JP3791813B2 - Heat analyzer heating device - Google Patents

Heat analyzer heating device Download PDF

Info

Publication number
JP3791813B2
JP3791813B2 JP06386197A JP6386197A JP3791813B2 JP 3791813 B2 JP3791813 B2 JP 3791813B2 JP 06386197 A JP06386197 A JP 06386197A JP 6386197 A JP6386197 A JP 6386197A JP 3791813 B2 JP3791813 B2 JP 3791813B2
Authority
JP
Japan
Prior art keywords
heating furnace
support member
heating
metal base
heating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06386197A
Other languages
Japanese (ja)
Other versions
JPH10246713A (en
Inventor
秀一 松尾
左門 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Corp filed Critical Rigaku Corp
Priority to JP06386197A priority Critical patent/JP3791813B2/en
Publication of JPH10246713A publication Critical patent/JPH10246713A/en
Application granted granted Critical
Publication of JP3791813B2 publication Critical patent/JP3791813B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、試料の温度を変化させたときにその試料の性質がどのように変化するかを測定する熱分析装置に関する。特に、試料の温度を変化させるための加熱装置に関する。
【0002】
【従来の技術】
従来より、数多くの種類の熱分析装置が知られている。例えば、試料の温度を変化させたときのその試料の重量の変化を測定する熱重量測定装置(TG装置:Thermogravimetry装置)や、試料と標準物質とを同時に温度変化させて、両者間に現れる温度差を測定することによって試料に生じた熱変化を測定する示差熱分析装置(DTA装置: Differential Thermal Analysis装置)や、試料の温度を変化させながら非振動的な荷重を加えたときのその試料の変形を測定する熱機械分析装置(TMA装置: Thermomechanical Analysis装置)や、その他種々の装置が知られている。各種の熱分析装置に共通するのは、試料の温度を所定のプログラムに従って変化させることであり、そのため、通常の熱分析装置には加熱装置が付属して設けられる。
【0003】
今、熱分析装置の1つとして熱重量測定装置(TG装置)を考えると、その熱重量測定装置(TG装置)は、例えば図3に示すように、試料Sの重量を測定するための天秤機構51と、試料Sの温度を変化させるための加熱炉52とを有している。通常、天秤機構51は、外部から電気ノイズが入ることを防止するために金属製のシールドケース53によって囲まれる。従って、加熱炉52はシールドケース53の上面54を金属ベースとしてその金属ベースの上に設置される。
【0004】
加熱炉52は、通電によって発熱するヒータ55を有しており、このヒータ55から放出される熱により試料Sを加熱する。この加熱炉52には断熱性及び電気絶縁性が要求される。断熱性というのは、熱を伝え難くて温度差を維持することができる性質のことであり、より具体的には、加熱炉52で発生した熱を金属ベース54へ伝えない性質のことである。また、電気絶縁性というのは、電気抵抗値が大きくて電気を伝え難い性質のことであり、より具体的には、加熱炉52から金属ベース54への漏電を阻止できる性質のことである。
【0005】
断熱性が要求されるのは、シールドケース53内に設置される各種の測定系が高温にさらされるのを阻止するためである。また、電気絶縁性が要求されるのは、ヒータ55への通電が金属ベース54を通して漏電することにより、シールドケース53内の各種測定系の電気制御系が誤動作したり、場合によっては破壊することを防止するためである。
【0006】
従来の加熱装置では、上記の断熱性及び電気絶縁性を達成するため、図4に示すような構造を採用していた。すなわち、ステンレスなどの金属製の支柱56によって2枚のセラミックス板57a及び57bを金属ベース54の上に積層して配置し、上側のセラミックス板57aの上にブラケット58によって加熱炉52を固定する。この従来の構造によれば、2枚のセラミックス板の働きにより、断熱性及び電気絶縁性が達成される。
【0007】
【発明が解決しようとする課題】
セラミックスというのは、成形、焼成などの工程を経て得られた非金属無機材料のことである。このセラミックスは、一般に、常温では十分な電気絶縁性を呈するが、これが1500℃程度の高温になると電気絶縁性が極端に低下して漏電が発生しやすくなる。図4に示した従来の構造において、セラミックス板57a及び57bを積層しているのは、これらのセラミックス板の温度を低温に保持することにより電気絶縁性が低下するのを防止するためである。
【0008】
しかしながら、従来の加熱装置は、セラミックス板の積層構造を採用した関係上、構造が複雑であり、そのために組み立てが難しく、保守作業がし難く、壊れやすく、しかも部品コスト及び製造コストが高くなり、さらに全体形状が大型になるという問題があった。全体形状が大型になるということは、加熱炉全体の熱容量が大きくなるということであり、その結果、試料の温度を制御するために加熱炉の温度を上げ下げする際、その温度の上げ下げを迅速に行うことができないという問題が生じる。
【0009】
本発明は、上記の問題点に鑑みてなされたものであって、十分な断熱性及び電気絶縁性を保持した上で、構造が簡単であり、しかも小型である加熱装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記の目的を達成するため、本発明に係る熱分析装置の加熱装置は、金属ベース上に配置した加熱炉によって試料を加熱する熱分析装置の加熱装置において、(1)前記金属ベースと前記加熱炉との間に配置され、断熱性及び電気絶縁性を有するセラミックスによって形成され、そして加熱炉を支持する加熱炉支持部材と、(2)前記加熱炉支持部材と一体で前記金属ベースに狭い面積で接触して置かれ、又は金属ベースから立てられていて前記加熱炉支持部材に狭い面積で接触して置かれ、そして断熱性及び電気絶縁性を有する複数の接触ピンと、(3)前記加熱炉を取り囲むケースと、(4)前記加熱炉に関して前記加熱炉支持部材の反対側に配置された補助支持部材と、を有し、(5)前記ケースによって前記補助支持部材を押すことにより、前記補助支持部材と前記加熱炉支持部材とによって前記加熱炉を挟んだ状態で前記加熱炉を前記金属ベース上で支持することを特徴とする。
【0011】
この加熱装置によれば、加熱炉支持部材を接触ピンを介して狭い面積で金属ベースに接触させ、しかも、その接触ピンを断熱性及び電気絶縁性を有するセラミックスによって形成したので、積層構造でない1つの加熱炉支持部材だけで十分な断熱性及び電気絶縁性を保持できる。この結果、加熱装置の構造を簡単にすることができ、それ故、加熱装置の組み立てが容易になり、保守作業が容易になり、壊れ難くなり、しかも部品コスト及び製造コストを低減できる。さらに、加熱装置の全体形状を小型にできるので、加熱装置全体の熱容量を小さくでき、それ故、加熱炉の温度の上げ下げを迅速に制御できる。
【0012】
接触ピンを加熱炉支持部材のどの位置に設けるかについては、特に限定されるものではないが、望ましくは次のような位置に配設する。セラミックスによって形成した加熱炉支持部材は、常温では漏電を阻止できるに足る十分な電気絶縁性を有する。しかしながら、この加熱炉支持部材が1500℃程度の高温になると、その電気抵抗値が極端に小さくなる。従って、接触ピンは加熱炉支持部材のうちの低温領域に設けることが望ましい。但し、ここにいう低温というのは、加熱炉支持部材の電気抵抗値を加熱炉から金属ベースへ向けて漏電が生じるのを阻止できる値とするような低温温度のことである。
【0013】
なお、接触ピンは焼成等によって加熱炉支持部材と一体に形成することもでき、あるいは、接触ピンを加熱炉支持部材と別体に形成した後にそれを接着剤によって加熱炉支持部材に固着することもできる。また、接触ピンは金属ベースから立てることもできる。
【0014】
加熱炉支持部材及び接触ピンの具体的な構造として、次の構成すなわち、加熱炉支持部材を円形状、三角形状、四角形状、その他任意の形状の板材によって形成し、そして複数の接触ピンをその加熱炉支持部材のうち加熱炉を支持する中心部分から離れた周辺部分に設けるという構成を採用できる。
【0015】
【発明の実施の形態】
図1は、本発明に係る加熱装置の一実施形態を示している。この実施形態は、熱分析装置の一種類である熱重量測定装置(TG装置)に本発明の加熱装置を適用した場合の実施形態である。TG装置は、天秤機構1を含む測定系を格納したシールドケース3と、試料Sを加熱するための加熱装置11とを有する。シールドケース3は、導電性の金属材料によって形成されていて、その上面3aが加熱装置11を載せるための金属ベースとして働く。
【0016】
天秤機構1は、支点Oを中心として揺動する天秤棒12と、天秤棒12の一端から延びていて試料Sを支持する支持棒13と、天秤棒12の一方に設けた荷重付与装置14と、そして天秤棒12の他方に設けた変位量検出装置16とを有する。変位量検出装置16の出力信号は重量測定回路18へ送られ、その重量測定回路18は荷重付与装置14への電力供給量を制御する。
【0017】
加熱装置11は、試料Sを収納する円筒形状の加熱炉2と、その加熱炉2を載せる加熱炉支持部材7と、加熱炉2を格納する円筒形状のケース4とを有している。加熱炉支持部材7の中心部及び加熱炉2の底面の中心部には支持棒13を通すための穴が開けられる。また、加熱炉2の外周にはヒータ線5が螺旋状に巻き付けられ、電力制御回路6によってヒータ線5が通電すると、そのヒータ線5が発熱する。加熱炉支持部材7は、断熱性及び電気絶縁性を有するセラミックスによって、図2に示すような円形状に形成される。
【0018】
図2において、加熱炉2は加熱炉支持部材7の中心部分に設置される。そしてその中心から距離Rだけ離れた円軌跡の上に複数、例えば3個の接触ピン17が等角度間隔で設けられる。これらの接触ピン17は、加熱炉支持部材7を成形、焼成などによって作製する際にそれと一体に作製される。従って、接触ピン17は、加熱炉支持部材7と同様に、断熱性及び電気絶縁性を有するセラミックスによって形成されている。なお、接触ピン17を加熱炉支持部材7とは別に独自に作製し、その接触ピン17を接着剤によって加熱炉支持部材7に接着することもできる。また、接触ピン17をシールドケース3の金属ベース3aに接着することもできる。
【0019】
図1に示すように、加熱炉2を載せた加熱炉支持部材7は、接触ピン17を介して金属ベース3aの上に置かれている。加熱炉2に関して加熱炉支持部材7の反対側、すなわち加熱炉2の上側に補助支持部材8が配設される。この補助支持部材8は加熱炉支持部材7と同じ材質、すなわち断熱性及び電気絶縁性を有するセラミックスによって形成され、さらに加熱炉支持部材7と全く同じ形状に作られている。但し、補助支持部材8に設けられた接触ピン17は加熱炉2と反対方向、すなわち図の上方向を向いている。
【0020】
加熱炉2を収納するケース4はその天板部分の内面によって補助支持部材8の接触ピン17を下方へ押し付け、これにより、加熱炉2が補助支持部材8及び加熱炉支持部材7によって挟まれた状態で位置不動に支持される。また、加熱炉2の側面全周であって加熱炉支持部材7と補助支持部材8との間に環状の断熱部材9が設置される。
【0021】
本実施形態の熱分析装置及び加熱装置は以上のように構成されているので、電力制御回路6によって加熱炉2のヒータ線5へ電力が供給されてそのヒータ線5が発熱する。この発熱により、加熱炉2が高温になり、そして試料Sの温度が制御される。こうして試料Sの温度が変化するとき、試料Sに変化が生じてその重量が変化すると、天秤棒12が揺動し、その揺動が変位量検出装置16によって検出され、その変位量に対応した出力信号が重量測定回路18へ送られる。重量測定回路18は、送られてきた信号に対応した電力を荷重付与装置14へ送り込み、これにより、天秤棒12を水平状態に保持する。重量測定回路18は、荷重付与装置14へ供給した電力量に基づいて試料Sに発生した重量変化を演算する。
【0022】
加熱炉2が高温になるとそれに追従して加熱炉支持部材7も高温になる。加熱炉支持部材7はセラミックスによって形成されているので、それが千数百度の高温になると電気絶縁性が低下する。電気絶縁性が低下して加熱炉支持部材7の電気抵抗値が許容限界値以下に低下すると、加熱炉2から金属ベース3aへ向けて漏電が生じるおそれがある。これを回避するため、接触ピン17を設けるための距離Rは、加熱炉支持部材7の温度を低下させるのに十分な距離に設定される。こうすれば、接触ピン17を設けた位置の加熱炉支持部材17の電気抵抗値を漏電の発生を阻止できるに足る十分な大きさに保持できる。
【0023】
本実施形態の熱分析装置では、加熱炉支持部材7を接触ピン17を介して狭い面積で金属ベース3aに接触させ、しかも、その接触ピン17を断熱性及び電気絶縁性を有するセラミックスによって形成した。従って、積層構造でない1つの加熱炉支持部材7だけで十分な断熱性及び電気絶縁性を保持できる。この結果、加熱装置11の構造を簡単にすることができ、それ故、加熱装置11の組み立てが容易になり、保守作業が容易になり、壊れ難くなり、しかも部品コスト及び製造コストを低減できる。さらに、加熱装置11の全体形状を小型にできるので、加熱装置全体の熱容量を小さくでき、それ故、加熱炉の温度の上げ下げを迅速に制御できる。
【0024】
以上、好ましい実施形態に基づいて本発明を説明したが、本発明はその実施形態に限定されるものではなく、請求の範囲に記載した発明の範囲内で種々に改変できる。
例えば、本発明に係る加熱装置は、TG装置以外の任意の熱分析装置に適用できる。加熱炉支持部材の形状は円形状に限られない。接触ピンの数は3個に限られず、それ以上又はそれ以下とすることができる。補助支持部材8は加熱炉2を位置不動に支持するために用いられるものであるが、加熱炉支持部材7がネジその他の締結器具によって金属ベース3aに位置不動に固着され、さらに加熱炉2がその加熱炉支持部材7の上に位置不動に固着されるならば、補助支持部材8は不要である。
【0025】
【発明の効果】
請求項1記載の熱分析装置の加熱装置によれば、加熱炉支持部材を接触ピンを介して狭い面積で金属ベースに接触させ、しかも、その接触ピンを断熱性及び電気絶縁性を有するセラミックスによって形成したので、積層構造でない1つの加熱炉支持部材だけで十分な断熱性及び電気絶縁性を保持できる。この結果、加熱装置の構造を簡単にすることができ、それ故、加熱装置の組み立てが容易になり、保守作業が容易になり、壊れ難くなり、しかも部品コスト及び製造コストを低減できる。さらに、加熱装置の全体形状を小型にできるので、加熱装置全体の熱容量を小さくでき、それ故、加熱炉の温度の上げ下げを迅速に制御できる。
【0026】
請求項2記載の熱分析装置の加熱装置によれば、加熱炉支持部材の温度が十分に低下してその電気抵抗値が十分に大きい所に接触ピンを設けることができるので、加熱炉から金属ベースへの漏電を確実に防止できる。
【0027】
請求項3記載の熱分析装置の加熱装置によれば、加熱炉支持部材を円形状に形成するので、熱の流れが安定状態になる。
【0028】
請求項記載の熱分析装置の加熱装置によれば、加熱炉を簡単な構造によって位置不動にしっかりと支持できる。
【0029】
【図面の簡単な説明】
【図1】本発明に係る加熱装置及びそれを用いた熱分析装置の一実施形態を示す正面断面図である。
【図2】図1の加熱装置に用いられる主要部品である加熱炉支持部材の底面図である。
【図3】従来の熱分析装置の一実施形態を示す正面断面図である。
【図4】従来の加熱装置の一実施形態を示す断面図である。
【符号の説明】
1 天秤機構
2 加熱炉
3 シールドケース
3a 金属ベース
4 ケース
5 ヒータ線
7 加熱炉支持部材
8 補助支持部材
9 断熱部材
11 加熱装置
12 天秤棒
13 支持棒
14 荷重付与装置
16 変位量検出装置
17 接触ピン
S 試料
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermal analyzer that measures how the properties of a sample change when the temperature of the sample is changed. In particular, the present invention relates to a heating device for changing the temperature of a sample.
[0002]
[Prior art]
Conventionally, many types of thermal analyzers are known. For example, a thermogravimetric measurement device (TG device: Thermogravimetry device) that measures changes in the weight of a sample when the temperature of the sample is changed, or a temperature that appears between the sample and a standard substance when the temperature is changed simultaneously. Differential thermal analysis equipment (DTA equipment: Differential Thermal Analysis equipment) that measures the thermal change that occurs in the sample by measuring the difference, and when a non-vibrating load is applied while changing the temperature of the sample A thermomechanical analysis device (TMA device: Thermomechanical Analysis device) for measuring deformation and various other devices are known. What is common to various types of thermal analyzers is that the temperature of the sample is changed in accordance with a predetermined program. For this reason, a normal thermal analyzer is provided with a heating device.
[0003]
Considering a thermogravimetric measuring device (TG device) as one of the thermal analysis devices, the thermogravimetric measuring device (TG device) is a balance for measuring the weight of the sample S as shown in FIG. A mechanism 51 and a heating furnace 52 for changing the temperature of the sample S are provided. Normally, the balance mechanism 51 is surrounded by a metallic shield case 53 in order to prevent electrical noise from entering from the outside. Therefore, the heating furnace 52 is installed on the metal base using the upper surface 54 of the shield case 53 as a metal base.
[0004]
The heating furnace 52 includes a heater 55 that generates heat when energized, and the sample S is heated by heat released from the heater 55. The heating furnace 52 is required to have heat insulation and electrical insulation. The heat insulating property is a property that makes it difficult to transmit heat and can maintain a temperature difference, and more specifically, a property that does not transmit the heat generated in the heating furnace 52 to the metal base 54. . The electrical insulation is a property that has a large electrical resistance value and is difficult to transmit electricity, and more specifically, a property that can prevent leakage from the heating furnace 52 to the metal base 54.
[0005]
The reason why heat insulation is required is to prevent various measurement systems installed in the shield case 53 from being exposed to high temperatures. In addition, electrical insulation is required because the electrical control system of various measurement systems in the shield case 53 malfunctions or is destroyed in some cases when electricity to the heater 55 leaks through the metal base 54. It is for preventing.
[0006]
In a conventional heating device, a structure as shown in FIG. 4 has been adopted in order to achieve the above heat insulation and electrical insulation. That is, two ceramic plates 57a and 57b are laminated on the metal base 54 by using a metal support 56 such as stainless steel, and the heating furnace 52 is fixed by the bracket 58 on the upper ceramic plate 57a. According to this conventional structure, heat insulation and electrical insulation are achieved by the action of the two ceramic plates.
[0007]
[Problems to be solved by the invention]
Ceramics is a non-metallic inorganic material obtained through processes such as molding and firing. In general, this ceramic exhibits sufficient electrical insulation at room temperature, but when it reaches a high temperature of about 1500 ° C., the electrical insulation is extremely lowered and electric leakage is likely to occur. The reason why the ceramic plates 57a and 57b are laminated in the conventional structure shown in FIG. 4 is to prevent the electrical insulation from being lowered by keeping the temperature of these ceramic plates low.
[0008]
However, the conventional heating device has a complicated structure due to the adoption of a laminated structure of ceramic plates, so that the assembly is difficult, the maintenance work is difficult, the breakage is easy, and the component cost and the manufacturing cost increase. Further, there is a problem that the overall shape becomes large. The large overall shape means that the heat capacity of the entire heating furnace increases, and as a result, when raising or lowering the temperature of the heating furnace to control the temperature of the sample, the temperature can be quickly raised or lowered. The problem is that it cannot be done.
[0009]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a heating device that is simple in structure and small in size while maintaining sufficient heat insulation and electrical insulation. And
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a heating device for a thermal analysis device according to the present invention is a heating device for a thermal analysis device that heats a sample by a heating furnace disposed on a metal base. A heating furnace support member disposed between the furnace and formed of ceramics having a heat insulating property and an electrical insulating property and supporting the heating furnace; and (2) a small area in the metal base integrally with the heating furnace support member. in placed in contact or have erected a metal base placed in contact with a small area in the heating furnace support member, and a plurality of contact pins having a heat insulating property and electrical insulation property, (3) the heating furnace And (4) an auxiliary support member disposed on the opposite side of the heating furnace support member with respect to the heating furnace, and (5) pushing the auxiliary support member by the case More, characterized in that for supporting the heating furnace in a state of sandwiching the heating furnace by the auxiliary support member and the heating furnace support member on said metal base.
[0011]
According to this heating apparatus, the heating furnace support member is brought into contact with the metal base through a contact pin in a small area, and the contact pin is formed of ceramics having heat insulating properties and electrical insulating properties. Sufficient heat insulation and electrical insulation can be maintained with only one furnace support member. As a result, the structure of the heating device can be simplified. Therefore, the assembly of the heating device is facilitated, maintenance work is facilitated, it is difficult to break, and the component cost and manufacturing cost can be reduced. Furthermore, since the overall shape of the heating device can be reduced, the heat capacity of the entire heating device can be reduced, and therefore the temperature of the heating furnace can be quickly controlled.
[0012]
The position where the contact pin is provided on the heating furnace support member is not particularly limited, but it is preferably disposed at the following position. The furnace support member formed of ceramics has sufficient electrical insulation to prevent leakage at room temperature. However, when this heating furnace support member is heated to a high temperature of about 1500 ° C., its electric resistance value becomes extremely small. Therefore, it is desirable to provide the contact pin in a low temperature region of the heating furnace support member. However, the term “low temperature” as used herein refers to a low temperature at which the electric resistance value of the heating furnace support member is set to a value that can prevent the occurrence of electric leakage from the heating furnace to the metal base.
[0013]
The contact pin can be formed integrally with the heating furnace support member by firing or the like, or the contact pin is formed separately from the heating furnace support member and then fixed to the heating furnace support member with an adhesive. You can also. The contact pin can also be raised from a metal base.
[0014]
As a specific structure of the heating furnace support member and the contact pin, the following configuration, that is, the heating furnace support member is formed of a circular, triangular, square, or other arbitrary plate material, and a plurality of contact pins are formed. The structure provided in the peripheral part distant from the center part which supports a heating furnace among heating furnace support members is employable.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment of a heating device according to the present invention. This embodiment is an embodiment in which the heating device of the present invention is applied to a thermogravimetric measuring device (TG device) which is one type of thermal analysis device. The TG device includes a shield case 3 in which a measurement system including the balance mechanism 1 is stored, and a heating device 11 for heating the sample S. The shield case 3 is made of a conductive metal material, and its upper surface 3a functions as a metal base on which the heating device 11 is placed.
[0016]
The balance mechanism 1 includes a balance rod 12 that swings around a fulcrum O, a support rod 13 that extends from one end of the balance rod 12 and supports a sample S, a load applying device 14 provided on one of the balance rods 12, and a balance rod. 12 and a displacement amount detection device 16 provided on the other side. The output signal of the displacement detection device 16 is sent to the weight measurement circuit 18, and the weight measurement circuit 18 controls the amount of power supplied to the load application device 14.
[0017]
The heating device 11 includes a cylindrical heating furnace 2 that stores the sample S, a heating furnace support member 7 on which the heating furnace 2 is placed, and a cylindrical case 4 that stores the heating furnace 2. A hole for passing the support rod 13 is formed in the center portion of the heating furnace support member 7 and the center portion of the bottom surface of the heating furnace 2. In addition, a heater wire 5 is spirally wound around the outer periphery of the heating furnace 2, and when the heater wire 5 is energized by the power control circuit 6, the heater wire 5 generates heat. The heating furnace support member 7 is formed in a circular shape as shown in FIG. 2 by ceramics having heat insulating properties and electrical insulating properties.
[0018]
In FIG. 2, the heating furnace 2 is installed at the central portion of the heating furnace support member 7. A plurality of, for example, three contact pins 17 are provided at equiangular intervals on a circular locus separated from the center by a distance R. These contact pins 17 are produced integrally with the heating furnace support member 7 when it is produced by molding, firing or the like. Therefore, the contact pin 17 is formed of ceramics having heat insulating properties and electrical insulating properties like the heating furnace support member 7. In addition, the contact pin 17 can be independently produced separately from the heating furnace support member 7, and the contact pin 17 can be bonded to the heating furnace support member 7 with an adhesive. Further, the contact pin 17 can be bonded to the metal base 3 a of the shield case 3.
[0019]
As shown in FIG. 1, the heating furnace support member 7 on which the heating furnace 2 is placed is placed on the metal base 3 a via the contact pins 17. An auxiliary support member 8 is disposed on the opposite side of the heating furnace support member 7 with respect to the heating furnace 2, that is, on the upper side of the heating furnace 2. The auxiliary support member 8 is formed of the same material as the heating furnace support member 7, that is, made of ceramics having heat insulating properties and electrical insulating properties, and is made in the same shape as the heating furnace support member 7. However, the contact pin 17 provided on the auxiliary support member 8 faces in the opposite direction to the heating furnace 2, that is, in the upward direction in the figure.
[0020]
The case 4 that houses the heating furnace 2 presses the contact pins 17 of the auxiliary support member 8 downward by the inner surface of the top plate portion thereof, whereby the heating furnace 2 is sandwiched between the auxiliary support member 8 and the heating furnace support member 7. It is supported in a stationary state. An annular heat insulating member 9 is installed between the heating furnace support member 7 and the auxiliary support member 8 on the entire side surface of the heating furnace 2.
[0021]
Since the thermal analysis device and the heating device of the present embodiment are configured as described above, power is supplied to the heater wire 5 of the heating furnace 2 by the power control circuit 6 and the heater wire 5 generates heat. Due to this heat generation, the heating furnace 2 becomes high temperature, and the temperature of the sample S is controlled. Thus, when the temperature of the sample S changes, if the sample S changes and its weight changes, the balance rod 12 swings, and the swing is detected by the displacement detector 16 and an output corresponding to the displacement is output. A signal is sent to the weight measurement circuit 18. The weight measuring circuit 18 sends electric power corresponding to the sent signal to the load applying device 14, thereby holding the balance rod 12 in a horizontal state. The weight measurement circuit 18 calculates a change in weight generated in the sample S based on the amount of power supplied to the load applying device 14.
[0022]
When the heating furnace 2 reaches a high temperature, the heating furnace support member 7 follows the temperature. Since the heating furnace support member 7 is made of ceramics, the electrical insulation performance is lowered when it is heated to a high temperature of a few hundred degrees. When the electrical insulation is lowered and the electric resistance value of the heating furnace support member 7 is lowered to an allowable limit value or less, there is a possibility that electric leakage occurs from the heating furnace 2 toward the metal base 3a. In order to avoid this, the distance R for providing the contact pin 17 is set to a distance sufficient to lower the temperature of the heating furnace support member 7. If it carries out like this, the electrical resistance value of the heating furnace support member 17 of the position in which the contact pin 17 was provided can be hold | maintained to the magnitude | size sufficient to be able to prevent generation | occurrence | production of an electrical leakage.
[0023]
In the thermal analysis apparatus of the present embodiment, the heating furnace support member 7 is brought into contact with the metal base 3a through a contact pin 17 in a small area, and the contact pin 17 is formed of ceramics having heat insulating properties and electrical insulating properties. . Therefore, sufficient heat insulation and electrical insulation can be maintained with only one heating furnace support member 7 not having a laminated structure. As a result, the structure of the heating device 11 can be simplified. Therefore, the assembly of the heating device 11 is facilitated, maintenance work is facilitated, it is difficult to break, and the component cost and manufacturing cost can be reduced. Furthermore, since the overall shape of the heating device 11 can be reduced in size, the heat capacity of the entire heating device can be reduced, and therefore the temperature of the heating furnace can be quickly controlled.
[0024]
As mentioned above, although this invention was demonstrated based on preferable embodiment, this invention is not limited to that embodiment, It can change variously within the range of the invention described in the claim.
For example, the heating device according to the present invention can be applied to any thermal analysis device other than the TG device. The shape of the heating furnace support member is not limited to a circular shape. The number of contact pins is not limited to three and can be more or less. The auxiliary support member 8 is used to support the heating furnace 2 in a stationary manner. The heating furnace support member 7 is fixed to the metal base 3a in a stationary manner by screws or other fastening devices. The auxiliary support member 8 is not necessary if it is fixed on the heating furnace support member 7 in a stationary manner.
[0025]
【The invention's effect】
According to the heating device of the thermal analysis device according to claim 1, the heating furnace support member is brought into contact with the metal base in a small area through the contact pin, and the contact pin is made of a ceramic having heat insulating properties and electrical insulating properties. Since it was formed, sufficient heat insulation and electrical insulation can be maintained with only one heating furnace support member having no laminated structure. As a result, the structure of the heating device can be simplified. Therefore, the assembly of the heating device is facilitated, the maintenance work is facilitated, it is difficult to break, and the component cost and manufacturing cost can be reduced. Furthermore, since the overall shape of the heating device can be reduced, the heat capacity of the entire heating device can be reduced, and therefore the temperature of the heating furnace can be quickly controlled.
[0026]
According to the heating device of the thermal analysis device according to claim 2, since the temperature of the heating furnace support member is sufficiently lowered and the contact pin can be provided at a place where the electric resistance value is sufficiently large, Leakage to the base can be reliably prevented.
[0027]
According to the heating device of the thermal analysis device of the third aspect, since the heating furnace support member is formed in a circular shape, the heat flow becomes stable.
[0028]
According to the heating device of the thermal analysis device of the first aspect , the heating furnace can be firmly supported by a simple structure in a stationary manner.
[0029]
[Brief description of the drawings]
FIG. 1 is a front sectional view showing an embodiment of a heating device and a thermal analysis device using the same according to the present invention.
2 is a bottom view of a heating furnace support member that is a main part used in the heating apparatus of FIG. 1. FIG.
FIG. 3 is a front sectional view showing an embodiment of a conventional thermal analysis apparatus.
FIG. 4 is a cross-sectional view showing an embodiment of a conventional heating device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Balance mechanism 2 Heating furnace 3 Shield case 3a Metal base 4 Case 5 Heater wire 7 Heating furnace support member 8 Auxiliary support member 9 Heat insulation member 11 Heating device 12 Balance rod 13 Support rod 14 Load application device 16 Displacement amount detection device 17 Contact pin S sample

Claims (3)

金属ベース上に配置した加熱炉によって試料を加熱する熱分析装置の加熱装置において、
前記金属ベースと前記加熱炉との間に配置され、断熱性及び電気絶縁性を有するセラミックスによって形成され、そして加熱炉を支持する加熱炉支持部材と、
前記加熱炉支持部材と一体で前記金属ベースに狭い面積で接触して置かれ、又は金属ベースから立てられていて前記加熱炉支持部材に狭い面積で接触して置かれ、そして断熱性及び電気絶縁性を有する複数の接触ピンと、
前記加熱炉を取り囲むケースと、
前記加熱炉に関して前記加熱炉支持部材の反対側に配置された補助支持部材と、を有し、
前記ケースによって前記補助支持部材を押すことにより、前記補助支持部材と前記加熱炉支持部材とによって前記加熱炉を挟んだ状態で前記加熱炉を前記金属ベース上で支持する
ことを特徴とする熱分析装置の加熱装置。
In the heating device of the thermal analyzer that heats the sample by a heating furnace arranged on the metal base,
A heating furnace support member disposed between the metal base and the heating furnace, formed of ceramics having heat insulation and electrical insulation, and supporting the heating furnace;
Integrated with the furnace support member and placed in contact with the metal base in a small area, or stood from the metal base and placed in contact with the furnace support member with a small area, and heat insulation and electrical insulation A plurality of contact pins having
A case surrounding the heating furnace;
An auxiliary support member disposed on the opposite side of the heating furnace support member with respect to the heating furnace,
The thermal analysis is characterized in that the heating furnace is supported on the metal base in a state where the heating furnace is sandwiched between the auxiliary support member and the heating furnace support member by pushing the auxiliary support member with the case. Equipment heating device.
請求項1記載の熱分析装置の加熱装置において、前記加熱炉支持部材の電気抵抗値が前記加熱炉から前記金属ベースへ向かう漏電を生じさせない値となるような前記加熱炉支持部材の低温領域に前記接触ピンを設けることを特徴とする熱分析装置の加熱装置。  2. The heating device of the thermal analysis apparatus according to claim 1, wherein an electric resistance value of the heating furnace support member is a value that does not cause leakage from the heating furnace to the metal base. A heating device of a thermal analyzer, characterized in that the contact pin is provided. 請求項1又は請求項2記載の熱分析装置の加熱装置において、前記加熱炉支持部材は円形状の板材によって形成され、前記複数の接触ピンは前記加熱炉支持部材のうち前記加熱炉を支持する中心部分から離れた周辺部分に設けられることを特徴とする熱分析装置の加熱装置。  3. The heating device of the thermal analysis device according to claim 1, wherein the heating furnace support member is formed of a circular plate, and the plurality of contact pins support the heating furnace among the heating furnace support members. A heating device for a thermal analyzer, characterized in that the heating device is provided in a peripheral portion away from a central portion.
JP06386197A 1997-03-03 1997-03-03 Heat analyzer heating device Expired - Lifetime JP3791813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06386197A JP3791813B2 (en) 1997-03-03 1997-03-03 Heat analyzer heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06386197A JP3791813B2 (en) 1997-03-03 1997-03-03 Heat analyzer heating device

Publications (2)

Publication Number Publication Date
JPH10246713A JPH10246713A (en) 1998-09-14
JP3791813B2 true JP3791813B2 (en) 2006-06-28

Family

ID=13241541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06386197A Expired - Lifetime JP3791813B2 (en) 1997-03-03 1997-03-03 Heat analyzer heating device

Country Status (1)

Country Link
JP (1) JP3791813B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5817973A (en) 1995-06-12 1998-10-06 Berg Technology, Inc. Low cross talk and impedance controlled electrical cable assembly
JP4737605B2 (en) * 2005-07-11 2011-08-03 株式会社リガク Thermal analysis method
DE102010008486B4 (en) * 2010-02-18 2012-02-16 Netzsch-Gerätebau GmbH Temperature control device for thermoanalytical investigations
JP5709160B2 (en) 2010-03-29 2015-04-30 株式会社日立ハイテクサイエンス Thermal analyzer
CN106124554A (en) * 2016-08-15 2016-11-16 常州百富电子有限公司 Heat insulation type electric wire aging resistance proof box

Also Published As

Publication number Publication date
JPH10246713A (en) 1998-09-14

Similar Documents

Publication Publication Date Title
US6940048B2 (en) Radiant electric heater incorporating a temperature sensor assembly
JP3791813B2 (en) Heat analyzer heating device
US7030342B2 (en) Electrical heating assembly
US3749883A (en) Electric heater assembly
EP1400151B1 (en) Cooking appliance
JPH06101850A (en) Electric heating device for range for cooking
KR100932718B1 (en) Electric heating elements for vertical installation
US2774846A (en) Thermostat apparatus
US20030178405A1 (en) Electrical heating assembly
JP4203986B2 (en) Gas sensor component
US4454493A (en) Hermetical type thermally responsive switch
JPH03122992A (en) Induction heting cooking apparatus
GB2548650A (en) Conical heater assembly for a gas chromatography column
JPH0416397Y2 (en)
CN113740628A (en) Aging test equipment and heating assembly thereof
US6051816A (en) Radiant electric heater
JPH07198264A (en) Lid structure
US2692574A (en) Apparatus for producing photoconductive cells
KR20060031843A (en) A method and an arragement for supporting vertically depending electrical resistance elements
EP3910300B1 (en) Integrated high-precision weighing module with reduced thermal gradient
US7718931B2 (en) Electric heater incorporating a device for detecting a cooking utensil
JPH05273166A (en) Differential scanning calorimeter
JP2530750Y2 (en) Heater panel
JPH09170994A (en) Gas sensor
JPH02162677A (en) Dielectric heating cooking appliance

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term