JP3792385B2 - Method for producing catalyst for synthesis of unsaturated carboxylic acid - Google Patents
Method for producing catalyst for synthesis of unsaturated carboxylic acid Download PDFInfo
- Publication number
- JP3792385B2 JP3792385B2 JP00730398A JP730398A JP3792385B2 JP 3792385 B2 JP3792385 B2 JP 3792385B2 JP 00730398 A JP00730398 A JP 00730398A JP 730398 A JP730398 A JP 730398A JP 3792385 B2 JP3792385 B2 JP 3792385B2
- Authority
- JP
- Japan
- Prior art keywords
- parts
- catalyst
- carboxylic acid
- unsaturated carboxylic
- alcohol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、不飽和アルデヒドの気相接触酸化により不飽和カルボン酸を合成する際に使用する触媒の製造方法、該製造方法により得られた触媒、および該触媒を用いて不飽和カルボン酸を製造する方法に関する。
【0002】
【従来の技術】
従来、不飽和アルデヒドを気相接触酸化して不飽和カルボン酸を製造する際に用いられる触媒を製造する際に有機物を用いる方法として、特開昭57−204230号公報や特開昭60−239439号公報では、触媒原料スラリー調製中にアルコール類や含窒素ヘテロ環化合物等の有機化合物を添加する方法が提案されている。また、特開昭57−204230号公報や特開昭60−48143号公報等では、担持触媒の成形時にアルコール類を添加する方法、特開平5−309273号公報では押出成形時にアルコール類を添加する方法が提案されている。
【0003】
しかしながら、これらの方法により製造された触媒は、反応成績が充分でなく工業的に更に改良が望まれているのが現状である。
【0004】
【発明が解決しようとする課題】
従って、本発明の目的は、不飽和アルデヒドを気相接触酸化して不飽和カルボン酸を高収率で合成できる触媒の製造方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明は、不飽和アルデヒドを気相接触酸化して不飽和カルボン酸を合成する際に用いられる、少なくともリン、モリブデン、バナジウムを含む触媒の製造方法であって、触媒成分を含む混合溶液または水性スラリーから得られる乾燥粉体を乾式成形し、次いで熱処理する方法において、該乾燥粉体が、触媒成分を含む混合溶液または水性スラリーの乾燥物100重量部に対して、少なくとも30重量部のメチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコールおよびアセトンからなる群より選ばれた少なくとも1種の有機化合物を混合した後に乾燥したものであることを特徴とする不飽和カルボン酸合成用触媒の製造方法である。
【0006】
【発明の実施の形態】
本発明の触媒の製造方法は、不飽和アルデヒドを気相接触酸化して不飽和カルボン酸を合成する際に用いられる、少なくともリン、モリブデン、バナジウムを含む触媒に適用できるが、メタクロレインを気相接触酸化してメタクリル酸の合成に適している、一般式
PaMobVcCudXeYfZgOh
(ここで式中、P、Mo、V、CuおよびOはそれぞれリン、モリブデン、バナジウム、銅および酸素を示し、Xはアンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、ケイ素、タングステンおよびホウ素からなる群より選ばれた少なくとも1種類の元素を示し、Yは鉄、亜鉛、クロム、マグネシウム、タンタル、コバルト、マンガン、バリウム、ガリウム、セリウムおよびランタンからなる群より選ばれた少なくとも1種類の元素を示し、Zはカリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種類の元素を示す。a、b、c、d、e、f、gおよびhは各元素の原子比率を表し、b=12のときa=0.5〜3、c=0.01〜3、d=0〜2、e=0〜3、f=0〜3、g=0.01〜3であり、hは前記各成分の原子価を満足するのに必要な酸素の原子比である)で表される組成を有する触媒に適用することが好ましい。
【0007】
本発明において、触媒成分を含む混合溶液または水性スラリーを調製する方法は特に限定されず、成分の著しい偏在を伴わない限り、従来から良く知られている沈殿法、酸化物混合法等の方法を用いることができる。
【0008】
触媒成分の原料としては各元素の酸化物、硝酸塩、炭酸塩、アンモニウム塩等を組み合わせて使用することができる。例えば、モリブデン原料としては、パラモリブデン酸アンモニウム、三酸化モリブデン等が、バナジウム原料としてはメタバナジン酸アンモニウム、五酸化バナジウム等が使用できる。
【0009】
本発明において、触媒成分を含む混合溶液または水性スラリーの乾燥方法は特に限定されず、例えば、蒸発乾固法、噴霧乾燥法、ドラム乾燥法、気流乾燥法等が適用できる。乾燥に使用する乾燥機の機種や乾燥温度等は特に限定されず、所望の乾燥物を得るために機種や乾燥条件等は適宜選定することができる。
【0010】
このようにして得られる乾燥物に、メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコールおよびアセトンからなる群より選ばれた少なくとも1種の有機化合物(以下、アルコール等の有機化合物という)を混合する。
【0011】
乾燥物に混合するアルコール等の有機化合物の量は、乾燥物100重量部に対して少なくとも30重量部、好ましくは35〜100重量部である。アルコール等の有機化合物の乾燥物への添加量が30重量部未満の場合は添加の効果が充分に現れない。一方、添加量が100重量部を超えると添加効果自体はあるものの、混合操作や後処理が煩雑になる等の問題がある。
【0012】
本発明において、乾燥物とアルコール等の有機化合物の混合には、例えば、双腕型ニーダー、連続二軸パグ型混合機、高速攪拌混合機等の公知の混合または混練機を使用することができる。なお混合に際しては、アルコール等の有機化合物以外に、少量の水や、例えば、ヒドロキシプロピルセルロース、カルボキシメチルセルロース、ポリビニルアルコール、グラファイト等の従来より公知の有機または無機の添加剤を添加しても差し支えない。
【0013】
乾燥物とアルコール等の有機化合物の混合物の乾燥方法は特に制限されないが、例えば、箱型熱風乾燥機、バンド型乾燥機、マイクロ波乾燥機等の従来より公知の乾燥機を用いる方法が挙げられる。
【0014】
本発明においては、乾燥物にアルコール等の有機化合物を混合して乾燥したものは、必要に応じて粉砕、分級等して粒度を調整する。粉砕方法は特に制限されないが、例えばボールミル、高速回転ミル、ジェットミル等の従来より公知の種々の粉砕機を用いる方法が挙げられる。また、分級方法も特に制限されないが、例えば、網固定ふるい、振動ふるい、面内運動ふるい等の従来より公知の種々の分級機を用いる方法が挙げられる。
【0015】
続いて、このようにして得られる乾燥粉体を乾式成形する。乾燥粉体を乾式成形する方法は特に制限されないが、このような成形方法としては、例えば、打錠成形法やプレス成形法等の従来より公知の圧縮成形法等が挙げられる。成形される形状は特に制限されないが、例えば円柱状やリング状等の従来より公知の形状が挙げられる。なお、乾式成形に際しては、例えば、グラファイト、タルク等の従来より公知の添加剤を添加しても差し支えない。
【0016】
最後に、乾式成形された成形物を熱処理して触媒とする。熱処理する方法や熱処理条件は特に制限されず、公知の処理方法および条件を適用することができる。このような熱処理の方法としては、例えば、空気流通下および/または不活性ガス流通下で200〜500℃、好ましくは300〜450℃で処理する方法が挙げられる。
【0017】
このように、乾燥物に所定量のエチルアルコール等の有機化合物を混合し、乾燥したものを乾式成形した後、熱処理することにより触媒性能が向上するメカニズムについては現段階では明らかではないが、不飽和アルデヒドの気相接触酸化に、より有利な触媒活性構造が形成されるためと考えられる。
【0018】
本発明により得られる触媒を用いて不飽和アルデヒドから不飽和カルボン酸を合成する反応の反応条件は、従来から知られている通常の条件が適用できるが、原料ガス中の不飽和アルデヒドの濃度は1〜20容量%が適当であり、特に3〜10容量%が好ましい。また、原料ガス中の不飽和アルデヒドと分子状酸素のモル比は1:0.3〜4、特に1:0.4〜3が好ましい。分子状酸素源としては空気を用いるのが経済的であるが、必要ならば純酸素で富化した空気も用いうる。原料ガスは窒素、水蒸気、炭酸ガス等の不活性ガスにより希釈してもよい。反応圧力は常圧から数気圧までが好ましい。反応温度は230〜450℃の範囲で選ぶことができるが、特に250〜400℃が好ましい。
【0019】
【実施例】
以下、本発明の効果を実施例および比較例により示す。実施例および比較例において「部」は重量部を意味する。反応生成物の分析はガスクロマトグラフィーにより行った。不飽和アルデヒドの反応率、生成する不飽和カルボン酸の選択率および不飽和カルボン酸の単流収率は以下のように定義される。
不飽和アルデヒドの反応率(%)=B/A×100
不飽和カルボン酸の選択率(%)=C/B×100
不飽和カルボン酸の単流収率(%)=C/A×100
ここでAは供給した不飽和アルデヒドのモル数、Bは反応した不飽和アルデヒドのモル数、Cは生成した不飽和カルボン酸のモル数を示す。
【0020】
[実施例1]
三酸化モリブデン100部、五酸化バナジウム3.7部、85重量%リン酸8.7部を純水800部と混合した。これを還流下で3時間加熱攪拌した後、これに硝酸銅1.4部を加え、再び還流下で2時間加熱攪拌した。得られたスラリーを60℃まで冷却し、重炭酸セシウム11.2部を純水30部に溶解した溶液を加え15分間攪拌した。次いで硝酸アンモニウム10部を純水30部に溶解した溶液を加え、更に15分間攪拌した。
【0021】
得られた触媒成分を含有するスラリーを並向流式(混合流式)噴霧乾燥機を用いて乾燥機入口温度320℃の条件で乾燥した。得られた乾燥物100部に対してエチルアルコール60部を添加し、高速攪拌混合機でよく混合した。この混合物を50℃に調整された箱型熱風乾燥機中で48時間乾燥後、整粒機で整粒した。このようにして得られた乾燥粉体100部に対してグラファイト3部を添加混合し、打錠成形機により外径6mm、内径3mm、長さ5mmのリング状に成形した。この打錠成形物を空気流通下に380℃で5時間熱処理して、組成が
P1.3Mo12V0.7Cu0.1Cs1
なる触媒を得た。
【0022】
この触媒を充填した反応温度290℃の固定床反応器に、メタクロレイン5%、酸素10%、水蒸気30%、窒素55%(容量%)の混合ガスを接触時間3.6秒で通じて反応させた。この反応の生成物を捕集してガスクロマトグラフィーで分析したところ、メタクロレインの反応率は84.7%、メタクリル酸の選択率は85.0%、メタクリル酸の単流収率は72.0%であった。
【0023】
[比較例1]
実施例1において、乾燥粉体にエチルアルコールを混合せず直接整粒した点以外は実施例1と同様に触媒を製造し、反応を行ったところ、メタクロレインの反応率は83.0%、メタクリル酸の選択率は84.7%であり、メタクリル酸の単流収率は70.3%であった。
【0024】
[比較例2]
実施例1において、エチルアルコールの使用量を20部とした点以外は実施例1と同様に触媒を製造し、反応を行ったところ、メタクロレインの反応率は83.1%、メタクリル酸の選択率は84.8%、メタクリル酸の単流収率は70.5%となり、触媒乾燥粉体とエチルアルコールの混合効果はほとんどみられなかった。
【0025】
[実施例2]
パラモリブデン酸アンモニウム100部、メタバナジン酸アンモニウム2.8部、および硝酸セシウム9.2部を純水300部に溶解した。これに85重量%リン酸7.6部を純水10部に溶解した溶液および60重量%ヒ酸溶液1.1部を純水10部に溶解した溶液を加え、攪拌しながら95℃に昇温した。次いで硝酸銅1.7部、硝酸第二鉄7.6部、硝酸亜鉛1.4部および硝酸マグネシウム1.8部を純水80部に溶解した溶液を加えた。更にこの混合液を100℃で15分間攪拌した。
【0026】
得られた触媒成分を含有するスラリーをドラム乾燥機で乾燥し、得られた乾燥物100部に対してイソブチルアルコール40部およびヒドロキシプロピルセルロース1部を添加し、双腕式ニーダーでよく混合した。この混合物を70℃に調整された箱型熱風乾燥機中で48時間乾燥後、整粒機で整粒した。このようにして得られた乾燥粉体100部に対してグラファイト2部を添加混合し、打錠成形機により外径4mm、長さ4mmの円柱状に成形した。この打錠成形物を空気流通下に380℃で5時間熱処理したものを触媒として、組成が
P1.4Mo12V0.5Fe0.4Cu0.15As0.1Cs1Mg0.15Zn0.1
なる触媒を得た。
【0027】
この触媒を用いて、実施例1と同じ条件で反応を行ったところ、メタクロレインの反応率は86.3%、メタクリル酸の選択率は85.8%、メタクリル酸の単流収率は74.0%であった。
【0028】
[比較例3]
実施例2において、乾燥粉体にイソブチルアルコールを混合せず直接整粒した点以外は実施例2と同様に触媒を製造し、反応を行ったところ、メタクロレインの反応率は84.5%、メタクリル酸の選択率は85.4%、メタクリル酸の単流収率は72.2%であった。
【0029】
[実施例3]
三酸化モリブデン100部、メタバナジン酸アンモニウム4.1部および85重量%リン酸6.7部を純水800部と混合した。これを還流下で3時間加熱攪拌した後、硝酸銅1.4部を純水20部に溶解した溶液、硝酸マンガン0.8部を純水10部に溶解した溶液、硝酸ビスマス5.6部に60重量%硝酸5.7部および純水40部を加えて得られる硝酸ビスマスの均一溶液および三酸化アンチモン2.5部を加え、再び還流下で2時間攪拌した。得られた触媒成分を含む混合溶液を50℃に冷却し、50%水酸化セシウム溶液26.0部を加えて15分間攪拌した。次に硝酸アンモニウム10部を純水30部に溶解して加え、さらに15分間攪拌した。
【0030】
得られた触媒成分を含有するスラリーをスラリードライ乾燥機を用いて乾燥機熱風吹き込み温度300℃の条件で乾燥し、得られた乾燥物100部に対して水3部およびメチルアルコール80部を添加し、二軸ブレード型ニーダーでよく混合した。この混合物を50℃に調整された箱型熱風乾燥機中で48時間乾燥後、整粒機で整粒した。このようにして得られた乾燥粉体100部に対してグラファイト3部を添加混合し、打錠成形機により外径5mm、長さ3mmの円柱状に成形した。この打錠成形物を空気流通下に380℃で5時間熱処理して、組成が
P1Mo12V0.6Sb0.3Cu0.1Bi0.2Cs1.5Mn0.05
なる触媒を得た。
【0031】
この触媒を用いて、実施例1と同じ条件で反応を行ったところ、メタクロレインの反応率は87.5%、メタクリル酸の選択率は88.3%、メタクリル酸の単流収率は77.3%であった。
【0032】
[比較例4]
実施例3において、乾燥粉体にメチルアルコールを混合せず直接整粒した点以外は実施例3と同様に触媒を製造し、反応を行ったところ、メタクロレインの反応率は85.3%、メタクリル酸の選択率は88.1%、メタクリル酸の単流収率は75.1%であった。
【0033】
【発明の効果】
本発明の触媒の製造方法によれば、不飽和アルデヒドを気相接触酸化して不飽和カルボン酸を高収率で合成できる触媒が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a catalyst used when synthesizing an unsaturated carboxylic acid by gas phase catalytic oxidation of an unsaturated aldehyde, a catalyst obtained by the production method, and producing an unsaturated carboxylic acid using the catalyst. On how to do.
[0002]
[Prior art]
Conventionally, as a method of using an organic substance in producing a catalyst used for producing an unsaturated carboxylic acid by gas-phase catalytic oxidation of an unsaturated aldehyde, JP-A-57-204230 and JP-A-60-239439 are disclosed. In the publication, a method for adding organic compounds such as alcohols and nitrogen-containing heterocyclic compounds during the preparation of the catalyst raw material slurry is proposed. In JP-A-57-204230 and JP-A-60-48143, etc., a method of adding alcohols during molding of the supported catalyst, and in JP-A-5-309273, alcohols are added during extrusion molding. A method has been proposed.
[0003]
However, the catalysts produced by these methods are not satisfactory in reaction results and are currently desired to be further improved industrially.
[0004]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a method for producing a catalyst capable of synthesizing an unsaturated aldehyde in a high yield by gas phase catalytic oxidation of an unsaturated aldehyde.
[0005]
[Means for Solving the Problems]
The present invention relates to a method for producing a catalyst containing at least phosphorus, molybdenum, and vanadium, which is used when synthesizing an unsaturated carboxylic acid by vapor-phase catalytic oxidation of an unsaturated aldehyde, and includes a mixed solution containing a catalyst component or an aqueous solution In a method in which a dry powder obtained from a slurry is dry-molded and then heat-treated, the dry powder is at least 30 parts by weight of methyl alcohol with respect to 100 parts by weight of a dry solution of a mixed solution or an aqueous slurry containing a catalyst component. A method for producing an unsaturated carboxylic acid synthesis catalyst, comprising: mixing at least one organic compound selected from the group consisting of ethyl alcohol, propyl alcohol, butyl alcohol and acetone; .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The method for producing a catalyst of the present invention can be applied to a catalyst containing at least phosphorus, molybdenum, and vanadium, which is used when a unsaturated aldehyde is synthesized by vapor-phase catalytic oxidation to synthesize unsaturated carboxylic acid. and catalytic oxidation is suitable for synthesis of methacrylic acid of the general formula P a Mo b V c Cu d X e Y f Z g O h
(Wherein P, Mo, V, Cu and O represent phosphorus, molybdenum, vanadium, copper and oxygen, respectively, X represents antimony, bismuth, arsenic, germanium, zirconium, tellurium, silver, selenium, silicon, tungsten And at least one element selected from the group consisting of boron and Y, at least one element selected from the group consisting of iron, zinc, chromium, magnesium, tantalum, cobalt, manganese, barium, gallium, cerium and lanthanum Z represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium, a, b, c, d, e, f, g and h are atomic ratios of the respective elements Where b = 12, a = 0.5-3, c = 0.01-3, d = 0-2, e = 0-3, f = 0-3 A g = 0.01 to 3, h is preferably applied to a catalyst having a composition represented by the the atomic ratio of oxygen required to satisfy the valence of each component).
[0007]
In the present invention, the method for preparing the mixed solution or aqueous slurry containing the catalyst component is not particularly limited, and a well-known precipitation method, oxide mixing method, or the like may be used as long as the component is not significantly unevenly distributed. Can be used.
[0008]
As raw materials for the catalyst component, oxides, nitrates, carbonates, ammonium salts and the like of each element can be used in combination. For example, ammonium paramolybdate, molybdenum trioxide, etc. can be used as the molybdenum raw material, and ammonium metavanadate, vanadium pentoxide, etc. can be used as the vanadium raw material.
[0009]
In the present invention, the method for drying the mixed solution or aqueous slurry containing the catalyst component is not particularly limited, and for example, an evaporation drying method, a spray drying method, a drum drying method, an air flow drying method, or the like can be applied. The model of the dryer used for drying, the drying temperature, and the like are not particularly limited, and the model, drying conditions, and the like can be appropriately selected in order to obtain a desired dried product.
[0010]
The dried product thus obtained is mixed with at least one organic compound selected from the group consisting of methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol and acetone (hereinafter referred to as an organic compound such as alcohol).
[0011]
The amount of the organic compound such as alcohol to be mixed with the dried product is at least 30 parts by weight, preferably 35 to 100 parts by weight with respect to 100 parts by weight of the dried product. When the amount of the organic compound such as alcohol added to the dried product is less than 30 parts by weight, the effect of the addition is not sufficiently exhibited. On the other hand, when the addition amount exceeds 100 parts by weight, there are problems such as complicated mixing operation and post-treatment, although the addition effect itself is obtained.
[0012]
In the present invention, for mixing the dried product with an organic compound such as alcohol, a known mixing or kneading machine such as a double-arm kneader, a continuous biaxial pug mixer, or a high-speed stirring mixer can be used. . In mixing, in addition to organic compounds such as alcohol, a small amount of water or conventionally known organic or inorganic additives such as hydroxypropyl cellulose, carboxymethyl cellulose, polyvinyl alcohol, graphite, etc. may be added. .
[0013]
The method for drying the mixture of the dried product and an organic compound such as alcohol is not particularly limited, and examples thereof include a method using a conventionally known dryer such as a box-type hot air dryer, a band-type dryer, and a microwave dryer. .
[0014]
In the present invention, the dried product obtained by mixing an organic compound such as alcohol with a dried product is pulverized and classified as necessary to adjust the particle size. The pulverization method is not particularly limited, and examples thereof include methods using various conventionally known pulverizers such as a ball mill, a high-speed rotary mill, and a jet mill. Further, the classification method is not particularly limited, and examples thereof include methods using various conventionally known classifiers such as a mesh fixed screen, a vibration screen, and an in-plane motion screen.
[0015]
Subsequently, the dry powder thus obtained is dry-molded. A method for dry-molding the dry powder is not particularly limited, and examples of such a molding method include conventionally known compression molding methods such as a tableting molding method and a press molding method. The shape to be molded is not particularly limited, and examples thereof include conventionally known shapes such as a columnar shape and a ring shape. In the dry molding, conventionally known additives such as graphite and talc may be added.
[0016]
Finally, the dry-formed product is heat-treated to form a catalyst. The heat treatment method and heat treatment conditions are not particularly limited, and known treatment methods and conditions can be applied. Examples of the heat treatment method include a method of treating at 200 to 500 ° C., preferably 300 to 450 ° C. under an air flow and / or an inert gas flow.
[0017]
In this way, the mechanism by which the catalyst performance is improved by mixing a predetermined amount of an organic compound such as ethyl alcohol with the dried product, dry-molding the dried product, and then heat-treating is not clear at this stage. This is presumably because a more advantageous catalytically active structure is formed in the gas phase catalytic oxidation of a saturated aldehyde.
[0018]
As the reaction conditions for the reaction for synthesizing an unsaturated carboxylic acid from an unsaturated aldehyde using the catalyst obtained by the present invention, conventionally known normal conditions can be applied, but the concentration of the unsaturated aldehyde in the raw material gas is 1 to 20% by volume is suitable, and 3 to 10% by volume is particularly preferable. Further, the molar ratio of unsaturated aldehyde to molecular oxygen in the raw material gas is preferably 1: 0.3 to 4, particularly preferably 1: 0.4 to 3. Although it is economical to use air as the molecular oxygen source, air enriched with pure oxygen can also be used if necessary. The source gas may be diluted with an inert gas such as nitrogen, water vapor or carbon dioxide. The reaction pressure is preferably from normal pressure to several atmospheres. The reaction temperature can be selected in the range of 230 to 450 ° C, but 250 to 400 ° C is particularly preferable.
[0019]
【Example】
Hereinafter, the effects of the present invention will be shown by examples and comparative examples. In the examples and comparative examples, “parts” means parts by weight. The reaction product was analyzed by gas chromatography. The reaction rate of the unsaturated aldehyde, the selectivity of the unsaturated carboxylic acid produced and the single yield of the unsaturated carboxylic acid are defined as follows.
Reaction rate of unsaturated aldehyde (%) = B / A × 100
Selectivity of unsaturated carboxylic acid (%) = C / B × 100
Single yield of unsaturated carboxylic acid (%) = C / A × 100
Here, A represents the number of moles of unsaturated aldehyde supplied, B represents the number of moles of reacted unsaturated aldehyde, and C represents the number of moles of unsaturated carboxylic acid produced.
[0020]
[Example 1]
100 parts of molybdenum trioxide, 3.7 parts of vanadium pentoxide, and 8.7 parts of 85 wt% phosphoric acid were mixed with 800 parts of pure water. This was heated and stirred under reflux for 3 hours, then 1.4 parts of copper nitrate was added thereto, and the mixture was again heated and stirred under reflux for 2 hours. The obtained slurry was cooled to 60 ° C., and a solution obtained by dissolving 11.2 parts of cesium bicarbonate in 30 parts of pure water was added and stirred for 15 minutes. Next, a solution prepared by dissolving 10 parts of ammonium nitrate in 30 parts of pure water was added, and the mixture was further stirred for 15 minutes.
[0021]
The obtained slurry containing the catalyst component was dried using a cocurrent flow (mixed flow) spray dryer at a dryer inlet temperature of 320 ° C. To 100 parts of the obtained dried product, 60 parts of ethyl alcohol was added and mixed well with a high-speed stirring mixer. This mixture was dried in a box-type hot air dryer adjusted to 50 ° C. for 48 hours, and then sized using a sizing machine. 3 parts of graphite was added to and mixed with 100 parts of the dry powder thus obtained, and formed into a ring shape having an outer diameter of 6 mm, an inner diameter of 3 mm, and a length of 5 mm by a tableting machine. This tableting molded product was heat-treated at 380 ° C. for 5 hours under air flow, so that the composition was P 1.3 Mo 12 V 0.7 Cu 0.1 Cs 1.
The resulting catalyst was obtained.
[0022]
Reaction was performed by passing a mixed gas of 5% methacrolein, 10% oxygen, 30% water vapor, and 55% nitrogen (volume%) in a fixed bed reactor filled with this catalyst at a reaction temperature of 290 ° C. with a contact time of 3.6 seconds. I let you. The product of this reaction was collected and analyzed by gas chromatography. The reaction rate of methacrolein was 84.7%, the selectivity of methacrylic acid was 85.0%, and the single flow yield of methacrylic acid was 72. 0%.
[0023]
[Comparative Example 1]
In Example 1, a catalyst was produced and reacted in the same manner as in Example 1 except that the dry powder was directly sized without mixing ethyl alcohol, and the reaction rate of methacrolein was 83.0%. The selectivity for methacrylic acid was 84.7% and the single stream yield of methacrylic acid was 70.3%.
[0024]
[Comparative Example 2]
In Example 1, except that the amount of ethyl alcohol used was 20 parts, a catalyst was produced and reacted in the same manner as in Example 1. As a result, the reaction rate of methacrolein was 83.1% and methacrylic acid was selected. The rate was 84.8%, the single stream yield of methacrylic acid was 70.5%, and almost no mixing effect of the catalyst dry powder and ethyl alcohol was observed.
[0025]
[Example 2]
100 parts of ammonium paramolybdate, 2.8 parts of ammonium metavanadate, and 9.2 parts of cesium nitrate were dissolved in 300 parts of pure water. To this was added a solution prepared by dissolving 7.6 parts of 85% by weight phosphoric acid in 10 parts of pure water and a solution prepared by dissolving 1.1 parts of 60% by weight arsenic acid solution in 10 parts of pure water. Warm up. Subsequently, a solution obtained by dissolving 1.7 parts of copper nitrate, 7.6 parts of ferric nitrate, 1.4 parts of zinc nitrate and 1.8 parts of magnesium nitrate in 80 parts of pure water was added. The mixture was further stirred at 100 ° C. for 15 minutes.
[0026]
The obtained slurry containing the catalyst component was dried with a drum dryer, 40 parts of isobutyl alcohol and 1 part of hydroxypropylcellulose were added to 100 parts of the obtained dried product, and mixed well with a double-arm kneader. This mixture was dried in a box-type hot air dryer adjusted to 70 ° C. for 48 hours, and then sized with a sizing machine. 2 parts of graphite was added to and mixed with 100 parts of the dry powder thus obtained, and formed into a cylindrical shape having an outer diameter of 4 mm and a length of 4 mm by a tableting machine. The composition of P 1.4 Mo 12 V 0.5 Fe 0.4 Cu 0.15 As 0.1 Cs 1 Mg 0.15 Zn 0.1 was prepared by heat-treating this tablet-molded product at 380 ° C. for 5 hours under air flow.
The resulting catalyst was obtained.
[0027]
Using this catalyst, the reaction was carried out under the same conditions as in Example 1. As a result, the reaction rate of methacrolein was 86.3%, the selectivity of methacrylic acid was 85.8%, and the single stream yield of methacrylic acid was 74. 0.0%.
[0028]
[Comparative Example 3]
In Example 2, the catalyst was produced and reacted in the same manner as in Example 2 except that the dry powder was directly sized without mixing isobutyl alcohol, and the reaction rate of methacrolein was 84.5%. The selectivity of methacrylic acid was 85.4%, and the single flow yield of methacrylic acid was 72.2%.
[0029]
[Example 3]
100 parts of molybdenum trioxide, 4.1 parts of ammonium metavanadate and 6.7 parts of 85% by weight phosphoric acid were mixed with 800 parts of pure water. After heating and stirring for 3 hours under reflux, a solution in which 1.4 parts of copper nitrate was dissolved in 20 parts of pure water, a solution in which 0.8 part of manganese nitrate was dissolved in 10 parts of pure water, 5.6 parts of bismuth nitrate A bismuth nitrate uniform solution obtained by adding 5.7 parts of 60% by weight nitric acid and 40 parts of pure water and 2.5 parts of antimony trioxide were added, and the mixture was again stirred under reflux for 2 hours. The obtained mixed solution containing the catalyst component was cooled to 50 ° C., 26.0 parts of 50% cesium hydroxide solution was added, and the mixture was stirred for 15 minutes. Next, 10 parts of ammonium nitrate was dissolved in 30 parts of pure water, and the mixture was further stirred for 15 minutes.
[0030]
The obtained slurry containing the catalyst component was dried using a slurry dryer at a hot air blowing temperature of 300 ° C., and 3 parts of water and 80 parts of methyl alcohol were added to 100 parts of the resulting dried product. And mixed well with a twin-screw blade kneader. This mixture was dried in a box-type hot air dryer adjusted to 50 ° C. for 48 hours, and then sized using a sizing machine. 3 parts of graphite was added to and mixed with 100 parts of the dry powder thus obtained, and formed into a cylindrical shape having an outer diameter of 5 mm and a length of 3 mm by a tableting machine. This tablet-molded product was heat-treated at 380 ° C. for 5 hours under air flow, and the composition was P 1 Mo 12 V 0.6 Sb 0.3 Cu 0.1 Bi 0.2 Cs 1.5 Mn 0.05
The resulting catalyst was obtained.
[0031]
Using this catalyst, the reaction was carried out under the same conditions as in Example 1. As a result, the reaction rate of methacrolein was 87.5%, the selectivity of methacrylic acid was 88.3%, and the single flow yield of methacrylic acid was 77. 3%.
[0032]
[Comparative Example 4]
In Example 3, a catalyst was produced and reacted in the same manner as in Example 3 except that the dry powder was directly sized without mixing methyl alcohol. The reaction rate of methacrolein was 85.3%, The selectivity of methacrylic acid was 88.1%, and the single flow yield of methacrylic acid was 75.1%.
[0033]
【The invention's effect】
According to the method for producing a catalyst of the present invention, a catalyst capable of synthesizing an unsaturated carboxylic acid in a high yield by gas phase catalytic oxidation of an unsaturated aldehyde is obtained.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00730398A JP3792385B2 (en) | 1998-01-19 | 1998-01-19 | Method for producing catalyst for synthesis of unsaturated carboxylic acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00730398A JP3792385B2 (en) | 1998-01-19 | 1998-01-19 | Method for producing catalyst for synthesis of unsaturated carboxylic acid |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11197508A JPH11197508A (en) | 1999-07-27 |
JP3792385B2 true JP3792385B2 (en) | 2006-07-05 |
Family
ID=11662261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP00730398A Expired - Lifetime JP3792385B2 (en) | 1998-01-19 | 1998-01-19 | Method for producing catalyst for synthesis of unsaturated carboxylic acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3792385B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4501494B2 (en) * | 2004-03-30 | 2010-07-14 | 住友化学株式会社 | Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid |
JP4501495B2 (en) * | 2004-03-30 | 2010-07-14 | 住友化学株式会社 | Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid |
JP4902990B2 (en) * | 2005-12-21 | 2012-03-21 | 三菱レイヨン株式会社 | METHACRYLIC ACID SYNTHESIS CATALYST AND METHOD FOR PRODUCING THE SAME, METHOD FOR PRODUCING METHACRYLIC ACID |
JP5100520B2 (en) * | 2008-06-10 | 2012-12-19 | 三菱レイヨン株式会社 | Method for producing catalyst for synthesizing α, β-unsaturated carboxylic acid |
-
1998
- 1998-01-19 JP JP00730398A patent/JP3792385B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH11197508A (en) | 1999-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100193030B1 (en) | Process for preparing catalysts used for production of methacrolein and methacrylic acid | |
JP4691359B2 (en) | Method for producing a catalyst for methacrylic acid production | |
JP4925415B2 (en) | Method for producing a catalyst for methacrylic acid production | |
JP3792385B2 (en) | Method for producing catalyst for synthesis of unsaturated carboxylic acid | |
JP4022047B2 (en) | Method for producing methacrylic acid synthesis catalyst, methacrylic acid synthesis catalyst and methacrylic acid production method | |
JP3690939B2 (en) | Catalyst for synthesizing methacrylic acid and method for producing methacrylic acid | |
JP3200149B2 (en) | Method for producing catalyst for methacrylic acid synthesis | |
JP2005058909A (en) | Production method for catalyst for synthesizing methacrylic acid | |
JP3790080B2 (en) | Catalyst for synthesizing methacrolein and methacrylic acid, and method for producing methacrolein and methacrylic acid | |
JP5362370B2 (en) | Method for producing catalyst for synthesis of methacrylic acid | |
JPH0810621A (en) | Production of catalyst for producing unsaturated carboxylic acid | |
JP2000296336A (en) | Catalyst for production of methacrylic acid and production of methacrylic acid | |
JP4933736B2 (en) | Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid | |
JP4629886B2 (en) | Catalyst for producing methacrolein and / or methacrylic acid, method for producing the same, and method for producing methacrolein and / or methacrylic acid | |
JPH11226412A (en) | Production of catalyst for production of methacrylic acid and production of methacrylic acid | |
JPH0615178A (en) | Preparation of catalyst for production of methacrylic acid | |
JP5090796B2 (en) | Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid | |
JP2003190798A (en) | Method for producing catalyst used for production of methacrylic acid, catalyst produced by the same, and method for producing methacrylic acid | |
JPH09173852A (en) | Preparation of catalyst for manufacturing methacrylic acid | |
JP2003251188A (en) | Catalyst for synthesizing methacrylic acid and manufacturing method for methacrylic acid | |
JP3764805B2 (en) | Method for preparing catalyst for production of methacrylic acid and method for producing methacrylic acid | |
JP4273565B2 (en) | Process for the preparation of complex oxide catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids | |
JP3859397B2 (en) | Catalyst for production of methacrolein and methacrylic acid | |
JP2671040B2 (en) | Method for preparing catalyst for producing unsaturated carboxylic acid | |
JP3313968B2 (en) | Method for producing catalyst for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040921 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041026 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050517 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050705 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060404 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060405 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090414 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100414 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110414 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120414 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120414 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120414 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130414 Year of fee payment: 7 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130414 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130414 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140414 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |