JPS6219631A - Ventilator of heat exchange type - Google Patents

Ventilator of heat exchange type

Info

Publication number
JPS6219631A
JPS6219631A JP15927285A JP15927285A JPS6219631A JP S6219631 A JPS6219631 A JP S6219631A JP 15927285 A JP15927285 A JP 15927285A JP 15927285 A JP15927285 A JP 15927285A JP S6219631 A JPS6219631 A JP S6219631A
Authority
JP
Japan
Prior art keywords
air
heat exchanger
exhaust
indoor
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15927285A
Other languages
Japanese (ja)
Other versions
JPH0370148B2 (en
Inventor
Naoshi Yokoie
尚士 横家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15927285A priority Critical patent/JPS6219631A/en
Publication of JPS6219631A publication Critical patent/JPS6219631A/en
Publication of JPH0370148B2 publication Critical patent/JPH0370148B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To thaw ice with little energy and maintain the ventilation function by stopping the fan for air exhaust and operating a damper that communicates the outdoor side supply air channel with the indoor side exhaust air channel and energizing a heating element provided in the outdoor side supply air channel. CONSTITUTION:Normally a damper 9 separates the outdoor side supply air channel 2A and the indoor side exhaust air channel 2B. The ventilator is operated in a low outdoor temperature (under -5 deg.). When ice is formed on the heat exchanger 3, the blower 7 for exhaust air is stopped by a control device 11, and a drive machine 10 is operated to communicate the outdoor side supply air channel 2A and indoor side exhaust air channel 2B, and at the same time a heating element 8 is energized. With this arrangement the indoor air is led into the outdoor side supply air channel 2A, and furthermore it is heated by the heating element 8, so that the ice formed on the exhaust air side channel of the heat exchanger 3 is thawed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は熱交換器を介して給排気を行う換気装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a ventilation system that performs air supply and exhaust through a heat exchanger.

〔従来の技術〕[Conventional technology]

第7図〜第10図は2例えば実公昭54−42125号
公報に示されたものに類似した従来の熱交換形換気装置
を示す図で、第7図は縦断面図、第8図は熱交換器の端
面拡大斜視図、第9図は構成図。
Figures 7 to 10 are diagrams showing a conventional heat exchange type ventilation system similar to the one shown in, for example, Japanese Utility Model Publication No. 54-42125, in which Figure 7 is a longitudinal sectional view, and Figure 8 is a FIG. 9 is an enlarged perspective view of the end face of the exchanger, and FIG. 9 is a configuration diagram.

第10図は結氷説明図である。FIG. 10 is an explanatory diagram of freezing.

図中、(1)は換気装置本体、(2)は本体(1)の外
箱。
In the figure, (1) is the main body of the ventilation system, and (2) is the outer box of the main body (1).

(2a)は外箱(2)の側面に設けられた外気の吸込口
(2a) is an outside air inlet provided on the side of the outer box (2).

(2b)は同じく吹出口t  (2C)は同じく室内空
気の吸込口9  (2d)は同じく吹出口、(3)は外
箱(2)内に収納された熱交換器で、多数の波形板(3
a)と通湿性と伝熱性とを有する多数の平板(3b)と
を交互に積層しかつ波形板(3a)は交互にその波形形
成方向を90度変えて介挿させることによって角柱状に
形成されており、外箱(2)の中央に横に倒しかつ45
度傾けて設置されている。(4)は熱交換器(3)の給
気空気の流入側に設けられたエアフィルタ、(5)は同
じく排気空気の流入側に設けられたエアフィルタ、(6
)は熱交換器(3)の給気空気の流出側に設置された給
気用送風機、(7)は同じく排気空気の流出側に設置さ
れた排気用送風機2人は給気流、Bは排気流である。
(2b) is the same air outlet t (2C) is the indoor air suction port 9 (2d) is the same air outlet, (3) is the heat exchanger housed in the outer box (2), and is made of many corrugated plates. (3
a) and a large number of flat plates (3b) having moisture permeability and heat conductivity are alternately laminated, and the corrugated plates (3a) are formed into a prismatic shape by alternately interposing the corrugated plates (3a) with their waveform forming direction changed by 90 degrees. It is placed sideways in the center of the outer box (2) and the 45
It is installed at an angle. (4) is an air filter provided on the inflow side of the supply air of the heat exchanger (3), (5) is an air filter also provided on the inflow side of exhaust air, and (6)
) is the supply air blower installed on the outflow side of the supply air of the heat exchanger (3), (7) is the exhaust blower installed on the outflow side of the exhaust air. It is a flow.

従来の熱交換形換気装置は上記のように構成され、外気
は気流人で示すように、給気用送風機(6)の回転によ
り、吸込口(2a)から吸い込まれ、エアフィルタ(4
)及び熱交換器(3)を通り、吹出口(2b)から室内
へ吹き出される。また、室内空気は気流Bで示すように
、排気用送風機(7)の回転により、吸込口(2C)か
ら吸い込まれ、エアフィルタ(5)及び熱交換器(3)
を通り、吹出口(2d)から室外へ吹さ出される。この
ようにして、給気空気と排気空気の間で熱交換が行われ
る。
A conventional heat exchange type ventilation system is constructed as described above, and outside air is sucked in through the suction port (2a) by the rotation of the air supply blower (6), as shown in the airflow figure, and passed through the air filter (4).
) and the heat exchanger (3), and is blown into the room from the outlet (2b). In addition, as shown by airflow B, the indoor air is sucked in from the suction port (2C) by the rotation of the exhaust blower (7), and is passed through the air filter (5) and heat exchanger (3).
and is blown out from the air outlet (2d). In this way, heat exchange takes place between the supply air and the exhaust air.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の熱交換形換気装置では、この換気製
電が寒冷地で使用される場合、一般に給気流人は低温気
流となり、排気流Bは高温気流となる。給気流人が低温
(−5℃以下)の場合には。
In the conventional heat exchange type ventilation device as described above, when this ventilation device is used in a cold region, the supply air flow is generally a low temperature air flow, and the exhaust flow B is a high temperature air flow. When the air supply temperature is low (-5℃ or less).

排気流Bは熱交換器(3)の流入部に近い部分(3A)
で。
Exhaust flow B is a part (3A) near the inlet of the heat exchanger (3)
in.

給気流人によって冷却されるため、結露、結霜又は結氷
が生じる。そのため、熱交換器(3)は目詰りして排気
流Bはその近傍では流れなくなる。その結果2部分(3
A)の近傍は熱交換をしなくなるので2次にはその隣接
部分(6B)近傍が給気流人で最も冷却されるよ5にな
って、結氷を生じるようになる。したがって、この状態
で運転を絖けると。
Condensation, frost, or ice formation occurs due to the cooling caused by the supply air flow. Therefore, the heat exchanger (3) becomes clogged and the exhaust stream B no longer flows near it. As a result, two parts (3
Since there is no heat exchange in the vicinity of A), the area adjacent to it (6B) will be cooled the most due to the air flow, and ice will form. Therefore, if you manage to drive in this condition.

今度は部分(3B)に隣接した部分が結氷を始め、つい
には全面凍結に至り、排気及び熱交換が行われなくなる
This time, a portion adjacent to portion (3B) begins to freeze, and finally the entire surface freezes, and exhaust air and heat exchange are no longer performed.

このような結氷及びこれに伴う機能低下を防止するため
、熱交換器(3)が結氷する条件になった場合には、温
度検出器及びタイマを用い9間欠的に給気用送風機(6
)を停止させ、排気用送風機(7)だけを運転して、生
じた結氷を融かすよ5Kしている。
In order to prevent such icing and the resulting functional deterioration, if the heat exchanger (3) becomes icy, a temperature detector and timer are used to intermittently turn on the supply air blower (6).
) was stopped and only the exhaust blower (7) was operated for 5K to melt the ice that had formed.

しかし、この場合9次のような問題が生じる。However, in this case, the following problem occurs.

(7)排気運転だけの場合、室内空気の平衡が崩れて、
どこか室内の他の場所から空気を吸い込むため、冷風侵
入が起こる〇 (イ)上記に伴い、室内が負圧になるため、排気形の燃
焼器具(ポット式石油ストーブ、ガスファーネス等)が
異常燃焼を起こす危険がある。
(7) If only exhaust operation is used, the balance of indoor air will be disrupted,
Because air is sucked in from somewhere else in the room, cold air intrudes. (a) Due to the above, the indoor pressure becomes negative, causing abnormalities in exhaust-type combustion appliances (pot-type kerosene stoves, gas furnaces, etc.) There is a risk of combustion.

(ヴ 第4図の部分(3A)が結氷により目詰りしてい
る場合、そこを室内空気が通らないため、熱が与えられ
ず、氷が十分融解しない。
(V) If the part (3A) in Figure 4 is clogged with ice, indoor air cannot pass through it, so no heat is applied and the ice does not melt sufficiently.

また、他の手段として、低温空気(外気)側に加熱子を
設けて、低温空気を熱交換器(3)に結氷が生じない温
度(0℃以下)まで予熱することも行われている。しか
し、これには多くのエネルギが必要である。例えば、室
内温度20″C2外気温度−15’C,換気風量500
m’/時とすると、 −15′Cの空気を0℃まで昇温
するには、空気の重さを1.2−/−として、  15
X0.24X500X1.2:Z1BGKcal/時の
熱が必要であり、これを加熱子で昇温するには約2.5
 KW 7時の電力が必要となる。これは。
In addition, as another means, a heating element is provided on the low temperature air (outside air) side to preheat the low temperature air to a temperature (0° C. or lower) at which ice does not form on the heat exchanger (3). However, this requires a lot of energy. For example, indoor temperature 20'C, outside temperature -15'C, ventilation air volume 500
m'/hour, to raise the temperature of air at -15'C to 0°C, assuming the weight of the air is 1.2-/-, 15
X0.24X500X1.2: Z1BGKcal/hour of heat is required, and it takes about 2.5
KW 7 o'clock power is required. this is.

この機器の温度交換効率を70%としたときに0℃まで
昇温した空気との交換熱量2.016Kcal 7時よ
りも大きな値となり、省エネルギの効率も悪くなる。
When the temperature exchange efficiency of this device is set to 70%, the amount of heat exchanged with the air heated to 0° C. is 2.016 Kcal, which is a larger value than 7 o'clock, and the energy saving efficiency becomes worse.

このように、熱交換器(3)の結氷による機能低下や損
傷を防ぐためには多くのエネルギを必要とする。また、
排気運転だけ行って室内空気の熱を利用して熱交換器(
3)の氷を融かす場合には、完全に融かすことは困難で
あり、かつ霜取り運転中は室内が負圧になるために、冷
風の侵入や室内熱焼器具の異常熱焼が生じる等の問題点
がある。
In this way, a lot of energy is required to prevent the heat exchanger (3) from being degraded or damaged due to freezing. Also,
The heat exchanger (
When melting the ice mentioned in 3), it is difficult to completely melt it, and the room becomes negative pressure during defrosting operation, which may cause cold air to enter and abnormal heating of indoor heating equipment. There is a problem with this.

この発明は上記問題点を解決するためになされたもので
熱交換器が結氷するような低温条件下においても、少な
いエネルギで結氷を融解し、換気機能を低下させること
のないようにした熱交換形換気装置を提供することを目
的とする。
This invention was made in order to solve the above problems. Even under low temperature conditions where the heat exchanger freezes, the heat exchanger can melt the ice with a small amount of energy and do not reduce the ventilation function. The purpose is to provide a type of ventilation device.

また、この発明の別の発明は、上記目的に加えて的確な
解凍運転を自動的に行うことができる熱交換形換気装置
を提供することを目的とする。
Another object of the present invention is to provide a heat exchange type ventilation device that can automatically perform an accurate defrosting operation in addition to the above object.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る熱交換形換気装置は、排気用送風機を停
止させ、室外側給気風路と室内側排気風路を連通させる
ダンパを動作させると共に、室外側給気風路に設けられ
た加熱子に通電するようにしたものである。
The heat exchange type ventilation device according to the present invention stops the exhaust blower, operates the damper that communicates the outdoor air supply air passage with the indoor air exhaust air passage, and operates the heater provided in the outdoor air supply air passage. It is designed to be energized.

また、この発明の別の発明に係る熱交換形換気装置は、
上記のものにおいて、外気温度を検出する温度検出器を
設け、これが所定の低温を検出すると、排気用送風機を
停止させ、ダンパを動作させると共に、加熱子に一定時
間ごとに通電するようにしたものである。
Further, a heat exchange type ventilation device according to another invention of the present invention includes:
In the above, a temperature detector is provided to detect the outside air temperature, and when this detects a predetermined low temperature, the exhaust blower is stopped, the damper is activated, and the heater is energized at regular intervals. It is.

〔作用〕[Effect]

この発明においては、排気用送風機の停止により排気を
停止し、ダンパの動作により室内空気を給気風路に導入
し、かつこれが加熱子により加熱されて熱交換器に供給
される。
In this invention, exhaust is stopped by stopping the exhaust blower, indoor air is introduced into the supply air path by operating the damper, and is heated by the heating element and supplied to the heat exchanger.

また、この発明の別の発明においては、熱交換器が結氷
条件になったとき、加熱子に一定時間ごとに通電され、
かつこれが自動的に行われる。
Further, in another invention of the present invention, when the heat exchanger is in a freezing condition, the heating element is energized at regular intervals,
And this is done automatically.

〔実施例〕〔Example〕

第1図〜第4図はこの発明の一実施例を示す図で、第1
図は構成図、第2図は動作説明図、第3図及び第4図は
特性曲線図でありp (1)* (21,(2a)〜(
2d) I +31.  (3A)t (3B)? +
61. +71. A、  Bは上記従来装置と同様の
ものである。
Figures 1 to 4 are diagrams showing one embodiment of the present invention.
The figure is a configuration diagram, Figure 2 is an operation explanatory diagram, and Figures 3 and 4 are characteristic curve diagrams.
2d) I +31. (3A)t (3B)? +
61. +71. A and B are similar to the conventional device described above.

図中、(ハ)は吸気口(2a)と熱交換器(3)の流入
側の間に形成された室外側給気風路、  (2B)は吸
気口(2C)と熱交換器(3)の流入側の間に形成され
た室内側排気風路、(8)は室外側給気風路(2A)に
設けられた加熱子、(9)は室外側給気風路(2A)と
室内側排気風路(2B)間の隔壁に設けられ駆動機al
によって回動すると上記両風路(2A)、 (2B)間
を連通させると共に、吸込口(2a)を閉塞するダンパ
、αυは給気及び排気用送風機(61,+71.加熱子
(8)及び駆動機α0を制御する制御装置(3インチ等
で構成)である。
In the figure, (c) is the outdoor air supply air path formed between the intake port (2a) and the inflow side of the heat exchanger (3), and (2B) is the connection between the intake port (2C) and the heat exchanger (3). (8) is the heating element provided in the outdoor air supply air passage (2A), (9) is the outdoor air supply air passage (2A) and the indoor exhaust air passage formed between the inflow side of the The drive machine al installed on the partition wall between the air passages (2B)
αυ is a damper that connects the air passages (2A) and (2B) and closes the suction port (2a) when rotated by the air supply and exhaust blower (61, +71. This is a control device (consisting of 3 inches, etc.) that controls the drive machine α0.

上記のように構成された熱交換形換気装置において、常
時は第1図に示すように、ダンパ(9)は室外側給気風
路(2A)と室内側排気風路(2B)を隔離しているの
で、給排気動作は従来装置と同様である。
In the heat exchange type ventilation system configured as described above, the damper (9) normally isolates the outdoor air supply air path (2A) and the indoor air exhaust air path (2B) as shown in Figure 1. Therefore, the air supply and exhaust operation is the same as that of the conventional device.

次に、外気温度が低い状態(−5″C以下)で運転され
、熱交換器(3)に結氷が生じたとき、制御装置+Il
lにより排気用送風機(7)を停止させ、駆動機01を
動作させて第2図に示すように、室外側給気風路(2A
)と室内側排気風路(2B)を連通させると共に。
Next, when the heat exchanger (3) is operated at a low outside temperature (-5"C or less) and ice forms on the heat exchanger (3), the control device +
1 to stop the exhaust blower (7) and operate the drive unit 01 to open the outdoor air supply air path (2A) as shown in FIG.
) and the indoor exhaust air passage (2B).

加熱子(8)に通電させる。これで、室外側給気風路(
2A)に室内空気が導入され、更に加熱子(8)により
加熱されるので、熱交換器(3)の排気側流路に生じ、
 た結氷は融解される。
The heating element (8) is energized. Now the outdoor air supply air path (
Indoor air is introduced into 2A) and further heated by the heating element (8), so that air is generated in the exhaust side flow path of the heat exchanger (3).
Any ice that has formed will be melted.

第3図に、上記実施例の装置において、外気温度−15
℃の場合の室内の温度と結氷開始までの時間の関係を示
す曲線(13,及び風量が30%低下するまでの時間の
関係を示す曲線Iを示す。また、第4図にKt30%低
下の状態から完全に結氷を融解するに要する時間と、熱
交換器(3)の給気側に供給される空気の温度との関係
を示す。
FIG. 3 shows that in the apparatus of the above embodiment, the outside air temperature is -15
A curve (13) showing the relationship between the indoor temperature and the time until the onset of freezing in the case of ℃, and a curve I showing the relationship between the time until the air volume decreases by 30% are shown. The relationship between the time required to completely melt the ice and the temperature of the air supplied to the air supply side of the heat exchanger (3) is shown.

第3図及び第4図から明らかなように、室内温度は結氷
開始や風[3C%低下までの時間には大きな影響を与え
ないが、熱交換器13)の結氷を融解するために利用し
た場合の融解時間には大きな差がある。したがって、加
熱子(8)によって熱交換器(3)に供給する空気の温
度を20℃以上に昇温すれば短時間に結氷を融解するこ
とができる。
As is clear from Figures 3 and 4, the indoor temperature does not have a large effect on the onset of freezing or the time it takes for the wind to drop by 3C%, but it is used to melt the ice in the heat exchanger 13). There is a large difference in melting time between cases. Therefore, if the temperature of the air supplied to the heat exchanger (3) is raised to 20° C. or higher using the heating element (8), ice can be melted in a short time.

−例として、室温10℃、処理風量500m’/時及び
熱交換効率TO%の装置について考えると2ML量30
%低下から解凍運転を開始したとすると。
- As an example, considering a device with a room temperature of 10°C, a processing air volume of 500 m'/hour, and a heat exchange efficiency of TO%, the 2ML volume is 30
Assuming that thawing operation is started from a % drop.

解凍に約12分を要し、この間は排気用送風機(7)を
停止して循還運転となるため、換気ができない。
It takes about 12 minutes to thaw, and during this time the exhaust fan (7) is stopped and circulation operation is started, making ventilation impossible.

ここに、  2KWの加熱子(9)を設けて通電すると
、10℃の室内空気を22℃まで昇温して熱交換器(3
)に供給するので、4分以下で解凍が可能となる。この
場合の電力消費量は、1時間30分に1回、4分通電と
すると、  o、 o a 9 KW /時となり、従
来の予熱式に比べ非常に少ない電力で運転することが可
能となる。
When a 2KW heating element (9) is installed and energized, the room air at 10°C is heated to 22°C and the heat exchanger (3) is heated.
), it can be thawed in less than 4 minutes. In this case, if the power is turned on for 4 minutes once every hour and 30 minutes, the power consumption will be 9 KW/hour, making it possible to operate with much less power than the conventional preheating type. .

また、解凍運転時、排気用送風機(7)を停止し。Also, during thawing operation, stop the exhaust blower (7).

ダンパ(9)を切り換え、加熱子(8)に通電すると共
に。
At the same time as switching the damper (9) and energizing the heating element (8).

風量調節装置(図示しない)によって給気流路の空気量
を減少させると、加熱子(8)の容量を従来装置と同一
とすれば、解凍時間は短くなり、換気停止時間を短縮す
ることが可能となる。このときの送風風量の制御は、送
風機用電動機の能力切換えでもよく、送風路中の風路面
積の変更でもよい。
By reducing the amount of air in the supply air flow path using an air volume adjustment device (not shown), the thawing time will be shortened and the ventilation stop time can be shortened if the capacity of the heating element (8) is the same as the conventional device. becomes. The amount of air blown at this time may be controlled by changing the capacity of the blower motor or by changing the area of the air duct.

なお、ダンパ(9)は駆動機(1Gにより回動させるも
のとしたが2手動で回動させるものにも適用し得る。
Although the damper (9) is rotated by a driving machine (1G), it can also be rotated by two manual drives.

第5図及び第6図はこの発明の他の実施例を示す構成図
である。
FIGS. 5 and 6 are configuration diagrams showing other embodiments of the present invention.

第5図は外気吸込口(2a)に、熱ヌ換器(3)が結氷
する温度(あらかじめ設定)を検出する温度検出器α2
を設け、これが出力を発すると、制御装置aυが動作し
、既述の解凍運転を所定の時間間隔で間欠的に行うもの
である。これにより、結氷による性能低下を防ぎ、かつ
換気効果を損なわない運転が、低温条件でも可能となる
Figure 5 shows a temperature detector α2 installed at the outside air intake port (2a) to detect the temperature (preset) at which the heat exchanger (3) freezes.
is provided, and when this outputs an output, the control device aυ is operated and the above-mentioned defrosting operation is performed intermittently at predetermined time intervals. This prevents performance deterioration due to freezing and allows operation without impairing the ventilation effect, even under low-temperature conditions.

第6図は温度検出器a2を室外側給気風路(2A)に設
け、解凍運転になったときの室内温度を検出し。
In FIG. 6, a temperature sensor a2 is provided in the outdoor air supply air path (2A) to detect the indoor temperature when the defrosting operation is started.

室内温度が十分高く(例えば20℃以上)、短時間で解
凍できるような温度のときには、加熱子(8)に通電し
ないようにしたものである。これにより。
When the indoor temperature is sufficiently high (for example, 20° C. or higher) to allow defrosting in a short time, the heating element (8) is not energized. Due to this.

室内温度が高い場合には省電力となり、いっそう省エネ
ルギとなる。
When the indoor temperature is high, power is saved, resulting in further energy savings.

上記各実施例では、熱交換器(3)を直交流熱交換器を
用いるものとして説明したが9回転形、対向流形等にお
いても同様に適用可能である。
In each of the above embodiments, the heat exchanger (3) was described as using a cross-flow heat exchanger, but it is equally applicable to a 9-turn type, counter-flow type, etc.

また、実施例は主に居住用←室内高温、室外低温)のも
のについて説明したが、冷凍庫等の低温場所に使用する
ものにも適用し得る。
Furthermore, although the embodiments have mainly been described for residential use (indoor high temperature, outdoor low temperature), the present invention can also be applied to devices used in low temperature locations such as freezers.

〔発明の効果〕〔Effect of the invention〕

以上説明したとおりこの発明では、排気用送風機を停止
させ、ダンパにより室外側給気風路と室内側排気風路を
連通させると共に、室外側給気風路に設けられた加熱子
に通電するようにしたので。
As explained above, in this invention, the exhaust blower is stopped, the damper allows communication between the outdoor air supply air passage and the indoor exhaust air air passage, and the heater provided in the outdoor air supply air passage is energized. So.

熱交換器が結氷するような低温条件下においても。Even under low-temperature conditions where the heat exchanger may freeze.

少ないエネルキで結氷を融解し、換気機能を低下させる
ことのないようにすることができる効果がある。
It has the effect of melting ice with less energy and preventing deterioration of ventilation function.

また、この発明の別の発明では、温度検出器により外気
温度を検出し、これが所定の低温を検出すると、排気用
送風機を停止させ、ダンパを動作させると共に、加熱子
に一定時間ごとに通電されかつこれが自動的しこ行われ
るよ5にしたので、加熱子による消費電力又は加熱子の
容量を減らすことができる効果がある。
Further, in another aspect of the present invention, the outside air temperature is detected by a temperature detector, and when it detects a predetermined low temperature, the exhaust blower is stopped, the damper is activated, and the heating element is energized at regular intervals. Moreover, since this is done automatically, the power consumption by the heating element or the capacity of the heating element can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図はこの発明による熱交楔形換気装置の一
実施例を示す図で、第1図は構成図、第2図は第1図の
動作説明図、第3図は結氷特性曲線図、第4図は融解特
性曲線図、第5図及び第6図はこの発明の他の実施例を
示す構成図、第7図〜第10図は従来の熱変換形換気装
置を示す図で。 第7図は縦断面図、第8図は第7図の熱又換器の端面拡
大斜視図、第9図は構成図、第10図は結氷説明図であ
る。 図中、(ム)は室外側給気風路t  (2B)は室内側
排気風路、(3)は熱交換器、(6)は給気用送風機、
(7)は排気用送風機、(8)は加熱子、(9)はダン
パ、αυは制御装置、α2は温度検出器2人は給気流、
Bは排気流である。 なお9図中同一符号は同−又は相当部分を示す。
Figures 1 to 4 are diagrams showing an embodiment of the heat exchanger wedge type ventilation device according to the present invention, in which Figure 1 is a configuration diagram, Figure 2 is an explanatory diagram of the operation of Figure 1, and Figure 3 is icing characteristics. 4 is a melting characteristic curve diagram, FIGS. 5 and 6 are block diagrams showing other embodiments of the present invention, and FIGS. 7 to 10 are diagrams showing conventional heat conversion type ventilation equipment. in. FIG. 7 is a longitudinal sectional view, FIG. 8 is an enlarged perspective view of the end face of the heat exchanger shown in FIG. 7, FIG. 9 is a configuration diagram, and FIG. 10 is an explanatory diagram of ice formation. In the figure, (mu) is the outdoor air supply air path t (2B) is the indoor exhaust air path, (3) is the heat exchanger, (6) is the air supply blower,
(7) is the exhaust blower, (8) is the heater, (9) is the damper, αυ is the control device, α2 is the temperature detector, and the two people are the supply air flow.
B is the exhaust flow. Note that the same reference numerals in Figure 9 indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)2気流間で相互に熱を交換する熱交換器、室外側
給気風路に吸い込んだ外気を上記熱交換器を介して室内
へ給気する給気用送風機、室内側排気風路に吸い込んだ
室内空気を上記熱交換器を介して室外へ排気する排気用
送風機、常時上記室外側給気風路と上記室内側排気風路
を閉塞し要時には上記両風路を連通させるダンパ、上記
室外側給気風路に設けられた加熱子、及び上記排気用送
風機を停止させると共に上記加熱子に通電させる制御装
置を備えてなる熱交換形換気装置。
(1) A heat exchanger that mutually exchanges heat between two air streams, an air supply blower that supplies outside air sucked into the outdoor air supply duct into the room via the heat exchanger, and an indoor exhaust air duct. an exhaust blower that exhausts the indoor air sucked in to the outdoors via the heat exchanger; a damper that normally closes the outdoor air supply air passage and the indoor exhaust air passage; and connects both air passages when necessary; and the room A heat exchange type ventilation device comprising a heating element provided in an outer air supply air path, and a control device that stops the exhaust blower and energizes the heating element.
(2)2気流間で相互に熱を交換する熱交換器、室外側
給気風路に吸い込んだ外気を上記熱交換器を介して室内
へ給気する給気用送風機、室内側排気風路に吸い込んだ
室内空気を上記熱交換器を介して室外へ排気する排気用
送風機、常時上記室外側給気風路と上記室内側排気風路
を閉塞し動作指令が与えられると上記両風路を連通させ
るダンパ、上記室外給気風路に設けられた加熱子、上記
外気の温度を検出しこれが所定の低温を検出すると動作
する温度検出器、及びこの温度検出器が動作すると上記
排気用送風機を停止させ上記ダンパに上記動作指令を与
えると共に上記加熱子に一定時間ごとに通電させる制御
装置を備えてなる熱交換形換気装置。
(2) A heat exchanger that mutually exchanges heat between two air streams, an air supply blower that supplies outside air sucked into the outdoor air supply duct into the room via the heat exchanger, and an indoor exhaust air duct. An exhaust blower that exhausts the indoor air sucked in to the outdoors through the heat exchanger, which always closes the outdoor supply air passage and the indoor exhaust air passage, and communicates the two air passages when an operation command is given. a damper, a heating element provided in the outdoor air supply air path, a temperature detector that detects the temperature of the outside air and operates when it detects a predetermined low temperature, and when this temperature detector operates, stops the exhaust blower. A heat exchange type ventilation device comprising a control device that gives the above-mentioned operation command to the damper and energizes the above-mentioned heating element at regular intervals.
JP15927285A 1985-07-18 1985-07-18 Ventilator of heat exchange type Granted JPS6219631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15927285A JPS6219631A (en) 1985-07-18 1985-07-18 Ventilator of heat exchange type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15927285A JPS6219631A (en) 1985-07-18 1985-07-18 Ventilator of heat exchange type

Publications (2)

Publication Number Publication Date
JPS6219631A true JPS6219631A (en) 1987-01-28
JPH0370148B2 JPH0370148B2 (en) 1991-11-06

Family

ID=15690151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15927285A Granted JPS6219631A (en) 1985-07-18 1985-07-18 Ventilator of heat exchange type

Country Status (1)

Country Link
JP (1) JPS6219631A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080882A1 (en) * 2004-02-19 2005-09-01 Matsushita Electric Industrial Co., Ltd. Heat exchange type ventilator
WO2013080478A1 (en) * 2011-11-29 2013-06-06 パナソニック株式会社 Heat exchanging element and heat exchanging ventilation apparatus using same
US8514476B2 (en) 2008-06-25 2013-08-20 View, Inc. Multi-pane dynamic window and method for making same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080882A1 (en) * 2004-02-19 2005-09-01 Matsushita Electric Industrial Co., Ltd. Heat exchange type ventilator
US7594539B2 (en) 2004-02-19 2009-09-29 Panasonic Corporation Heat exchange type ventilator
US8514476B2 (en) 2008-06-25 2013-08-20 View, Inc. Multi-pane dynamic window and method for making same
US8749870B2 (en) 2008-06-25 2014-06-10 View, Inc. Multi-pane dynamic window and method for making same
WO2013080478A1 (en) * 2011-11-29 2013-06-06 パナソニック株式会社 Heat exchanging element and heat exchanging ventilation apparatus using same

Also Published As

Publication number Publication date
JPH0370148B2 (en) 1991-11-06

Similar Documents

Publication Publication Date Title
JPH04283333A (en) Heat exchanging ventilating device
JPH11287502A (en) Air conditioner
JPS6219631A (en) Ventilator of heat exchange type
JPH0334584Y2 (en)
JPH0519692Y2 (en)
KR20090069999A (en) Indoor machine in heat pump air-conditioner
JP6561313B2 (en) Heat exchange type ventilator using heat exchange elements
JPS6219633A (en) Freezing prevention device for ventilator
JPS6219632A (en) Ventilator of heat exchange type
JPH0522730Y2 (en)
JPH10227513A (en) Control device for heat exchanging type ventilation device
JPS6219634A (en) Freezing prevention device
JP2003161500A (en) Indoor air conditioning system
JP2525769B2 (en) Air conditioner
JP3791286B2 (en) Ventilator with heat exchanger
KR20060026755A (en) Inner machine for heat pump air-conditioner
JPH045970Y2 (en)
JPH0224072Y2 (en)
JP2780930B2 (en) Outside air treatment equipment
JP3787746B2 (en) Operation method of air conditioning system using floor frame heat storage
JPS63108148A (en) Feeding heat and discharged heat recovery system
JPS62299644A (en) Ventilating fan in air conditioning
JP2517247B2 (en) Engine driven heat pump device
JPH0247380Y2 (en)
JPH03105129A (en) Heat pump type air conditioner