JP3791286B2 - Ventilator with heat exchanger - Google Patents

Ventilator with heat exchanger Download PDF

Info

Publication number
JP3791286B2
JP3791286B2 JP2000045766A JP2000045766A JP3791286B2 JP 3791286 B2 JP3791286 B2 JP 3791286B2 JP 2000045766 A JP2000045766 A JP 2000045766A JP 2000045766 A JP2000045766 A JP 2000045766A JP 3791286 B2 JP3791286 B2 JP 3791286B2
Authority
JP
Japan
Prior art keywords
heat exchanger
air
ventilator
passage
airflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000045766A
Other languages
Japanese (ja)
Other versions
JP2001235199A (en
Inventor
秀元 荒井
陽一 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000045766A priority Critical patent/JP3791286B2/en
Publication of JP2001235199A publication Critical patent/JP2001235199A/en
Application granted granted Critical
Publication of JP3791286B2 publication Critical patent/JP3791286B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Flow Control Members (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、室外空気と室内空気を使用する熱交換器付換気装置に関するものであり、特に、熱交換器の凍結を防止するための技術に関するものである。
【0002】
【従来の技術】
図9は、特公平3−50180号公報に記載された従来の熱交換器付換気装置の構成図である。
【0003】
図9中、101は室内空気と室外空気とを使用する換気装置としての本体、102は本体101の外箱、102aは外箱の側面に設けられた外気の吸込口、102bは同じく吹出口、102cは同じく室内空気の吸込口、102dは同じく吹出口である。103は外箱102内に収納された熱交換器であり、図10の熱交換器の斜視図のように、多数の波形板103aと伝熱性、または通湿性と伝熱性をあわせもつ多数の平板103bとを交互に積層し、かつ波形板103aは交互にその波形成形方向を90度変えて積層形成されている。104は熱交換器103の供給空気の流入側に設けられたエアフィルタ、105は同じく排気空気の流入側に設けられたエアフィルタ、106は給気送風機、107は同じく排気送風機、Aは給気流、Bは排気流を示す。
【0004】
このような、熱交換器付換気装置では、外気は気流Aに示すように、給気送風機106の回転により、吸込口102aから吸込まれ、エアフィルタ104および熱交換器103を通り、吹出口102bから室内へ吹き出される。また、室内空気は気流Bで示すように、排気送風機107により吸込口102cから吸い込まれ、エアフィルタ105および熱交換器103を通り、吹出し口102dから室外へ吹出される。
【0005】
しかし、このような従来の熱交換器付換気装置は、排気気流Bは熱交換器103の流入部に近い部分103aで、給気流Aによって冷却されるため、結露、結霜又は結氷が生じて熱交換器103は目詰まりし、排気流Bはその近傍では流れなくなるという現象が発生する。さらに、その結果、部分103aの近傍は熱交換をしなくなるので、次はその隣接部分103b近傍が給気流Aで冷却され、結氷を生じるようになり、このまま運転を続行するとついには熱交換器の全面が凍結し、排気及び熱交換が行なわれなくなるという問題があった。
【0006】
また、従来は、このような問題を解決する技術として、凍結防止装置を熱交換器付換気装置に取り付けて運転させるというものがあった。
【0007】
図11・図12・図13は、同じく特公平3−50180号公報に記載され従来の凍結防止装置、およびこの凍結防止装置を熱交換器付換気装置に取り付けた状態での構成を示す図である。
【0008】
図11・図12・図13中、109は本体101の吸込側に配置された箱体で、内部に空気流路が形成されている。109aは箱体109に設けられた外気に開口する低温空気導入口、109bは同じく室内側に開口する高温空気導入口、109cは空気導出口で、本体101の吸込口102aに接続されている。110は箱体109に設けられた空気導入口109a、109bを開閉するダンパ、111は箱体109の空気導出口109c近傍に設けられた加熱子である。117はダンパ110の駆動装置である。
【0009】
このように構成された熱交換器付換気装置の凍結防止装置では、通常は図12に示すように、ダンパ110は低温空気導入口109aを開放し、高温空気導入口109bを閉塞している。したがって低温空気は気流Aで示すように、低温空気導入口109aから箱体109に入り、空気導出口109cから吸込口102aをとおって本体101に供給される。
【0010】
また、低温空気温度が低く、熱交換器103に結氷が生じたときは、ダンパ110は回動し、図13に示すように低温空気導入口109aは閉塞され、高温空気導入口109bは開放される。同時に、加熱子111に通電される。このことにより、高温空気は高温空気導入口109bから箱体109に入り、加熱子111で加熱されて空気導出口109cから本体101の低温側流路に供給される。この結果、熱交換器103の通常低温空気が流れていた流路を高温空気が流れることになり、高温側流路に生じた結氷は融解される。結氷融解後はダンパ110は逆方向に回動して図11、図12の状態となり、同時に加熱子111への通電も断たれる。
【0011】
【発明が解決しようとする課題】
しかし、熱交換器の凍結を防止するために、図11・図12・図13に示すような従来の凍結防止装置を使用した場合、効果は非常に高くなるが、デフロフト運転後の通常運転時に融解した結露水が再び取り入れた低温の外気により熱交換され、冷やされた排気により熱交換器の内部および表面で再結氷をおこしており、デフロフト効果を十分に生かす事が出来ないという問題があった。
【0012】
この発明は、上述のような問題を解決するためになされたものであり、第1の目的は、冷やされた排気空気による排水の結氷を防止し、デフロフト効果を高めることができる熱交換器付換気装置を提供することである。
また、第2の目的は、デフロフト後の結露水を速やかに除去できる熱交換器付換気装置を提供することである。
さらに、第3の目的は、デフロフト効果を高めつつ、風路構成部材による圧力損失を低下させ、さらに風路構成部材に付着した水の速やかに除去できる熱交換器付換気装置を提供することである。
【0013】
【課題を解決するための手段】
この発明にかかる熱交換器付換気装置は、箱体と、箱体に設けられた外気の吸い込み口と、外気の吹き出し口と、室内気の吸い込み口と、室内気の吹き出し口と、外気が通過する第1の通路および、第1の通路と交差するように形成され、室内気が通過する第2の通路とを有する熱交換器とを備え、第2の通路を通過した室内気の気流が放出される熱交換器の排気面に、排気される気流を、その温度分布に従って複数の気流に分離する気流分離手段を設けたものとした。
【0014】
さらに、気流分離手段は薄い板状部材を有し、この板状部材は第2の通路の方向に沿うように、かつ、第1の通路の方向にほぼ垂直となるような向きで配置されているものとした。
【0015】
さらに、気流分離手段は複数の板状部材を有し、個々の板状部材は第2の通路の方向に沿うように、かつ、第1の通路の方向にほぼ垂直となるような向きで配置されているものとした。
【0016】
さらに、板状部材の表面に、複数のスリットを設けたものとした。
【0017】
さらに、熱交換器は六面体をしており、板状部材は、一辺の長さが室内気の排気面の角寸法とほぼ同じであり、他の一辺の長さが前記角寸法の1/2である長方形の面を有しているものとした。
【0018】
【発明の実施の形態】
実施の形態1.
図1はこの発明の実施の形態1における熱交換器付換気装置の構成図である。
図1中、1は室内空気と室外空気とを使用する換気装置としての本体、2は本体1の外箱、2aは外箱の側面に設けられた外気の吸込口、2bは同じく吹出口、2cは同じく室内空気の吸込口、2dは同じく吹出口、3は外箱2内に収納された熱交換器、4は熱交換器3に設けられた気流分離ボード、5は給気送風機、6は同じく排気送風機、A・A’は給気流、B・B’は排気流を示す。なお、気流分離ボード4は、熱交換器4の排気面に垂直に、気流の流れにそうように配置されている。
【0019】
図2は、図1における熱交換器3の斜視図である。
図2に示すように、熱交換器3は、積層構造の六面体構造をしており、伝熱性と通湿性とを有する薄肉の仕切部材11に間隔保持部材12を挟んで所定の間隔を作り、これを複数層に重ね合わせ接着した構成となっている。また、熱交換器3を構成している仕切部材11は正方形や菱形の平板として構成され、間隔保持部材12は投影平面形状が仕切部材11に一致する鋸波状又は正弦波状の波形を成形した波板に形成されている。この間隔保持部材12を仕切部材11の間にその波の目の方向を交互に90度又はそれに近い角度を持たせて挟着することで、気流(イ)と気流(ロ)を通す流体通路13と流体通路14がこれらの各層間に一層おきに構成されることになる。
【0020】
図3は、この仕切部材11部分の詳細を示す斜視図である。
図3に示すように、一枚の仕切部材11の片面に間隔保持部材12を接着したことで熱交換器構成部材15が構成され、さらに、熱交換器構成部材15には、片面に空気遮蔽機能を有する透湿膜16を作成し、その上に、間隔保持部材12をコルゲート加工により接着することにより連続的に作られる。
【0021】
図4は、気流分離ボード4を敷設した場合の熱交換器3の斜視図である。
デフロスト運転が必要となる冬期において室内から排気される排気流は、図示の矢印Bのように熱交換器3には給気面3aからに入り、矢印B’のように排気面3bから出て行く。また、室外から吸気される給気流は、図示の矢印Aのように熱交換器3に給気面3cから入り、図示の矢印A’のように排気面3dから出て行く。これにより、熱交換器3内部で、排気流から給気流への熱伝導が行なわれる。
【0022】
また、外気温がマイナス温度まで低下するような条件下においては排気流は低温の給気流によって熱交換器内で冷やされ露点温度以下に低下すると結露を引き起こす。このような場合に、運転を続けると、やがて熱交換器3の目詰まりが発生し排気流量が減少するので、デフロスト運転が行なわれる。なお、デフロスト運転としては、例えば、外気温が-10℃以下に低下すると給気用送風機5を5分から15分程度停止させ給気流をストップさせることにより、排気流の熱で熱交換器の結氷を融かす運転を行い、その後、通常運転を一時間程度おこなうのを一サイクルとして外気温が一定温度に上昇するまで繰り返しするものがある。また、その他にも、給気送風機5をそのまま運転させ、給気流の変わりに室内空気を取り込み循環運転させる運転、例えば、外気温が-10℃以下に低下すると給気用送風機5をそのまま運転させ、給気ダクトの途中に設けたダンパーを切り替え5分から15分程度給気気流パスに室内空気を取り込み室内循環運転させるデフロフト運転により、室内気流循環の熱と排気気流の熱で熱交換器の結氷を融かす運転を行い、その後、ダンパーを切り替え通常運転を一定時間行うのを一サイクルとして外気温が一定温度に上昇するまで繰り返しするものもある。
【0023】
デフロスト運転中は、熱交換器3より排出される結露水は熱交換器3の排気流吹出し面3bより出てくるが、非混合直交流型熱交換器である熱交換器3の場合、排気流B’は図5に示すような温度分布をもって熱交換器3より排気される。
すなはち、排気面3bから排出される排気流B’の温度は、室外から吸気される給気流が給気される給気面3cに近づくにつれて温度が低くなっている。
【0024】
その後、排気面3bから排出された排気流B’は、気流分離ボード4により、幾つかの気流に分離され、温度分布を維持したまま排気送風機6により排気される。
【0025】
従来のような気流分離ボードが存在しない熱交換器付換気装置では、デフロスト運転がおこなわれ融解したデフロスト水が熱交換器3の排気面3bより排出される際、デフロスト水は排気面3bで表面張力によりすばやく滴下しない場合が多く、その際、温度分布をもって吹出された排気流B’が熱交換器より排出されてその場で混合される。すると、比較的暖かい排気流部分も、冷たい排気流部分が回り込んで冷やされ、図5中の3イ部分はもとより、比較的高温で吹出す3ロ部分においても熱交換器表面に存在する結露水を冷却し、熱交換器の表面において全面で再氷結することがあった。しかし、気流分離ボード4を設置したことで、冷たい排気流B’が回りこんで再び熱交換器3を冷やすことはなく、熱交換器3の表面に存在する水滴が排気流B’の低温側空気によって再度、冷やされ結氷することを防止することができ、排気風量の低下を防止しデフロスト効果を高めることができる。
【0026】
なお、この気流分離ボード4の気流が流れる表面にフッ素やシリコン系の撥水剤を塗布して撥水処理してもよい。これにより、気流分離ボード4に水滴等が付着し氷結することが防止でき、気流の流れを安定させることができる。また、気流分離ボード4は、断熱性のある樹脂等の部材で構成することが好ましい。
【0027】
実施の形態2.
図6は、この発明の実施の形態2における熱交換器付換気装置を示す構成図であり、図1の熱交換器付換気装置において、気流分離ボードを複数配置するようにしたものである。なお、図1に記載したものと同一および相対する部分には、同一の符号を付す。
【0028】
図6中、熱交換器3の排気面3bには、3枚の気流分離ボードが、排気面3bに垂直に配置されている。これにより、排気流B’の分離をさらに細かくでき、温度分布の維持機能が上がるので、排気風量の低下を防止しデフロスト効果を高めることができる。
【0029】
実施の形態3.
図7は、この発明の実施の形態3における熱交換器付換気装置を示す構成図であり、図1の熱交換器付換気装置において、気流分離ボードの表面にスリットおよび孔を複数設けたものである。なお、図1に記載したものと同一および相対する部分には、同一の符号を付す。
【0030】
図7中、4aは表面に複数のスリットおよび孔を設けた気流分離ボードである。また、7は、気流分離ボードの下に設置した、結露水を受けるドレンパンである。このように、気流分離ボード4aの表面に複数のスリットおよび孔を設けたことで結露水が気流分離ボード4a上からすばやく排出させることができ、さらに、気流分離ボード4aの先端から結露水を排出しなくなるので、気流分離ボード4aの下に設置されるドレンパンを小さくできる。
【0031】
実施の形態4.
図8は、この発明の実施の形態4における熱交換器付換気装置を示す構成図であり、図1の熱交換器付換気装置において、気流分離ボードの長さを、熱交換器の角寸法aの1/2以上にするものである。なお、図1に記載したものと同一および相対する部分には、同一の符号を付す。
【0032】
図8中、4bは気流分離ボードであり、気流が流れる面方向の寸法は、熱交換器の角寸法の1/2となっている。気流分離ボードの気流が流れる面方向長さは、その下にドレンパンを設置させなければならないことを考えた場合、必要以上に長くするのは装置自体の大型化を招く。しかし、あまりにも短いと、排気流B’が周りこんでしまい、温度分布を維持することができなくなる。よって、この両方を考えた場合に、熱交換器3の角寸法の1/2の長さ程度であれば気流分離の効果があり、妥当であると考えられる。
【0033】
【発明の効果】
この発明により、熱交換器の表面に存在する水滴が排気流の低温側空気によって再度冷やされ、結氷することを防止することができ、排気風量の低下を防止しデフロスト効果を高めることができる。
【図面の簡単な説明】
【図1】 実施の形態1における熱交換器付換気装置の構成図である。
【図2】 熱交換器の斜視図である。
【図3】 仕切り部材の斜視図である。
【図4】 熱交換器の斜視図である。
【図5】 排気流の温度分布を示す図である。
【図6】 実施の形態2における熱交換器付換気装置の構成図である。
【図7】 実施の形態3における熱交換器付換気装置の構成図である。
【図8】 実施の形態3における熱交換器付換気装置の構成図である。
【図9】 従来の熱交換器付換気装置の構成図である。
【図10】 熱交換器の斜視図である。
【図11】 従来の凍結防止装置の構成図である。
【図12】 従来の凍結防止装置を付けた熱交換器付換気装置の構成図である。
【図13】 従来の凍結防止装置を付けた熱交換器付換気装置の構成図である。
【符号の説明】
1 本体、 2 外箱、 2a 外気の吸込口、 2b 外気の吹出口、
2c 室内空気の吸込口、 2d 室内空気の吹出口、 3 熱交換器、
4 気流分離ボード、 5 給気送風機、 6 排気送風機、
7 ドレンバン、 11 仕切部材、 12 間隔保持部材、
13 流体通路、 14 流体通路、 15 熱交換器構成部材、
16 透湿膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ventilator with a heat exchanger that uses outdoor air and room air, and more particularly to a technique for preventing the heat exchanger from freezing.
[0002]
[Prior art]
FIG. 9 is a configuration diagram of a conventional ventilator with a heat exchanger described in Japanese Patent Publication No. 3-50180.
[0003]
In FIG. 9, 101 is a main body as a ventilation device using indoor air and outdoor air, 102 is an outer box of the main body 101, 102 a is an outside air inlet provided on a side surface of the outer box, and 102 b is an air outlet, Reference numeral 102c denotes a room air inlet, and reference numeral 102d denotes a blow outlet. Reference numeral 103 denotes a heat exchanger housed in the outer box 102. As shown in the perspective view of the heat exchanger in FIG. 10, a large number of flat plates having a large number of corrugated plates 103a and heat conductivity, or a combination of moisture permeability and heat conductivity. 103b are alternately laminated, and the corrugated plates 103a are alternately laminated by changing the corrugating direction by 90 degrees. 104 is an air filter provided on the inflow side of the supply air of the heat exchanger 103, 105 is an air filter provided on the same side of the exhaust air, 106 is an air supply blower, 107 is also an exhaust air blower, and A is a supply airflow. , B indicates the exhaust flow.
[0004]
In such a ventilator with a heat exchanger, as shown in the airflow A, the outside air is sucked in from the suction port 102a by the rotation of the air supply blower 106, passes through the air filter 104 and the heat exchanger 103, and then blows out the outlet 102b. Is blown into the room. Further, as indicated by the airflow B, the indoor air is sucked from the suction port 102c by the exhaust blower 107, passes through the air filter 105 and the heat exchanger 103, and is blown out from the blowout port 102d.
[0005]
However, in such a conventional ventilator with a heat exchanger, the exhaust air flow B is cooled by the air supply air A at the portion 103a close to the inflow portion of the heat exchanger 103, and therefore, dew condensation, frost formation or icing occurs. A phenomenon occurs in which the heat exchanger 103 is clogged and the exhaust flow B does not flow in the vicinity thereof. Furthermore, as a result, the vicinity of the portion 103a does not exchange heat, so the next adjacent portion 103b is cooled by the air supply air A, causing icing. If the operation is continued as it is, the heat exchanger finally There was a problem that the entire surface was frozen and exhaust and heat exchange were not performed.
[0006]
Conventionally, as a technique for solving such a problem, there has been a technique in which an antifreezing device is attached to a ventilator with a heat exchanger and operated.
[0007]
11, 12, and 13 are diagrams showing a configuration of a conventional anti-freezing device described in Japanese Patent Publication No. 3-50180 and a state in which the anti-freezing device is attached to a ventilation device with a heat exchanger. is there.
[0008]
11, 12, and 13, reference numeral 109 denotes a box disposed on the suction side of the main body 101, and an air flow path is formed therein. Reference numeral 109a denotes a low-temperature air inlet that opens to the outside air provided in the box 109, 109b denotes a high-temperature air inlet that also opens to the indoor side, and 109c denotes an air outlet, which is connected to the suction port 102a of the main body 101. 110 is a damper that opens and closes the air inlets 109 a and 109 b provided in the box 109, and 111 is a heater provided in the vicinity of the air outlet 109 c of the box 109. Reference numeral 117 denotes a drive device for the damper 110.
[0009]
In the freeze prevention device for a ventilator with a heat exchanger configured as described above, the damper 110 normally opens the low-temperature air inlet 109a and closes the high-temperature air inlet 109b as shown in FIG. Therefore, as indicated by the airflow A, the low-temperature air enters the box 109 from the low-temperature air inlet 109a and is supplied to the main body 101 from the air outlet 109c through the suction port 102a.
[0010]
When the low temperature air temperature is low and icing occurs in the heat exchanger 103, the damper 110 rotates, the low temperature air inlet 109a is closed and the high temperature air inlet 109b is opened as shown in FIG. The At the same time, the heater element 111 is energized. Thus, the high temperature air enters the box body 109 from the high temperature air inlet 109b, is heated by the heater 111, and is supplied from the air outlet 109c to the low temperature side passage of the main body 101. As a result, the high-temperature air flows through the flow path of the heat exchanger 103 where the normal low-temperature air has flowed, and the ice formed in the high-temperature side flow path is melted. After the icing melts, the damper 110 rotates in the reverse direction to the state shown in FIGS. 11 and 12, and at the same time, the energization to the heating element 111 is also cut off.
[0011]
[Problems to be solved by the invention]
However, in order to prevent the heat exchanger from freezing, when the conventional anti-freezing device as shown in FIG. 11, FIG. 12, and FIG. 13 is used, the effect is very high, but during normal operation after defloft operation. The melted condensed water is heat-exchanged by the low-temperature outside air that has been taken in again, and the chilled exhaust air re-condenses inside and on the surface of the heat exchanger, making it impossible to fully utilize the defloft effect. It was.
[0012]
The present invention has been made to solve the above-described problems, and a first object thereof is to provide a heat exchanger that can prevent icing of drainage due to cooled exhaust air and enhance a defloft effect. It is to provide a ventilation device.
Moreover, the 2nd objective is to provide the ventilator with a heat exchanger which can remove rapidly the dew condensation water after a defloft.
Furthermore, the third object is to provide a ventilator with a heat exchanger capable of reducing the pressure loss due to the airway constituent member while increasing the defloft effect and further quickly removing water adhering to the airway constituent member. is there.
[0013]
[Means for Solving the Problems]
A ventilator with a heat exchanger according to the present invention includes a box, an outside air inlet provided in the box, an outside air outlet, an indoor air inlet, an indoor air outlet, and an outside air A heat exchanger having a first passage passing therethrough and a second passage formed so as to intersect with the first passage and through which room air passes, and the air flow of the room air passing through the second passage An airflow separation means for separating the exhausted airflow into a plurality of airflows according to the temperature distribution is provided on the exhaust surface of the heat exchanger from which the air is discharged.
[0014]
Further, the airflow separating means has a thin plate-like member, and this plate-like member is arranged so as to be along the direction of the second passage and substantially perpendicular to the direction of the first passage. It was supposed to be.
[0015]
Further, the airflow separating means has a plurality of plate-like members, and the individual plate-like members are arranged so as to be along the direction of the second passage and substantially perpendicular to the direction of the first passage. It was supposed to be.
[0016]
Furthermore, a plurality of slits were provided on the surface of the plate member.
[0017]
Further, the heat exchanger has a hexahedron, and the plate-like member has a side length substantially the same as the angular dimension of the exhaust surface of the room air, and the other side length is ½ of the angular dimension. It was assumed to have a rectangular surface.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
1 is a configuration diagram of a ventilator with a heat exchanger according to Embodiment 1 of the present invention.
In FIG. 1, 1 is a main body as a ventilator that uses indoor air and outdoor air, 2 is an outer box of the main body 1, 2a is an air intake port provided on the side of the outer box, and 2b is an outlet. 2c is also an indoor air inlet, 2d is also an outlet, 3 is a heat exchanger housed in the outer box 2, 4 is an air flow separation board provided in the heat exchanger 3, 5 is an air supply blower, 6 Is an exhaust blower, A · A ′ is a supply air flow, and B · B ′ is an exhaust flow. In addition, the airflow separation board 4 is arranged so as to follow the flow of the airflow perpendicular to the exhaust surface of the heat exchanger 4.
[0019]
FIG. 2 is a perspective view of the heat exchanger 3 in FIG.
As shown in FIG. 2, the heat exchanger 3 has a hexahedron structure of a laminated structure, and creates a predetermined interval by sandwiching an interval holding member 12 between thin partition members 11 having heat conductivity and moisture permeability, This is configured such that a plurality of layers are laminated and bonded. In addition, the partition member 11 constituting the heat exchanger 3 is configured as a square or rhombus flat plate, and the spacing member 12 is a wave obtained by forming a sawtooth or sinusoidal waveform whose projection plane shape matches the partition member 11. It is formed on a plate. A fluid passage through which the air current (I) and the air current (B) are passed by sandwiching the spacing member 12 between the partition members 11 with the direction of the wave eyes alternately having an angle of 90 degrees or an angle close thereto. 13 and fluid passages 14 are formed in every other layer between these layers.
[0020]
FIG. 3 is a perspective view showing details of the partition member 11 portion.
As shown in FIG. 3, a heat exchanger component 15 is configured by adhering a spacing member 12 to one side of a single partition member 11, and the heat exchanger component 15 has an air shield on one side. The moisture permeable membrane 16 having a function is formed, and the interval holding member 12 is bonded continuously thereon by corrugating.
[0021]
FIG. 4 is a perspective view of the heat exchanger 3 when the airflow separation board 4 is laid.
In the winter season when defrost operation is required, the exhaust flow exhausted from the room enters the heat exchanger 3 from the air supply surface 3a as indicated by the arrow B and exits from the exhaust surface 3b as indicated by the arrow B '. go. Further, the air supply air sucked from the outside enters the heat exchanger 3 from the air supply surface 3c as shown by the arrow A in the drawing, and exits from the exhaust surface 3d as shown by the arrow A ′ in the drawing. Thereby, heat conduction from the exhaust flow to the supply air flow is performed in the heat exchanger 3.
[0022]
Also, under conditions where the outside air temperature decreases to a minus temperature, the exhaust flow is cooled in the heat exchanger by a low-temperature air flow and causes condensation when it falls below the dew point temperature. In such a case, if the operation is continued, the heat exchanger 3 will eventually become clogged and the exhaust flow rate will decrease, so the defrost operation is performed. In the defrost operation, for example, when the outside air temperature drops to -10 ° C. or lower, the supply air blower 5 is stopped for about 5 to 15 minutes to stop the supply air flow, and the heat of the heat exchanger is frozen by the heat of the exhaust flow. There is an operation in which the operation is performed after melting, and then the normal operation is performed for about one hour, and the cycle is repeated until the outside temperature rises to a constant temperature. In addition, the air supply blower 5 is operated as it is, and the air supply fan 5 is operated as it is when the outside air temperature drops to −10 ° C. or less, for example, when the outside air temperature is lowered to −10 ° C. or less. Switch the damper installed in the middle of the air supply duct. Defrost operation that takes indoor air into the air supply airflow path for about 5 to 15 minutes and makes the indoor circulation operation. In some cases, the operation is performed to melt the heat and then the damper is switched and the normal operation is performed for a certain period of time as one cycle until the outside air temperature rises to a certain temperature.
[0023]
During the defrost operation, the condensed water discharged from the heat exchanger 3 comes out from the exhaust flow outlet surface 3b of the heat exchanger 3, but in the case of the heat exchanger 3 which is an unmixed cross-flow heat exchanger, The stream B ′ is exhausted from the heat exchanger 3 with a temperature distribution as shown in FIG.
In other words, the temperature of the exhaust flow B ′ discharged from the exhaust surface 3b becomes lower as the supplied airflow sucked from the outdoor side approaches the supplied air surface 3c.
[0024]
Thereafter, the exhaust flow B ′ discharged from the exhaust surface 3b is separated into several air flows by the air flow separation board 4, and is exhausted by the exhaust blower 6 while maintaining the temperature distribution.
[0025]
In a ventilator with a heat exchanger that does not have an airflow separation board as in the prior art, when defrosted operation is performed and molten defrost water is discharged from the exhaust surface 3b of the heat exchanger 3, the defrost water is exposed on the exhaust surface 3b. In many cases, it does not drip quickly due to the tension, and at this time, the exhaust stream B ′ blown out with a temperature distribution is discharged from the heat exchanger and mixed on the spot. As a result, the relatively warm exhaust flow portion is also cooled by the cold exhaust flow portion, and the condensation present on the surface of the heat exchanger is not limited to the portion 3a in FIG. Water could be cooled and re-freeze over the entire surface of the heat exchanger. However, since the airflow separation board 4 is installed, the cold exhaust stream B ′ does not flow around and cools the heat exchanger 3 again, and water droplets existing on the surface of the heat exchanger 3 are on the low temperature side of the exhaust stream B ′. It is possible to prevent the air from being cooled and frozen again by the air, and it is possible to prevent the exhaust air volume from being lowered and enhance the defrost effect.
[0026]
The air separation board 4 may be subjected to a water repellent treatment by applying a fluorine or silicon water repellent to the surface through which the air current flows. Thereby, it is possible to prevent water droplets or the like from adhering to the airflow separation board 4 and freezing, and to stabilize the airflow. Moreover, it is preferable to comprise the airflow separation board 4 by members, such as resin with heat insulation.
[0027]
Embodiment 2. FIG.
FIG. 6 is a configuration diagram showing a heat exchanger-equipped ventilator according to Embodiment 2 of the present invention. In the ventilator with a heat exchanger of FIG. 1, a plurality of airflow separation boards are arranged. In addition, the same code | symbol is attached | subjected to the part which is the same as that described in FIG. 1, and is opposite.
[0028]
In FIG. 6, on the exhaust surface 3b of the heat exchanger 3, three airflow separation boards are arranged perpendicular to the exhaust surface 3b. As a result, the exhaust flow B ′ can be further separated and the function of maintaining the temperature distribution is improved, so that the exhaust air volume can be prevented from decreasing and the defrost effect can be enhanced.
[0029]
Embodiment 3 FIG.
7 is a block diagram showing a ventilator with a heat exchanger according to Embodiment 3 of the present invention. In the ventilator with a heat exchanger of FIG. 1, a plurality of slits and holes are provided on the surface of the airflow separation board. It is. In addition, the same code | symbol is attached | subjected to the part which is the same as that described in FIG. 1, and is opposite.
[0030]
In FIG. 7, 4a is an airflow separation board having a plurality of slits and holes on the surface. Reference numeral 7 denotes a drain pan installed under the airflow separation board for receiving condensed water. Thus, by providing a plurality of slits and holes on the surface of the airflow separation board 4a, the condensed water can be quickly discharged from the airflow separation board 4a, and further, the condensed water is discharged from the tip of the airflow separation board 4a. Therefore, the drain pan installed under the airflow separation board 4a can be made small.
[0031]
Embodiment 4 FIG.
FIG. 8 is a configuration diagram showing a ventilator with a heat exchanger according to Embodiment 4 of the present invention. In the ventilator with a heat exchanger of FIG. 1, the length of the airflow separation board is set to the angular dimension of the heat exchanger. It is set to 1/2 or more of a. In addition, the same code | symbol is attached | subjected to the part which is the same as that described in FIG. 1, and is opposite.
[0032]
In FIG. 8, 4b is an airflow separation board, and the dimension of the surface direction through which the airflow flows is ½ of the angular dimension of the heat exchanger. In consideration of the fact that a drain pan must be installed below the airflow separation board, the length of the airflow separation board that is longer than necessary causes the apparatus itself to become larger. However, if it is too short, the exhaust flow B ′ will circulate and the temperature distribution cannot be maintained. Therefore, when both are considered, if the length is about ½ of the angular dimension of the heat exchanger 3, there is an effect of airflow separation, which is considered to be appropriate.
[0033]
【The invention's effect】
According to the present invention, it is possible to prevent water droplets present on the surface of the heat exchanger from being cooled again by the low-temperature side air of the exhaust flow and freeze, and to prevent a reduction in the amount of exhaust air and enhance the defrost effect.
[Brief description of the drawings]
1 is a configuration diagram of a ventilator with a heat exchanger in Embodiment 1. FIG.
FIG. 2 is a perspective view of a heat exchanger.
FIG. 3 is a perspective view of a partition member.
FIG. 4 is a perspective view of a heat exchanger.
FIG. 5 is a view showing a temperature distribution of an exhaust flow.
6 is a configuration diagram of a ventilator with a heat exchanger in Embodiment 2. FIG.
7 is a configuration diagram of a ventilator with a heat exchanger according to Embodiment 3. FIG.
FIG. 8 is a configuration diagram of a ventilator with a heat exchanger in a third embodiment.
FIG. 9 is a configuration diagram of a conventional ventilation device with a heat exchanger.
FIG. 10 is a perspective view of a heat exchanger.
FIG. 11 is a configuration diagram of a conventional freeze prevention device.
FIG. 12 is a configuration diagram of a ventilator with a heat exchanger equipped with a conventional freeze prevention device.
FIG. 13 is a configuration diagram of a ventilator with a heat exchanger equipped with a conventional freeze prevention device.
[Explanation of symbols]
1 body, 2 outer box, 2a outside air inlet, 2b outside air outlet,
2c Indoor air inlet, 2d Indoor air outlet, 3 Heat exchanger,
4 Airflow separation board, 5 Air supply blower, 6 Exhaust blower,
7 Drain van, 11 Partition member, 12 Spacing member,
13 fluid passage, 14 fluid passage, 15 heat exchanger component,
16 Moisture permeable membrane

Claims (5)

箱体と、前記箱体に設けられた外気の吸い込み口と、前記箱体に設けられた外気の吹き出し口と、前記箱体に設けられた室内気の吸い込み口と、前記箱体に設けられた室内気の吹き出し口と、前記外気が通過する第1の通路および、前記第1の通路と交差するように形成され、前記室内気が通過する第2の通路とを有する熱交換器とを備えた熱交換器付換気装置において、前記第2の通路を通過した前記室内気の気流が放出される前記熱交換器の排気面に、排気される気流を、その温度分布に従って複数の気流に分離する気流分離手段を設けたことを特徴とする熱交換器付換気装置。A box, an outside air inlet provided in the box, an outside air outlet provided in the box, an indoor air inlet provided in the box, and the box A heat exchanger having a first air passage through which the outside air passes, and a second passage formed so as to intersect the first passage and through which the room air passes. In the ventilator with a heat exchanger, the airflow exhausted on the exhaust surface of the heat exchanger from which the airflow of the room air that has passed through the second passage is discharged is converted into a plurality of airflows according to the temperature distribution. A ventilator with a heat exchanger, characterized in that airflow separating means for separating is provided. 気流分離手段は薄い板状部材を有し、前記板状部材は第2の通路の方向に沿うように、かつ、第1の通路の方向にほぼ垂直となるような向きで配置されていることを特徴とする請求項1に記載の熱交換器付換気装置。The airflow separating means has a thin plate-like member, and the plate-like member is arranged so as to be along the direction of the second passage and substantially perpendicular to the direction of the first passage. The ventilator with a heat exchanger according to claim 1. 気流分離手段は複数の板状部材を有し、個々の板状部材は第2の通路の方向に沿うように、かつ、第1の通路の方向にほぼ垂直となるような向きで配置されていることを特徴とする請求項1に記載の熱交換器付換気装置。The airflow separating means has a plurality of plate-like members, and each plate-like member is arranged so as to be along the direction of the second passage and to be substantially perpendicular to the direction of the first passage. The ventilation apparatus with a heat exchanger according to claim 1, wherein the ventilation apparatus has a heat exchanger. 板状部材の表面に、複数のスリットを設けたことを特徴とする請求項2または請求項3に記載の熱交換器付換気装置。The ventilator with a heat exchanger according to claim 2 or 3, wherein a plurality of slits are provided on a surface of the plate member. 熱交換器は六面体をしており、板状部材は、一辺の長さが室内気の排気面の角寸法とほぼ同じであり、他の一辺の長さが前記角寸法の1/2である長方形の面を有していることを特徴とする請求項2から請求項4のいずれかに記載の熱交換器付換気装置。The heat exchanger has a hexahedron, and the plate-like member has a side length substantially equal to the angular dimension of the exhaust surface of the room air, and the other side length is ½ of the angular dimension. The ventilation apparatus with a heat exchanger according to any one of claims 2 to 4, wherein the ventilation apparatus has a rectangular surface.
JP2000045766A 2000-02-23 2000-02-23 Ventilator with heat exchanger Expired - Fee Related JP3791286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000045766A JP3791286B2 (en) 2000-02-23 2000-02-23 Ventilator with heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000045766A JP3791286B2 (en) 2000-02-23 2000-02-23 Ventilator with heat exchanger

Publications (2)

Publication Number Publication Date
JP2001235199A JP2001235199A (en) 2001-08-31
JP3791286B2 true JP3791286B2 (en) 2006-06-28

Family

ID=18568300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000045766A Expired - Fee Related JP3791286B2 (en) 2000-02-23 2000-02-23 Ventilator with heat exchanger

Country Status (1)

Country Link
JP (1) JP3791286B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107655163A (en) * 2017-08-28 2018-02-02 珠海格力电器股份有限公司 Control method and device of air conditioner

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5220102B2 (en) 2008-04-16 2013-06-26 三菱電機株式会社 Heat exchange ventilator
CN114423237A (en) * 2022-01-19 2022-04-29 华为数字能源技术有限公司 Indirect evaporative cooling unit, data center and anti-freezing control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107655163A (en) * 2017-08-28 2018-02-02 珠海格力电器股份有限公司 Control method and device of air conditioner
CN107655163B (en) * 2017-08-28 2019-09-20 珠海格力电器股份有限公司 control method and device of air conditioner

Also Published As

Publication number Publication date
JP2001235199A (en) 2001-08-31

Similar Documents

Publication Publication Date Title
KR101497297B1 (en) Evaporative cooling device
TWI421462B (en) High efficiency heat exchanger and dehumidifier
JP4978303B2 (en) Heat exchange ventilator
AU2004309796B2 (en) A two stage indirect evaporative cooling system
JPS6335900B2 (en)
JPS62141481A (en) Cooling and refrigerating device
JP2004251554A (en) Exterior heat exchanger for heat pump
KR101234167B1 (en) Heat exchange laminate
JPH11182907A (en) Ventilator
WO2022252813A1 (en) Evaporative cooling unit and data center
JP3791286B2 (en) Ventilator with heat exchanger
JP2004177040A (en) Outdoor heat exchanger for heat pump
US20170328639A1 (en) Evaporative cooling device
JP2005024187A (en) Outdoor heat exchanger for heat pump
JP6561313B2 (en) Heat exchange type ventilator using heat exchange elements
JP2002213898A (en) Method of operating cooling tower, and the cooling tower
JPH0334584Y2 (en)
JP2522608B2 (en) Ceiling heating and cooling system
JPS6219631A (en) Ventilator of heat exchange type
TWI429874B (en) Evaporative cooling device
JPH0519692Y2 (en)
JP3685752B2 (en) Air conditioner
JP6646803B2 (en) Dehumidifier
JPS60251334A (en) Heat pipe defrosting device for heat exchanging and ventilating fan
JPH0522730Y2 (en)

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060327

R151 Written notification of patent or utility model registration

Ref document number: 3791286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees