JP3791046B2 - Seal structure and hot water mixing apparatus using the same - Google Patents

Seal structure and hot water mixing apparatus using the same Download PDF

Info

Publication number
JP3791046B2
JP3791046B2 JP11246396A JP11246396A JP3791046B2 JP 3791046 B2 JP3791046 B2 JP 3791046B2 JP 11246396 A JP11246396 A JP 11246396A JP 11246396 A JP11246396 A JP 11246396A JP 3791046 B2 JP3791046 B2 JP 3791046B2
Authority
JP
Japan
Prior art keywords
water
sliding
valve body
hot water
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11246396A
Other languages
Japanese (ja)
Other versions
JPH09296871A (en
Inventor
博明 ▲よし▼田
白井  滋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP11246396A priority Critical patent/JP3791046B2/en
Publication of JPH09296871A publication Critical patent/JPH09296871A/en
Application granted granted Critical
Publication of JP3791046B2 publication Critical patent/JP3791046B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sliding Valves (AREA)
  • Temperature-Responsive Valves (AREA)
  • Multiple-Way Valves (AREA)
  • Sealing With Elastic Sealing Lips (AREA)
  • Sealing Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、軸線方向への摺動部を有するシール構造および湯と水の混合比率を調節して適温を得る湯水混合技術に関するものである。
【0002】
【従来の技術】
従来、この種のシール構造を有する湯水混合装置としては、図8(例えば特開平6−147333号公報)に示すようなものがあった。
【0003】
図8において、ハウジング1の周壁には軸線方向に間隔をおいて水流入口1aおよび湯流入口1bをそれぞれ開けると共に、これらの流入口1a、1bに連通する下流側には混合水流出口1cが開けてある。水流入口1aは湯水混合装置の本体の中の給水室に連通し、同様に湯流入口1bと混合水流出口1cはそれぞれ湯室および混合室に連通し、この混合室を経由して混合水が吐出端から吐出される。
【0004】
ハウジング1の内部には、水流入口1a側および湯流入口1b側にそれぞれ水弁座2および湯弁座3が設けてある。そしてこれら水弁座2と湯弁座3との間には、軸線方向に移動可能な略H状の縦断面形状の温度調節用の弁体4が組み込まれている。この弁体4は、その軸線方向の両端を水弁座2および湯弁座3との着座面とし、水側と湯側とを区画する隔壁4aに連通口4bが開けられている。そして弁体4の周りには環状のパッキン5を組み込み、このパッキン5をハウジング1の内壁に密着させて水側と湯側とを遮断している。
【0005】
ハウジング1の内部は、弁体4によって水室1dおよび湯室1eに区画され、これらの下流に混合室1fが形成される。そして混合室1fから水室1dにかけて、一端が弁体4の隔壁4aに突き当たるスリーブ6が組み込まれ、このスリーブ6は水室1dに臨む周壁に水用の開口6aを開け、隔壁4aの連絡口4bを包囲する内径に形成してある。そして、スリーブ6によって水室1dおよび湯室1eと混合室1fとが連通し、弁体4の水弁座2および湯弁座3に対する弁開度に応じた量比の水と湯が混合室1fへ供給される。
【0006】
混合室1fには、ハウジング1の内壁に一端が突き当たり他端をスリーブ6の端面に嵌め込んだ形状記憶合金のスプリング7が組み込まれている。このスプリング7は、混合室1fを通過する混合水の温度に応じて膨張、収縮し、吐出される混合水の温度が設定温度に保持されるように弁体4をシフトさせる機能を持つ。
【0007】
弁体4の位置設定は、ハウジング1に対してネジ接合したスピンドル8のハンドル8aによって行われる。このスピンドル8の一端はスリップワッシャを介してスプリング7に連接され、ハンドル8aの操作によって軸線方向に移動させることにより、スプリング7を介して弁体4を設定温度値に対応した位置に設定する。さらに、湯室1eにはスプリング7と反対方向に弁体4を付勢するバイアススプリング9が組み込まれ、このバイアススプリング9は弁体4を水弁座2側に移動させる機能を持ち、温度設定用のスプリング7に対して弁体4の位置をバランスさせ湯水の混合比が加減されるようになっていた。
【0008】
しかし上記のような構成において、図9のように弁体4にパッキン5が一体となっていることから、給水圧Pcと給湯圧PHとの差圧による作用力Fが弁体4を押す力となり、設定温度からずれたりする悪影響があるということから、図10のような構成が提案されている。図10において、内壁ガイド1gに環状の凹部1hを設け、この凹部1hの中にパッキン5を嵌め込んで保持した構造で、前記給水圧Pcと給湯圧PHとの差圧によって弁体4を押す力Fの値が零になって、設定温度が安定保持できるという説明がされている。また、水流入口1aと湯流入口1bの間を移動する弁体4の摺動摩擦力を低減するために、パッキン5の代わりに断面形状が図11(a)〜(c)に示すような形状である樹脂製のシール環10を設けた構成も提案されている。図11において、10aはハウジング1の内壁と接する突起であり、その接触面積を小さくして摺動摩擦力を低減するというものである。
【0009】
【発明が解決しようとする課題】
しかし現実としては、図10の構造にしても給水圧Pcおよび給湯圧PHが作用し弁体4を押す実効受圧面積を零にできる構成ではないため、説明されているような給水圧Pcおよび給湯圧PHの差圧による作用力Fが零にできるというものではなかった。
【0010】
さらに上記のような従来の湯水混合装置において、水流入口1aと湯流入口1bの間を遮断シールするパッキン5の摺動摩擦力が大きいことから、形状記憶合金のスプリング7およびバイアススプリング9の発生力をともに大きくする等の方策によって、温度ヒステリシスや温度ずれを小さくすることが必要になる。
【0011】
たとえば図8において、形状記憶合金のスプリング7とバイアススプリング9の力がバランスする位置に弁体4が安定しているときに、給水圧Pcが変動して混合室1fの温度が変動すると、形状記憶合金のスプリング9の温度変化に伴って、そのスプリング9の力が変化して、弁体4を移動させて設定温度を保持するべきであるが、パッキン5の摺動摩擦抵抗により弁体4の移動が阻害される。図9および図10のいずれの構成おいても、パッキン5との摺動面は弁体4の外径とほぼ同じ大きい径シール部なので、パッキン5による摺動摩擦力はいずれも大きく、図8と同様にパッキン5の摺動摩擦抵抗により弁体4の移動が阻害される。
【0012】
そこで温度変化に伴うスプリング9の力の変化量を大きくすれば、相対的にパッキン5による摺動摩擦の影響を軽減することができる。ところが、温度変化に伴うスプリング9の発生力を大きく変化させるために、形状記憶合金のスプリング7もバイアススプリング9も、ともに太く大きいスプリングになってしまっていた。
【0013】
したがって、湯水混合装置が大型化したり、太く大きい形状記憶合金スプリング7の熱容量が大きくなって応答時間が遅くなったり、形状記憶合金のスプリング9および湯水混合装置がコスト高になったり、設定温度を変えるときハンドル8a操作が重いなど多くの問題点があった。
【0014】
また、図11のように樹脂製のシール環10を用いた場合、スケールやゴミなどが弁体4摺動時にハウジング1の内壁と突起10aの間に咬み込むと弁体4がロックされたり、ハウジング1の内壁と突起10aの間に隙間をでき湯水間での漏れを生じるため温度調節を行えないという問題点があった。
【0015】
さらに、シール環10またはパッキン5の径方向の肉厚などが大きくなり、しめしろが生じると弁体4の摺動摩擦力が大幅に増大する可能性があった。すなわち、ハウジング1の内径および弁体4の溝径およびシール環10の肉厚の寸法精度が要求され、製造コストが高くなるという問題点があった。
【0016】
本発明は上記問題点を解決するものであり、弾性シール部材の径方向のしめしろが増加しても軸線方向の摺動摩擦力を増大することがなく、確実にシールを行えるシール構造を提供することを第一の課題としている。
【0017】
また効果的に感温体ばねおよびバイアスばねを細く小さくでき、応答が速く、コンパクトで、小さい駆動力で操作できる湯水混合装置を提供することを第二の課題としている。
【0018】
また組立時に弾性シール部材を損傷することなく正確にセットでき、組立性がよいとともに、弾性シール部材の交換等のメンテナンスが容易であるシール構造または湯水混合装置を提供することを第三の課題としている。
【0019】
また特に寸法精度を要すことなく弁体と弾性シール部材との摺動性およびシール性に優れ、コンパクトなシール構造または湯水混合装置を提供することを第四の課題としている。
【0020】
またしめしろの寸法精度が向上するとともに、高圧下でも弁体と弾性シール部材との摺動性およびシール性に優れ、コンパクトなシール構造または湯水混合装置を提供することを第五の課題としている。
【0021】
【課題を解決するための手段】
本発明は前記する課題を解決するために、摺動ガイド面の一部に設けられ弾性シール部材を保持する保持溝と、軸部材の外周面に設けられ弾性シール部材に対して摺動する摺動溝と、保持溝に保持される保持部および記弁体の径方向のしめしろの増加による軸線方向への摺動摩擦力増加を抑制する弾性摺動部からなる弾性シール部材を設けて構成したものである。従って、摺動溝により軸部材の摺動径が小さくなり摺動摩擦力の絶対値を低減できるとともに、弾性摺動部によりしめしろ増加による軸線方向への摺動摩擦力増加が抑制される作用を奏するものである。
【0022】
【発明の実施の形態】
上記課題を解決するために、請求項1記載の発明のシール構造は、第一の流体流入口と第二の流体流入口を軸線方向に間隔をおいて周壁に開けたハウジングと、第一の流体流入口と第二の流体流入口との間のハウジングの内壁を摺動ガイド面として軸線方向に移動する軸部材と、摺動ガイド面の一部に設けられ弾性シール部材を保持する保持溝と、軸部材の外周面に設けられ弾性シール部材に対して摺動する摺動溝を有し、前記ハウジングは第一の流体流入口を有する第一の流体部材と第二の流体流入口を有する第二の流体部材に分割可能で、前記第一の流体部材と前記第二の流体部材とから保持溝を構成し、前記弾性シール部材を保持溝に保持される保持部と、軸部材の径方向のしめしろの増加による軸線方向への摺動摩擦力増加を抑制する弾性摺動部から構成したものである。
【0023】
そして、上記発明により、摺動溝により軸部材の摺動径が小さくなり摺動摩擦力の絶対値を低減できるとともに、弾性摺動部によりしめしろ増加による軸線方向への摺動摩擦力増加が抑制されるように作用するので、十分なしめしろを確保でき確実にシールが行えるとともに、摺動性が維持できる。
【0024】
また、請求項2記載の発明の湯水混合装置は、水を流入する第一の流体流入口と湯を流入する第二の流体流入口とを軸線方向に間隔をおいて周壁に開けたハウジングと、水流入口と湯流入口との間のハウジングの内壁を摺動ガイド面として軸線方向に移動可能に組み込んだ湯と水の混合比を調節する略円筒状の弁体と、水流入口側で弁体の軸線方向の一端面に対向する水弁座と、湯流入口側で弁体の軸線方向の他端面に対向する湯弁座と、水弁座の下流側に設けた混合水流出口と、混合水の温度上昇に伴い湯の割合を減少させる方向に弁体を付勢する感温体ばねと、弁体を感温体ばねとは反対方向に付勢するバイアスばねと、二つのばねの少なくとも一方の付勢力を可変し混合温度を調節する付勢力調節手段と、摺動ガイド面の一部に設けられ弾性シール部材を保持する保持溝と、略円筒状の弁体の外周面に設けられ弾性シール部材に対して摺動する摺動溝を有し、前記ハウジングは第一の流体流入口を有する第一の流体部材と第二の流体流入口を有する第二の流体部材に分割可能で、前記第一の流体部材と前記第二の流体部材とから保持溝を構成し、前記弾性シール部材を保持溝に保持される保持部と、弁体の径方向のしめしろの増加による軸線方向への摺動摩擦力増加を抑制する弾性摺動部から構成したものである。
【0025】
そして、上記発明において、感温体ばねとバイアスばねの付勢力とがバランスする位置に略円筒状の弁体が軸線方向に摺動移動して、付勢力調節手段で設定した混合水温度になるとき、略円筒状の弁体の外周面に設けられた弾性シール部材は、ハウジングの内壁の保持溝に保持されており、弁体の外周面の摺動溝が弾性シール部材の弾性摺動部に対して滑りながら相対移動する。ここで、弾性シール部材と摺動する弁体の摺動溝は弁体の外径より細いので、それだけ摺動接触面が細く小さくなり、この弾性シール部材との摺動摩擦力を低減できるとともに、弾性シール部材の弾性摺動部がしめしろの増加により軸線方向の摺動摩擦力の増加を抑制するように作用する。したがって、感温体ばねおよびバイアスばね共に小さい付勢力で弁体を駆動させることができる。このことから、感温体ばねおよびバイアスばねは細く小さいばねで、熱容量が小さく温度変化に対して熱応答速度が速く作動するように作用するとともに、湯水混合装置を小型コンパクトにできるものである。
【0026】
そして、上記請求項1または2記載の発明においては、弁体および弾性シール部材組立時に、まず弁体に弾性シール部材をはめ込み、その後第一の流体部材または第二の流体部材のいずれか一方に弁体をセットし、第一の流体部材と第二の流体部材を嵌合することによってハウジングを形成するので、弾性シール部材を圧入して組立を行う必要がなく、弾性シール部材を損傷することなく確実にセットできる。また、長期間使用し、弾性シール部材が劣化した場合などのメンテナンスも、ハウジングを分割することによって簡単に弾性シール材を交換できる。
【0027】
また、請求項に記載の発明のシール構造は、弾性シール部材を断面外周部が略円形となるシール層とシール層内部に多数の中空部を有するOリングで構成したものである。
【0028】
そして、上記発明においては、Oリングは、Oリングの内径,線径または弁体の摺動溝径またはハウジングの摺動ガイド面の径に寸法ばらつきが生じ、圧縮のしめしろが増加しても、内部が中空状であるため弁体またはハウジングへの押しつけ力の増加が通常のOリングよりも抑制されるので、弁体の軸線方向への摺動摩擦力を増加しないよう作用する。また、外周部のシール層は略円形となっているので通常のOリングと同様に確実なシールが可能である。
【0029】
以下、本発明の第1の実施例を図1を参照しながら説明する。図1は本発明の第1の実施例の湯水混合装置の断面図である。
【0030】
図において、ハウジング11の周壁には軸線方向に間隔をおいて水を流入する第一の流体流入口である水流入口12および湯を流入する第二の流体流入口である湯流入口13をそれぞれ開けると共に、これらの流入口12、13に連通する下流側には混合水流出口14が開けてある。水流入口12は湯水混合装置の本体の中の水室15に連通し、同様に湯流入口13と混合水流出口14はそれぞれ湯室16および混合室17に連通し、この混合室17を経由して混合水が混合水流出口14に至る。
【0031】
ハウジング11の内部には、水流入口12側および湯流入口13側にそれぞれ水弁座18および湯弁座19が設けてある。そしてこれら水弁座18と湯弁座19との間には、軸線方向に移動可能で湯と水の混合比を調節する略円筒状の軸部材である弁体20が組み込まれている。
【0032】
また、混合水の温度上昇に伴い湯の割合を減少させる方向に弁体20を付勢する感温体ばね21と、その弁体20を感温体ばね21とは反対方向に付勢するバイアスばね22との力の釣り合いにより、弁体20が移動位置決めされる構成で、これら二つのばね21、22の少なくとも一方の付勢力を可変し混合温度を調節する付勢力調節手段23は、図1の実施例ではバイアスばね22の方を調節する構成である。つまり、ハンドル24を回転すると送りネジ25が回転し、可動ばね受け26が軸方向に進退する構成で、バイアスばね22の付勢力が調節される。
【0033】
また、ハウジング11の内壁で弁体20の外側をガイドする摺動ガイド面27の一部に設けられた保持溝28は、弾性シール部材であるOリング29の外周が嵌まる凹溝で、この保持溝28によって、弁体20が軸方向に動作してもOリング29は定位置のまま保持される。
【0034】
また、略円筒状の弁体20の外周面に設けられた摺動溝30は、弾性シール部材29の内径とほぼ同じ外径で、Oリング29の幅に弁体20の軸方向の最大移動幅を加えた幅を有する構成である。なお感温体ばね21は、形状記憶合金ばねやバイメタルばね等が使用でき、特に形状記憶合金ばねは、温度変化に対する発生力の点で好ましい。
【0035】
Oリング29には、図1の部分拡大断面図である図2に示すように、断面外周側にはOリング29の形状が通常のOリングと同様となるようにシール層29aが形成されており、その内部には多数の中空部29bが設けてある。ここで、Oリング29は、湯水間の漏れがないように保持溝28と摺動溝30により径方向のしめしろを有している。Oリング29のおいて保持部29cは保持溝28に保持されているシール層29a上側であり、弾性摺動部29dはシール層29a下側および中空部29bから構成されている。なお図1には示していないが図2において31および32は、ばね受けリングである。
【0036】
上記構成において動作を説明すると、水流入口12と湯流入口13とからそれぞれ水と湯が供給され、弁体20と水弁座18との隙間および弁体20と湯弁座19との隙間に応じて、混合室31に混合されながら流入する。その混合室17に設けられた感温体ばね21は温度に応じて付勢力が変化し、感温体ばね21とバイアスばね22の付勢力とがバランスする位置に略円筒状の弁体20が軸線方向に摺動移動して、付勢力調節手段23で設定した混合水温度になる。このとき、略円筒状の弁体20の外周面に設けられたOリング29は、ハウジング11の内壁の保持溝28に保持されており、弁体20の外周面の摺動溝30が弾性シール部材29に対して滑りながら相対移動する。ここで、弁体20の外径部はハウジング11の内壁である摺動ガイド面27に軽く接触する程度に摺動し、この摺動摩擦力は小さく、またOリング29と摺動する弁体20の摺動溝30は弁体20の外径より細いので、それだけ摺動接触面が細く小さくなり、このOリング29との摺動摩擦力も小さい。したがって、感温体ばね21およびバイアスばね22共に小さい付勢力で弁体20を駆動することができる。このことから、感温体ばね21およびバイアスばね22は細く小さいばねにできるため、熱容量が小さく、それだけ温度変化に対して敏感に速く作動する。
【0037】
また、Oリング29には内部に多数の中空部29bが設けられているため、Oリング29の線径および内径,摺動ガイド面の径,摺動溝30の径などに寸法ばらつきが生じ、Oリングのしめしろが増加しても、その圧縮歪みの増加に伴う反力の増加を抑制するようになっている。すなわち、Oリング29のしめしろが増加してもOリング29の摺動溝30への押しつけ力が通常のOリングよりも大幅に抑制されるので、弁体20の摺動摩擦力が抑制される。さらに、Oリング29の外周にはシール層29aが通常のOリングと同様に略円形となるように設けてあり、中空部29bがOリング29の表面に開口しないので、湯水間のシールを確実に行える。
【0038】
また、ハウジング11に保持溝28を形成し、弁体20に摺動溝30を形成した構成により、シール性を確保しながら摺動摩擦力を小さくできる効果のほかに、湯または水の供給圧力の変動に対して、弁体20の開度を自動補正でき、混合温度性能を安定できるという特有の効果がある。たとえば、他栓の開閉などによって水流入口12の供給水圧が変動した場合、水弁座18と弁体20との開度がそのままであれば水圧に応じて混合室31に流入する水量が変動し、湯と水の混合比が変動して混合水温度も変動することになる。ところが、供給水圧が上昇すると、弁体20の摺動溝30内の水圧も上昇し、弾性シール部材29はハウジング11に固定された状態なので、摺動溝30内の水圧は弁体20を水弁座18側に付勢するように作用する。弁体20と水弁座18間の流速は速く摺動溝30内の流速が遅いことから、ベルヌーイの定理からしても弁体20と水弁座18間の圧力の方が摺動溝30内の圧力より低い。したがって供給水圧が上昇すれば、弁体20を水弁座18側に付勢する力が増大し、供給水圧が低下した場合には、弁体20を水弁座18側に付勢する力が減少する。これは湯側においも同様に作用する。すなわち湯側、水側とも供給圧変動に対して、その影響を打ち消すように弁体20の開度が自動的に補正される。
【0039】
つまり、混合水の温度が変動してその温度が感温体ばね21に伝達されて、感温体ばね21の付勢力変化によって弁体20を移動して設定温度に保つ本来の作用は、温度変動してからの修正動作であるのに対し、温度変動が発生する事前に、供給圧の変動圧力によって弁体20を移動補正するので、温度変動を事前に抑制防止でき、安定した温度性能が得られる。
【0040】
なお、ばね受けリング31および32は、感温体ばね21およびバイアスばね22の不要なねじりやこじりを防止しており、弁体32がさらに安定して作動でき優れた温度調節機能を確保するものである。
【0041】
本発明の第1の実施例によれば、ハウジング11の摺動ガイド面27の一部に弾性シール部材29を保持する保持溝28と、弁体20の外周面に摺動溝30を設けた構成により、弁体20の摺動摩擦抵抗を小さくでき、細く小さい感温体ばね21にできるようになるため、熱応答性に優れ、供給される湯温変動や圧力変動に対し敏感に速く作動することと、供給圧変動によって、弁体20の開度が自動補正されることにより安定した混合温度を得ることができるという効果がある。
【0042】
また、Oリング29にその断面外周部が略円形となるシール層29aとシール層29a内部に多数の中空部29bを設けた構成により、Oリングのしめしろが増加しても、弁体20の摺動摩擦力増加を抑制できるので、前述した効果を維持しつつ、Oリング29の線径および内径,摺動ガイド面の径,摺動溝30の径などの許容寸法が範囲が拡げることができる。従って、寸法精度を要しないので量産性が向上し、低コスト化が可能となる。
【0043】
さらに、二つのばね21、22の力を小さくできることから、付勢力調節手段23のハンドル24の回転操作も軽く操作性がよく、小型コンパクトな湯水混合装置が得られる。
【0044】
なお図1の実施例では、付勢力調節手段23に手動のハンドル24を用いた場合を説明したが、このような手動に限らずモータ等の電気的駆動手段による場合も同様の効果を得ることができる。
【0045】
次に本発明の第2の実施例を図3を用いて説明する。図3は本発明の第2の実施例の湯水混合装置の要部断面の構成図である。
【0046】
図3において、33はハウジングであり、ハウジング33はねじにより嵌合され着脱可能な第一の流体流入口を有する第一の流体部材34と第二の流体流入口を有する第二の流体部材35から構成されている。ハウジング33の周壁には軸線方向に間隔をおいて水流入口36および湯流入口37をそれぞれ開けると共に、これらの流入口36、37に連通する下流側には混合水流出口38が設けてある。水流入口36は湯水混合装置の本体の中の水室39に連通し、同様に湯流入口37と混合水流出口38はそれぞれ湯室40および混合室41に連通し、この混合室41を経由して混合水が混合水流出口38に至る。その混合室41から混合水流出口38に至る流路の途中に、混合水の温度を検出する温度検出手段42が設けられている。
【0047】
ハウジング33の内部には、水流入口36側および湯流入口37側にそれぞれ水弁座43および湯弁座44が設けてある。そしてこれら水弁座43と湯弁座44との間には、軸線方向に移動可能で湯と水の混合比を調節する略円筒状の弁体45が組み込まれている。
【0048】
また、混合水の温度上昇に伴い湯の割合を減少させる方向に弁体45を付勢する感温体ばね46と、その弁体45を感温体ばね46とは反対方向に付勢するバイアスばね47との力の釣り合いにより、弁体45が移動位置決めされる構成で、これら二つのばね46、47の少なくとも一方の付勢力を可変し混合温度を調節する付勢力調節手段である電気的付勢力調節手段48は、図3の実施例ではバイアスばね47の方を調節する構成である。つまり、電気的付勢力調節手段48であるモータ49の出力軸50を回転するとネジ軸51が回転し、可動ばね受け52が軸方向に進退する構成で、バイアスばね47の付勢力が調節される。
【0049】
また、ハウジング33の内壁で弁体45の外側をガイドする摺動ガイド面53および摺動ガイド面53の一部に設けられた保持溝54は、保持溝54を中心として水側は第一の流体部材34により、また湯側は第二の流体部材35によって構成されている。すなわち、保持溝54はその中心から分割可能となっている。この保持溝54は弾性シール部材55の外周側に設けられた保持部56が嵌まる凹溝で、この保持溝54によって、弁体45が軸方向に動作しても弾性シール部材55は定位置のまま保持される。弾性シール部材55は、図3の部分拡大断面図である図4に示すようにその断面形状が略Y字形状であり、略Y字形状の外周側の一片が保持溝54に保持される保持部56に、また、内周側の他の二片が弁体45の摺動溝57と摺動する弾性摺動部58になっている。
【0050】
略円筒状の弁体45の外周面に設けられた摺動溝57は、弾性シール部材55の弾性摺動部58の内径よりも大きい外径で、弾性摺動部58の幅に弁体45の軸方向の最大移動幅を加えた幅を有する構成である。ここで、弾性シール部材55のしめしろは、保持部56の圧縮歪みではなく、弾性摺動部58の曲げ歪みにより吸収されている。なお感温体ばね46は、形状記憶合金ばねやバイメタルばね等が使用でき、特に形状記憶合金ばねは、温度変化に対する発生力の点で好ましい。
【0051】
さらに、混合水温度の目標値を設定する温度設定手段59と、温度検出手段42で検出された温度と温度設定手段59で設定された目標値に基づいて電気的付勢力調節手段49を制御する電子制御手段60とを備えた構成である。
【0052】
上記構成において、水流入口36と湯流入口37とからそれぞれ水と湯が供給され、弁体45と水弁座43との隙間および弁体45と湯弁座44との隙間に応じて、混合室41に混合されながら流入する。その混合室41に設けられた感温体ばね46は温度に応じて付勢力が変化し、感温体ばね46とバイアスばね47の付勢力とがバランスする位置に略円筒状の弁体45が軸線方向に摺動移動して、電気的付勢力調節手段48によって可動ばね受け52の位置が可変されて決まるバイアスばね47の付勢力に応じた混合水温度になる。このとき、略円筒状の弁体45の外周面に設けられた弾性シール部材55の保持部56はハウジング33の内壁の保持溝54に保持されており、弁体45の外周面の摺動溝57が弾性シール部材55の弾性摺動部58に対して滑りながら相対移動する。ここで、弁体45の外径部はハウジング33の内壁である摺動ガイド面53に軽く接触する程度に摺動し、この摺動摩擦力は小さく、また弾性シール部材55の弾性摺動部58と摺動する弁体45の摺動溝57は弁体45の外径より細いので、それだけ摺動接触面が細く小さくなり、この弾性シール部材55との摺動摩擦力も小さい。したがって、感温体ばね46およびバイアスばね47共に小さい付勢力で弁体45を駆動することができる。このことから、感温体ばね46およびバイアスばね47は細く小さいばねにできるため、熱容量が小さく、それだけ温度変化に対して敏感に速く作動する。
【0053】
弾性シール部材55の肉厚および内径,摺動ガイド面53の径,摺動溝30の径などに寸法ばらつきが生じ、弾性シール部材55のしめしろが増加しても、弾性シール部材55はしめしろ増加を圧縮歪みではなく、弾性摺動部58の曲げ歪みにより吸収しているので、しめしろ増加に伴う反力の増加を抑制するようになっている。すなわち、弾性シール部材55のしめしろが増加しても弾性摺動部58の摺動溝30への押しつけ力が抑制されるので、弁体20の摺動摩擦力が抑制される。
【0054】
さらに、弾性摺動部58は外周側から水および湯の圧力により内側に押さえられており摺動溝57に密着するようになっているのでシール性がよく、スケールやゴミが咬み込みにくい。かりに、弾性摺動部の肉厚が薄ければ(望ましくは0.2mm〜1mm)ゴミやスケールが咬み込んでも、弾性摺動部がその形状になじみ、シール性が確保することができるとともに、摺動摩擦力は増加せず弁体のロックを防ぐことができる。保持部56は保持溝に密着するように第一の流体部材34と第二の流体部材35から保持溝54を構成しており、第一の流体部材34と第二の流体部材35の嵌合した隙間からの漏れや弾性シール部材55の外周側の漏れを防止している。従って、第一の流体部材34と第二の流体部材35の嵌合部にシールテープやパッキンを必要としない。
【0055】
ハウジング33は第一の流体部材34と第二の流体部材35に分割できるので組立時には、まず、弾性シール部材55を弁体45の摺動溝57にセットし、弁体45を保持部56が第二の流体部材35の保持溝56に挿入して、第一の流体部材34を合すればよい。従って、弾性シール部材55を摺動ガイド面53から圧入する必要がなく、弾性シール部材55の破損を防ぐことができる。また、長期間使用した後に弾性シール部材55が劣化し交換する必要性が生じても、第一の流体部材34をはずせば弁体45を無理抜きしなくてもよいので、弁体45やハウジング33の摺動ガイド面53を傷つけることなくメンテナンスが行える。
【0056】
また、ハウジング33に保持溝54を形成し、弁体45に摺動溝57を形成した構成により、シール性を確保しながら摺動摩擦力を小さくできる効果のほかに、湯または水の供給圧力の変動に対して、弁体45の開度を自動補正でき、混合温度性能を安定できるという特有の効果がある。たとえば、他栓の開閉などによって水流入口36の供給水圧が変動した場合、水弁座43と弁体45との開度がそのままであれば水圧に応じて混合室41に流入する水量が変動し、湯と水の混合比が変動して混合水温度も変動することになる。ところが、供給水圧が上昇すると、弁体45の摺動溝57内の水圧も上昇し、弾性シール部材55はハウジング47に固定された状態なので、摺動溝57内の水圧は弁体45を水弁座43側に付勢するように作用する。弁体45と水弁座43間の流速は速く摺動溝37内の流速が遅いことから、ベルヌーイの定理からしても弁体45と水弁座43間の圧力の方が摺動溝37内の圧力より低い。したがって供給水圧が上昇すれば、弁体45を水弁座43側に付勢する力が増大し、供給水圧が低下した場合には、弁体45を水弁座43側に付勢する力が減少する。これは湯側においても同様に作用する。すなわち湯側、水側とも供給圧変動に対して、その影響を打ち消すように弁体57の開度が自動的に補正される。
【0057】
つまり、混合水の温度が変動してその温度が感温体ばね46に伝達されて、感温体ばね46の付勢力変化によって弁体45を移動して設定温度に保つ本来の作用は、温度変動してからの修正動作であるのに対し、温度変動が発生する事前に、供給圧の変動圧力によって弁体45を移動補正するので、温度変動を事前に抑制防止できる。
【0058】
さらに、感温体ばね46のヒステリシスや弁体45のわずかな摺動摩擦などによる温度ずれがもし生じた場合でも、混合水の温度を温度検出手段42が検出して電子制御手段60にフィードバックされ、その電子制御手段60が温度設定手段59で設定した温度と比較して偏差を解消する方向に電気的付勢力調節手段48を制御する構成ため、温度設定手段59で設定された温度に対する温度ずれ、いわゆる温度オフセットが極めて少ない安定した温度性能が得られる。
【0059】
しかも、上記のように弁体45の摺動摩擦力が小さいことから、感温体ばね46およびバイアスばね47は細く付勢力の小さいばねにできるため、電気的付勢力調節手段48の駆動力も小さくでき、たとえば微小な低トルクモータにできる。
【0060】
本発明の第2の実施例によれば、感温体ばね46およびバイアスばね47共に小さい付勢力で弁体45を駆動させることができ、小さい駆動力の電気的付勢力調節手段48で高速応答の混合温度制御ができる。かつ、温度検出手段42で検出された温度と温度設定手段59で設定された目標値に基づいて電気的付勢力調節手段48を電子制御手段60が制御するので、安定した温度制御ができるという効果がある。
【0061】
また、弾性シール部材55の肉厚および内径,摺動ガイド面53の径,摺動溝30の径などに寸法ばらつきが生じ、弾性シール部材55のしめしろが増加しても、弾性シール部材55はしめしろ増加を圧縮歪みではなく、弾性摺動部58の曲げ歪みにより吸収しているので、しめしろ増加に伴う反力の増加を抑制するようになっている。すなわち、弾性シール部材55のしめしろが増加しても弾性摺動部58の摺動溝30への押しつけ力が抑制されるので、弁体20の摺動摩擦力が抑制され、上記効果を寸法精度を要することなく実現できる。
【0062】
さらに、シール性がよく、スケールやゴミが咬み込みにくいとともに、ゴミやスケールが咬み込んでも、シール性が確保することができ、摺動摩擦力は増加せず弁体のロックを防ぐことができる。
【0063】
ハウジング33は第一の流体部材34と第二の流体部材35に分割できるので組立時に、弾性シール部材55を摺動ガイド面53から圧入する必要がなく、弾性シール部材55の破損を防ぐことができる。また、弾性シール部材55および弁体45を着脱する際に弾性シール部材55および弁体45を無理抜きしなくてもよいので、弁体45やハウジング33の摺動ガイド面53を傷つけることなく簡単にメンテナンスを行うことができる。
【0064】
次に本発明の第3の実施例を図5を用いて説明する。図5は本発明の第3の実施例の湯水混合装置の部分拡大断面図である。第3の実施例において第2の実施例と相違する点は、弾性シール部材の保持部56から軸線方向に突出した円弧状の固定部61と、固定部61を保持し保持部の径方向へのずれを防止する径方向保持溝62を備え、固定部61の円弧面を径方向保持溝62に密着するよう構成としたことにある。
【0065】
上記構成において、固定部61は第一の流体部材34および第二の流体部材35の径方向保持溝62に保持されるため、組立時にその位置決めが簡単に行えるとともに、セット時に径方向のずれを生じない。従って、弁体45の軸が感温体ばね46やバイアスばね47および摺動ガイド部53の軸に対してずれを生じにくく、弁体45の傾きを防止するとともに、弾性シール部材55のしめしろを均一化するように作用するので、弁体の摺動抵抗増加を防止できるとともに、シールの信頼性を向上できる。また、水側の圧力が高く、第一の流体部材34と第二の流体部材35の嵌合隙間を通じ、弾性シール部材55の外周部に高圧がかかると、弾性シール部材55は内側につぶれようとするが、径方向保持部62により固定部61が保持されるため、弾性シール部材55が保持溝54から外れたり内側にずれることがない。すなわち、弾性シール部材55の外周部から力が作用してもしめしろが増加せず、摺動摩擦力の増加を防ぐことができる。さらに、弾性シール部材55の保持溝54および径方向保持溝62の両方でシールを行っており、シールの信頼性向上が可能となる。
【0066】
本発明の第3の実施例によれば、弁体45の軸ぶれを防止し、弾性シール部材55のしめしろを均一化するので、弁体の摺動抵抗増加を防止できるとともに、シールの信頼性を向上できる。
【0067】
また、弾性シール部材55が保持溝54から外れたり内側にずれることがないので、弾性シール部材55の外周部から力が作用してもしめしろが増加せず、摺動摩擦力の増加を防ぐことができる。
【0068】
なお、第2および第3の実施例において、摺動溝57と摺動弾性部58の間にグリスを用いることによって、より摺動摩擦力を軽減できるとともに、摺動溝57と摺動弾性部58の間にスケールやゴミが咬む込むことを防止できる。また、シール性がよいのでグリスの流出を抑えることができ、長期間に渡って摺動摩擦力を低減できる。
【0069】
図6は本発明の第4の実施例を示すシール構造を有する自動調圧弁63の断面図であり、図7は図6の部分拡大断面図である。同図において64はハウジングであり、ハウジング64の周壁には軸線方向に間隔をおいて第一の流体流入口である水流入口65および第二の流体流入口である湯流入口66が設けてある。水流入口65は自動調圧弁63の本体の中の水一次室67および水二次室68を経由し水流出口69に連通し、同様に湯流入口66は湯一次室70および湯二次室71を経由し湯流出口72に連通している。ハウジング64内部には水一次室67と水二次室68の境界部分に水弁座73が、また、湯一次室70と湯二次室71の境界部分に湯弁座74が設けてある。
【0070】
75は水一次室67と水二次室68を区切る水側弁体76と湯一次室70と湯二次室71を区切る湯側弁体77を連結する軸部材であり、軸部材75の中心にはハウジング64の摺動ガイド面78と摺動する摺動部79が設けられている。水側弁体76及び湯側弁体77は、水弁座73と湯弁座74と間を軸線方向に移動可能となっており、そのリフト量に応じて、それぞれ水及び湯の一次側圧力を減圧している。また、摺動部79の外径と水側弁体76及び湯側弁体77の外径をほぼ同一とし、水一次室67および湯一次室70において摺動部79の受圧面積と水側弁体76及び湯側弁体77の一次室受圧面積がほぼ一致するように構成しており、一次圧の影響を排除している。
【0071】
また、ハウジング64の内壁で摺動部79の外側をガイドする摺動ガイド面78の一部に設けられた保持溝80は、弾性シール部材であるXリング81の外周側二片からなる保持部82が嵌まる凹溝で、この保持溝80によって、摺動部79(軸部材75)が軸方向に動作してもXリング81は定位置のまま保持される。
【0072】
また、摺動部79の外周面に設けられた摺動溝83は、Xリング81の内径側二片からなる弾性摺動部84とほぼ同じであり、Xリング81がしめしろを有する外径で、Xリング81の幅に軸部材75の軸方向の最大移動幅を加えた幅を有する構成である。
【0073】
なお、軸部材75の軸のこじれを防止するためガイド部85、86が設けられている。また、87は組立時に軸部材75を挿入するための挿入孔であり、軸部材75が挿入された後、ガイド部85を設けたプラグ88をねじ込むようになっている。
【0074】
以上の構成において本実施例の動作について説明する。軸部材75にかかる力を考えた場合、水一次室67と湯一次室70はXリング81によりシールされているので、水側と湯側をそれぞれ別に考えてよい。水一次室67における水一次圧の軸線方向への受圧面は摺動部79と水側弁体76の一次室67側の面および摺動溝83水側の面であり、軸線方向左側に圧力を受けるのは摺動部79、軸線方向右側に圧力を受けるのは水側弁体76の一次室67側の面および摺動溝83水側の面である。摺動部79の受圧面積と、水側弁体76の一次室67側の面と摺動溝83水側の面の受圧面積の和は等しく、軸線方向の力が相殺されるので、水一次室67において水一次圧の軸部材75への影響を無視できる。ここで、軸線方向への力を考えているため受圧面積とは軸に垂直な面への投影した面積である。同様に、湯一次室70における湯一次圧の軸線方向への受圧面は摺動部79と湯側弁体77の一次室70側の面および摺動溝83湯側の面であり、軸線方向右側に圧力を受けるのは摺動部79、軸線方向左側に圧力を受けるのは湯側弁体77の一次室70側の面および摺動溝83湯側の面である。摺動部79の受圧面積と、湯側弁体77の一次室70側の面と摺動溝83湯側の面の受圧面積の和は等しく、軸線方向の力が相殺されるので、湯一次室70における湯一次圧の軸部材75への影響を無視できる。従って、軸部材75の軸線方向に移動しようとする力は、水および湯二次室68,71側で水側および湯側弁体76,77の受ける二次圧力の影響のみである。すなわち水および湯二次室68,71の二次圧が水側弁体及び湯側弁体76,77に及ぼす力(すなわち湯と水の二次圧の圧力差)によって軸線方向に移動する。ここで、水側弁体76及び湯側弁体77の二次側受圧面積は等しくしてあるので、湯と水の二次圧が高い側から低い側へと軸部材75は移動し、圧力が高い側の弁開度を小さくし、圧力が低い側の弁開度を大きくする。従って、圧力が高い側では弁による圧力損失が増加することにより二次圧が減少し、圧力が低い側では弁による圧力損失が減少することにより二次圧が増加する。そして、湯と水の二次側圧が等しくなると、軸部材75の軸線方向の力がすべて釣り合い、軸部材75は停止する。すなわち、二次圧の圧力バランスが崩れると圧力差によって軸部材75が移動し、それに従って水側弁体76及び湯側弁体77のリフトが変化することで、一次圧の減圧の割合を変化させ、二次圧を等圧化するというものである。
【0075】
このとき、摺動部79もしくはシール部分の摺動抵抗が大きいと、その摺動抵抗を越える力が軸部材75に加わるまで軸部材75は移動しない。すなわち摺動抵抗分の圧力差が二次側圧に生じてしまい、その摺動抵抗が大きいほど圧力差が大きくなってしまう。
【0076】
しかるに、軸部材75の外周面に設けられたXリング81の保持部82はハウジング64の内壁の保持溝80に保持されており、軸部材75の外周面の摺動溝83がXリング81の弾性摺動部84に対して滑りながら相対移動する。ここで、軸部材75の外径部はハウジング64の内壁である摺動ガイド面78に軽く接触する程度に摺動し、この摺動摩擦力は小さく、またXリング81の弾性摺動部84と摺動する軸部材75の摺動溝83は摺動部79の外径より細いので、それだけ摺動接触面が細く小さくなり、このXリング81との摺動摩擦力も小さい。このことから、水二次圧と湯二次圧の圧力差がほとんど生じることなく、正確に等圧化を行えるものである。また摺動抵抗が小さいので、水または湯の一次圧が変動し、軸部材75が移動する場合でも敏感に速く作動する。
【0077】
また、Xリング81の肉厚および内径,摺動ガイド面78の径,摺動溝83の径などに寸法ばらつきが生じ、Xリング81のしめしろが増加しても、Xリング81はしめしろ増加を圧縮歪みではなく、弾性摺動部84および保持部82の各片の曲げ歪みにより吸収しているので、しめしろ増加に伴う反力の増加を抑制するようになっている。すなわち、Xリング81のしめしろが増加しても弾性摺動部84の摺動溝83への押しつけ力が抑制されるので、軸部材75の摺動摩擦力が抑制される。
【0078】
以上述べたように本実施例によれば、ここで、Xリング81の弾性摺動部84と摺動する軸部材75の摺動溝83は摺動部79の外径より細いので、それだけ摺動接触面が細く小さくなり、Xリング81との摺動摩擦力も小さいので、水二次圧と湯二次圧の圧力差がほとんど生じることなく、敏感に速く正確に等圧化を行うことができる。
【0079】
また、Xリング81はしめしろ増加を圧縮歪みではなく、弾性摺動部84および保持部82の各片の曲げ歪みにより吸収しているので、Xリング81のしめしろが増加しても弾性摺動部84の摺動溝83への押しつけ力が抑制され、軸部材75の摺動摩擦力が抑制することができる。従って、寸法精度を要することなく、量産性を向上し、低コスト化が実現できる。
【0080】
なお、本発明の第1から第4の実施例以外においても軸部材または弁体が軸線方向に摺動するシール構造であれば、同様の効果が得られる。
【0081】
【発明の効果】
以上のように本発明のシール構造は、摺動溝により軸部材の摺動径が小さくなり摺動摩擦力の絶対値を低減できるとともに、弾性摺動部によりしめしろ増加による軸線方向への摺動摩擦力増加が抑制されるように作用するので、十分なしめしろを確保でき確実にシールが行えるとともに、摺動性が維持できる。
【0082】
また、本発明の湯水混合装置は、摺動摩擦力を低減できるとともに、弾性シール部材の弾性摺動部がしめしろの増加により軸線方向の摺動摩擦力の増加を抑制するように作用するので、感温体ばねおよびバイアスばね共に小さい付勢力で弁体を駆動させることができ、感温体ばねおよびバイアスばねは細く小さいばねで、熱容量が小さく温度変化に対して熱応答速度が速く作動するように作用するとともに、湯水混合装置を小型コンパクトにできるものである。
【0083】
さらに、ハウジングは第一の流体部材と第二の流体部材に分割可能であり、第一の流体部材と第二の流体部材とから保持溝を構成したことにより、弾性シール部材を圧入して組立を行う必要がなく、弾性シール部材を損傷することなく確実にセットできる。また、長期間使用し、弾性シール部材が劣化した場合などのメンテナンスも、ハウジングを分割することによって簡単に弾性シール材を交換できる。
【0084】
加えて、弾性シール部材を断面外周部が略円形となるシール層とシール層内部に多数の中空部を有するOリングで構成したことにより、Oリングの圧縮のしめしろが増加しても、内部が中空状であるため弁体またはハウジングへの押しつけ力の増加が通常のOリングよりも抑制されるので、弁体の軸線方向への摺動摩擦力を増加しないという効果がある。また、外周部のシール層は通常のOリングと同様に略円形となっているので確実なシールが可能である。
【図面の簡単な説明】
【図1】 本発明の第1の実施例における湯水混合装置の断面図
【図2】 同湯水混合装置の部分拡大断面図
【図3】 本発明の第2の実施例における湯水混合装置の要部断面の構成図
【図4】 同湯水混合装置の部分拡大断面図
【図5】 本発明の第3の実施例における湯水混合装置の部分拡大断面図
【図6】 本発明の第4の実施例の自動調圧弁の断面図
【図7】 同自動調圧弁の部分拡大断面図
【図8】 従来の湯水混合装置の断面図
【図9】 同湯水混合装置の部分拡大断面図
【図10】 同湯水混合装置の部分拡大断面図
【図11】 (a)従来の湯水混合装置の中央部に突起を設けたツール環の部分拡大断面図
(b)従来の湯水混合装置の両端に突起を設けたツール環の部分拡大断面図
(c)従来の湯水混合装置の中央及び両端に突起を設けたツール環の部分拡大断面図
【符号の説明】
11 ハウジング
12 水流入口
13 湯流入口
14 混合水流出口
18 水弁座
19 湯弁座
20 弁体
21 感温体ばね
22 バイアスばね
23 付勢力調節手段
27 摺動ガイド面
28 保持溝
29 Oリング(弾性シール部材)
29c 保持部
29d 弾性摺動部
30 摺動溝
48 電気的付勢力調節手段(付勢力調節手段)
53 摺動ガイド面
54 保持溝
55 弾性シール部材
56 保持部
57 摺動溝
58 弾性摺動部
61 固定部
62 径方向保持溝
64 ハウジング
65 水流入口(第一の流体流入口)
66 湯流入口(第二の流体流入口)
75 軸部材
78 摺動ガイド面
79 摺動部
80 保持溝
81 Xリング(弾性シール部材)
82 保持部
83 摺動溝
84 弾性摺動部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a seal structure having a sliding portion in the axial direction and a hot water mixing technique for adjusting a mixing ratio of hot water and water to obtain an appropriate temperature.
[0002]
[Prior art]
Conventionally, as a hot and cold water mixing apparatus having this type of seal structure, there has been one as shown in FIG. 8 (for example, JP-A-6-147333).
[0003]
In FIG. 8, a water inlet 1a and a hot water inlet 1b are opened in the peripheral wall of the housing 1 at intervals in the axial direction, and a mixed water outlet 1c is opened downstream from the inlets 1a and 1b. It is. The water inlet 1a communicates with the water supply chamber in the main body of the hot water mixing apparatus, and similarly, the hot water inlet 1b and the mixed water outlet 1c communicate with the hot water chamber and the mixing chamber, respectively. It is discharged from the discharge end.
[0004]
Inside the housing 1, a water valve seat 2 and a hot water valve seat 3 are provided on the water inlet 1a side and the hot water inlet 1b side, respectively. Between the water valve seat 2 and the hot water valve seat 3, a temperature regulating valve body 4 having a substantially H-shaped vertical cross section that is movable in the axial direction is incorporated. The valve body 4 has both ends in the axial direction as seating surfaces of the water valve seat 2 and the hot water valve seat 3, and a communication port 4b is opened in a partition wall 4a that partitions the water side and the hot water side. An annular packing 5 is incorporated around the valve body 4, and the packing 5 is brought into close contact with the inner wall of the housing 1 to shut off the water side and the hot water side.
[0005]
The interior of the housing 1 is partitioned into a water chamber 1d and a hot water chamber 1e by a valve body 4, and a mixing chamber 1f is formed downstream of these. Then, a sleeve 6 whose one end abuts against the partition wall 4a of the valve body 4 is incorporated from the mixing chamber 1f to the water chamber 1d. The sleeve 6 has an opening 6a for water in the peripheral wall facing the water chamber 1d, and a communication port for the partition wall 4a. It is formed in the inner diameter surrounding 4b. Then, the water chamber 1d, the hot water chamber 1e and the mixing chamber 1f are communicated with each other by the sleeve 6, and water and hot water in a quantity ratio corresponding to the valve opening degree of the valve body 4 with respect to the water valve seat 2 and the hot water valve seat 3 are mixed. To 1f.
[0006]
The mixing chamber 1f incorporates a shape memory alloy spring 7 having one end abutting against the inner wall of the housing 1 and the other end fitted into the end face of the sleeve 6. The spring 7 has a function of expanding and contracting according to the temperature of the mixed water passing through the mixing chamber 1f and shifting the valve body 4 so that the temperature of the discharged mixed water is maintained at the set temperature.
[0007]
The position of the valve body 4 is set by a handle 8 a of the spindle 8 screwed to the housing 1. One end of the spindle 8 is connected to the spring 7 via a slip washer, and the valve body 4 is set to a position corresponding to the set temperature value via the spring 7 by moving in the axial direction by operating the handle 8a. Further, a bias spring 9 for urging the valve body 4 in the opposite direction to the spring 7 is incorporated in the hot water chamber 1e, and this bias spring 9 has a function of moving the valve body 4 to the water valve seat 2 side, and sets the temperature. The position of the valve body 4 is balanced with respect to the spring 7, so that the mixing ratio of hot water and water is adjusted.
[0008]
However, in the configuration as described above, the packing 5 is integrated with the valve body 4 as shown in FIG. 9, so that the acting force F due to the differential pressure between the water supply pressure Pc and the hot water supply pressure PH pushes the valve body 4. Thus, the configuration as shown in FIG. 10 has been proposed due to the adverse effect of deviating from the set temperature. In FIG. 10, an annular recess 1h is provided in the inner wall guide 1g, and the packing 5 is fitted and held in the recess 1h, and the valve body 4 is pushed by the differential pressure between the water supply pressure Pc and the hot water supply pressure PH. It is explained that the value of the force F becomes zero and the set temperature can be stably maintained. Further, in order to reduce the sliding frictional force of the valve body 4 moving between the water inlet 1a and the hot water inlet 1b, the cross-sectional shape is a shape as shown in FIGS. 11 (a) to 11 (c) instead of the packing 5. A configuration in which a resin seal ring 10 is provided has also been proposed. In FIG. 11, reference numeral 10 a denotes a protrusion that contacts the inner wall of the housing 1, and the contact area is reduced to reduce the sliding frictional force.
[0009]
[Problems to be solved by the invention]
However, in reality, the structure shown in FIG. 10 does not have a configuration in which the effective pressure receiving area for pressing the valve body 4 by the action of the feed water pressure Pc and the hot water supply pressure PH is not zero. The acting force F due to the differential pressure of the pressure PH was not zero.
[0010]
Further, in the conventional hot and cold water mixing apparatus as described above, since the sliding frictional force of the packing 5 that shuts and seals between the water inlet 1a and the hot water inlet 1b is large, the force generated by the spring 7 and the bias spring 9 of the shape memory alloy It is necessary to reduce temperature hysteresis and temperature deviation by measures such as increasing both.
[0011]
For example, in FIG. 8, when the valve body 4 is stable at a position where the forces of the shape memory alloy spring 7 and the bias spring 9 are balanced, if the feed water pressure Pc changes and the temperature of the mixing chamber 1f changes, the shape changes. As the temperature of the spring 9 of the memory alloy changes, the force of the spring 9 should change, and the valve body 4 should be moved to maintain the set temperature. Migration is inhibited. 9 and 10, since the sliding surface with the packing 5 is a large diameter seal portion that is almost the same as the outer diameter of the valve body 4, the sliding frictional force due to the packing 5 is large. Similarly, the movement of the valve body 4 is inhibited by the sliding frictional resistance of the packing 5.
[0012]
Therefore, if the amount of change in the force of the spring 9 accompanying the temperature change is increased, the influence of the sliding friction due to the packing 5 can be relatively reduced. However, both the shape memory alloy spring 7 and the bias spring 9 have become thick and large springs in order to greatly change the generated force of the spring 9 with temperature change.
[0013]
Accordingly, the hot water / water mixing device is increased in size, the heat capacity of the thick and large shape memory alloy spring 7 is increased, the response time is delayed, the shape memory alloy spring 9 and the hot water / water mixing device are increased in cost, and the set temperature is increased. When changing, there were many problems such as heavy operation of the handle 8a.
[0014]
In addition, when the resin seal ring 10 is used as shown in FIG. 11, the valve body 4 is locked when scales or dust bite between the inner wall of the housing 1 and the protrusion 10 a when the valve body 4 slides. There is a problem in that the temperature cannot be adjusted because a gap is formed between the inner wall of the housing 1 and the protrusion 10a and leakage occurs between hot and cold water.
[0015]
Furthermore, when the seal ring 10 or the packing 5 is increased in thickness in the radial direction and interference occurs, the sliding frictional force of the valve body 4 may be significantly increased. That is, there is a problem that the dimensional accuracy of the inner diameter of the housing 1, the groove diameter of the valve body 4 and the thickness of the seal ring 10 is required, and the manufacturing cost is increased.
[0016]
The present invention solves the above-described problems, and provides a seal structure capable of reliably sealing without increasing the sliding frictional force in the axial direction even if the radial interference of the elastic seal member increases. This is the first issue.
[0017]
Another object of the present invention is to provide a hot and cold water mixing device that can effectively make the temperature sensitive body spring and the bias spring thin and small, has a quick response, is compact, and can be operated with a small driving force.
[0018]
A third problem is to provide a seal structure or a hot and cold mixing device that can be set accurately without damaging the elastic seal member during assembly, has good assembly properties, and is easy to maintain such as replacement of the elastic seal member. Yes.
[0019]
It is a fourth object to provide a compact seal structure or a hot and cold mixing device that is excellent in slidability and sealability between the valve element and the elastic seal member without requiring dimensional accuracy.
[0020]
Further, the fifth problem is to provide a compact sealing structure or a hot and cold water mixing device that improves the dimensional accuracy of the interference and is excellent in sliding and sealing properties between the valve body and the elastic sealing member even under high pressure. .
[0021]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a holding groove provided on a part of the sliding guide surface for holding the elastic seal member, and a slide provided on the outer peripheral surface of the shaft member and sliding on the elastic seal member. An elastic seal member is provided that includes a moving groove, a holding portion held in the holding groove, and an elastic sliding portion that suppresses an increase in sliding frictional force in the axial direction due to an increase in the radial interference of the valve body. Is. Accordingly, the sliding groove can reduce the sliding diameter of the shaft member and reduce the absolute value of the sliding friction force, and the elastic sliding portion can suppress the increase in the sliding friction force in the axial direction due to an increase in interference. Is.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
In order to solve the above-mentioned problems, the seal structure according to the first aspect of the present invention includes a housing in which a first fluid inlet and a second fluid inlet are axially spaced from each other in a circumferential wall, A shaft member that moves in the axial direction using the inner wall of the housing between the fluid inlet and the second fluid inlet as a sliding guide surface, and a holding groove that is provided in a part of the sliding guide surface and holds an elastic seal member And a sliding groove that is provided on the outer peripheral surface of the shaft member and slides against the elastic seal member, The housing is separable into a first fluid member having a first fluid inlet and a second fluid member having a second fluid inlet, from the first fluid member and the second fluid member. Forming a holding groove, The elastic seal member is constituted by a holding portion that is held in a holding groove, and an elastic sliding portion that suppresses an increase in sliding frictional force in the axial direction due to an increase in the radial interference of the shaft member.
[0023]
According to the above invention, the sliding diameter of the shaft member is reduced by the sliding groove and the absolute value of the sliding friction force can be reduced, and the increase in the sliding friction force in the axial direction due to the increase of interference is suppressed by the elastic sliding portion. Therefore, a sufficient interference can be secured, sealing can be performed reliably, and slidability can be maintained.
[0024]
According to a second aspect of the present invention, there is provided a hot and cold water mixing apparatus comprising: a housing in which a first fluid inlet through which water flows in and a second fluid inlet through which hot water flows are opened in a peripheral wall at an interval in an axial direction; A substantially cylindrical valve body that adjusts the mixing ratio of hot water and water with the inner wall of the housing between the water inlet and the hot water inlet as a sliding guide surface so as to be movable in the axial direction, and a valve on the water inlet side A water valve seat facing one end surface in the axial direction of the body, a hot water valve seat facing the other end surface in the axial direction of the valve body on the hot water inlet side, a mixed water outlet provided on the downstream side of the water valve seat, A temperature-sensitive body spring that urges the valve body in a direction that reduces the ratio of hot water as the temperature of the mixed water increases, a bias spring that urges the valve body in the opposite direction to the temperature-sensitive body spring, and two springs An urging force adjusting means for adjusting at least one of the urging forces to adjust the mixing temperature, and a portion of the sliding guide surface; Has a holding groove for holding a resilient sealing member, the sliding groove to slide relative provided elastic sealing member on the outer peripheral surface of a substantially cylindrical valve body, The housing is separable into a first fluid member having a first fluid inlet and a second fluid member having a second fluid inlet, from the first fluid member and the second fluid member. Forming a holding groove, The elastic seal member is composed of a holding portion that is held in a holding groove and an elastic sliding portion that suppresses an increase in sliding frictional force in the axial direction due to an increase in the radial interference of the valve element.
[0025]
In the above invention, the substantially cylindrical valve body slides and moves in the axial direction to a position where the temperature sensing body spring and the biasing force of the bias spring are balanced, resulting in a mixed water temperature set by the biasing force adjusting means. The elastic seal member provided on the outer peripheral surface of the substantially cylindrical valve body is held in the holding groove on the inner wall of the housing, and the sliding groove on the outer peripheral surface of the valve body is the elastic sliding portion of the elastic seal member. It moves relative to the sliding. Here, the sliding groove of the valve body that slides with the elastic seal member is thinner than the outer diameter of the valve body, so that the sliding contact surface becomes thinner and smaller, and the sliding frictional force with this elastic seal member can be reduced. The elastic sliding portion of the elastic seal member acts to suppress an increase in sliding frictional force in the axial direction due to an increase in interference. Therefore, the valve body can be driven with a small biasing force for both the temperature-sensitive body spring and the bias spring. From this, the temperature sensing spring and the bias spring are thin and small springs that act to operate with a small heat capacity and a high thermal response speed with respect to temperature changes, and to make the hot and cold mixing device small and compact.
[0026]
And above Claim 1 or 2 In the invention, at the time of assembling the valve body and the elastic seal member, first, the elastic seal member is fitted into the valve body, and then the valve body is set in either the first fluid member or the second fluid member. The member and the second fluid member Mating Thus, since the housing is formed, there is no need to press-fit the elastic seal member for assembly, and the elastic seal member can be reliably set without being damaged. Also, for maintenance such as when the elastic seal member deteriorates after long-term use, the elastic seal material can be easily replaced by dividing the housing.
[0027]
Claims 3 In the sealing structure of the invention described in (1), the elastic sealing member is constituted by a sealing layer having a substantially circular cross-sectional outer peripheral portion and an O-ring having a large number of hollow portions inside the sealing layer.
[0028]
In the above invention, the O-ring has a dimensional variation in the O-ring inner diameter, wire diameter, valve groove sliding groove diameter, or housing sliding guide surface diameter, and the compression interference increases. Since the inside is hollow, an increase in the pressing force to the valve body or the housing is suppressed as compared with a normal O-ring, so that the sliding frictional force in the axial direction of the valve body does not increase. In addition, since the outer peripheral seal layer has a substantially circular shape, a reliable seal can be achieved in the same manner as a normal O-ring.
[0029]
Hereinafter, a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a sectional view of a hot and cold water mixing apparatus according to a first embodiment of the present invention.
[0030]
In the figure, the peripheral wall of the housing 11 is provided with a water inlet 12 that is a first fluid inlet through which water flows in at an interval in the axial direction and a hot water inlet 13 that is a second fluid inlet through which hot water flows. While being opened, a mixed water outlet 14 is opened on the downstream side communicating with the inlets 12 and 13. The water inlet 12 communicates with the water chamber 15 in the main body of the hot water mixing apparatus, and similarly, the hot water inlet 13 and the mixed water outlet 14 communicate with the hot water chamber 16 and the mixing chamber 17, respectively. Thus, the mixed water reaches the mixed water outlet 14.
[0031]
In the housing 11, a water valve seat 18 and a hot water valve seat 19 are provided on the water inlet 12 side and the hot water inlet 13 side, respectively. Between the water valve seat 18 and the hot water valve seat 19, a valve body 20, which is a substantially cylindrical shaft member that is movable in the axial direction and adjusts the mixing ratio of hot water and water, is incorporated.
[0032]
Also, a temperature sensing body spring 21 that biases the valve body 20 in a direction that reduces the ratio of hot water as the temperature of the mixed water increases, and a bias that biases the valve body 20 in a direction opposite to the temperature sensing body spring 21. The urging force adjusting means 23 for adjusting the mixing temperature by varying the urging force of at least one of the two springs 21 and 22 in a configuration in which the valve body 20 is moved and positioned by balance of the force with the spring 22 is shown in FIG. In this embodiment, the bias spring 22 is adjusted. That is, when the handle 24 is rotated, the feed screw 25 is rotated, and the movable spring receiver 26 is advanced and retracted in the axial direction, and the biasing force of the bias spring 22 is adjusted.
[0033]
A holding groove 28 provided in a part of the sliding guide surface 27 that guides the outside of the valve body 20 with the inner wall of the housing 11 is a concave groove into which an outer periphery of an O-ring 29 that is an elastic seal member is fitted. The holding groove 28 holds the O-ring 29 in a fixed position even when the valve body 20 moves in the axial direction.
[0034]
Further, the sliding groove 30 provided on the outer peripheral surface of the substantially cylindrical valve body 20 has an outer diameter that is substantially the same as the inner diameter of the elastic seal member 29, and the maximum movement in the axial direction of the valve body 20 within the width of the O-ring 29. It is the structure which has the width | variety which added the width | variety. The temperature-sensitive body spring 21 can be a shape memory alloy spring, a bimetal spring, or the like. In particular, the shape memory alloy spring is preferable in terms of the generated force against a temperature change.
[0035]
As shown in FIG. 2, which is a partially enlarged cross-sectional view of FIG. 1, a seal layer 29a is formed on the O-ring 29 so that the shape of the O-ring 29 is the same as that of a normal O-ring. A large number of hollow portions 29b are provided therein. Here, the O-ring 29 has a radial interference due to the holding groove 28 and the sliding groove 30 so that there is no leakage between the hot and cold water. In the O-ring 29, the holding portion 29c is on the upper side of the seal layer 29a held in the holding groove 28, and the elastic sliding portion 29d is composed of the lower side of the seal layer 29a and a hollow portion 29b. Although not shown in FIG. 1, 31 and 32 in FIG. 2 are spring receiving rings.
[0036]
The operation in the above configuration will be described. Water and hot water are respectively supplied from the water inlet 12 and the hot water inlet 13, and the gap between the valve body 20 and the water valve seat 18 and the gap between the valve body 20 and the hot water valve seat 19 are described. Accordingly, it flows into the mixing chamber 31 while being mixed. The urging force of the temperature sensing spring 21 provided in the mixing chamber 17 changes according to the temperature, and the substantially cylindrical valve element 20 is located at a position where the urging force of the temperature sensing spring 21 and the bias spring 22 is balanced. By sliding and moving in the axial direction, the mixed water temperature set by the urging force adjusting means 23 is reached. At this time, the O-ring 29 provided on the outer peripheral surface of the substantially cylindrical valve body 20 is held in the holding groove 28 on the inner wall of the housing 11, and the sliding groove 30 on the outer peripheral surface of the valve body 20 is elastically sealed. It moves relative to the member 29 while sliding. Here, the outer diameter portion of the valve body 20 slides to such an extent that it lightly contacts the sliding guide surface 27 that is the inner wall of the housing 11, and the sliding frictional force is small, and the valve body 20 slides with the O-ring 29. Since the sliding groove 30 is thinner than the outer diameter of the valve body 20, the sliding contact surface becomes smaller and smaller, and the sliding frictional force with the O-ring 29 is also smaller. Accordingly, the valve body 20 can be driven with a small biasing force for both the temperature-sensitive body spring 21 and the bias spring 22. Therefore, since the temperature sensing spring 21 and the bias spring 22 can be made thin and small, the heat capacity is small, and the heat sensing spring 21 and the bias spring 22 operate sensitively and quickly with respect to temperature changes.
[0037]
In addition, since the O-ring 29 is provided with a large number of hollow portions 29b, dimensional variations occur in the wire diameter and inner diameter of the O-ring 29, the diameter of the sliding guide surface, the diameter of the sliding groove 30, and the like. Even if the interference of the O-ring is increased, an increase in reaction force accompanying an increase in the compressive strain is suppressed. That is, even if the interference of the O-ring 29 is increased, the pressing force of the O-ring 29 against the sliding groove 30 is significantly suppressed as compared with the normal O-ring, and thus the sliding frictional force of the valve body 20 is suppressed. . Further, a sealing layer 29a is provided on the outer periphery of the O-ring 29 so as to be substantially circular like a normal O-ring, and the hollow portion 29b does not open on the surface of the O-ring 29, so that a seal between hot water and water is ensured. It can be done.
[0038]
Further, the structure in which the holding groove 28 is formed in the housing 11 and the sliding groove 30 is formed in the valve body 20 has the effect of reducing the sliding friction force while ensuring the sealing performance, and the supply pressure of hot water or water. With respect to the fluctuation, the opening degree of the valve body 20 can be automatically corrected, and there is a specific effect that the mixing temperature performance can be stabilized. For example, when the supply water pressure of the water inlet 12 fluctuates due to opening / closing of other plugs, etc., the amount of water flowing into the mixing chamber 31 fluctuates according to the water pressure if the opening between the water valve seat 18 and the valve body 20 remains unchanged. As a result, the mixing ratio of hot water and water fluctuates and the mixed water temperature also fluctuates. However, when the supply water pressure rises, the water pressure in the sliding groove 30 of the valve body 20 also rises, and the elastic seal member 29 is fixed to the housing 11, so the water pressure in the sliding groove 30 It acts to bias the valve seat 18 side. Since the flow velocity between the valve body 20 and the water valve seat 18 is fast and the flow velocity within the sliding groove 30 is slow, the pressure between the valve body 20 and the water valve seat 18 is more slid according to Bernoulli's theorem. Lower than the pressure inside. Therefore, if the supply water pressure increases, the force for urging the valve body 20 toward the water valve seat 18 increases, and if the supply water pressure decreases, the force for urging the valve body 20 toward the water valve seat 18 will increase. Decrease. This also works on the hot water side. That is, the opening degree of the valve body 20 is automatically corrected so as to cancel the influence on the supply pressure fluctuation on both the hot water side and the water side.
[0039]
In other words, the temperature of the mixed water fluctuates and the temperature is transmitted to the temperature sensing spring 21, and the original action of moving the valve body 20 to keep the set temperature by changing the biasing force of the temperature sensing spring 21 is the temperature. In contrast to the correction operation after the fluctuation, the movement of the valve body 20 is corrected by the fluctuation pressure of the supply pressure before the temperature fluctuation occurs, so the temperature fluctuation can be prevented and suppressed in advance, and the stable temperature performance is achieved. can get.
[0040]
The spring receiving rings 31 and 32 prevent unnecessary torsion and twisting of the temperature sensing spring 21 and the bias spring 22 so that the valve body 32 can operate more stably and ensure an excellent temperature control function. It is.
[0041]
According to the first embodiment of the present invention, the holding groove 28 for holding the elastic seal member 29 in a part of the sliding guide surface 27 of the housing 11 and the sliding groove 30 on the outer peripheral surface of the valve body 20 are provided. According to the configuration, the sliding frictional resistance of the valve body 20 can be reduced, and the thin and small temperature-sensitive spring 21 can be formed. Therefore, it has excellent thermal response and operates quickly and sensitively to fluctuations in supplied hot water temperature and pressure. In addition, there is an effect that a stable mixing temperature can be obtained by automatically correcting the opening degree of the valve body 20 by the supply pressure fluctuation.
[0042]
Moreover, even if the interference of the O-ring increases, the O-ring 29 has a structure in which the outer peripheral portion of the O-ring 29 has a substantially circular shape and a large number of hollow portions 29b in the seal layer 29a. Since the increase in the sliding friction force can be suppressed, the allowable dimensions such as the wire diameter and inner diameter of the O-ring 29, the diameter of the sliding guide surface, and the diameter of the sliding groove 30 can be expanded while maintaining the above-described effects. . Accordingly, since dimensional accuracy is not required, mass productivity is improved and cost can be reduced.
[0043]
Furthermore, since the force of the two springs 21 and 22 can be reduced, the rotating operation of the handle 24 of the urging force adjusting means 23 is light and easy to operate, and a small and compact hot and cold water mixing device can be obtained.
[0044]
In the embodiment of FIG. 1, the case where the manual handle 24 is used as the urging force adjusting means 23 has been described. However, the same effect can be obtained not only by such manual operation but also by an electric drive means such as a motor. Can do.
[0045]
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 3 is a cross-sectional view of the main part of the hot and cold water mixing apparatus according to the second embodiment of the present invention.
[0046]
In FIG. 3, 33 is a housing, and the housing 33 is screwed. Mating The first fluid member 34 has a first fluid inlet that can be attached and detached, and the second fluid member 35 has a second fluid inlet. A water inlet 36 and a hot water inlet 37 are opened in the circumferential wall of the housing 33 at intervals in the axial direction, and a mixed water outlet 38 is provided on the downstream side communicating with the inlets 36 and 37. The water inlet 36 communicates with a water chamber 39 in the main body of the hot water mixing apparatus, and similarly, the hot water inlet 37 and the mixed water outlet 38 communicate with the hot water chamber 40 and the mixing chamber 41, respectively, via the mixing chamber 41. Thus, the mixed water reaches the mixed water outlet 38. A temperature detecting means 42 for detecting the temperature of the mixed water is provided in the middle of the flow path from the mixing chamber 41 to the mixed water outlet 38.
[0047]
Inside the housing 33, a water valve seat 43 and a hot water valve seat 44 are provided on the water inlet 36 side and the hot water inlet 37 side, respectively. Between the water valve seat 43 and the hot water valve seat 44, a substantially cylindrical valve body 45 that is movable in the axial direction and adjusts the mixing ratio of hot water and water is incorporated.
[0048]
In addition, a temperature sensing spring 46 that biases the valve body 45 in a direction that reduces the ratio of hot water as the temperature of the mixed water increases, and a bias that biases the valve body 45 in a direction opposite to the temperature sensing spring 46. The valve body 45 is moved and positioned by the balance of the force with the spring 47, and at least one of these two springs 46 and 47 is electrically biased as an urging force adjusting means for adjusting the mixing temperature by varying the urging force. The force adjusting means 48 is configured to adjust the bias spring 47 in the embodiment of FIG. That is, when the output shaft 50 of the motor 49 which is the electrical biasing force adjusting means 48 is rotated, the screw shaft 51 is rotated, and the movable spring receiver 52 is advanced and retracted in the axial direction, and the biasing force of the bias spring 47 is adjusted. .
[0049]
Further, the sliding guide surface 53 that guides the outside of the valve body 45 with the inner wall of the housing 33 and the holding groove 54 provided in a part of the sliding guide surface 53 are centered on the holding groove 54 and the water side is the first side. The fluid member 34 and the hot water side are constituted by a second fluid member 35. That is, the holding groove 54 can be divided from its center. The holding groove 54 is a concave groove into which a holding portion 56 provided on the outer peripheral side of the elastic seal member 55 is fitted. With this holding groove 54, even if the valve body 45 moves in the axial direction, the elastic seal member 55 is in a fixed position. Is retained. The elastic seal member 55 has a substantially Y-shaped cross section as shown in FIG. 4 which is a partially enlarged cross-sectional view of FIG. In addition, the other two pieces on the inner peripheral side of the portion 56 are elastic sliding portions 58 that slide with the sliding grooves 57 of the valve body 45.
[0050]
The sliding groove 57 provided on the outer peripheral surface of the substantially cylindrical valve body 45 has an outer diameter larger than the inner diameter of the elastic sliding portion 58 of the elastic seal member 55 and has a valve body 45 in the width of the elastic sliding portion 58. It is the structure which has the width | variety which added the maximum movement width | variety of this axial direction. Here, the interference of the elastic seal member 55 is absorbed not by the compressive strain of the holding portion 56 but by the bending strain of the elastic sliding portion 58. As the temperature sensing spring 46, a shape memory alloy spring, a bimetal spring, or the like can be used. In particular, the shape memory alloy spring is preferable in terms of a generating force with respect to temperature change.
[0051]
Further, the temperature setting means 59 for setting the target value of the mixed water temperature, and the electrical biasing force adjustment means 49 are controlled based on the temperature detected by the temperature detection means 42 and the target value set by the temperature setting means 59. The electronic control means 60 is provided.
[0052]
In the above configuration, water and hot water are supplied from the water inlet 36 and the hot water inlet 37, respectively, and mixing is performed according to the gap between the valve body 45 and the water valve seat 43 and the gap between the valve body 45 and the hot water valve seat 44. It flows into the chamber 41 while being mixed. The urging force of the temperature sensing spring 46 provided in the mixing chamber 41 changes according to the temperature, and the substantially cylindrical valve element 45 is located at a position where the urging force of the temperature sensing spring 46 and the bias spring 47 is balanced. By sliding and moving in the axial direction, the temperature of the mixed water becomes a temperature corresponding to the biasing force of the bias spring 47 determined by changing the position of the movable spring receiver 52 by the electrical biasing force adjusting means 48. At this time, the holding portion 56 of the elastic seal member 55 provided on the outer peripheral surface of the substantially cylindrical valve body 45 is held in the holding groove 54 on the inner wall of the housing 33, and the sliding groove on the outer peripheral surface of the valve body 45. 57 moves relative to the elastic sliding portion 58 of the elastic seal member 55 while sliding. Here, the outer diameter portion of the valve body 45 slides to such an extent that it is in light contact with the sliding guide surface 53 that is the inner wall of the housing 33, and this sliding frictional force is small, and the elastic sliding portion 58 of the elastic seal member 55. Since the sliding groove 57 of the valve body 45 that slides is thinner than the outer diameter of the valve body 45, the sliding contact surface becomes thinner and smaller, and the sliding frictional force with the elastic seal member 55 is also smaller. Therefore, both the temperature sensing spring 46 and the bias spring 47 can drive the valve body 45 with a small biasing force. Therefore, since the temperature sensing spring 46 and the bias spring 47 can be made thin and small, the heat capacity is small, and the heat sensing spring 46 and the bias spring 47 operate quickly and sensitively to temperature changes.
[0053]
Even if the thickness and inner diameter of the elastic seal member 55, the diameter of the sliding guide surface 53, the diameter of the sliding groove 30 and the like are varied, and the interference of the elastic seal member 55 is increased, the elastic seal member 55 is interference. Since the increase is absorbed not by the compressive strain but by the bending strain of the elastic sliding portion 58, the increase of the reaction force accompanying the increase of the interference is suppressed. That is, even if the interference of the elastic seal member 55 increases, the pressing force of the elastic sliding portion 58 against the sliding groove 30 is suppressed, so that the sliding frictional force of the valve body 20 is suppressed.
[0054]
Further, since the elastic sliding portion 58 is pressed inward by the pressure of water and hot water from the outer peripheral side and comes into close contact with the sliding groove 57, it has a good sealing property and scales and dust are not easily bitten. By the way, if the thickness of the elastic sliding part is thin (preferably 0.2 mm to 1 mm), even if dust or scale bites, the elastic sliding part is adapted to the shape, and the sealing property can be secured, The sliding frictional force does not increase and the valve element can be prevented from locking. The holding part 56 comprises a holding groove 54 made up of the first fluid member 34 and the second fluid member 35 so as to be in close contact with the holding groove. Mating This prevents leakage from the gap and leakage on the outer peripheral side of the elastic seal member 55. Therefore, the first fluid member 34 and the second fluid member 35 Mating There is no need for sealing tape or packing.
[0055]
Since the housing 33 can be divided into the first fluid member 34 and the second fluid member 35, at the time of assembly, the elastic seal member 55 is first set in the sliding groove 57 of the valve body 45, and the holding member 56 holds the valve body 45. The first fluid member 34 is inserted into the holding groove 56 of the second fluid member 35. Fitting You just need to match. Therefore, it is not necessary to press-fit the elastic seal member 55 from the sliding guide surface 53, and damage to the elastic seal member 55 can be prevented. Further, even if the elastic seal member 55 is deteriorated and needs to be replaced after being used for a long time, the valve body 45 does not have to be forcibly removed if the first fluid member 34 is removed. Maintenance can be performed without damaging the 33 sliding guide surfaces 53.
[0056]
Further, the structure in which the holding groove 54 is formed in the housing 33 and the sliding groove 57 is formed in the valve body 45, in addition to the effect of reducing the sliding frictional force while ensuring the sealing performance, There is a specific effect that the opening degree of the valve body 45 can be automatically corrected with respect to the fluctuation and the mixing temperature performance can be stabilized. For example, when the supply water pressure at the water inlet 36 varies due to opening / closing of other plugs, etc., the amount of water flowing into the mixing chamber 41 varies according to the water pressure if the opening between the water valve seat 43 and the valve body 45 remains unchanged. As a result, the mixing ratio of hot water and water fluctuates and the mixed water temperature also fluctuates. However, when the supply water pressure rises, the water pressure in the sliding groove 57 of the valve body 45 also rises, and the elastic seal member 55 is fixed to the housing 47, so the water pressure in the sliding groove 57 It acts to urge the valve seat 43 side. Since the flow velocity between the valve body 45 and the water valve seat 43 is fast and the flow velocity in the sliding groove 37 is slow, the pressure between the valve body 45 and the water valve seat 43 is more slid according to Bernoulli's theorem. Lower than the pressure inside. Therefore, if the supply water pressure increases, the force that urges the valve body 45 toward the water valve seat 43 increases, and if the supply water pressure decreases, the force that urges the valve body 45 toward the water valve seat 43 side increases. Decrease. This also works on the hot water side. That is, the opening degree of the valve body 57 is automatically corrected so as to cancel the influence on the supply pressure fluctuation on both the hot water side and the water side.
[0057]
In other words, the temperature of the mixed water fluctuates and the temperature is transmitted to the temperature sensing spring 46, and the original action of moving the valve element 45 to keep the set temperature by changing the biasing force of the temperature sensing spring 46 is the temperature. In contrast to the correction operation after the fluctuation, the movement of the valve body 45 is corrected by the fluctuation pressure of the supply pressure before the temperature fluctuation occurs, so that the temperature fluctuation can be suppressed and prevented in advance.
[0058]
Furthermore, even when a temperature deviation occurs due to hysteresis of the temperature sensing spring 46 or slight sliding friction of the valve body 45, the temperature detection means 42 detects the temperature of the mixed water and feeds it back to the electronic control means 60. Since the electronic control unit 60 controls the electrical biasing force adjusting unit 48 in a direction to eliminate the deviation as compared with the temperature set by the temperature setting unit 59, a temperature deviation with respect to the temperature set by the temperature setting unit 59, Stable temperature performance with very little so-called temperature offset can be obtained.
[0059]
In addition, since the sliding frictional force of the valve body 45 is small as described above, the temperature sensing spring 46 and the bias spring 47 can be made thin and have a small biasing force, so that the driving force of the electrical biasing force adjusting means 48 can also be reduced. For example, it can be a small low torque motor.
[0060]
According to the second embodiment of the present invention, both the temperature sensing spring 46 and the bias spring 47 can drive the valve element 45 with a small urging force, and the electric urging force adjusting means 48 with a small driving force can respond quickly. The mixing temperature can be controlled. In addition, since the electronic control means 60 controls the electrical biasing force adjusting means 48 based on the temperature detected by the temperature detecting means 42 and the target value set by the temperature setting means 59, the effect that stable temperature control can be performed. There is.
[0061]
Even if the thickness and inner diameter of the elastic seal member 55, the diameter of the sliding guide surface 53, the diameter of the sliding groove 30 and the like vary, and the interference of the elastic seal member 55 increases, the elastic seal member 55 is increased. Since the increase in the interference is absorbed not by the compressive strain but by the bending strain of the elastic sliding portion 58, the increase in the reaction force accompanying the increase in the interference is suppressed. That is, even if the interference of the elastic seal member 55 is increased, the pressing force of the elastic sliding portion 58 against the sliding groove 30 is suppressed, so that the sliding frictional force of the valve body 20 is suppressed, and the above effect is achieved with dimensional accuracy. It can be realized without requiring.
[0062]
Furthermore, the sealing property is good, and it is difficult for the scale and dust to bite, and even if the dust or scale is bitten, the sealing property can be secured, the sliding frictional force does not increase, and the valve body can be prevented from being locked.
[0063]
Since the housing 33 can be divided into the first fluid member 34 and the second fluid member 35, it is not necessary to press-fit the elastic seal member 55 from the sliding guide surface 53 at the time of assembly, thereby preventing the elastic seal member 55 from being damaged. it can. Further, since the elastic seal member 55 and the valve body 45 need not be forcibly removed when the elastic seal member 55 and the valve body 45 are attached or detached, the valve body 45 or the sliding guide surface 53 of the housing 33 can be easily damaged. Maintenance can be performed.
[0064]
Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 5 is a partially enlarged cross-sectional view of a hot and cold water mixing apparatus according to a third embodiment of the present invention. The third embodiment differs from the second embodiment in that an arcuate fixing portion 61 protruding in the axial direction from the holding portion 56 of the elastic seal member, and holding the fixing portion 61 in the radial direction of the holding portion. In other words, the radial holding groove 62 for preventing the deviation is provided, and the arc surface of the fixing portion 61 is in close contact with the radial holding groove 62.
[0065]
In the above configuration, the fixing portion 61 is held in the radial holding groove 62 of the first fluid member 34 and the second fluid member 35, so that the positioning can be easily performed during assembly, and the radial displacement can be prevented during setting. Does not occur. Accordingly, the shaft of the valve body 45 is less likely to be displaced with respect to the shafts of the temperature sensitive body spring 46, the bias spring 47, and the sliding guide portion 53, preventing the valve body 45 from being inclined and the interference of the elastic seal member 55. Therefore, it is possible to prevent an increase in the sliding resistance of the valve body and improve the reliability of the seal. Moreover, the water side pressure is high, and the first fluid member 34 and the second fluid member 35 Mating When a high pressure is applied to the outer peripheral portion of the elastic seal member 55 through the gap, the elastic seal member 55 tends to collapse inward, but the fixing portion 61 is held by the radial holding portion 62, so the elastic seal member 55 is held. There is no slipping out of the groove 54 or inward. That is, even if force is applied from the outer peripheral portion of the elastic seal member 55, the interference does not increase, and an increase in sliding frictional force can be prevented. Further, the sealing is performed by both the holding groove 54 and the radial holding groove 62 of the elastic seal member 55, so that the reliability of the seal can be improved.
[0066]
According to the third embodiment of the present invention, since the shaft of the valve body 45 is prevented and the interference of the elastic seal member 55 is made uniform, an increase in the sliding resistance of the valve body can be prevented and the reliability of the seal can be increased. Can be improved.
[0067]
In addition, since the elastic seal member 55 is not detached from the holding groove 54 or displaced inward, the interference does not increase even if a force is applied from the outer peripheral portion of the elastic seal member 55, thereby preventing an increase in sliding frictional force. Can do.
[0068]
In the second and third embodiments, by using grease between the sliding groove 57 and the sliding elastic portion 58, the sliding friction force can be further reduced, and the sliding groove 57 and the sliding elastic portion 58 can be reduced. Scales and garbage can be prevented from biting between the two. In addition, since the sealing property is good, the outflow of grease can be suppressed, and the sliding frictional force can be reduced over a long period of time.
[0069]
FIG. 6 is a sectional view of an automatic pressure regulating valve 63 having a seal structure showing a fourth embodiment of the present invention, and FIG. 7 is a partially enlarged sectional view of FIG. In the figure, reference numeral 64 denotes a housing, and a water inlet 65 serving as a first fluid inlet and a hot water inlet 66 serving as a second fluid inlet are provided on the peripheral wall of the housing 64 at intervals in the axial direction. . The water inlet 65 communicates with the water outlet 69 via the water primary chamber 67 and the water secondary chamber 68 in the main body of the automatic pressure regulating valve 63, and similarly, the hot water inlet 66 is the hot water primary chamber 70 and the hot water secondary chamber 71. To the hot water outlet 72. Inside the housing 64, a water valve seat 73 is provided at the boundary between the water primary chamber 67 and the water secondary chamber 68, and a water valve seat 74 is provided at the boundary between the hot water primary chamber 70 and the hot water secondary chamber 71.
[0070]
A shaft member 75 connects a water side valve body 76 that separates the water primary chamber 67 and the water secondary chamber 68, a hot water side valve body 77 that separates the hot water primary chamber 70 and the hot water secondary chamber 71, and the center of the shaft member 75. Is provided with a sliding portion 79 that slides on the sliding guide surface 78 of the housing 64. The water side valve body 76 and the hot water side valve body 77 can move in the axial direction between the water valve seat 73 and the hot water valve seat 74, and the primary side pressures of water and hot water respectively according to the lift amount. The pressure is reduced. Further, the outer diameter of the sliding portion 79 and the outer diameter of the water side valve body 76 and the hot water side valve body 77 are made substantially the same, and the pressure receiving area of the sliding portion 79 and the water side valve in the water primary chamber 67 and the hot water primary chamber 70 are set. The primary chamber pressure receiving areas of the body 76 and the hot water side valve body 77 are substantially matched to eliminate the influence of the primary pressure.
[0071]
Further, the holding groove 80 provided in a part of the sliding guide surface 78 that guides the outside of the sliding portion 79 with the inner wall of the housing 64 is a holding portion formed of two pieces on the outer peripheral side of the X ring 81 that is an elastic seal member. The holding groove 80 holds the X ring 81 in a fixed position even when the sliding portion 79 (shaft member 75) moves in the axial direction.
[0072]
The sliding groove 83 provided on the outer peripheral surface of the sliding portion 79 is substantially the same as the elastic sliding portion 84 formed of two pieces on the inner diameter side of the X ring 81, and the outer diameter of the X ring 81 having interference. Thus, the X ring 81 has a width obtained by adding the maximum movement width in the axial direction of the shaft member 75 to the width of the X ring 81.
[0073]
Guide portions 85 and 86 are provided to prevent the shaft member 75 from being twisted. Reference numeral 87 denotes an insertion hole for inserting the shaft member 75 at the time of assembly. After the shaft member 75 is inserted, a plug 88 provided with a guide portion 85 is screwed.
[0074]
The operation of the present embodiment with the above configuration will be described. Considering the force applied to the shaft member 75, the water primary chamber 67 and the hot water primary chamber 70 are sealed by the X ring 81, so that the water side and the hot water side may be considered separately. The pressure receiving surface of the water primary chamber 67 in the axial direction of the water primary pressure is the surface of the sliding portion 79 and the water side valve body 76 on the primary chamber 67 side and the surface of the sliding groove 83 on the water side. The sliding portion 79 receives the pressure on the right side in the axial direction on the surface of the water side valve body 76 on the primary chamber 67 side and the surface on the sliding groove 83 water side. Since the sum of the pressure receiving area of the sliding portion 79 and the pressure receiving area of the surface on the primary chamber 67 side of the water side valve element 76 and the surface on the sliding groove 83 water side is equal and the axial force is offset, the water primary In the chamber 67, the influence of the water primary pressure on the shaft member 75 can be ignored. Here, since the force in the axial direction is considered, the pressure receiving area is an area projected onto a plane perpendicular to the axis. Similarly, the pressure receiving surface in the axial direction of the hot water primary pressure in the hot water primary chamber 70 is the surface on the primary chamber 70 side of the sliding portion 79 and the hot water side valve body 77 and the surface on the sliding groove 83 hot water side. It is the sliding portion 79 that receives pressure on the right side, and the surface on the primary chamber 70 side and the surface on the sliding groove 83 side that receives pressure on the left side in the axial direction. Since the sum of the pressure receiving area of the sliding portion 79 and the pressure receiving area of the surface on the primary chamber 70 side of the hot water side valve element 77 and the surface of the sliding groove 83 on the hot water side are equal and the axial force is offset, The influence of the hot water primary pressure in the chamber 70 on the shaft member 75 can be ignored. Therefore, the force to move in the axial direction of the shaft member 75 is only the influence of the secondary pressure received by the water side and hot water side valve bodies 76 and 77 on the water and hot water secondary chambers 68 and 71 side. That is, the secondary pressure of the water and hot water secondary chambers 68 and 71 is moved in the axial direction by the force exerted on the water side valve body and the hot water side valve bodies 76 and 77 (that is, the pressure difference between the hot water and the secondary pressure of water). Here, since the secondary side pressure receiving areas of the water side valve body 76 and the hot water side valve body 77 are equal, the shaft member 75 moves from the side where the secondary pressure of hot water and water is higher to the side where the secondary pressure is lower. The valve opening on the higher side is reduced and the valve opening on the lower pressure side is increased. Therefore, the secondary pressure decreases due to an increase in pressure loss due to the valve on the high pressure side, and the secondary pressure increases due to a decrease in pressure loss due to the valve on the low pressure side. And when the secondary side pressure of hot water and water becomes equal, all axial forces of the shaft member 75 are balanced, and the shaft member 75 stops. That is, when the pressure balance of the secondary pressure is lost, the shaft member 75 moves due to the pressure difference, and the lift of the water side valve body 76 and the hot water side valve body 77 changes accordingly, thereby changing the rate of reduction of the primary pressure. The secondary pressure is equalized.
[0075]
At this time, if the sliding resistance of the sliding portion 79 or the seal portion is large, the shaft member 75 does not move until a force exceeding the sliding resistance is applied to the shaft member 75. That is, a pressure difference corresponding to the sliding resistance is generated in the secondary side pressure, and the pressure difference increases as the sliding resistance increases.
[0076]
However, the holding portion 82 of the X ring 81 provided on the outer peripheral surface of the shaft member 75 is held in the holding groove 80 on the inner wall of the housing 64, and the sliding groove 83 on the outer peripheral surface of the shaft member 75 is formed on the X ring 81. It moves relative to the elastic sliding portion 84 while sliding. Here, the outer diameter portion of the shaft member 75 slides to such an extent that it makes a slight contact with the sliding guide surface 78 that is the inner wall of the housing 64, and this sliding frictional force is small, and the elastic sliding portion 84 of the X ring 81 Since the sliding groove 83 of the sliding shaft member 75 is thinner than the outer diameter of the sliding portion 79, the sliding contact surface becomes thinner and smaller, and the sliding frictional force with the X ring 81 is also smaller. For this reason, the pressure equalization can be accurately performed with almost no pressure difference between the water secondary pressure and the hot water secondary pressure. Further, since the sliding resistance is small, the primary pressure of water or hot water fluctuates, and even if the shaft member 75 moves, it operates sensitively and quickly.
[0077]
Even if the thickness and inner diameter of the X ring 81, the diameter of the sliding guide surface 78, the diameter of the sliding groove 83, and the like are varied, and the interference of the X ring 81 increases, the interference of the X ring 81 increases. Is absorbed not by compressive strain but by bending strain of each piece of the elastic sliding portion 84 and the holding portion 82, so that an increase in reaction force accompanying an increase in interference is suppressed. That is, even if the interference of the X ring 81 increases, the pressing force of the elastic sliding portion 84 against the sliding groove 83 is suppressed, so that the sliding frictional force of the shaft member 75 is suppressed.
[0078]
As described above, according to the present embodiment, the sliding groove 83 of the shaft member 75 that slides with the elastic sliding portion 84 of the X ring 81 is thinner than the outer diameter of the sliding portion 79. The dynamic contact surface is thin and small, and the sliding frictional force with the X-ring 81 is also small, so that the pressure difference between the water secondary pressure and the hot water secondary pressure hardly occurs, and the pressure can be equalized sensitively and accurately. .
[0079]
Further, since the X ring 81 absorbs the increase in interference by not the compressive strain but the bending strain of each piece of the elastic sliding portion 84 and the holding portion 82, the elastic sliding does not occur even if the interference of the X ring 81 increases. The pressing force of the portion 84 against the sliding groove 83 is suppressed, and the sliding frictional force of the shaft member 75 can be suppressed. Accordingly, mass productivity can be improved and cost can be reduced without requiring dimensional accuracy.
[0080]
In addition to the first to fourth embodiments of the present invention, the same effect can be obtained as long as the shaft member or the valve body slides in the axial direction.
[0081]
【The invention's effect】
As described above, the seal structure of the present invention is Slid Because the sliding diameter of the shaft member is reduced by the moving groove, the absolute value of the sliding friction force can be reduced, and the elastic sliding portion acts so that the increase of the sliding friction force in the axial direction due to the increase of interference is suppressed. Sufficient interference can be secured, sealing can be performed reliably, and slidability can be maintained.
[0082]
Moreover, the hot and cold water mixing apparatus of the present invention Slid The dynamic friction force can be reduced, and the elastic sliding part of the elastic seal member acts to suppress the increase of the sliding frictional force in the axial direction by increasing the interference, so that both the temperature sensing spring and the bias spring have a small biasing force. The valve body can be driven, and the temperature sensing spring and bias spring are thin and small springs that act to operate with a small heat capacity and a high thermal response speed in response to temperature changes. It can be done.
[0083]
Further, the housing can be divided into a first fluid member and a second fluid member, and a holding groove is formed from the first fluid member and the second fluid member, so that the elastic seal member is press-fitted and assembled. Therefore, the elastic sealing member can be reliably set without being damaged. Also, for maintenance such as when the elastic seal member deteriorates after long-term use, the elastic seal material can be easily replaced by dividing the housing.
[0084]
In addition, since the elastic seal member is composed of a seal layer having a substantially circular outer peripheral portion in cross section and an O-ring having a large number of hollow portions inside the seal layer, even if the interference of compression of the O-ring increases, the internal Since this is hollow, an increase in the pressing force against the valve body or the housing is suppressed as compared with a normal O-ring, so that there is an effect that the sliding frictional force in the axial direction of the valve body is not increased. Further, since the outer peripheral seal layer is substantially circular like a normal O-ring, reliable sealing is possible.
[Brief description of the drawings]
FIG. 1 is a sectional view of a hot and cold water mixing apparatus according to a first embodiment of the present invention.
[Fig. 2] Partial enlarged sectional view of the hot water mixing device
FIG. 3 is a cross-sectional configuration diagram of the main part of a hot and cold water mixing apparatus according to a second embodiment of the present invention.
FIG. 4 is a partially enlarged sectional view of the hot water mixing device.
FIG. 5 is a partially enlarged sectional view of a hot and cold water mixing apparatus according to a third embodiment of the present invention.
FIG. 6 is a sectional view of an automatic pressure regulating valve according to a fourth embodiment of the present invention.
FIG. 7 is a partially enlarged sectional view of the automatic pressure regulating valve.
FIG. 8 is a sectional view of a conventional hot and cold water mixing device.
FIG. 9 is a partially enlarged sectional view of the hot water mixing device.
FIG. 10 is a partially enlarged sectional view of the hot water mixing apparatus.
FIG. 11 (a) is a partially enlarged cross-sectional view of a tool ring provided with a protrusion at the center of a conventional hot water mixing apparatus.
(B) Partially enlarged sectional view of a tool ring provided with protrusions at both ends of a conventional hot and cold mixing device
(C) Partial enlarged sectional view of a tool ring provided with protrusions at the center and both ends of a conventional hot water mixing apparatus
[Explanation of symbols]
11 Housing
12 Water inlet
13 Hot water entrance
14 Mixed water outlet
18 Water valve seat
19 Hot spring seat
20 Disc
21 Temperature sensing spring
22 Bias spring
23 Energizing force adjusting means
27 Sliding guide surface
28 Holding groove
29 O-ring (elastic seal member)
29c holder
29d Elastic sliding part
30 Sliding groove
48 Electric biasing force adjusting means (biasing force adjusting means)
53 Sliding guide surface
54 Holding groove
55 Elastic seal member
56 Holding part
57 Sliding groove
58 Elastic sliding part
61 Fixed part
62 Radial retaining groove
64 housing
65 Water inlet (first fluid inlet)
66 Hot water inlet (second fluid inlet)
75 Shaft member
78 Sliding guide surface
79 Sliding part
80 Holding groove
81 X ring (elastic seal member)
82 Holding part
83 Sliding groove
84 Elastic sliding part

Claims (3)

第一の流体流入口と第二の流体流入口を軸線方向に間隔をおいて周壁に開けたハウジングと、前記第一の流体流入口と第二の流体流入口との間の前記ハウジングの内壁を摺動ガイド面として軸線方向に移動する軸部材と、前記摺動ガイド面の一部に設けられ弾性シール部材を保持する保持溝と、前記軸部材の外周面に設けられ前記弾性シール部材に対して摺動する摺動溝を有し、前記ハウジングは第一の流体流入口を有する第一の流体部材と第二の流体流入口を有する第二の流体部材に分割可能であり、第一の流体部材と第二の流体部材とから保持溝を構成し、前記弾性シール部材は前記保持溝に保持される保持部と、前記軸部材の径方向のしめしろの増加による軸線方向への摺動摩擦力増加を抑制する弾性摺動部からなるシール構造。A housing in which a first fluid inlet and a second fluid inlet are axially spaced in a peripheral wall; and an inner wall of the housing between the first fluid inlet and the second fluid inlet A shaft member that moves in the axial direction using the sliding guide surface as a sliding guide surface, a holding groove that is provided in a part of the sliding guide surface and holds an elastic seal member, and an outer peripheral surface of the shaft member that is provided on the elastic seal member A sliding groove that slides relative to the housing , the housing being separable into a first fluid member having a first fluid inlet and a second fluid member having a second fluid inlet; The fluid member and the second fluid member constitute a holding groove, and the elastic seal member slides in the axial direction due to an increase in the radial interference of the shaft member and the holding portion held in the holding groove. Seal structure consisting of elastic sliding parts that suppress increase in dynamic friction force. 水を流入する第一の流体流入口と湯を流入する第二の流体流入口とを軸線方向に間隔をおいて周壁に開けたハウジングと、前記水流入口と湯流入口との間の前記ハウジングの内壁を摺動ガイド面として軸線方向に移動可能に組み込んだ湯と水の混合比を調節する略円筒状の弁体と、前記水流入口側で前記弁体の軸線方向の一端面に対向する水弁座と、前記湯流入口側で前記弁体の軸線方向の他端面に対向する湯弁座と、前記水弁座の下流側に設けた混合水流出口と、前記混合水の温度上昇に伴い湯の割合を減少させる方向に前記弁体を付勢する感温体ばねと、前記弁体を前記感温体ばねとは反対方向に付勢するバイアスばねと、前記二つのばねの少なくとも一方の付勢力を可変し混合温度を調節する付勢力調節手段と、前記摺動ガイド面の一部に設けられ弾性シール部材を保持する保持溝と、略円筒状の前記弁体の外周面に設けられ前記弾性シール部材に対して摺動する摺動溝を有し、前記ハウジングは第一の流体流入口を有する第一の流体部材と第二の流体流入口を有する第二の流体部材に分割可能で、前記第一の流体部材と前記第二の流体部材とから保持溝を構成し、前記弾性シール部材は前記保持溝に保持される保持部と、前記弁体の径方向のしめしろの増加による軸線方向への摺動摩擦力増加を抑制する弾性摺動部からなる湯水混合装置。A housing in which a first fluid inlet through which water flows in and a second fluid inlet through which hot water flows in are spaced apart in the axial direction on a peripheral wall; and the housing between the water inlet and the hot water inlet A substantially cylindrical valve body that adjusts the mixing ratio of hot water and water that is movably incorporated in the axial direction using the inner wall of the valve as a sliding guide surface, and is opposed to one end surface in the axial direction of the valve body on the water inlet side A water valve seat, a hot water valve seat facing the other end surface in the axial direction of the valve body on the hot water inlet side, a mixed water outlet provided downstream of the water valve seat, and a temperature rise of the mixed water And a bias spring that biases the valve body in a direction opposite to the temperature sensing spring, and at least one of the two springs. An urging force adjusting means for adjusting the mixing temperature by varying the urging force of the sliding guide surface; A holding groove for holding a resilient sealing member provided on, provided on the outer peripheral surface of the substantially cylindrical the valve body has a sliding groove to slide relative to the elastic sealing member, the housing first fluid A first fluid member having an inlet and a second fluid member having a second fluid inlet can be divided, and a holding groove is configured from the first fluid member and the second fluid member, The elastic sealing member is a hot and cold mixing device comprising a holding portion held in the holding groove and an elastic sliding portion that suppresses an increase in sliding frictional force in the axial direction due to an increase in the interference in the radial direction of the valve body. 弾性シール部材は、断面外周部が略円形となるシール層と、前記シール層内部に多数の中空部を有するOリングで構成された請求項1記載のシール構造。The seal structure according to claim 1, wherein the elastic seal member is configured by a seal layer having a substantially circular cross-sectional outer peripheral portion and an O-ring having a large number of hollow portions inside the seal layer.
JP11246396A 1996-05-07 1996-05-07 Seal structure and hot water mixing apparatus using the same Expired - Fee Related JP3791046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11246396A JP3791046B2 (en) 1996-05-07 1996-05-07 Seal structure and hot water mixing apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11246396A JP3791046B2 (en) 1996-05-07 1996-05-07 Seal structure and hot water mixing apparatus using the same

Publications (2)

Publication Number Publication Date
JPH09296871A JPH09296871A (en) 1997-11-18
JP3791046B2 true JP3791046B2 (en) 2006-06-28

Family

ID=14587274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11246396A Expired - Fee Related JP3791046B2 (en) 1996-05-07 1996-05-07 Seal structure and hot water mixing apparatus using the same

Country Status (1)

Country Link
JP (1) JP3791046B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4591860B2 (en) * 2000-03-17 2010-12-01 Toto株式会社 Hot water tap
JP4270896B2 (en) * 2003-02-03 2009-06-03 新日本製鐵株式会社 Cylinder valve with excellent water hammer prevention function
JP2007247785A (en) * 2006-03-16 2007-09-27 Nippon Thermostat Co Ltd Hot water flow preventing valve
CN107842611A (en) * 2017-11-10 2018-03-27 广东汉特科技有限公司 A kind of valve element seal washer
CN109505978B (en) * 2018-12-29 2024-05-03 浙江德众汽车零部件制造有限公司 Radial flexible compensation type internal expansion plugging mechanism
CN115325252A (en) * 2022-08-12 2022-11-11 涌镇液压机械(上海)有限公司 Automatic regulating temp. control change valve

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5647411Y2 (en) * 1976-10-14 1981-11-06
JPS5626133Y2 (en) * 1976-11-04 1981-06-20
JP2547321Y2 (en) * 1989-11-06 1997-09-10 株式会社 コガネイ Switching valve
JPH0488568U (en) * 1990-12-14 1992-07-31
DE4223358C2 (en) * 1992-07-16 1994-11-03 Festo Kg Spool valve
JP2985994B2 (en) * 1992-11-11 1999-12-06 東陶機器株式会社 Thermostatic mixing valve
JP3125128B2 (en) * 1994-08-12 2001-01-15 エヌオーケー株式会社 Hot water mixer tap
JP2950162B2 (en) * 1994-09-27 1999-09-20 松下電器産業株式会社 Fluid control valve
JP3506506B2 (en) * 1994-09-28 2004-03-15 日本バルカー工業株式会社 Spool valve
JP2947120B2 (en) * 1995-05-15 1999-09-13 松下電器産業株式会社 Automatic pressure regulating valve and hot water mixing device

Also Published As

Publication number Publication date
JPH09296871A (en) 1997-11-18

Similar Documents

Publication Publication Date Title
US4519579A (en) Cam valve self-centering seat
US4781213A (en) Ball check valve
EP2370871B1 (en) Valve seat apparatus having positive retention for use with fluid control devices
JP3791046B2 (en) Seal structure and hot water mixing apparatus using the same
JP3152129B2 (en) Valve device
US5676309A (en) Thermally responsive flow control valve
JP2985994B2 (en) Thermostatic mixing valve
JP2947129B2 (en) Hot water mixing equipment
CA1097304A (en) High pressure disc valve
CA1151503A (en) Vacuum modulator valve and subassembly therefor
CN111561592A (en) Regulator
US4230139A (en) Disc valve
US5971285A (en) Thermostatically controlled mixing valve
JP2005069463A (en) Cage valve for high temperature
JP2000002360A (en) Mixing valve for water combination faucet
CN213711887U (en) High-sensitivity self-control micro-pressure regulating valve
EP3935466B1 (en) Cartridge flow rate adjusting assembly and hydraulic flow rate control valve with a dual adjusting scale
JP3844836B2 (en) Constant flow valve with water temperature compensation function
JP4591860B2 (en) Hot water tap
JPH0531035B2 (en)
JPH1151219A (en) Pressure balancer of hot and cold water
CN214248307U (en) Self-control micro-pressure regulating valve
CA2222403C (en) Thermostatically controlled mixing valve
JPS6323654Y2 (en)
JPH08296744A (en) Mechanical seal

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060327

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees