JP3790362B2 - Electrolytic sodium hypochlorite generator - Google Patents

Electrolytic sodium hypochlorite generator Download PDF

Info

Publication number
JP3790362B2
JP3790362B2 JP12957498A JP12957498A JP3790362B2 JP 3790362 B2 JP3790362 B2 JP 3790362B2 JP 12957498 A JP12957498 A JP 12957498A JP 12957498 A JP12957498 A JP 12957498A JP 3790362 B2 JP3790362 B2 JP 3790362B2
Authority
JP
Japan
Prior art keywords
salt water
sodium hypochlorite
water
concentration
electrolytic cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12957498A
Other languages
Japanese (ja)
Other versions
JPH11302886A (en
Inventor
弘幸 伊藤
Original Assignee
旭硝子エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子エンジニアリング株式会社 filed Critical 旭硝子エンジニアリング株式会社
Priority to JP12957498A priority Critical patent/JP3790362B2/en
Publication of JPH11302886A publication Critical patent/JPH11302886A/en
Application granted granted Critical
Publication of JP3790362B2 publication Critical patent/JP3790362B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電解次亜塩素酸ナトリウム生成装置に係わり、特に電解槽を冷却する必要が無くコンパクトで設置の容易な電解次亜塩素酸ナトリウム生成装置に関する。
【0002】
【従来の技術】
従来、電解次亜塩素酸ナトリウム生成装置は上水道、プールなどの滅菌消毒用等に用いられている。この電解次亜塩素酸ナトリウム生成装置からは高濃度(有効塩素濃度1重量%程度)の次亜塩素酸ナトリウム水溶液が生成される。そして、上水道またはプールなどに使用に適した濃度になるように適量が注入または添加されている。なお、本明細書では容積の単位であるリットルをLで表す。
【0003】
【発明が解決しようとする課題】
ところで、かかる高濃度の次亜塩素酸ナトリウム水溶液を衛生管理(手洗い、床、容器、機器、食品)用の殺菌洗浄水に利用した場合には、腐食や溶出が起こるため使用できず、水道水等で使用に適した濃度に希釈をする必要がある。従って、希釈するために別の供給水源が必要であり、また濃度管理も希釈前後の2工程で必要となる欠点があった。
【0004】
また、従来の電解次亜塩素酸ナトリウム生成装置では濃厚塩水を高電流密度、低流量で電解するため、電解槽が高温になり、冷却装置を必要とし、構造が複雑になる欠点があった。
本発明はこのような従来の課題に鑑みてなされたもので、電解槽を冷却する必要が無くコンパクトで設置の容易な電解次亜塩素酸ナトリウム生成装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明のうち請求項1記載の発明は、塩水を電解して次亜塩素酸ナトリウムを生成する電解次亜塩素酸ナトリウム生成装置において、100g−NaCl/L〜飽和濃度の塩水を生成若しくは貯留する濃厚塩水貯留部と、該濃厚塩水貯留部より塩水を供給する塩水供給手段と、該塩水供給手段から供給された塩水が8〜30g−NaCl/Lの濃度となるように水で希釈する第1の希釈手段と、該第1の希釈手段で希釈された塩水を流入させた後電解し、次亜塩素酸ナトリウムを生成した後次亜塩素酸ナトリウム水溶液として放出する電解槽と、該電解槽から放出された次亜塩素酸ナトリウム水溶液を貯留させることなく直接水で希釈し、有効塩素濃度20〜300mg/Lで吐出させる第2の希釈手段を備え、前記電解槽には、該電解槽を冷却する冷却手段を有しないことを特徴とする。
【0006】
濃厚塩水貯留部では、100g−NaCl/L〜飽和濃度の塩水を生成若しくは貯留する。ここで、塩水とは食塩の水溶液である。飽和濃度は、約310g−NaCl/Lである。生成若しくは貯留としたのは、予め所定濃度に調整した塩水を貯留しておいてもよいし、また固体の食塩を水に溶かすことで所定濃度の塩水を調整してもよいためである。塩水供給手段では、濃厚塩水貯留部より塩水を供給する。
【0007】
第1の希釈手段では、塩水供給手段から供給された塩水が8〜30g−NaCl/Lの濃度となるよう水で希釈する。このように、濃厚塩水を希釈することとしたため、濃厚塩水貯留部が小型化できる。
その後、この希釈された塩水を電解槽に流入させた後電解する。電解の結果、次亜塩素酸ナトリウムを生成して次亜塩素酸ナトリウム水溶液として放出する。
【0008】
電解槽に流入させる塩水の濃度を8〜30g−NaCl/Lに限定したのは、高濃度になるほど塩素発生電流効率は上昇するが、NaClの利用率が低下するため流量を低くする必要がある。また、低濃度になるほどNaClの利用率は上昇するが、塩素発生電流効率が低下するため電解槽を大きくする必要があるためである。即ち、高濃度では水温の上昇が大きく、冷却装置が必要となり、一方、低濃度では電解槽が大型化し、汎用性が乏しくなる。従って、塩水濃度を8〜30g−NaCl/Lに限定することにより、電解槽は冷却しなくとも高温になることなく運転することができ、装置全体も小型化することができる。
【0009】
第2の希釈手段では、電解槽から放出された次亜塩素酸ナトリウム水溶液を貯留させることなく直接水で希釈し、使用に適した濃度である有効塩素濃度20〜300mg/Lで外部へ吐出させる。このため、吐出される次亜塩素酸ナトリウム水溶液は希釈作業等の濃度調節の手間がなくそのまま使用することができる。
【0010】
第1の希釈手段及び第2の希釈手段に供給する水は、別配管から供給することも可能であるが、請求項2記載の発明のように、塩水を電解して次亜塩素酸ナトリウムを生成する電解次亜塩素酸ナトリウム生成装置において、100g−NaCl/L〜飽和濃度の塩水を生成若しくは貯留する濃厚塩水貯留部と、該濃厚塩水貯留部より塩水を供給する塩水供給手段と、該塩水供給手段から供給された塩水が8〜30g−NaCl/Lの濃度となるように水で希釈する第1の希釈手段と、該第1の希釈手段で希釈された塩水を流入させた後電解し、次亜塩素酸ナトリウムを生成した後次亜塩素酸ナトリウム水溶液として放出する電解槽と、該電解槽から放出された次亜塩素酸ナトリウム水溶液を水で希釈し、有効塩素濃度20〜300mg/Lで吐出させる第2の希釈手段を備え、前記第1の希釈手段及び前記第2の希釈手段に供給する水は、同一の配水管から分離して供給することも出来る。このことにより、1つの供給水源のみで使用可能となり、汎用性が広がる。また、設置工事も簡便である。
【0011】
更に、請求項3記載の発明は、前記濃厚塩水貯留部は固体の食塩と塩水の混合物を納置し、該濃厚塩水貯留部に水を補給するための給水弁を有する給水管と、前記固体の食塩と塩水の混合物から塩水を分離して排出する塩水供給管と、前記濃厚塩水貯留部の液位を検出する液位計を備え、塩水の排出により該液位が低下して所定値に達したときに前記給水弁を開き、前記液位が上昇して所定値に達したときに前記給水弁を閉じることを特徴とする。本発明は、濃厚塩水貯留部で固体の食塩から塩水を生成する場合に適用する。液位計の信号に基づき給水弁の開閉を行うことで、省力化を図ることが出来る。
【0012】
更に、請求項4記載の発明は、少なくとも前記塩水供給手段、第1の希釈手段、電解槽、第2の希釈手段を一体としてマウントしたことを特徴とする。筐体等でマウントすることで、装置を小型化し、容易に搬送可能で、また設置工事も簡便とすることが出来る。
【0013】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。本発明の第1の実施形態を図1に示す。図1において、濃厚塩水貯留部1には、固体の食塩が納置されており、水を供給することで、飽和濃度に近い塩水が生成されるようになっている。濃厚塩水貯留部1からは、飽和濃度に近い塩水が塩水供給管3を通じ塩水供給ポンプ5により圧送されるようになっている。塩水添加部7には、供給水が希釈用供給水管9及び開閉弁11、塩水希釈用供給水管13及び流量調節弁15を介して供給されるようになっている。塩水添加部7で希釈された塩水は、塩水導入管17を通り電解槽19に導入されるようになっている。
【0014】
電解槽19には、陽極21と陰極23が対向して設けられ、これらには直流電源25が接続されている。電解槽19で電解され生成された次亜塩素酸ナトリウム水溶液は、次亜塩素酸ナトリウム水溶液吐出管27を通じて外部に吐出されるようになっている。そして、この次亜塩素酸ナトリウム水溶液吐出管27と次亜塩素酸ナトリウム希釈用供給水管29とは、次亜塩素酸ナトリウム希釈用水混合部31で連結されており、流量調節弁33を介して希釈用の供給水が供給されるようになっている。
【0015】
この次亜塩素酸ナトリウム希釈用供給水管29と塩水希釈用供給水管13とは、供給水管連結部35で希釈用供給水管9と連結されており、供給水は次亜塩素酸ナトリウム希釈用供給水管29と塩水希釈用供給水管13とに所定流量ずつ分配されるようになっている。また、濃厚塩水貯留部1の液位を維持するために液位調整用供給水管37が配設されており、液位調整用供給水管37の途中には給水弁39が設けられている。液位調整用供給水管37と希釈用供給水管9とは、供給水分岐部41で連結されている。
なお、液位調整用供給水管37、給水弁39、供給水分岐部41及び濃厚塩水貯留部1を除き、各構成要素は一体の筐体40内に収納されている。
【0016】
次に、動作を説明する。
図1において、濃厚塩水貯留部1には、固体の食塩が納置されており、水を液位調整用供給水管37より供給することで、飽和濃度に近い塩水を生成する。そして、塩水供給ポンプ5は、この濃厚塩水貯留部1で生成された飽和濃度に近い塩水を圧送する。但し、塩水供給ポンプ5の設置個所は、筐体40内の限りではなく、例えば濃厚塩水貯留部1に設置することも可能である。
【0017】
塩水添加部7では、塩水希釈用供給水管13から送られた供給水で塩水の濃度を3〜40倍に希釈する。これにより、塩水の濃度を電解に適した8〜30g−NaCl/Lの濃度にする。塩水供給管3から圧送される飽和濃度に近い塩水の供給量を極力少なくしたことで、濃厚塩水貯留部1を小型化出来る。
【0018】
その後、塩水導入管17を介して、電解槽19にこの塩水を導入する。電解槽19では、塩水が電解されて次亜塩素酸ナトリウム水溶液が生成される。塩水の濃度を8〜30g−NaCl/Lに調整したことで、NaClの利用率を向上させ、また発生熱を極力抑制出来る。このため、冷却装置は不要であり、電解槽19はコンパクトに構成出来る。
なお、直流電源25にはカルシウム塩の沈着を防止するために、電圧正逆切換機能が付加されていることが望ましい。
【0019】
生成された次亜塩素酸ナトリウム水溶液は、次亜塩素酸ナトリウム希釈用供給水管29を通じて供給される希釈用供給水により、次亜塩素酸ナトリウム希釈用水混合部31で2〜60倍に希釈される。その結果、次亜塩素酸ナトリウム水溶液吐出管27から吐出される有効塩素濃度は使用濃度である20〜300mg/Lに希釈される。このように、使用に適した濃度となるように希釈されるため、吐出される次亜塩素酸ナトリウム水溶液は希釈作業等の濃度調節の手間がなくそのまま使用することができる。また、希釈作業時の濃度調整の間違いも無くなる。
【0020】
図1の装置における各液体の具体的な流量としては、例えば、塩水供給管3の流量6mL/分、塩水導入管17の流量200mL/分、次亜塩素酸ナトリウム水溶液吐出管27の流量3.5L/分という例が挙げられる。他の例としては、塩水供給管3の流量60mL/分、塩水導入管17の流量2L/分、次亜塩素酸ナトリウム水溶液吐出管27の流量15L/分というのが挙げられる。
【0021】
供給水は、一本の配管である希釈用供給水管9を通じ、供給水管連結部35で塩水希釈用(塩水希釈用供給水管13)と次亜塩素酸ナトリウム水溶液希釈用(次亜塩素酸ナトリウム希釈用供給水管29)とに分けたため、装置が簡易で据え付け工事も簡単である。流量調節弁15と流量調節弁33は、例えばベンチュリー管で構成され、前述したような予め定められた流量配分比で供給水が分配される。
なお、濃厚塩水貯留部1の液位が低下した場合には、塩水を調製するために給水弁39を開き供給水を補給する。
【0022】
以上のように、塩水供給方法を高濃度低流量ではなく、低濃度高流量としたことにより、電解槽19の温度上昇を防ぎ装置を小型化出来る。
なお、希釈用供給水管9には開閉弁11を設け、この開閉により装置の起動停止を行う。また、運転異常時(例えば電解槽電圧を検出し、正常範囲を外れた場合、または、配管内に流量検知器を設け、正常範囲を外れた場合等)には、開閉弁11を閉め装置を停止させたり、電源を落とす等により、安全に装置を運転することができる。
【0023】
次に、本発明の第2の実施形態を図2に示す。
本発明の第2の実施形態は、濃厚塩水貯留部1を除き、液位調整用供給水管37の一部、給水弁39、供給水分岐部41の各構成要素は一体の筐体40内に収納している。このことにより、本発明の第1の実施形態と比べ、より設置が簡便になる。
塩水に飽和に近い濃度のものを使用するときには、濃厚塩水貯留部1に図示しないレベル検知器を設け、自動で給水弁39の開閉を行えるようにすることが望ましい。
【0024】
次に、本発明の第3の実施形態を図3に示す。
本発明の第3の実施形態は、濃厚塩水貯留部1を含む全構成要素を一体の筐体40内に収納している。本発明は、例えば次亜塩素酸ナトリウム水溶液の生成能力が10L/分以下の場合に特に有効である。濃厚塩水貯留部1も筐体40内に収納したため、設置における工事を省き、更には運転をより使い勝手よくすることが出来る。
【0025】
【発明の効果】
以上説明したように本発明によれば、電解槽に導入する塩水濃度を限定したことにより、電解槽は冷却しなくとも運転することが出来、装置全体も小型化することができる。また、電解槽から吐出された次亜塩素酸ナトリウム水溶液の有効塩素濃度を第2の希釈手段で使用に適した濃度に調整したため、吐出される次亜塩素酸ナトリウム水溶液は希釈作業等の濃度調節の手間がなくそのまま使用することができる。
【0026】
【図面の簡単な説明】
【図1】 本発明の第1実施形態の構成図
【図2】 本発明の第2実施形態の構成図
【図3】 本発明の第3実施形態の構成図
【符号の説明】
1 濃厚塩水貯留部
3 塩水供給管
5 塩水供給ポンプ
7 塩水添加部
9 希釈用供給水管
11 開閉弁
13 塩水希釈用供給水管
15 流量調節弁
17 塩水導入管
19 電解槽
27 次亜塩素酸ナトリウム水溶液吐出管
29 次亜塩素酸ナトリウム希釈用供給水管
31 次亜塩素酸ナトリウム希釈用水混合部
33 流量調節弁
35 供給水管連結部
37 液位調整用供給水管
39 給水弁
40 筐体
41 供給水分岐部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrolytic sodium hypochlorite generator, and more particularly to an electrolytic sodium hypochlorite generator that is compact and easy to install without the need to cool an electrolytic cell.
[0002]
[Prior art]
Conventionally, an electrolytic sodium hypochlorite generator is used for sterilization of waterworks, pools, and the like. From this electrolytic sodium hypochlorite generator, a sodium hypochlorite aqueous solution having a high concentration (effective chlorine concentration of about 1% by weight) is generated. Then, an appropriate amount is injected or added so as to have a concentration suitable for use in waterworks or a pool. In the present specification, L, which is a unit of volume, is represented by L.
[0003]
[Problems to be solved by the invention]
By the way, when such high-concentration sodium hypochlorite aqueous solution is used for sterilization washing water for hygiene management (hand washing, floors, containers, equipment, food), it cannot be used because it corrodes and dissolves. It is necessary to dilute to a concentration suitable for use. Accordingly, another supply water source is required for dilution, and concentration control is required in two steps before and after dilution.
[0004]
In addition, the conventional electrolytic sodium hypochlorite generator electrolyzes concentrated salt water at a high current density and a low flow rate, so that the electrolytic bath becomes high temperature, requires a cooling device, and has a drawback that the structure is complicated.
The present invention has been made in view of such conventional problems, and an object of the present invention is to provide an electrolytic sodium hypochlorite generator that is compact and easy to install without the need to cool the electrolytic cell.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 of the present invention is an electrolytic sodium hypochlorite generator for electrolyzing salt water to produce sodium hypochlorite. Concentrated salt water storage section for generating or storing salt water of a concentration, salt water supply means for supplying salt water from the concentrated salt water storage section, and salt water supplied from the salt water supply means has a concentration of 8 to 30 g-NaCl / L. The first diluting means for diluting with water and the salt water diluted with the first diluting means are introduced and electrolyzed to form sodium hypochlorite, which is then released as an aqueous sodium hypochlorite solution. an electrolytic bath, diluted with water directly without storing the aqueous solution of sodium hypochlorite released from electrolytic bath, a second dilution means for discharging an effective chlorine concentration of 20 to 300 mg / L, Serial The electrolytic cell, characterized in that no cooling means for cooling the electrolytic bath.
[0006]
In the concentrated salt water storage unit, salt water of 100 g-NaCl / L to a saturated concentration is generated or stored. Here, the salt water is an aqueous solution of sodium chloride. The saturation concentration is about 310 g-NaCl / L. The reason for generating or storing is that salt water adjusted to a predetermined concentration may be stored in advance, or salt water having a predetermined concentration may be adjusted by dissolving solid salt in water. In the salt water supply means, salt water is supplied from the concentrated salt water reservoir.
[0007]
In the first dilution means, the salt water supplied from the salt water supply means is diluted with water so as to have a concentration of 8 to 30 g-NaCl / L. Thus, since concentrated salt water was diluted, a concentrated salt water storage part can be reduced in size.
Thereafter, the diluted salt water is electrolyzed after flowing into the electrolytic cell. As a result of the electrolysis, sodium hypochlorite is produced and released as an aqueous sodium hypochlorite solution.
[0008]
The reason for limiting the concentration of salt water flowing into the electrolytic cell to 8 to 30 g-NaCl / L is that the higher the concentration, the higher the chlorine generation current efficiency, but the lower the utilization rate of NaCl, the lower the flow rate. . Moreover, the utilization rate of NaCl increases as the concentration decreases, but the efficiency of chlorine generation current decreases, and the electrolytic cell needs to be enlarged. That is, when the concentration is high, the water temperature rises greatly, and a cooling device is required. On the other hand, when the concentration is low, the electrolytic cell becomes large and the versatility becomes poor. Therefore, by limiting the salt water concentration to 8 to 30 g-NaCl / L, the electrolytic cell can be operated without becoming high temperature without being cooled, and the entire apparatus can be downsized.
[0009]
In the second dilution means, the sodium hypochlorite aqueous solution released from the electrolytic cell is directly diluted with water without being stored , and discharged to the outside at an effective chlorine concentration of 20 to 300 mg / L, which is a concentration suitable for use. . For this reason, the discharged sodium hypochlorite aqueous solution can be used as it is without the need for concentration adjustment such as dilution work.
[0010]
The water supplied to the first diluting means and the second diluting means can be supplied from separate pipes, but as in the invention according to claim 2, the salt water is electrolyzed and sodium hypochlorite is obtained. In the electrolytic sodium hypochlorite generating device to be generated, a concentrated salt water storage section for generating or storing 100 g-NaCl / L to saturated salt water, a salt water supply means for supplying salt water from the concentrated salt water storage section, and the salt water First diluting means for diluting with salt water supplied from the supplying means to a concentration of 8 to 30 g-NaCl / L, and electrolyzing the salt water diluted with the first diluting means after flowing in. An electrolytic cell that generates sodium hypochlorite and then discharges it as an aqueous sodium hypochlorite solution, and an aqueous sodium hypochlorite solution released from the electrolytic cell is diluted with water to obtain an effective chlorine concentration of 20 to 300 mg / L. so A second dilution means for out, water supplied to the first dilution means and the second dilution means can also be supplied separately from the same water pipe. As a result, it can be used with only one supply water source, and versatility is expanded. Also, the installation work is simple.
[0011]
Further, the invention according to claim 3 is characterized in that the concentrated salt water storage part stores a mixture of solid salt and salt water, and has a water supply pipe having a water supply valve for supplying water to the concentrated salt water storage part, and the solid A salt water supply pipe that separates and discharges salt water from a mixture of salt and salt water, and a liquid level gauge that detects the liquid level of the concentrated salt water storage section. The water supply valve is opened when it reaches, and the water supply valve is closed when the liquid level rises and reaches a predetermined value. The present invention is applied when salt water is generated from solid salt in a concentrated salt water reservoir. Labor saving can be achieved by opening and closing the water supply valve based on the signal of the liquid level gauge.
[0012]
Furthermore, the invention described in claim 4 is characterized in that at least the salt water supply means, the first dilution means, the electrolytic cell, and the second dilution means are mounted as a unit. By mounting with a housing or the like, the apparatus can be miniaturized and easily transported, and installation work can be simplified.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. A first embodiment of the present invention is shown in FIG. In FIG. 1, solid salt is stored in the concentrated salt water storage unit 1, and salt water close to a saturated concentration is generated by supplying water. From the concentrated salt water storage unit 1, salt water close to saturation concentration is pumped by a salt water supply pump 5 through a salt water supply pipe 3. Supply water is supplied to the salt water adding section 7 through a dilution supply water pipe 9 and an on-off valve 11, a salt water dilution supply water pipe 13 and a flow rate control valve 15. The salt water diluted in the salt water addition unit 7 is introduced into the electrolytic cell 19 through the salt water introduction pipe 17.
[0014]
The electrolytic cell 19 is provided with an anode 21 and a cathode 23 facing each other, and a DC power source 25 is connected to them. The sodium hypochlorite aqueous solution generated by electrolysis in the electrolytic bath 19 is discharged to the outside through the sodium hypochlorite aqueous solution discharge pipe 27. The sodium hypochlorite aqueous solution discharge pipe 27 and the sodium hypochlorite dilution supply water pipe 29 are connected by a sodium hypochlorite dilution water mixing section 31, and are diluted via a flow rate control valve 33. Supply water is supplied.
[0015]
The sodium hypochlorite dilution supply water pipe 29 and the salt water dilution supply water pipe 13 are connected to the dilution supply water pipe 9 by a supply water pipe connecting portion 35, and the supply water is a sodium hypochlorite dilution supply water pipe. 29 and the salt water dilution feed water pipe 13 are distributed by a predetermined flow rate. Further, in order to maintain the liquid level of the concentrated salt water storage unit 1, a liquid level adjustment supply water pipe 37 is provided, and a water supply valve 39 is provided in the middle of the liquid level adjustment supply water pipe 37. The liquid level adjusting supply water pipe 37 and the dilution supply water pipe 9 are connected by a supply water branching section 41.
Each component is housed in an integral housing 40 except for the liquid level adjusting supply water pipe 37, the water supply valve 39, the supply water branching section 41 and the concentrated salt water storage section 1.
[0016]
Next, the operation will be described.
In FIG. 1, solid salt is stored in the concentrated salt water storage unit 1, and by supplying water from a liquid level adjusting supply water pipe 37, salt water close to a saturated concentration is generated. And the salt water supply pump 5 pumps the salt water close | similar to the saturated density | concentration produced | generated in this concentrated salt water storage part 1. FIG. However, the installation location of the salt water supply pump 5 is not limited to the inside of the housing 40, and can be installed in the concentrated salt water storage unit 1, for example.
[0017]
In the salt water addition part 7, the density | concentration of salt water is diluted 3 to 40 times with the feed water sent from the feed water pipe 13 for salt water dilution. Thereby, the density | concentration of salt water is made into the density | concentration of 8-30 g-NaCl / L suitable for electrolysis. By reducing the supply amount of salt water close to the saturated concentration pumped from the salt water supply pipe 3 as much as possible, the concentrated salt water storage unit 1 can be downsized.
[0018]
Thereafter, this salt water is introduced into the electrolytic cell 19 through the salt water introduction pipe 17. In the electrolytic bath 19, the salt water is electrolyzed to produce a sodium hypochlorite aqueous solution. By adjusting the concentration of salt water to 8 to 30 g-NaCl / L, the utilization rate of NaCl can be improved and the generated heat can be suppressed as much as possible. For this reason, a cooling device is unnecessary and the electrolytic cell 19 can be comprised compactly.
The DC power supply 25 is preferably provided with a voltage forward / reverse switching function in order to prevent calcium salt deposition.
[0019]
The generated sodium hypochlorite aqueous solution is diluted 2 to 60 times in the sodium hypochlorite dilution water mixing unit 31 with the dilution supply water supplied through the sodium hypochlorite dilution supply water pipe 29. . As a result, the effective chlorine concentration discharged from the sodium hypochlorite aqueous solution discharge pipe 27 is diluted to a working concentration of 20 to 300 mg / L. Thus, since it is diluted so as to have a concentration suitable for use, the discharged sodium hypochlorite aqueous solution can be used as it is without the need for concentration adjustment such as dilution work. Moreover, the mistake of density adjustment at the time of dilution work is eliminated.
[0020]
Specific flow rates of the liquids in the apparatus of FIG. 1 include, for example, a flow rate of 6 mL / min in the salt water supply pipe 3, a flow rate of 200 mL / min in the salt water introduction pipe 17, and a flow rate in the sodium hypochlorite aqueous solution discharge pipe 27. An example is 5 L / min. As other examples, the flow rate of the salt water supply pipe 3 is 60 mL / min, the flow rate of the salt water introduction pipe 17 is 2 L / min, and the flow rate of the sodium hypochlorite aqueous solution discharge pipe 27 is 15 L / min.
[0021]
Supply water passes through a supply water pipe 9 for dilution, which is a single pipe, and is used for dilution of salt water (supply water pipe 13 for dilution of salt water) and aqueous sodium hypochlorite solution (dilution of sodium hypochlorite) at the supply water pipe connecting portion 35. Therefore, the apparatus is simple and the installation work is simple. The flow rate control valve 15 and the flow rate control valve 33 are configured by, for example, a venturi pipe, and supply water is distributed at a predetermined flow rate distribution ratio as described above.
In addition, when the liquid level of the concentrated salt water storage part 1 falls, in order to prepare salt water, the water supply valve 39 is opened and supply water is replenished.
[0022]
As described above, by setting the salt water supply method to a low concentration and high flow rate instead of a high concentration and low flow rate, the temperature increase of the electrolytic cell 19 can be prevented and the apparatus can be downsized.
The dilution supply water pipe 9 is provided with an opening / closing valve 11, and the opening / closing of the apparatus is started and stopped. In addition, when the operation is abnormal (for example, when the electrolytic cell voltage is detected and the normal range is exceeded, or when the flow rate detector is provided in the pipe and the normal range is exceeded), the on-off valve 11 is closed and the device is closed. The device can be safely operated by stopping or turning off the power.
[0023]
Next, a second embodiment of the present invention is shown in FIG.
In the second embodiment of the present invention, except for the concentrated salt water storage section 1, the components of the liquid level adjusting supply water pipe 37, the water supply valve 39, and the supply water branching section 41 are contained in an integrated housing 40. Stored. This makes installation easier than in the first embodiment of the present invention.
When using salt water having a concentration close to saturation, it is desirable to provide a level detector (not shown) in the concentrated salt water reservoir 1 so that the water supply valve 39 can be opened and closed automatically.
[0024]
Next, a third embodiment of the present invention is shown in FIG.
In the third embodiment of the present invention, all the components including the concentrated salt water storage unit 1 are housed in an integral housing 40. The present invention is particularly effective when, for example, the production capacity of an aqueous sodium hypochlorite solution is 10 L / min or less. Since the concentrated salt water storage unit 1 is also housed in the housing 40, the installation work can be omitted and the operation can be made more convenient.
[0025]
【The invention's effect】
As described above, according to the present invention, since the concentration of the salt water introduced into the electrolytic cell is limited, the electrolytic cell can be operated without cooling, and the entire apparatus can be downsized. Moreover, since the effective chlorine concentration of the sodium hypochlorite aqueous solution discharged from the electrolytic cell was adjusted to a concentration suitable for use by the second diluting means, the discharged sodium hypochlorite aqueous solution was adjusted for concentration during dilution work, etc. Can be used as it is.
[0026]
[Brief description of the drawings]
FIG. 1 is a block diagram of a first embodiment of the present invention. FIG. 2 is a block diagram of a second embodiment of the present invention. FIG. 3 is a block diagram of a third embodiment of the present invention.
DESCRIPTION OF SYMBOLS 1 Concentrated salt water storage part 3 Salt water supply pipe 5 Salt water supply pump 7 Salt water addition part 9 Dilution supply water pipe 11 On-off valve 13 Salt water dilution supply water pipe 15 Flow control valve 17 Salt water introduction pipe 19 Electrolysis tank 27 Discharge of sodium hypochlorite aqueous solution Pipe 29 Water supply pipe 31 for diluting sodium hypochlorite 31 Water mixing section 33 for diluting sodium hypochlorite Flow control valve 35 Supply water pipe connecting section 37 Supply water pipe 39 for adjusting the liquid level Water supply valve 40 Housing 41 Supply water branching section

Claims (4)

塩水を電解して次亜塩素酸ナトリウムを生成する電解次亜塩素酸ナトリウム生成装置において、100g−NaCl/L〜飽和濃度の塩水を生成若しくは貯留する濃厚塩水貯留部と、該濃厚塩水貯留部より塩水を供給する塩水供給手段と、該塩水供給手段から供給された塩水が8〜30g−NaCl/Lの濃度となるように水で希釈する第1の希釈手段と、該第1の希釈手段で希釈された塩水を流入させた後電解し、次亜塩素酸ナトリウムを生成した後次亜塩素酸ナトリウム水溶液として放出する電解槽と、該電解槽から放出された次亜塩素酸ナトリウム水溶液を貯留させることなく直接水で希釈し、有効塩素濃度20〜300mg/Lで吐出させる第2の希釈手段を備え
前記電解槽には、該電解槽を冷却する冷却手段を有しないことを特徴とする電解次亜塩素酸ナトリウム生成装置。
In an electrolytic sodium hypochlorite generating device that electrolyzes salt water to generate sodium hypochlorite, a concentrated salt water storage unit that generates or stores salt water of 100 g-NaCl / L to a saturated concentration, and the concentrated salt water storage unit A salt water supplying means for supplying salt water, a first diluting means for diluting the salt water supplied from the salt water supplying means with water so that the salt water has a concentration of 8 to 30 g-NaCl / L, and the first diluting means. An electrolytic cell that is electrolyzed after flowing in diluted salt water to generate sodium hypochlorite and then discharged as an aqueous sodium hypochlorite solution, and an aqueous sodium hypochlorite solution released from the electrolytic cell are stored. Without being diluted directly with water and having a second dilution means for discharging at an effective chlorine concentration of 20 to 300 mg / L ,
The electrolytic cell sodium hypochlorite generator, characterized in that the electrolytic cell does not have a cooling means for cooling the electrolytic cell .
塩水を電解して次亜塩素酸ナトリウムを生成する電解次亜塩素酸ナトリウム生成装置において、100g−NaCl/L〜飽和濃度の塩水を生成若しくは貯留する濃厚塩水貯留部と、該濃厚塩水貯留部より塩水を供給する塩水供給手段と、該塩水供給手段から供給された塩水が8〜30g−NaCl/Lの濃度となるように水で希釈する第1の希釈手段と、該第1の希釈手段で希釈された塩水を流入させた後電解し、次亜塩素酸ナトリウムを生成した後次亜塩素酸ナトリウム水溶液として放出する電解槽と、該電解槽から放出された次亜塩素酸ナトリウム水溶液を水で希釈し、有効塩素濃度20〜300mg/Lで吐出させる第2の希釈手段を備え、
前記第1の希釈手段及び前記第2の希釈手段に供給する水は、同一の配水管から分離して供給することを特徴とする電解次亜塩素酸ナトリウム生成装置。
In an electrolytic sodium hypochlorite generating device that electrolyzes salt water to generate sodium hypochlorite, a concentrated salt water storage unit that generates or stores salt water of 100 g-NaCl / L to a saturated concentration, and the concentrated salt water storage unit A salt water supplying means for supplying salt water, a first diluting means for diluting the salt water supplied from the salt water supplying means with water so that the salt water has a concentration of 8 to 30 g-NaCl / L, and the first diluting means. An electrolytic cell that is electrolyzed after injecting diluted salt water to form sodium hypochlorite and then discharged as an aqueous sodium hypochlorite solution, and the aqueous sodium hypochlorite solution discharged from the electrolytic cell with water Second dilution means for diluting and discharging at an effective chlorine concentration of 20 to 300 mg / L,
The first dilution means and water supplied to the second dilution means to that electrostatic KaitsugiA sodium chlorate generator and supplying separated from the same water pipe.
前記濃厚塩水貯留部は固体の食塩と塩水の混合物を納置し、該濃厚塩水貯留部に水を補給するための給水弁を有する給水管と、前記固体の食塩と塩水の混合物から塩水を分離して排出する塩水供給管と、前記濃厚塩水貯留部の液位を検出する液位計を備え、塩水の排出により該液位が低下して所定値に達したときに前記給水弁を開き、前記液位が上昇して所定値に達したときに前記給水弁を閉じることを特徴とする請求項1又は請求項2記載の電解次亜塩素酸ナトリウム生成装置。  The concentrated salt water storage part stores a mixture of solid salt and salt water, a water supply pipe having a water supply valve for supplying water to the concentrated salt water storage part, and separates salt water from the mixture of solid salt and salt water A salt water supply pipe that discharges and a liquid level meter that detects the liquid level of the concentrated salt water storage unit, and when the liquid level decreases to reach a predetermined value due to salt water discharge, the water supply valve is opened, The electrolytic sodium hypochlorite generator according to claim 1 or 2, wherein the water supply valve is closed when the liquid level rises and reaches a predetermined value. 少なくとも前記塩水供給手段、第1の希釈手段、電解槽、第2の希釈手段を一体としてマウントしたことを特徴とする請求項1、2又は3記載の電解次亜塩素酸ナトリウム生成装置。  The apparatus for producing electrolytic sodium hypochlorite according to claim 1, 2 or 3, wherein at least the salt water supply means, the first diluting means, the electrolytic cell, and the second diluting means are integrally mounted.
JP12957498A 1998-04-23 1998-04-23 Electrolytic sodium hypochlorite generator Expired - Fee Related JP3790362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12957498A JP3790362B2 (en) 1998-04-23 1998-04-23 Electrolytic sodium hypochlorite generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12957498A JP3790362B2 (en) 1998-04-23 1998-04-23 Electrolytic sodium hypochlorite generator

Publications (2)

Publication Number Publication Date
JPH11302886A JPH11302886A (en) 1999-11-02
JP3790362B2 true JP3790362B2 (en) 2006-06-28

Family

ID=15012845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12957498A Expired - Fee Related JP3790362B2 (en) 1998-04-23 1998-04-23 Electrolytic sodium hypochlorite generator

Country Status (1)

Country Link
JP (1) JP3790362B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9492352B2 (en) * 2010-04-14 2016-11-15 Hypo-Stream Limited Device for preparing dilute disinfectant solution

Also Published As

Publication number Publication date
JPH11302886A (en) 1999-11-02

Similar Documents

Publication Publication Date Title
US6814858B2 (en) Water treatment system
CA1263095A (en) Method and apparatus for disinfecting water by hypochlorite produced by electrochemically converting salt
KR101556371B1 (en) Apparatus for producing sodium hypochlorite solution
WO2008032946A1 (en) Apparatus for producing sodium hypochlorite
JP2009050797A (en) Apparatus and method for generating electrolytic water
KR100706118B1 (en) Device for supplementing water of salt water-reservoir for device for generating sodium hypochlorite
CN212505090U (en) Disinfectant generating device and humidifier
JP4764389B2 (en) Electrolyzed water generator
JP3790362B2 (en) Electrolytic sodium hypochlorite generator
JP2000218271A (en) Electrolytic device
JP4204955B2 (en) Electrolyzed water generation method and apparatus
JP3770533B2 (en) Hypochlorite production equipment
KR101054711B1 (en) Brine supply device of electrolytic cell for manufacturing sodium hypochlorite
KR102250773B1 (en) System for generating oxidizers
JPH09206755A (en) Formation of alkaline ionized and hypochlorous acid sterilizing water and device therefor
JP3592753B2 (en) Brine direct electrolysis type sub-liquid generator
JPH06312185A (en) Electrolytic water forming apparatus
EP1226094B1 (en) Device for electrolysis
JP2001191079A (en) Electrolytic water forming device
JP4051774B2 (en) Electrolyzer
SU833177A3 (en) Device for chlorine feeding to accumulator
JP2892120B2 (en) Method for producing sterile water containing hypochlorous acid by electrolysis
JP2002326086A (en) Device for controlling remaining chlorine
JPH06312189A (en) Electrolytic sterilized water making apparatus
JP2019005679A (en) Electrolyzed water generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees