JP3770533B2 - Hypochlorite production equipment - Google Patents

Hypochlorite production equipment Download PDF

Info

Publication number
JP3770533B2
JP3770533B2 JP2000264833A JP2000264833A JP3770533B2 JP 3770533 B2 JP3770533 B2 JP 3770533B2 JP 2000264833 A JP2000264833 A JP 2000264833A JP 2000264833 A JP2000264833 A JP 2000264833A JP 3770533 B2 JP3770533 B2 JP 3770533B2
Authority
JP
Japan
Prior art keywords
electrolytic cell
hypochlorite
gas
hydrogen
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000264833A
Other languages
Japanese (ja)
Other versions
JP2002069683A (en
Inventor
弘二 三好
茂樹 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Nucera Japan Ltd
Original Assignee
Chlorine Engineers Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorine Engineers Corp Ltd filed Critical Chlorine Engineers Corp Ltd
Priority to JP2000264833A priority Critical patent/JP3770533B2/en
Publication of JP2002069683A publication Critical patent/JP2002069683A/en
Application granted granted Critical
Publication of JP3770533B2 publication Critical patent/JP3770533B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は次亜塩素酸塩の電解による製造装置に関し、とくに運転停止時の安全性の高い次亜塩素酸塩製造装置に関する。
【0002】
【従来の技術】
次亜塩素酸ナトリウムに代表される次亜塩素酸塩類は、漂自剤、殺菌剤として、上下水の処理、排水の処理から家庭の台所用あるいは洗濯用等の各方面で用いられている。次亜塩素酸塩の製造は、食塩水等のアルカリ金属塩化物の水溶液の電気分解によって得られたアルカリ金属水酸化物と塩素とを反応させて製造する方法、あるいはアルカリ金属塩化物を無隔膜電解槽において電気分解を行って、電解槽中で次亜塩素酸塩を直接製造する方法で行われている。アルカリ金属水酸化物と塩素を反応させる方法は、高濃度の次亜塩素酸塩を得ることができるので、次亜塩素酸塩を販売する目的で製造する場合にはこの方法で行われているが、アルカリ金属水酸化物と塩素を製造する電解設備が必要となるので、食塩水の電解工場において水酸化ナトリウムあるいは塩素の製造に付随して大規模に行われている。
【0003】
一方、食塩などの水溶液を無隔膜電解槽において電気分解する方法も知られている。この方法では、生成する次亜塩素酸塩の濃度は比較的低濃度であるが、水の浄化や殺菌に直接利用することが可能な濃度のものを製造することができ、製造設備も水酸化アルカリと塩素を製造する電解設備に比べて簡単であるので、次亜塩素酸塩を必要とする現場において製造されている。
【0004】
図3は、従来の次亜塩素酸塩製造装置の一例を説明する図である。
【0005】
次亜塩素酸塩製造装置は、次亜塩素酸塩製造用の無隔膜式電解槽1に食塩水2を供給し、無隔膜式電解槽において電気分解を行って、次亜塩素酸塩は次亜塩素酸塩管路3を通じて、また生成した水素は水素管路4を通じて水封安全器5に供給され、水封安全器5内の液面を所定の範囲に保持することによって水素は水素放散管6を通じて外部へ排出される。また、水素放散管6には、希釈空気ポンプ7によって水素の濃度を希釈する空気を供給し、水素濃度を安全な水準まで低下させている。
【0006】
一方、水封安全器からは次亜塩素酸塩を次亜塩素酸塩貯槽8に貯蔵し、供給ポンプ9によって所望の使用場所へ供給している。
電解装置は、次亜塩素酸塩の使用量に応じて間欠的な運転が行われることがあるが、電解槽の運転停止時には、電気分解によって発生した水素が電解槽内に滞留することが起こる。水素が電解槽内において長期間滞留していると、空気中の酸素と混合する可能性も生じ、水素の爆発の危険が生じることとなる。
【0007】
【発明が解決しようとする課題】
本発明は、次亜塩素酸塩製造装置を提供することを課題とするものであり、とくに運転停止時において電解槽内に水素が滞留することを防止した安全性が高い次亜塩素酸塩製造装置を提供することを課題とするものである。
【0008】
【課題を解決するための手段】
本発明は、塩水の電気分解による次亜塩素酸塩製造装置において、無隔膜式電解槽の上部に設けた気液分離装置を配置し、無隔膜式電解槽内に電解液面を形成して電解槽内の電解液面の上部に上部空間を設け、該電解液面に開口部の一端が位置し、他端の開口部を気液分離装置に結合した上昇管を配置し、上昇管の電解槽の上部空間に位置する部分には小孔を設け、電解槽の運転停止時には、気液分離装置内の電解液が上昇管を通じて逆流するとともに小孔から電解槽の上部空間に滞留した水素を気液分離装置へ排出させる次亜塩素酸塩製造装置である。
上昇管の内径が15mm〜150mmであり、小孔の径が2mm〜20mmである前記の次亜塩素酸塩製造装置である。
【発明の実施の形態】
本発明の次亜塩素酸塩製造装置は、無隔膜式電解槽内の上部空間を気液混合流体の上昇管によって気液分離装置とを結合し、電解槽に供給する塩水の流動と電気分解時に発生する気泡の上昇によって気液混合流体を気液分離装置に上昇させて、気液分離装置内において次亜塩素酸塩と水素とに分離するとともに、電解槽の運転停止時には、上昇管内を上昇する気泡がなくなるために気液分離装置内の次亜塩素酸塩が電解槽内に逆流するとともに、上昇管に設けた小孔から電解槽内の水素を気液分離装置に排出させて電解槽内部からの水素の排出により電解槽の運転停止時には水素の滞留を防止したものである。
【0009】
以下に図面を参照して本発明を説明する。
図1は、本発明の次亜塩素酸塩製造装置の一実施例を示す図である。
本発明の次亜塩素酸塩製造装置は、無隔膜式電解槽1を有し、無隔膜式電解槽1の電解液面10に開口部を有する上昇管11に結合した気液分離装置12が設けられている。上昇管11の無隔膜式電解槽1の上部の電解槽内の上部空間に開口する小孔13を有している。
また、気液分離装置12には、水素放散管6および希釈空気ポンプ7と結合した希薄空気供給管14が結合されており、気液分離装置12において、水素を分離した次亜塩素酸塩は、次亜塩素酸塩貯槽8に貯蔵され、供給ポンプ9によって所望の使用場所へ供給される。
【0010】
本発明の次亜塩素酸塩製造装置においては、無隔膜式電解槽1に供給された食塩水2が陽極15および陰極16によって電気分解を受け、陽極で発生した塩素から次亜塩素酸塩が生成し、陰極における電気分解および次亜塩素酸塩の生成反応の両者によって水素が生成する。
生成した水素からなる水素気泡17の浮力と供給される塩水の流動によって、次亜塩素酸塩を含有した液は、上昇管11を上昇して気液分離装置12に達して水素気泡17が次亜塩素酸塩から分離されて水素放散管6から放出される。気液分離装置12には、希釈空気ポンプ7と結合した空気供給管14から供給されて希釈されて安全な濃度に低下させることができる。
また、無隔膜式電解槽1の運転停止時には、塩水2の供給が停止されると気液分離装置12から次亜塩素酸塩が逆流し、電解槽内の水素は上昇管に設けた小孔13から気液分離装置12へ上昇し外部へ排出される。
【0011】
図2は、図1の一部を拡大して説明する図であり、図1のAの部分の拡大図である。
無隔膜式電解槽1への通電を停止し塩水の供給を停止すると、気液分離装置および上昇管11内の液体が上昇管11内を通じて無隔膜式電解槽1内へ逆流するとともに、無隔膜式電解槽1の上部空間18の気体が小孔13を通じて上昇管を通じて気液分離装置へ排出される。
本発明において、上昇管は任意のものを用いることができるが、通電中に上昇管を通過する液体と水素気泡との上昇速度が0.4〜0.8m/secであることが好ましい。上昇速度が0.4m/sec未満では上昇管の管径が太くすることが必要となるので、構造上好ましくない。また0.8m/secを超えると上昇管を流れる流体の抵抗が増加して通電中の電解槽の液面変動が生じることがある。
【0012】
上昇管の内径は、次亜塩素酸塩の生産量に応じて決定されるが、15mm〜150mmであることが好ましい。
また、上昇管の電解槽上部空間に位置する部分に設ける小孔は、通電中に発生する水素が小孔を全量通過することを防止するために小孔部の水素流速が15〜25m/secとなるような径とすることが好ましく、2mm〜20mmとすることが好ましい。また小孔は、1個に限らず複数個を設けたものであっても良い。
【0013】
【実施例】
以下に、実施例を示し本発明を説明する。
実施例1
縦200mm、横150mmの白金族金属の酸化物を含有する電極触媒物質を被覆した陽極、チタン陰極を有する陰極を設けた無隔膜式電解槽に、電解液の冷却管を取り付け、無隔膜式電解槽の電解液面に開口部を有する内径40mmの上昇管の上部に縦20mm、横50mm、高さ25mmの気液分離装置を取り付け、上昇管には電解液面から30mmの位置に5mmの孔を設けた。
この電解槽に250アンペアの電流を通電して、30g/lの食塩水を420リットル/時間の流量で供給して電気分解を行った後に、電流の通電と、食塩水の供給を停止したところ、気液分離装置から上昇管を通じて液が電解槽内に逆流するとともに、電解槽内の上部空間の水素は、小孔を通じて気液分離装置へ排出された。
【0014】
【発明の効果】
本発明の次亜塩素酸塩の製造装置は、無隔膜式電解槽内の電解液面に開口部を有する上昇管に結合した気液分離装置を設け、電解槽の運転停止時には、電解槽の上部空間に滞留した水素を安全に放出することができる。
【図面の簡単な説明】
【図1】図1は、本発明の次亜塩素酸塩製造装置の一実施例を示す図である。
【図2】図2は、図1の一部を拡大して説明する図である。
【図3】図3は、従来の次亜塩素酸塩製造装置の一例を説明する図である。
【符号の説明】
1…無隔膜式電解槽、2…食塩水、3…次亜塩素酸塩管路、4…水素管路、5…水封安全器、6…水素放散管、7…希釈空気ポンプ、8…次亜塩素酸塩貯槽、9…供給ポンプ、10…電解液面、11…上昇管、12…気液分離装置、13…小孔、14…希薄空気供給管、15…陽極、16…陰極、17…水素気泡、18…上部空間
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for producing hypochlorite by electrolysis, and more particularly to an apparatus for producing hypochlorite with high safety when operation is stopped.
[0002]
[Prior art]
Hypochlorite typified by sodium hypochlorite is used as a flotation agent and disinfectant in various fields such as water and sewage treatment and drainage treatment for household kitchens and laundry. Hypochlorite can be produced by reacting alkali metal hydroxide obtained by electrolysis of an aqueous solution of alkali metal chloride such as saline with chlorine, or by using alkali metal chloride as a membrane. It is performed by a method in which electrolysis is performed in an electrolytic cell and hypochlorite is directly produced in the electrolytic cell. Since the method of reacting alkali metal hydroxide and chlorine can obtain a high concentration of hypochlorite, this method is used when manufacturing for the purpose of selling hypochlorite. However, since an electrolytic facility for producing alkali metal hydroxide and chlorine is required, it is carried out on a large scale in association with the production of sodium hydroxide or chlorine in an electrolytic plant for saline solution.
[0003]
On the other hand, a method of electrolyzing an aqueous solution such as salt in a diaphragm membrane electrolytic cell is also known. In this method, the concentration of hypochlorite produced is relatively low, but it is possible to produce a concentration that can be used directly for water purification and sterilization, and the production equipment is also hydroxylated. Since it is simpler than electrolytic equipment for producing alkali and chlorine, it is produced in the field where hypochlorite is required.
[0004]
FIG. 3 is a diagram illustrating an example of a conventional hypochlorite production apparatus.
[0005]
The hypochlorite production apparatus supplies saline 2 to the diaphragm-type electrolytic cell 1 for hypochlorite production, performs electrolysis in the diaphragm-type electrolytic cell, and the hypochlorite is the next. The generated hydrogen is supplied to the water seal safety device 5 through the chlorite conduit 3 and the hydrogen conduit 4, and the hydrogen is dissipated by keeping the liquid level in the water seal safety device 5 within a predetermined range. It is discharged to the outside through the pipe 6. Further, the hydrogen diffusion pipe 6 is supplied with air for diluting the hydrogen concentration by the dilution air pump 7 to reduce the hydrogen concentration to a safe level.
[0006]
On the other hand, hypochlorite is stored in the hypochlorite storage tank 8 from the water seal safety device and supplied to a desired place of use by the supply pump 9.
The electrolyzer may be intermittently operated according to the amount of hypochlorite used, but when the electrolyzer is stopped, hydrogen generated by electrolysis may stay in the electrolyzer. . If hydrogen stays in the electrolytic cell for a long time, there is a possibility of mixing with oxygen in the air, resulting in a risk of hydrogen explosion.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a hypochlorite production apparatus, in particular, a highly safe hypochlorite production in which hydrogen is prevented from staying in the electrolytic cell when the operation is stopped. It is an object to provide an apparatus.
[0008]
[Means for Solving the Problems]
The present invention relates to a hypochlorite production apparatus based on electrolysis of salt water, wherein a gas-liquid separator provided at the top of a diaphragm-type electrolytic cell is disposed, and an electrolyte surface is formed in the diaphragm-type electrolytic cell. An upper space is provided above the electrolyte surface in the electrolytic cell, and a riser pipe having one end of the opening located on the electrolyte surface and the other end of the opening connected to the gas-liquid separator is disposed. A small hole is provided in the upper space of the electrolytic cell. When the electrolytic cell is stopped, the electrolytic solution in the gas-liquid separator flows backward through the riser and hydrogen stays in the upper space of the electrolytic cell through the small hole. Is a hypochlorite production device that discharges the gas to a gas-liquid separator.
In the hypochlorite producing apparatus, the inner diameter of the riser is 15 mm to 150 mm and the diameter of the small hole is 2 mm to 20 mm.
DETAILED DESCRIPTION OF THE INVENTION
The hypochlorite production apparatus of the present invention is a combination of a gas-liquid separation device and an electrolysis of salt water supplied to an electrolytic cell by connecting a gas-liquid separator to an upper space in an electrolyzer with a gas-liquid mixed fluid. The gas-liquid mixed fluid is raised to the gas-liquid separator by the rise of bubbles that are sometimes generated and separated into hypochlorite and hydrogen in the gas-liquid separator, and when the electrolytic cell is stopped, Since there are no rising bubbles, hypochlorite in the gas-liquid separator flows back into the electrolytic cell, and the hydrogen in the electrolytic cell is discharged to the gas-liquid separator from the small holes provided in the riser pipe for electrolysis. Hydrogen is prevented from staying when the operation of the electrolytic cell is stopped by discharging hydrogen from the inside of the cell.
[0009]
The present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing an embodiment of the hypochlorite production apparatus of the present invention.
The hypochlorite production apparatus of the present invention has a diaphragm-type electrolytic cell 1, and a gas-liquid separation device 12 coupled to a riser pipe 11 having an opening on the electrolyte surface 10 of the diaphragm-type electrolytic cell 1. Is provided. It has a small hole 13 that opens into an upper space in the electrolytic cell above the diaphragm-type electrolytic cell 1 of the riser 11.
Further, the gas-liquid separator 12 is connected to a hydrogen diffusion pipe 6 and a diluted air supply pipe 14 connected to the dilution air pump 7. In the gas-liquid separator 12, the hypochlorite from which hydrogen has been separated is And stored in a hypochlorite storage tank 8 and supplied to a desired place of use by a supply pump 9.
[0010]
In the hypochlorite production apparatus of the present invention, the saline 2 supplied to the diaphragm-type electrolytic cell 1 is electrolyzed by the anode 15 and the cathode 16, and hypochlorite is generated from the chlorine generated at the anode. Hydrogen is generated by both electrolysis at the cathode and hypochlorite formation reaction.
Due to the buoyancy of the generated hydrogen bubbles 17 and the flow of the supplied salt water, the liquid containing hypochlorite ascends the riser 11 and reaches the gas-liquid separator 12, and the hydrogen bubbles 17 follow. It is separated from the chlorite and discharged from the hydrogen diffusion tube 6. The gas-liquid separator 12 is supplied from an air supply pipe 14 coupled to the dilution air pump 7 and can be diluted to a safe concentration.
Further, when the operation of the diaphragm electrolyzer 1 is stopped, when the supply of the salt water 2 is stopped, hypochlorite flows backward from the gas-liquid separator 12, and the hydrogen in the electrolyzer is a small hole provided in the riser pipe. 13 rises to gas-liquid separator 12 and is discharged to the outside.
[0011]
2 is an enlarged view of a part of FIG. 1, and is an enlarged view of a portion A in FIG.
When the energization to the diaphragm-type electrolytic cell 1 is stopped and the supply of salt water is stopped, the liquid in the gas-liquid separator and the riser pipe 11 flows back into the diaphragm-type electrolytic tank 1 through the riser pipe 11, and the diaphragm membrane The gas in the upper space 18 of the electrolytic cell 1 is discharged to the gas-liquid separator through the small hole 13 through the riser pipe.
In the present invention, any rising pipe can be used, but it is preferable that the rising speed of the liquid passing through the rising pipe and hydrogen bubbles during energization is 0.4 to 0.8 m / sec. If the ascending speed is less than 0.4 m / sec, it is necessary to increase the diameter of the ascending pipe, which is not preferable in terms of structure. On the other hand, if it exceeds 0.8 m / sec, the resistance of the fluid flowing through the riser tube may increase, and the liquid level of the electrolytic cell being energized may change.
[0012]
The inner diameter of the riser is determined according to the amount of hypochlorite produced, but is preferably 15 mm to 150 mm.
Further, the small hole provided in the portion of the riser located in the upper space of the electrolytic cell has a hydrogen flow rate of 15 to 25 m / sec in the small hole portion in order to prevent hydrogen generated during energization from passing through the entire small hole. The diameter is preferably such that 2 mm to 20 mm. Further, the number of small holes is not limited to one, and a plurality of small holes may be provided.
[0013]
【Example】
Hereinafter, the present invention will be described with reference to examples.
Example 1
Electrolytic solution cooling pipes are attached to a diaphragm-type electrolytic cell provided with an anode coated with an electrode catalyst material containing a platinum group metal oxide having a length of 200 mm and a width of 150 mm, and a cathode having a titanium cathode. A gas-liquid separator having a length of 20 mm, a width of 50 mm, and a height of 25 mm is attached to the upper part of the riser pipe having an inner diameter of 40 mm and having an opening on the electrolyte surface of the tank. Was provided.
A current of 250 amperes was passed through the electrolytic cell, and 30 g / l of saline was supplied at a flow rate of 420 liters / hour for electrolysis, and then the current supply and the supply of saline were stopped. The liquid back-flowed into the electrolytic cell from the gas-liquid separator through the riser, and the hydrogen in the upper space in the electrolytic cell was discharged to the gas-liquid separator through the small hole.
[0014]
【The invention's effect】
The hypochlorite production apparatus of the present invention is provided with a gas-liquid separation device coupled to a riser pipe having an opening on the electrolyte surface in a diaphragm-type electrolytic cell, and when the electrolytic cell is stopped, Hydrogen staying in the upper space can be safely released.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of a hypochlorite production apparatus according to the present invention.
FIG. 2 is a diagram illustrating a part of FIG. 1 in an enlarged manner.
FIG. 3 is a diagram for explaining an example of a conventional hypochlorite production apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Non-membrane type electrolytic cell, 2 ... Saline, 3 ... Hypochlorite pipe, 4 ... Hydrogen pipe, 5 ... Water seal safeguard, 6 ... Hydrogen diffusion pipe, 7 ... Dilution air pump, 8 ... Hypochlorite storage tank, 9 ... supply pump, 10 ... electrolyte surface, 11 ... rising pipe, 12 ... gas-liquid separator, 13 ... small hole, 14 ... lean air supply pipe, 15 ... anode, 16 ... cathode, 17 ... Hydrogen bubbles, 18 ... Upper space

Claims (1)

塩水の電気分解による次亜塩素酸塩製造装置において、無隔膜式電解槽の上部に設けた気液分離装置を配置し、無隔膜式電解槽内に電解液面を形成して電解槽内の電解液面の上部に上部空間を設け、該電解液面に開口部の一端が位置し、他端の開口部を気液分離装置に結合した上昇管を配置し、上昇管の電解槽の上部空間に位置する部分には小孔を設け、電解槽の運転停止時には、気液分離装置内の電解液が上昇管を通じて逆流するとともに小孔から電解槽の上部空間に滞留した水素を気液分離装置へ排出させることを特徴とする次亜塩素酸塩製造装置。  In a hypochlorite production apparatus by electrolysis of salt water, a gas-liquid separation device provided at the top of the diaphragm-type electrolytic cell is arranged, and an electrolyte surface is formed in the diaphragm-type electrolytic cell, An upper space is provided in the upper part of the electrolyte surface, and a riser pipe in which one end of the opening is located on the electrolyte solution surface and the other end of the opening is connected to the gas-liquid separation device is arranged. A small hole is provided in the space, and when the operation of the electrolytic cell is stopped, the electrolytic solution in the gas-liquid separation device flows backward through the riser, and the hydrogen remaining in the upper space of the electrolytic cell is separated from the small hole by gas-liquid separation. Hypochlorite production apparatus characterized by discharging to the apparatus.
JP2000264833A 2000-09-01 2000-09-01 Hypochlorite production equipment Expired - Fee Related JP3770533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000264833A JP3770533B2 (en) 2000-09-01 2000-09-01 Hypochlorite production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000264833A JP3770533B2 (en) 2000-09-01 2000-09-01 Hypochlorite production equipment

Publications (2)

Publication Number Publication Date
JP2002069683A JP2002069683A (en) 2002-03-08
JP3770533B2 true JP3770533B2 (en) 2006-04-26

Family

ID=18752189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000264833A Expired - Fee Related JP3770533B2 (en) 2000-09-01 2000-09-01 Hypochlorite production equipment

Country Status (1)

Country Link
JP (1) JP3770533B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101347905B1 (en) * 2013-06-11 2014-01-08 (주) 시온텍 Electrolyzed-chlorine generator and electrolyzed-chlorine generation system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7005075B2 (en) * 2001-07-16 2006-02-28 Miox Corporation Gas drive electrolytic cell
AU2003902831A0 (en) 2003-06-06 2003-06-26 Ben Bremauer Electrolytic sanitiser generator
KR100863728B1 (en) * 2007-04-25 2008-10-16 삼성전기주식회사 Hydrogen generating apparatus and fuel cell power generation system
JP6328897B2 (en) * 2013-09-17 2018-05-23 株式会社イシダ Electrolyte hyposulfite generator
JP2015192968A (en) * 2014-03-31 2015-11-05 Toto株式会社 Sterilizing water generator
JP6069412B2 (en) * 2015-05-28 2017-02-01 株式会社TrアンドK Simple electrolytic hydrogen gas generator
JP7483481B2 (en) 2020-04-27 2024-05-15 森永乳業株式会社 Electrolyzed water production device and method for producing electrolyzed water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101347905B1 (en) * 2013-06-11 2014-01-08 (주) 시온텍 Electrolyzed-chlorine generator and electrolyzed-chlorine generation system

Also Published As

Publication number Publication date
JP2002069683A (en) 2002-03-08

Similar Documents

Publication Publication Date Title
US5094734A (en) Water treatment unit
JP3716042B2 (en) Acid water production method and electrolytic cell
JP3428998B2 (en) Electrolyzer producing mixed oxidant gas
US4136005A (en) Electrolytic chlorinator
US4500404A (en) Chlorine generator device
US4781810A (en) Advanced chlorine generating system
GB2046308A (en) Electrolytic chlorine purification of water
RU2142917C1 (en) Method and device for electrochemical treatment of water
KR101600037B1 (en) A ballast water treatment system
KR20110113487A (en) Apparatus and method for manufacturing of hypochlorous acid sloution
JP3770533B2 (en) Hypochlorite production equipment
EP0826794A1 (en) Apparatus for producing hypochlorite
JPH1024294A (en) Production of weakly acidic chlorine based sterilizing water
KR20090048153A (en) Different kind liquids mixing device and disinfectant generator by electrolysis using that
US5366605A (en) Water disinfecting apparatus and process
JP3818619B2 (en) Hypochlorite production apparatus and method
JP7054554B2 (en) Device for obtaining electrolytic products from alkali metal chloride solutions
JP3041510B2 (en) Equipment for producing sodium hypochlorite-containing water
JP2020531686A5 (en)
CN109642334B (en) Chlorine dioxide generator and chlorine dioxide generating method
KR100250539B1 (en) System for generating hypochlorons acid
JPH0699174A (en) Electrolytic reaction unit for manufacturing sterile water
KR101390651B1 (en) Sodium Hypochlorite Generator Having Mesh Electrode
JP5877031B2 (en) Hypochlorous acid water production equipment
KR100600077B1 (en) Sodium hypochloride generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees