃料噴射スタブ。
  17. 前記本体(10)は、その端部に、前記ラムジェットの対峙する壁体(5A,5B)に前記燃料噴射スタブを係止すると共に同燃料噴射スタブに燃料及び冷却剤を送給するように設計されたヘッド(6A,6B)を含み、前記先端部材(11)が前記ヘッドの少なくとも一部を覆っている請求項1記載の燃料噴射スタブ。
JP16616997A 1996-06-24 1997-06-23 燃料噴射スタブ Expired - Fee Related JP3794785B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9607803A FR2750170B1 (fr) 1996-06-24 1996-06-24 Mat d'injection de combustible pour statoreacteur fonctionnant a un nombre de mach eleve
FR9607803 1996-06-24

Publications (2)

Publication Number Publication Date
JPH1061497A JPH1061497A (ja) 1998-03-03
JP3794785B2 true JP3794785B2 (ja) 2006-07-12

Family

ID=9493338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16616997A Expired - Fee Related JP3794785B2 (ja) 1996-06-24 1997-06-23 燃料噴射スタブ

Country Status (6)

Country Link
US (1) US5865025A (ja)
EP (1) EP0816665B1 (ja)
JP (1) JP3794785B2 (ja)
CA (1) CA2207837A1 (ja)
DE (1) DE69716350T2 (ja)
FR (1) FR2750170B1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2341100A (en) 1998-08-17 2000-04-17 Ramgen Power Systems, Inc. Apparatus and method for fuel-air mixing before supply of low pressure lean pre-mix to combustor
US6250290B1 (en) 2000-04-06 2001-06-26 Transportation Design & Manufacturing Co. Cooled LPG fuel rail
US6715293B2 (en) * 2002-03-28 2004-04-06 United Technologies Corporation Scram jet engine design
US7282274B2 (en) * 2003-11-07 2007-10-16 General Electric Company Integral composite structural material
US20080196414A1 (en) * 2005-03-22 2008-08-21 Andreadis Dean E Strut cavity pilot and fuel injector assembly
US20080060361A1 (en) * 2006-09-07 2008-03-13 Pratt & Whitney Rocketdyne, Inc. Multi-height ramp injector scramjet combustor
WO2020123000A2 (en) * 2018-09-12 2020-06-18 University Of Florida Research Foundation, Inc. Fuel injector for hypersonic jet engine operation
CN110425572B (zh) * 2019-07-23 2021-02-19 哈尔滨工业大学 用于超声速飞行器冲压发动机的多孔单柱状燃料供给结构
KR102547939B1 (ko) * 2021-04-06 2023-06-27 국방과학연구소 연료 분사 장치 및 이를 포함하는 엔진 모듈
WO2023208337A1 (de) * 2022-04-27 2023-11-02 Wacker Chemie Ag Vorrichtungen und verfahren zum mischen von gasen

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2848427A (en) * 1953-06-01 1958-08-19 Dow Chemical Co Method of making celluloar plastic articles from vinyl aromatic resins
US3727409A (en) * 1961-03-30 1973-04-17 Garrett Corp Hypersonic aircraft engine and fuel injection system therefor
US3699773A (en) * 1968-12-23 1972-10-24 Gen Electric Fuel cooled fuel injectors
FR2610951B1 (fr) * 1987-02-17 1989-05-05 Aerospatiale Armature tissee pour materiau composite
US4821512A (en) * 1987-05-05 1989-04-18 United Technologies Corporation Piloting igniter for supersonic combustor
US4951463A (en) * 1988-09-16 1990-08-28 General Electric Company Hypersonic scramjet engine fuel injector
US4903480A (en) * 1988-09-16 1990-02-27 General Electric Company Hypersonic scramjet engine fuel injector
US5214914A (en) * 1990-04-30 1993-06-01 The Johns Hopkins University Translating cowl inlet with retractable propellant injection struts
US5220787A (en) * 1991-04-29 1993-06-22 Aerojet-General Corporation Scramjet injector
FR2736684B1 (fr) * 1995-07-12 1997-09-12 Aerospatiale Statoreacteur pour aeronef a vol supersonique et/ou hypersonique

Also Published As

Publication number Publication date
EP0816665B1 (fr) 2002-10-16
DE69716350T2 (de) 2003-07-31
FR2750170A1 (fr) 1997-12-26
CA2207837A1 (fr) 1997-12-24
DE69716350D1 (de) 2002-11-21
EP0816665A1 (fr) 1998-01-07
US5865025A (en) 1999-02-02
FR2750170B1 (fr) 1998-08-21
JPH1061497A (ja) 1998-03-03

Similar Documents

Publication Publication Date Title
JP3794785B2 (ja) 燃料噴射スタブ
EP1746257B1 (en) Vehicle and corresponding operating method
US6325593B1 (en) Ceramic turbine airfoils with cooled trailing edge blocks
US8061657B2 (en) Method and apparatus for aircraft anti-icing
US4688745A (en) Swirl anti-ice system
JP3142850B2 (ja) タービンの冷却翼および複合発電プラント
US20100155538A1 (en) Anti-icing system and method for preventing ice accumulation
US7429166B2 (en) Methods and apparatus for gas turbine engines
JP2004124947A (ja) ターボファンエンジンの内部防氷装置
US8161755B2 (en) Heat exchanger unit for an aircraft
EP3599170B1 (en) Anti-icing system with sweeping jet swirl nozzle
JP3912696B2 (ja) 燃料噴射スタブ
JP3917668B2 (ja) 広範囲のマッハ数で作動するラムジェット用の燃料噴射ストラット
GB2222877A (en) Hypersonic scramjet engine fuel injector
CA2034434A1 (en) Scramjet including integrated inlet and combustor
JP2001200704A (ja) ガスタービン・エンジンの冷却された翼形部及びその製造方法
US7575196B2 (en) Ice protection system and method including a plurality of segmented sub-areas and a cyclic diverter valve
US7000398B2 (en) Ramjet engine combustion chamber and ramjet engine equipped with same
GB2238080A (en) Propulsion system for an aerospace vehicle
US20070000233A1 (en) Thrust orienting nozzle
US20110173985A1 (en) Thruster comprising a plurality of rocket motors
US20120168121A1 (en) Internal pocket fastener system for ceramic matrix composite heat exchanger
US11408342B2 (en) Swirl anti-icing injector head nozzle configurations
JP2000143358A (ja) 高温ガスにさらされる複合材部品構造
RU2051074C1 (ru) Гиперзвуковой воздухозаборник воздушно-реактивного двигателя

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees