JP3792833B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP3792833B2
JP3792833B2 JP12867297A JP12867297A JP3792833B2 JP 3792833 B2 JP3792833 B2 JP 3792833B2 JP 12867297 A JP12867297 A JP 12867297A JP 12867297 A JP12867297 A JP 12867297A JP 3792833 B2 JP3792833 B2 JP 3792833B2
Authority
JP
Japan
Prior art keywords
electric expansion
expansion valve
heat exchanger
heat storage
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12867297A
Other languages
Japanese (ja)
Other versions
JPH10318621A (en
Inventor
伸行 竹谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP12867297A priority Critical patent/JP3792833B2/en
Publication of JPH10318621A publication Critical patent/JPH10318621A/en
Application granted granted Critical
Publication of JP3792833B2 publication Critical patent/JP3792833B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、蓄熱機能を有する冷凍サイクル装置に関する。
【0002】
【従来の技術】
冷凍サイクル中に蓄熱タンクを設け、例えば夜間電力を利用した蓄熱により暖房用の温熱を蓄え、その蓄熱を空調に利用する冷凍サイクル装置がある。
【0003】
【発明が解決しようとする課題】
蓄熱機能を有する冷凍サイクル装置の場合、蓄熱の利用量を適切に調節できることが望まれる。
調節の仕方として、蓄熱タンクへの冷媒流路に流量調整弁を設けることが考えられるが、流量調整弁の採用はコストの上昇を招くという問題がある。
【0004】
この発明は上記の事情を考慮したもので、その目的とするところは、蓄熱の利用量をコストの上昇を招くことなく適切に調節できる冷凍サイクル装置を提供することにある。
【0005】
【課題を解決するための手段】
第1の発明(請求項1)の冷凍サイクル装置は、圧縮機、室内熱交換器、電動膨張弁、室外熱交換器、および蓄熱手段を備えた冷凍サイクル装置であって、圧縮機の吐出冷媒を室内熱交換器、電動膨張弁、室外熱交換器に通して圧縮機に戻すとともに、室内熱交換器を経た冷媒を室内熱交換器と電動膨張弁との間の配管から分流して蓄熱手段に通して圧縮機に戻し、外気からの吸熱とともに蓄熱を利用した暖房運転を行なう運転手段を備え、この運転手段による暖房開始時、電動膨張弁の開度を初期開度から徐々に増大する。
【0006】
第2の発明(請求項2)の冷凍サイクル装置は、第1の発明において、制御手段は、電動膨張弁の開度をタイマの計時に従い初期開度から徐々に増大する。
第3の発明(請求項3)の冷凍サイクル装置は、第1の発明において、制御手段は、電動膨張弁の開度を、蓄熱手段の温度変化または蓄熱手段を経た冷媒の温度変化に従い、初期開度から徐々に増大する。
【0007】
第4の発明(請求項4)の冷凍サイクル装置は、圧縮機、室内熱交換器、電動膨張弁、室外熱交換器、および蓄熱手段を備えた冷凍サイクル装置であって、圧縮機の吐出冷媒を室内熱交換器、電動膨張弁、室外熱交換器に通して圧縮機に戻し、外気からの吸熱を利用した暖房運転を行なう第1運転手段と、圧縮機の吐出冷媒を室内熱交換器、電動膨張弁、室外熱交換器に通して圧縮機に戻すとともに、室内熱交換器を経た冷媒を分流して蓄熱手段に通して圧縮機に戻し、外気からの吸熱とともに蓄熱を利用した暖房運転を行なう第2運転手段とを備え、電動膨張弁の初期開度を第1運転手段による暖房開始の場合と第2運転手段による暖房開始の場合とで、第1運転手段による暖房開始の場合は室内熱交換器からの冷媒全てが電動膨張弁を通過する量に対応する開度とし、第2運転手段による暖房開始の場合は室内熱交換器からの冷媒が蓄熱手段に送られるよう冷媒の一部が電動膨張弁を通過する量に対応する開度となるよう、異ならせる。
【0008】
第5の発明(請求項5)の冷凍サイクル装置は、第4の発明において、制御手段は、電動膨張弁の初期開度をさらに外気温度に応じて異ならせる。
第6の発明(請求項6)の冷凍サイクル装置は、第4の発明において、制御手段は、第2運転手段による暖房時、電動膨張弁の初期開度を蓄熱手段の温度に応じて異ならせる。
【0009】
第7の発明(請求項7)の冷凍サイクル装置は、第4の発明において、制御手段は、電動膨張弁の初期開度をさらに外気温度に応じて異ならせ、かつ第2運転手段による暖房時の電動膨張弁の初期開度を蓄熱手段の温度に応じて異ならせる。
【0010】
【発明の実施の形態】
以下、この発明の第1実施例について図面を参照して説明する。
図1において、1は圧縮機で、容量が互いに異なる2つの圧縮室(シリンダ)1a,1bを有する。1aの方が大きく、1bの方が小さい。
【0011】
この圧縮機1の吐出口に四方弁2および二方弁3を介して室内熱交換器4が配管接続され、その室内熱交換器4に二方弁5および減圧手段たとえば電動膨張弁6を介して室外熱交換器7が配管接続される。電動膨張弁6は、供給される駆動パルスの数に応じて開度が変化するパルスモータバルブ(PMV)である。
【0012】
室外熱交換器7は四方弁2およびサクションカップ8を介して圧縮機1の圧縮室1a,1bにそれぞれ配管接続される。サクションカップ8から圧縮室1aにつながる両配管には、逆止弁10が設けられる。
【0013】
ここまでは一般的なヒートポンプ式冷凍サイクルの構成である。
そして、二方弁5と電動膨張弁6との間の配管から、圧縮室1aにつながる配管にかけて、蓄熱利用二方弁11、減圧手段であるキャピラリチューブ12、蓄熱手段である蓄熱タンク13の熱交換器14、およびサクションカップ15が順次に配管接続される。
【0014】
一方、制御部20に、圧縮機1、四方弁2、二方弁3、二方弁5、電動膨張弁6、二方弁11、操作部21、およびタイマ22が接続される。
制御部20は、主要な機能手段として、次の[1]〜[3]を備える。
【0015】
[1]圧縮機1の吐出冷媒を四方弁2、二方弁3、室内熱交換器4、二方弁5、電動膨張弁6、室内熱交換器7、四方弁2、サクションカップ8、逆止弁9,10に通して圧縮機1に戻し、外気からの吸熱のみ利用する通常の暖房運転を行なう第1運転手段。
【0016】
[2]圧縮機1の吐出冷媒を四方弁2、二方弁3、室内熱交換器4、二方弁5、電動膨張弁6、室内熱交換器7、四方弁2、サクションカップ8、逆止弁9,10に通して圧縮機1に戻すとともに、二方弁5を経た冷媒を分流して二方弁 11、キャピラリチューブ12、蓄熱タンク13の熱交換器14、サクションカップ15に通して圧縮機1に戻し、外気からの吸熱と蓄熱とを同時に利用する暖房運転を行なう第2運転手段。
【0017】
[3]第2運転手段による暖房開始時、電動膨張弁6の開度を初期開度から徐々に増大する制御手段。
つぎに、上記の構成の作用を説明する。
【0018】
上記の第2運転手段によって、外気からの吸熱と蓄熱を同時利用する暖房運転によって暖房が開始される。すなわち、圧縮機1が起動されるとともに、四方弁2が図1の状態に切換えられ、二方弁3,5が開放される。さらに、電動膨張弁6が所定の初期開度に設定されるとともに、二方弁11が開放される。
【0019】
圧縮機1の吐出冷媒は四方弁2および二方弁3を通って室内熱交換器4に流れ、その室内熱交換器4を経た冷媒の一部が二方弁5および電動膨張弁6を通って室内熱交換器7に流れる。そして、室内熱交換器7を経た冷媒が四方弁2、サクションカップ8および逆止弁10を通り、圧縮機1に吸込まれる。室外熱交換器7を流れる冷媒は外気から熱を吸い上げて蒸発する。
【0020】
さらに、室内熱交換器4を経た残りの冷媒が二方弁11側に分流してその二方弁11およびキャピラリチューブ12を通り、蓄熱タンク13の熱交換器14に流入する。
【0021】
蓄熱タンク13は蓄熱剤(例えば、水等)を収容しており、例えば夜間電力を用いた図示しない電気ヒータ等により、予め、蓄熱剤に暖房用の温熱が蓄えられる。熱交換器14を流れる冷媒は、この蓄熱(温熱)を奪って蒸発する。
【0022】
熱交換器14を経た冷媒は四方弁2およびサクションカップ15を通り、圧縮機1の圧縮室1aへ吸込まれる。熱交換器14を流れる冷媒は、蓄熱剤から熱を奪って蒸発する。
【0023】
この場合、蓄熱タンク13を経た冷媒はサクションカップ15から圧縮室1aへ流入するのみで圧縮室1bへは流入しない。圧縮室1a,1bの両方に流入する場合に比べ、熱交換器14での冷媒流量が少なくなり、蓄熱の利用率が抑制される。
【0024】
こうして、外気からの吸熱および蓄熱を同時に利用することにより、立上がりの早い暖房を行なうことができる。
ところで、運転開始と同時にタイマ22が作動している。このタイマ22の計時がT1 未満のうちは電動膨張弁6の開度は初期開度P1 であるが、タイマ22の計時がT1 以上、T2 未満の期間では、電動膨張弁6の開度がP2 (>P1 )に設定される。タイマ22の計時がT2 以上、T3 未満の期間では、電動膨張弁6の開度がP3 (>P2 )に設定される。タイマ22の計時がT3 以上では、電動膨張弁6の開度がP4 (>P3 )に設定される。
時間経過と電動膨張弁6の開度との関係を表1に示す。
【0025】
【表1】

Figure 0003792833
【0026】
電動膨張弁6の開度が増えるに従い、室内熱交換器4から室外熱交換器7へ流れる冷媒の量が多くなっていき、その分、蓄熱タンク13の熱交換器14に分流する冷媒の量が少なくなる。
【0027】
すなわち、暖房開始時のように多くの暖房熱量が要求される状況では、蓄熱タンク13の熱交換器14に流れる冷媒量を少なくせずに蓄熱を存分に利用し、その後、暖房が進んで要求暖房熱量が少なくなるのに伴い、熱交換器14に流れる冷媒量を徐々に減少させて蓄熱の利用量を減らすようにしている。
【0028】
したがって、蓄熱の利用量を適切に調節することができる。とくに、冷凍サイクルのもともとの構成部品である電動膨張弁6を用いた調節であるから、蓄熱タンク13への冷媒流路に新たに流量調整弁を設ける必要はなく、よってコストの上昇を避けることができる。
【0029】
しかる後、タイマ22の計時に基づき、暖房開始からの時間経過が所定時間に達すると、暖房の立上がりがほぼ完了したとの判断の下に、上記第1運転手段によって、外気からの吸熱のみ利用する通常の暖房運転が実行される。すなわち、四方弁2、二方弁3,5、電動膨張弁6、二方弁16は同じ状態のまま、二方弁11が閉成される。
【0030】
圧縮機1の吐出冷媒は四方弁2および二方弁3を通って室内熱交換器4に流れ、その室内熱交換器4を経た冷媒が二方弁5および電動膨張弁6を通って室内熱交換器7に流れる。そして、室内熱交換器7を経た冷媒が四方弁2、サクションカップ8、および逆止弁9,10を通り、圧縮機1に吸込まれる。室外熱交換器7を流れる冷媒は外気から熱を吸い上げて蒸発する。
運転モードと電動膨張弁6および二方弁11の動作との関係を表2に示す。電動膨張弁6の開度については、初期開度を含めて所定開度としている。
【0031】
【表2】
Figure 0003792833
【0032】
ところで、外気からの吸熱と蓄熱を利用する暖房から、外気からの吸熱のみ利用する暖房への移行に際しては、蓄熱タンク13の熱交換器14における冷媒の蒸発圧力が一挙に外気側蒸発圧力まで変化して、それが圧縮機1にかかる負荷の急激な増大となって現れる心配がある。ただし、蓄熱を利用する暖房から、外気からの吸熱のみ利用する暖房への移行に際しては、上記のように、電動膨張弁6の開度が増大して蓄熱タンク13の熱交換器14に流れる冷媒の量が少なく設定される状況にあるので、熱交換器14における蒸発圧力の急激な変化を避けることができ、圧縮機1にかかる負荷の急激な増大を回避することができる。
【0033】
なお、上記実施例では、タイマ22の計時に従って電動膨張弁6の開度を初期開度から徐々に増大するようにしたが、タイマ22の計時に代えて蓄熱タンク 13の温度を用いてもよい。
【0034】
すなわち、図1に示すように、蓄熱タンク13に蓄熱温度センサ30を設け、それを制御部20に接続する。蓄熱温度センサ30は、蓄熱タンク13内の蓄熱剤(例えば、水等)の温度Tw を検知する。
【0035】
制御部20は、電動膨張弁6の開度を、蓄熱温度センサ30の検知温度の変化に従い、初期開度から徐々に増大する。
たとえば、蓄熱温度センサ30の検知温度Tw がTw3以上の場合は電動膨張弁6の開度は初期開度P1 に設定され、検知温度Tw がTw3未満、Tw2以上の場合は、電動膨張弁6の開度がP2 (>P1 )に設定される。検知温度Tw がTw2未満、Tw1以上の場合は、電動膨張弁6の開度がP3 (>P2 )に設定される。検知温度Tw がTw1未満の場合は、電動膨張弁6の開度がP4 (>P3 )に設定される。
蓄熱温度センサ30の検知温度Tw と電動膨張弁6の開度との関係を表3に示す。
【0036】
【表3】
Figure 0003792833
【0037】
この場合も、暖房開始時のように多くの暖房熱量が要求される状況では、蓄熱タンク13の熱交換器14に流れる冷媒量を少なくせずに蓄熱を存分に利用し、その後、暖房が進んで要求暖房熱量が少なくなるのに伴い、熱交換器14に流れる冷媒量を徐々に減少させて蓄熱の利用量を減らすことになり、蓄熱の利用量を適切に調節することができる。
【0038】
なお、蓄熱温度センサ30で蓄熱タンク13内の蓄熱剤の温度Tw を検知したが、蓄熱タンク13を経た冷媒の温度を検知してその検知温度の変化に従って電動膨張弁6の開度を徐々に増大するようにしてもよい。
【0039】
次に、この発明の第2実施例について説明する。
制御部20の機能手段として、第1実施例の[3]に代わり次の[4]が採用される。
【0040】
[4]電動膨張弁6の初期開度を、外気からの吸熱と蓄熱を同時利用する暖房運転によって暖房を開始する場合と、外気からの吸熱のみ利用する通常の暖房運転によって暖房を開始する場合とで、異ならせる制御手段。
その他の構成は第1実施例と同じである。
運転モードと電動膨張弁6および二方弁11の動作との関係を表4に示す。
【0041】
【表4】
Figure 0003792833
【0042】
すなわち、蓄熱の利用量を適切に調節する観点から、外気からの吸熱と蓄熱を同時利用する暖房運転によって暖房を開始する場合は電動膨張弁6の初期開度としてYを設定し、外気からの吸熱のみ利用する通常の暖房運転によって暖房を開始する場合は初期開度としてXを設定するようにしている。暖房開始から所定時間後は、電動膨張弁6の開度は例えば室外熱交換器7での冷媒過熱度などに応じて適宜に制御される。
【0043】
なお、電動膨張弁6の初期開度については、暖房開始時の運転モードだけに限らず、さらに外気温度に応じて異ならせるようにしてもよい。これも蓄熱の利用量を適切に調節することにつながる。
【0044】
すなわち、図1に示すように、外気温度センサ23を設け、それを制御部20に接続する。外気温度センサ23は、外気温度To を検知する。
制御部20は、電動膨張弁6の初期開度を、暖房開始時の運転モードに応じて、さらに外気温度センサ23の検知温度To に応じて、異ならせる。
【0045】
たとえば、外気からの吸熱と蓄熱を同時利用する暖房開始の場合、外気温度センサ23の検知温度To がTo1未満のとき電動膨張弁6の初期開度がY1 に設定され、検知温度To がTo1以上、To2未満では、初期開度がY2 (>Y1 )に設定される。検知温度To がTo2以上、To3未満では、初期開度がY3 (>Y2 )に設定される。検知温度To がTo3以上では、初期開度がY4 (>Y3 )に設定される。
【0046】
外気温度To が低いほど初期開度を小さくして蓄熱の利用量を多くするようにしている。
外気からの吸熱のみ利用する暖房開始の場合には、外気温度センサ23の検知温度To がTo1未満のとき電動膨張弁6の初期開度がX1 に設定され、検知温度To がTo1以上、T02未満の範囲では、初期開度がX2 (>X1 )に設定される。検知温度To がTo2以上、T03未満の範囲では、初期開度がX3 (>X2 )に設定される。検知温度To がTo3以上では、初期開度がX4 (>X3 )に設定される。
【0047】
外気温度To が低いほど初期開度を小さくして、迅速に通常制御時の制御開度へ移行できるようにしている。
運転モードと、外気温度To と、初期開度との関係を表5に示す。
【0048】
【表5】
Figure 0003792833
【0049】
ここまでは、電動膨張弁6の初期開度を、暖房開始時の運転モードおよび外気温度To に応じて異ならせる場合について説明したが、暖房開始時の運転モードおよび蓄熱温度センサ30の検知温度Tw に応じて異ならせる構成としてもよく、あるいは、暖房開始時の運転モードに応じて、かつ外気温度To に応じて、かつ蓄熱温度センサ30の検知温度Tw に応じて異ならせる構成としてもよい。
その他、この発明は上記各実施例に限定されるものではなく、要旨を変えない範囲で種々変形実施可能である。
【0050】
【発明の効果】
以上述べたようにこの発明によれば、外気からの吸熱とともに蓄熱を利用する暖房運転によって暖房を開始する場合、電動膨張弁の開度を初期開度から徐々に増大する構成としたので、あるいは、電動膨張弁6の初期開度を外気からの吸熱と蓄熱を同時利用する暖房運転によって暖房を開始する場合と外気からの吸熱のみ利用する通常の暖房運転によって暖房を開始する場合とで異ならせる構成としたので、蓄熱の利用量をコストの上昇を招くことなく適切に調節できる冷凍サイクル装置を提供できる。
【図面の簡単な説明】
【図1】各実施例の構成を示す図。
【符号の説明】
1…圧縮機
1a,1b…圧縮室
2…四方弁
3,5…二方弁
4…室内熱交換器
6…電動膨張弁
7…室外熱交換器
11…蓄熱利用二方弁
13…蓄熱タンク
14…熱交換器
20…制御部
22…タイマ
23…外気温度センサ
30…蓄熱温度センサ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigeration cycle apparatus having a heat storage function.
[0002]
[Prior art]
There is a refrigeration cycle apparatus in which a heat storage tank is provided in a refrigeration cycle, for example, heat for heating is stored by heat storage using nighttime power, and the heat storage is used for air conditioning.
[0003]
[Problems to be solved by the invention]
In the case of a refrigeration cycle apparatus having a heat storage function, it is desired that the amount of heat storage used can be adjusted appropriately.
As a method of adjustment, it is conceivable to provide a flow rate adjusting valve in the refrigerant flow path to the heat storage tank, but there is a problem that the use of the flow rate adjusting valve causes an increase in cost.
[0004]
The present invention takes the above circumstances into consideration, and an object thereof is to provide a refrigeration cycle apparatus that can appropriately adjust the amount of heat storage used without causing an increase in cost.
[0005]
[Means for Solving the Problems]
A refrigeration cycle apparatus according to a first invention (invention 1) is a refrigeration cycle apparatus including a compressor, an indoor heat exchanger, an electric expansion valve, an outdoor heat exchanger, and heat storage means, and the refrigerant discharged from the compressor Through the indoor heat exchanger, electric expansion valve, outdoor heat exchanger and return to the compressor, and the refrigerant passing through the indoor heat exchanger is diverted from the pipe between the indoor heat exchanger and the electric expansion valve to store heat. Is provided with operating means for performing heating operation using heat storage together with heat absorption from the outside air, and at the start of heating by this operating means, the opening of the electric expansion valve is gradually increased from the initial opening.
[0006]
In the refrigeration cycle apparatus according to the second invention (invention 2), in the first invention, the control means gradually increases the opening of the electric expansion valve from the initial opening according to the timer.
In the refrigeration cycle apparatus of the third invention (invention 3), in the first invention, the control means sets the opening of the electric expansion valve in accordance with the temperature change of the heat storage means or the temperature change of the refrigerant having passed through the heat storage means. It gradually increases from the opening.
[0007]
A refrigeration cycle apparatus according to a fourth invention (invention 4) is a refrigeration cycle apparatus comprising a compressor, an indoor heat exchanger, an electric expansion valve , an outdoor heat exchanger, and heat storage means, and is a refrigerant discharged from the compressor. Through the indoor heat exchanger, the electric expansion valve , the outdoor heat exchanger, the first operating means for performing the heating operation using the heat absorption from the outside air, and the refrigerant discharged from the compressor as the indoor heat exchanger, The electric expansion valve and the outdoor heat exchanger are returned to the compressor, and the refrigerant that has passed through the indoor heat exchanger is diverted through the heat storage means and returned to the compressor to perform heating operation using heat storage along with heat absorption from the outside air. Second operating means for performing the initial opening of the electric expansion valve when heating is started by the first operating means and when heating is started by the second operating means. All the refrigerant from the heat exchanger passes through the electric expansion valve. The opening corresponding to the amount that the refrigerant passes through the electric expansion valve so that the refrigerant from the indoor heat exchanger is sent to the heat storage means when heating is started by the second operating means. To be different.
[0008]
In the refrigeration cycle apparatus of the fifth invention (invention 5), in the fourth invention, the control means further varies the initial opening degree of the electric expansion valve according to the outside air temperature.
In a refrigeration cycle apparatus according to a sixth invention (invention 6), in the fourth invention, the control means varies the initial opening of the electric expansion valve according to the temperature of the heat storage means during heating by the second operating means. .
[0009]
The refrigeration cycle apparatus according to a seventh invention (invention 7) is the refrigeration cycle apparatus according to the fourth invention, wherein the control means further varies the initial opening of the electric expansion valve in accordance with the outside air temperature and is heated by the second operating means. The initial opening degree of the electric expansion valve is made different according to the temperature of the heat storage means.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
In FIG. 1, reference numeral 1 denotes a compressor having two compression chambers (cylinders) 1a and 1b having different capacities. 1a is larger and 1b is smaller.
[0011]
An indoor heat exchanger 4 is connected to the discharge port of the compressor 1 via a four-way valve 2 and a two-way valve 3, and the indoor heat exchanger 4 is connected to a two-way valve 5 and a pressure reducing means such as an electric expansion valve 6. The outdoor heat exchanger 7 is connected by piping. The electric expansion valve 6 is a pulse motor valve (PMV) whose opening degree changes according to the number of supplied drive pulses.
[0012]
The outdoor heat exchanger 7 is connected by piping to the compression chambers 1a and 1b of the compressor 1 via the four-way valve 2 and the suction cup 8, respectively. A check valve 10 is provided on both pipes connected from the suction cup 8 to the compression chamber 1a.
[0013]
Up to this point, the configuration is a general heat pump refrigeration cycle.
Then, from the pipe between the two-way valve 5 and the electric expansion valve 6 to the pipe connected to the compression chamber 1a, the heat of the heat storage use two-way valve 11, the capillary tube 12 as the pressure reducing means, and the heat of the heat storage tank 13 as the heat storage means. The exchanger 14 and the suction cup 15 are piped in order.
[0014]
On the other hand, the compressor 1, the four-way valve 2, the two-way valve 3, the two-way valve 5, the electric expansion valve 6, the two-way valve 11, the operation unit 21, and the timer 22 are connected to the control unit 20.
The control unit 20 includes the following [1] to [3] as main functional means.
[0015]
[1] The refrigerant discharged from the compressor 1 is divided into four-way valve 2, two-way valve 3, indoor heat exchanger 4, two-way valve 5, electric expansion valve 6, indoor heat exchanger 7, four-way valve 2, suction cup 8, and reverse. First operation means for performing normal heating operation using only the heat absorption from the outside air through the stop valves 9 and 10 and returning to the compressor 1.
[0016]
[2] As for the refrigerant discharged from the compressor 1, the four-way valve 2, the two-way valve 3, the indoor heat exchanger 4, the two-way valve 5, the electric expansion valve 6, the indoor heat exchanger 7, the four-way valve 2, the suction cup 8, and the reverse The refrigerant passes through the stop valves 9 and 10 and is returned to the compressor 1, and the refrigerant that has passed through the two-way valve 5 is divided to pass through the two-way valve 11, the capillary tube 12, the heat exchanger 14 of the heat storage tank 13, and the suction cup 15. Second operating means for returning to the compressor 1 and performing a heating operation using heat absorption and heat storage from outside air at the same time.
[0017]
[3] Control means for gradually increasing the opening degree of the electric expansion valve 6 from the initial opening degree when heating by the second operating means is started.
Next, the operation of the above configuration will be described.
[0018]
Heating is started by the above-described second operation means by the heating operation in which heat absorption from the outside air and heat storage are simultaneously used. That is, the compressor 1 is started, the four-way valve 2 is switched to the state shown in FIG. 1, and the two-way valves 3 and 5 are opened. Further, the electric expansion valve 6 is set to a predetermined initial opening, and the two-way valve 11 is opened.
[0019]
The refrigerant discharged from the compressor 1 flows through the four-way valve 2 and the two-way valve 3 to the indoor heat exchanger 4, and a part of the refrigerant passing through the indoor heat exchanger 4 passes through the two-way valve 5 and the electric expansion valve 6. To the indoor heat exchanger 7. Then, the refrigerant having passed through the indoor heat exchanger 7 passes through the four-way valve 2, the suction cup 8 and the check valve 10 and is sucked into the compressor 1. The refrigerant flowing through the outdoor heat exchanger 7 evaporates by sucking heat from the outside air.
[0020]
Further, the remaining refrigerant that has passed through the indoor heat exchanger 4 is diverted to the two-way valve 11 side, passes through the two-way valve 11 and the capillary tube 12, and flows into the heat exchanger 14 of the heat storage tank 13.
[0021]
The heat storage tank 13 stores a heat storage agent (for example, water or the like), and warm heat for heating is stored in the heat storage agent in advance by, for example, an electric heater (not shown) using nighttime power. The refrigerant flowing through the heat exchanger 14 takes this heat storage (warm heat) and evaporates.
[0022]
The refrigerant having passed through the heat exchanger 14 passes through the four-way valve 2 and the suction cup 15 and is sucked into the compression chamber 1a of the compressor 1. The refrigerant flowing through the heat exchanger 14 takes heat from the heat storage agent and evaporates.
[0023]
In this case, the refrigerant that has passed through the heat storage tank 13 only flows into the compression chamber 1a from the suction cup 15 and does not flow into the compression chamber 1b. Compared with the case where the refrigerant flows into both the compression chambers 1a and 1b, the refrigerant flow rate in the heat exchanger 14 is reduced, and the utilization rate of heat storage is suppressed.
[0024]
Thus, by using heat absorption and heat storage from the outside air at the same time, it is possible to perform heating that rises quickly.
By the way, the timer 22 is operating simultaneously with the start of operation. When the time of the timer 22 is less than T1, the opening degree of the electric expansion valve 6 is the initial opening degree P1, but when the time of the timer 22 is more than T1 and less than T2, the opening degree of the electric expansion valve 6 is P2. (> P1). During the period when the time of the timer 22 is T2 or more and less than T3, the opening degree of the electric expansion valve 6 is set to P3 (> P2). When the time of the timer 22 is T3 or more, the opening degree of the electric expansion valve 6 is set to P4 (> P3).
Table 1 shows the relationship between the passage of time and the opening of the electric expansion valve 6.
[0025]
[Table 1]
Figure 0003792833
[0026]
As the opening degree of the electric expansion valve 6 increases, the amount of refrigerant flowing from the indoor heat exchanger 4 to the outdoor heat exchanger 7 increases, and accordingly, the amount of refrigerant diverted to the heat exchanger 14 of the heat storage tank 13. Less.
[0027]
That is, in a situation where a large amount of heating heat is required, such as at the start of heating, heat storage is fully utilized without reducing the amount of refrigerant flowing in the heat exchanger 14 of the heat storage tank 13, and then heating proceeds. As the required amount of heating heat decreases, the amount of refrigerant stored in the heat exchanger 14 is gradually reduced to reduce the amount of heat storage used.
[0028]
Therefore, the usage amount of heat storage can be adjusted appropriately. In particular, since the adjustment is performed using the electric expansion valve 6 which is an original component of the refrigeration cycle, it is not necessary to newly provide a flow rate adjusting valve in the refrigerant flow path to the heat storage tank 13, thereby avoiding an increase in cost. Can do.
[0029]
Thereafter, based on the time measured by the timer 22, when the passage of time from the start of heating reaches a predetermined time, only the heat absorption from the outside air is used by the first operating means under the judgment that the rise of heating is almost completed. Normal heating operation is performed. That is, the two-way valve 11 is closed while the four-way valve 2, the two-way valves 3 and 5, the electric expansion valve 6, and the two-way valve 16 remain the same.
[0030]
The refrigerant discharged from the compressor 1 flows to the indoor heat exchanger 4 through the four-way valve 2 and the two-way valve 3, and the refrigerant passing through the indoor heat exchanger 4 passes through the two-way valve 5 and the electric expansion valve 6 to heat the room heat. It flows to the exchanger 7. Then, the refrigerant that has passed through the indoor heat exchanger 7 passes through the four-way valve 2, the suction cup 8, and the check valves 9 and 10 and is sucked into the compressor 1. The refrigerant flowing through the outdoor heat exchanger 7 evaporates by sucking heat from the outside air.
Table 2 shows the relationship between the operation mode and the operation of the electric expansion valve 6 and the two-way valve 11. The opening of the electric expansion valve 6 is set to a predetermined opening including the initial opening.
[0031]
[Table 2]
Figure 0003792833
[0032]
By the way, when changing from heating using heat absorption and heat storage from outside air to heating using only heat absorption from outside air, the refrigerant evaporation pressure in the heat exchanger 14 of the heat storage tank 13 changes all at once to the outside air evaporation pressure. Then, there is a concern that it appears as a sudden increase in the load applied to the compressor 1. However, at the time of transition from heating using heat storage to heating using only heat absorption from the outside air, the opening of the electric expansion valve 6 increases and the refrigerant flows to the heat exchanger 14 of the heat storage tank 13 as described above. Therefore, a rapid change in the evaporation pressure in the heat exchanger 14 can be avoided, and a sudden increase in the load on the compressor 1 can be avoided.
[0033]
In the above embodiment, the opening degree of the electric expansion valve 6 is gradually increased from the initial opening degree according to the timing of the timer 22, but the temperature of the heat storage tank 13 may be used instead of the timing of the timer 22. .
[0034]
That is, as shown in FIG. 1, a heat storage temperature sensor 30 is provided in the heat storage tank 13 and connected to the control unit 20. The heat storage temperature sensor 30 detects the temperature Tw of the heat storage agent (for example, water) in the heat storage tank 13.
[0035]
The control unit 20 gradually increases the opening degree of the electric expansion valve 6 from the initial opening degree according to the change in the temperature detected by the heat storage temperature sensor 30.
For example, when the detected temperature Tw of the heat storage temperature sensor 30 is equal to or higher than Tw3, the opening degree of the electric expansion valve 6 is set to the initial opening degree P1, and when the detected temperature Tw is lower than Tw3 and equal to or higher than Tw2, the electric expansion valve 6 The opening is set to P2 (> P1). When the detected temperature Tw is lower than Tw2 and equal to or higher than Tw1, the opening of the electric expansion valve 6 is set to P3 (> P2). When the detected temperature Tw is less than Tw1, the opening degree of the electric expansion valve 6 is set to P4 (> P3).
Table 3 shows the relationship between the detected temperature Tw of the heat storage temperature sensor 30 and the opening of the electric expansion valve 6.
[0036]
[Table 3]
Figure 0003792833
[0037]
Also in this case, in a situation where a large amount of heating heat is required, such as at the start of heating, heat storage is fully utilized without reducing the amount of refrigerant flowing in the heat exchanger 14 of the heat storage tank 13, and then heating is performed. As the required amount of heating heat decreases, the amount of refrigerant flowing through the heat exchanger 14 is gradually reduced to reduce the amount of stored heat, and the amount of stored heat can be adjusted appropriately.
[0038]
Although the temperature Tw of the heat storage agent in the heat storage tank 13 is detected by the heat storage temperature sensor 30, the temperature of the refrigerant passing through the heat storage tank 13 is detected, and the opening of the electric expansion valve 6 is gradually increased according to the change in the detected temperature. You may make it increase.
[0039]
Next explained is the second embodiment of the invention.
As functional means of the control unit 20, the following [4] is adopted instead of [3] in the first embodiment.
[0040]
[4] When initial heating of the electric expansion valve 6 is started by heating operation using heat absorption and heat storage from outside air simultaneously, and when heating is started by normal heating operation using only heat absorption from outside air Control means to make it different.
Other configurations are the same as those of the first embodiment.
Table 4 shows the relationship between the operation mode and the operation of the electric expansion valve 6 and the two-way valve 11.
[0041]
[Table 4]
Figure 0003792833
[0042]
That is, from the viewpoint of appropriately adjusting the amount of heat storage used, when heating is started by heating operation that uses heat absorption and heat storage from the outside air at the same time, Y is set as the initial opening of the electric expansion valve 6, and When heating is started by a normal heating operation using only heat absorption, X is set as the initial opening. After a predetermined time from the start of heating, the opening degree of the electric expansion valve 6 is appropriately controlled according to, for example, the degree of refrigerant superheat in the outdoor heat exchanger 7.
[0043]
The initial opening degree of the electric expansion valve 6 is not limited to the operation mode at the start of heating, and may be varied according to the outside air temperature. This also leads to appropriate adjustment of the amount of heat storage used.
[0044]
That is, as shown in FIG. 1, an outside temperature sensor 23 is provided and connected to the control unit 20. The outside air temperature sensor 23 detects the outside air temperature To.
The control unit 20 varies the initial opening degree of the electric expansion valve 6 according to the operation mode at the start of heating and further according to the detected temperature To of the outside air temperature sensor 23.
[0045]
For example, in the case of heating start using heat absorption and heat storage from outside air at the same time, when the detected temperature To of the outside air temperature sensor 23 is less than To1, the initial opening degree of the electric expansion valve 6 is set to Y1, and the detected temperature To is equal to or higher than To1. If it is less than To2, the initial opening is set to Y2 (> Y1). When the detected temperature To is equal to or higher than To2 and lower than To3, the initial opening is set to Y3 (> Y2). When the detected temperature To is equal to or higher than To3, the initial opening is set to Y4 (> Y3).
[0046]
The lower the outside air temperature To is, the smaller the initial opening is, and the more the amount of heat storage is used.
In the case of starting heating using only heat absorption from the outside air, when the detected temperature To of the outside air temperature sensor 23 is less than To1, the initial opening degree of the electric expansion valve 6 is set to X1, and the detected temperature To is equal to or greater than To1 and less than T02. In this range, the initial opening is set to X2 (> X1). In the range where the detected temperature To is equal to or higher than To2 and lower than T03, the initial opening is set to X3 (> X2). When the detected temperature To is equal to or higher than To3, the initial opening is set to X4 (> X3).
[0047]
The lower the outside air temperature To is, the smaller the initial opening becomes, so that the control opening at the time of normal control can be quickly transferred.
Table 5 shows the relationship among the operation mode, the outside air temperature To, and the initial opening.
[0048]
[Table 5]
Figure 0003792833
[0049]
Up to this point, the case where the initial opening degree of the electric expansion valve 6 is varied according to the operation mode at the start of heating and the outside air temperature To has been described. However, the operation mode at the start of heating and the detected temperature Tw of the heat storage temperature sensor 30 are described. Depending on the operation mode at the start of heating, according to the outside air temperature To, and according to the detected temperature Tw of the heat storage temperature sensor 30, it may be different.
In addition, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the invention.
[0050]
【The invention's effect】
As described above, according to the present invention, when heating is started by heating operation using heat storage together with heat absorption from outside air, the opening of the electric expansion valve is gradually increased from the initial opening, or The initial opening degree of the electric expansion valve 6 is made different between when heating is started by heating operation using heat absorption and heat storage from outside air at the same time and when heating is started by normal heating operation using only heat absorption from outside air. Since it was set as the structure, the refrigerating-cycle apparatus which can adjust appropriately the usage-amount of heat storage without causing a raise of cost can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of each embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Compressor 1a, 1b ... Compression chamber 2 ... Four-way valve 3, 5 ... Two-way valve 4 ... Indoor heat exchanger 6 ... Electric expansion valve 7 ... Outdoor heat exchanger 11 ... Heat storage utilization two-way valve 13 ... Heat storage tank 14 ... Heat exchanger 20 ... Control unit 22 ... Timer 23 ... Outside air temperature sensor 30 ... Heat storage temperature sensor

Claims (7)

圧縮機、室内熱交換器、電動膨張弁、室外熱交換器、および蓄熱手段を備えた冷凍サイクル装置において、
前記圧縮機の吐出冷媒を前記室内熱交換器、電動膨張弁、室外熱交換器に通して圧縮機に戻すとともに、室内熱交換器を経た冷媒を室内熱交換器と電動膨張弁との間の配管から分流して前記蓄熱手段に通して圧縮機に戻し、外気からの吸熱とともに蓄熱を利用した暖房運転を行なう運転手段と、
この運転手段による暖房開始時、前記電動膨張弁の開度を初期開度から徐々に増大する制御手段と、
を具備したことを特徴とする冷凍サイクル装置。
In a refrigeration cycle apparatus comprising a compressor, an indoor heat exchanger, an electric expansion valve, an outdoor heat exchanger, and a heat storage means,
The refrigerant discharged from the compressor is returned to the compressor through the indoor heat exchanger, the electric expansion valve, and the outdoor heat exchanger, and the refrigerant having passed through the indoor heat exchanger is passed between the indoor heat exchanger and the electric expansion valve. Operating means for diverting from the piping, passing through the heat storage means and returning to the compressor, and performing heating operation using heat storage together with heat absorption from the outside air;
At the start of heating by this operating means, control means for gradually increasing the opening of the electric expansion valve from the initial opening;
A refrigeration cycle apparatus comprising:
前記制御手段は、電動膨張弁の開度をタイマの計時に従い初期開度から徐々に増大することを特徴とする請求項1記載の冷凍サイクル装置。  2. The refrigeration cycle apparatus according to claim 1, wherein the control means gradually increases the opening degree of the electric expansion valve from the initial opening degree according to a timer. 前記制御手段は、電動膨張弁の開度を、前記蓄熱手段の温度変化または蓄熱手段を経た冷媒の温度変化に従い、初期開度から徐々に増大することを特徴とする請求項1記載の冷凍サイクル装置。  2. The refrigeration cycle according to claim 1, wherein the control means gradually increases the opening degree of the electric expansion valve from the initial opening degree in accordance with a temperature change of the heat storage means or a temperature change of the refrigerant having passed through the heat storage means. apparatus. 圧縮機、室内熱交換器、電動膨張弁、室外熱交換器、および蓄熱手段を備えた冷凍サイクル装置において、
前記圧縮機の吐出冷媒を前記室内熱交換器、電動膨張弁、室外熱交換器に通して圧縮機に戻し、外気からの吸熱を利用した暖房運転を行なう第1運転手段と、
前記圧縮機の吐出冷媒を前記室内熱交換器、電動膨張弁、室外熱交換器に通して圧縮機に戻すとともに、室内熱交換器を経た冷媒を分流して前記蓄熱手段に通して圧縮機に戻し、外気からの吸熱とともに蓄熱を利用した暖房運転を行なう第2運転手段と、
前記電動膨張弁の初期開度を前記第1運転手段による暖房開始の場合と前記第2運転手段による暖房開始の場合とで、第1運転手段による暖房開始の場合は室内熱交換器からの冷媒全てが電動膨張弁を通過する量に対応する開度とし、第2運転手段による暖房開始の場合は室内熱交換器からの冷媒が前記蓄熱手段に送られるよう冷媒の一部が電動膨張弁を通過する量に対応する開度となるよう、異ならせる制御手段と、
を具備したことを特徴とする冷凍サイクル装置。
In a refrigeration cycle apparatus comprising a compressor, an indoor heat exchanger, an electric expansion valve , an outdoor heat exchanger, and a heat storage means,
First operation means for performing a heating operation using heat absorption from the outside air by passing the refrigerant discharged from the compressor through the indoor heat exchanger, the electric expansion valve , and the outdoor heat exchanger and returning it to the compressor;
The refrigerant discharged from the compressor is returned to the compressor through the indoor heat exchanger, the electric expansion valve , and the outdoor heat exchanger, and the refrigerant having passed through the indoor heat exchanger is diverted and passed through the heat storage means to the compressor. Returning, second operating means for performing heating operation using heat storage together with heat absorption from outside air;
The initial opening degree of the electric expansion valve is the refrigerant from the indoor heat exchanger when heating is started by the first operating means and when heating is started by the second operating means. The opening degree corresponds to the amount that all passes through the electric expansion valve, and in the case of starting heating by the second operating means, a part of the refrigerant sets the electric expansion valve so that the refrigerant from the indoor heat exchanger is sent to the heat storage means. A control means for varying the opening degree to correspond to the passing amount;
A refrigeration cycle apparatus comprising:
前記制御手段は、電動膨張弁の初期開度をさらに外気温度に応じて異ならせることを特徴とする請求項4記載の冷凍サイクル装置。  5. The refrigeration cycle apparatus according to claim 4, wherein the control means further varies the initial opening degree of the electric expansion valve in accordance with the outside air temperature. 前記制御手段は、第2運転手段による暖房時、電動膨張弁の初期開度を前記蓄熱手段の温度に応じて異ならせることを特徴とする請求項4記載の冷凍サイクル装置。  The refrigeration cycle apparatus according to claim 4, wherein the control means varies the initial opening of the electric expansion valve according to the temperature of the heat storage means during heating by the second operating means. 前記制御手段は、電動膨張弁の初期開度をさらに外気温度に応じて異ならせ、かつ第2運転手段による暖房時の電動膨張弁の初期開度を前記蓄熱手段の温度に応じて異ならせることを特徴とする請求項4記載の冷凍サイクル装置。  The control means further varies the initial opening of the electric expansion valve according to the outside air temperature, and varies the initial opening of the electric expansion valve during heating by the second operating means according to the temperature of the heat storage means. The refrigeration cycle apparatus according to claim 4.
JP12867297A 1997-05-19 1997-05-19 Refrigeration cycle equipment Expired - Fee Related JP3792833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12867297A JP3792833B2 (en) 1997-05-19 1997-05-19 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12867297A JP3792833B2 (en) 1997-05-19 1997-05-19 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JPH10318621A JPH10318621A (en) 1998-12-04
JP3792833B2 true JP3792833B2 (en) 2006-07-05

Family

ID=14990599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12867297A Expired - Fee Related JP3792833B2 (en) 1997-05-19 1997-05-19 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP3792833B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358063A (en) * 1986-08-29 1988-03-12 株式会社東芝 Refrigeration cycle device
JPH03211380A (en) * 1990-01-12 1991-09-17 Toshiba Corp Air conditioner

Also Published As

Publication number Publication date
JPH10318621A (en) 1998-12-04

Similar Documents

Publication Publication Date Title
CN207688449U (en) Air-conditioning device
CN111076446A (en) Heat pump air conditioning system and control method thereof
JP3952769B2 (en) Heat pump chiller
WO2014181401A1 (en) Circulation and heating apparatus
CN106871381B (en) Defrosting operation method for air conditioner without stopping
CN104930770A (en) Defrosting method and defrosting device of heat pump air conditioner
JP4226284B2 (en) Air conditioner
JP3792833B2 (en) Refrigeration cycle equipment
JP5517891B2 (en) Air conditioner
JP2001263848A (en) Air conditioner
JP4042640B2 (en) Air conditioner
JP4021374B2 (en) Heat pump water heater
JP2000291985A (en) Air conditioner
CN101363665A (en) Multifunctional air conditioner heat pump water heating machine
EP1878985A2 (en) Air conditioning system and method of controlling the same
JPH08247565A (en) Heat pump multi-system
JP3849577B2 (en) Heat pump bath water heater
JP2004044946A (en) Air conditioner
JPS6071838A (en) Air conditioner
JP3806224B2 (en) Refrigeration cycle equipment
CN111076445A (en) Air conditioning system and operation method thereof
JPH02169968A (en) Heat pump type room cooler/heater hot water supply apparatus
CN220287825U (en) Refrigerant system and air conditioner
JP3744763B2 (en) Air conditioner
JP3723402B2 (en) Air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees