JP3790291B2 - Plasma processing equipment - Google Patents

Plasma processing equipment Download PDF

Info

Publication number
JP3790291B2
JP3790291B2 JP06014696A JP6014696A JP3790291B2 JP 3790291 B2 JP3790291 B2 JP 3790291B2 JP 06014696 A JP06014696 A JP 06014696A JP 6014696 A JP6014696 A JP 6014696A JP 3790291 B2 JP3790291 B2 JP 3790291B2
Authority
JP
Japan
Prior art keywords
coil
plasma processing
processing apparatus
plasma
excitation coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06014696A
Other languages
Japanese (ja)
Other versions
JPH09228056A (en
Inventor
理 辻
利明 立田
博彦 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samco Inc
Original Assignee
Samco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samco Inc filed Critical Samco Inc
Priority to JP06014696A priority Critical patent/JP3790291B2/en
Publication of JPH09228056A publication Critical patent/JPH09228056A/en
Application granted granted Critical
Publication of JP3790291B2 publication Critical patent/JP3790291B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プラズマエッチング装置、プラズマCVD装置、プラズマ表面処理装置等のプラズマ処理装置に関する。
【0002】
【従来の技術】
半導体素子の高集積化と大面積化の傾向はなお止まる所を知らず、それに対応した加工技術の開発が更に要望されている。また、処理速度の一層の向上も望まれているところである。このような要請に対するプラズマ処理装置側の課題は、プラズマの高密度化と大面積での均一化である。すなわち、微細加工を確実に行なうためには高アスペクト比の加工(垂直加工性)が必要であるが、低圧力下で強い電場や磁場等でイオンの方向性を制御しても、プラズマの密度が十分でないと高速で十分な方向性を持った処理を確保することができない。また同様に、プラズマ生成部において高密度のプラズマを生成しても、均一性を確保するためにそこから被処理物までの距離が長いと、高速、高アスペクト比の加工を行なうことは難しい。
【0003】
高密度のプラズマの生成には、平行平板状の電極を用いた容量結合型よりも、高周波コイルを用いた誘導結合型プラズマ生成装置が適している。そして、プラズマ生成部から被処理物までの距離を短くするためには、誘導結合型プラズマ生成装置において平面状コイルを用いることが望ましい。平面状の励起コイルを用いたプラズマ生成装置については、既に多くの文献及び特許出願が出されている(例えば、特開平3−79025号公報)。
【0004】
ところが、平面コイル型プラズマ生成装置において、コイルと被処理物との距離を短くしつつ、しかもコイルを大面積化して、その大面積内でプラズマ密度を均一にすることは非常に難しい。このような課題に対し、2個又はそれ以上の平面コイルを用いて、隣接するコイルが逆位相の高周波磁界を発生するようにさせるという装置が提案されている(特開平7−245195号公報)。それによると、コイルを複数にし、それらコイルの配置や巻数を変えることにより、高周波磁界の分布を制御して、被処理物を載置する電極の上方の全面にわたって均一なプラズマを発生することができると記載されている(同公報段落0017)。
【0005】
【発明が解決しようとする課題】
上記特開平7−245195号公報に記載のプラズマ処理装置でプラズマ密度を均一化しようとするためには、複数のコイルの位置及び各コイルに流す高周波電流・電圧を調整する必要があるが、これは非常に微妙な、時間のかかる作業となる。また、プラズマ密度をより均一化しようとするとコイルの数を多くしなければならないが、コイルの数を多くすると調整すべきパラメータの数が増え、調整作業は実際上著しく困難となる。また、コイルの数が増えると周辺回路もそれに応じて複雑になるため、コスト上昇も問題となる。
【0006】
本発明はこのような課題を解決するために成されたものであり、簡単な構成でありながら広い面積でプラズマ密度を均一化することができ、しかも調整が容易なプラズマ処理装置を提供するものである。
【0007】
【課題を解決するための手段】
上記課題を解決するために成された本発明に係るプラズマ処理装置は、周辺部から中心部にかけて徐々に被処理物の表面から離れるような渦巻形状を有する励起コイルを備えていることを特徴とするものである。すなわち、従来のこの種の励起コイルは全て図3に示すような平面渦巻形(スパイラル形)であったが、本発明に係るプラズマ処理装置の励起コイルは図2に示すような立体渦巻形(以下、インバーテッド・トルネード形と呼ぶ)となっている。
【0008】
なお、このような励起コイルの中心部を、被処理物の表面に平行に、垂直に、或いは3次元的に、移動させるための機構を設けるようにしてもよい。
【0009】
同様に、従来の平面スパイラル形の励起コイルについても、その中心部を被処理物の表面に平行に、垂直に、或いは3次元的に移動させるための機構を設けてもよい。
【0010】
【発明の実施の形態及び効果】
高周波コイルにより生成されるプラズマの密度は、コイルにより生成される電界の強さに依存する。アンテナの理論より、コイルの或る微小部分を原点とした球座標をとると、位置(r,θ,φ)に生成される電界のθ成分Eθは、コイルに流れる電流をI0・exp(j・ω・t)とすると、
Eθ=A・{−1/(k・r)+j/(k・r)2+1/(k・r)3}・sinθ …(1)
(Aは定数、kは電磁波の波数)と表わされる。コイル全体によりその位置に生成される電界の大きさは上記式(1)をコイル全体で積分した値になる。式(1)において、右辺の第1項は遠方まで伝播する電磁波に対応し、他の項はコイルの近傍(k・r<<1)に局在する近接場であって、第2項は磁界の時間変化から誘起されるインダクティブな近接場、第3項は電荷により誘起されるキャパシティブな近接場に対応する(菅井秀郎、"低圧力・高密度プラズマの新しい展開"、「応用物理」第63巻第6号p.560)。励起コイルを被処理物に近接させ、コイルに高周波電流を流すコイル型プラズマ生成装置ではこの第2項が支配的であるため、この項(の積分値)による被処理物近傍の電界Eが均等となるようにコイルの形状、巻き方等を調整する必要がある。
【0011】
従来の平面スパイラル形コイルにより励起される磁場の強さは、当然、隣接する部分の無い周辺部において弱く、中央部において強い。これを補償して磁場を均一にするためには、周辺部においてスパイラル線の巻き密度を高くし、中心部において巻き密度を低くするような形状としなければならないが、磁場の強さが均一になるようにスパイラル各部の巻き密度を調整する作業が難しい上、たとえそのような調整作業ができたとしても、金属線から成り弾性を有するスパイラルの巻き密度を周辺部と中央部とで違え、それを固定することは非常に難しい。
【0012】
本発明に係るプラズマ処理装置では励起コイルをインバーテッド・トルネード形とすることにより、励起コイルの下部の平面において、中心部における磁場の強さを周辺部よりも相対的に弱くする。その強弱の調整は中心部の高さを変化させるだけでよく、スパイラルの各部の巻き密度の調整よりはずっと容易である。また、調整後のコイル形状の固定も、弾性による高さの戻りを考慮するだけでよいため、巻き密度を変化させた状態で固定しなければならない場合よりも遙かに容易である。
【0013】
以上述べたのは、励起コイルの形状をインバーテッド・トルネード形に固定しておく場合であるが、さらに、その中心部を水平、垂直或いは3次元的に移動させるための機構をプラズマ処理装置に設けることにより、実作業時に生じる種々の変動要因をその場で補償して、被処理物近傍のプラズマ密度の均一性を更に高めることができるようになる。
【0014】
従来の平面スパイラル形の励起コイルに対して、その中心部を水平、垂直或いは3次元的に移動させるための機構を設けた場合も同様である。
【0015】
以上の説明から十分理解される通り、本発明に係る原理はエッチング、CVD、プラズマ表面処理等の処理内容に拘らないものである。従って、最初に述べたように本発明はこれらいずれのプラズマ処理装置についても適用可能である。
【0016】
【実施例】
本発明の一実施例として、プラズマエッチング装置10を図1に示す。密閉された反応室11中には平板状の下部電極12が設けられ、下部電極12はバイアス用交流電源13に接続されている。反応室11の上面は石英板14で構成され、その直上(反応室11の外部)には励起コイル15が配置されている。励起コイル15は上記のインバーテッド・トルネード形コイルである。コイル15は銅管により構成され、その両端は、コイル15に高周波電流を流すための高周波回路16と、コイル15内部に冷却水を流通させるための冷却水供給装置17とに接続されている。コイルに冷却水を流通させることにより、上記(1)式の右辺第3項を低減することができる。なお、図1に示した高周波回路16は一例であり、その他種々の励起回路を用いることができる。
【0017】
本実施例のプラズマエッチング装置10を使用する際は、まず下部電極12の上面に被処理物20を載置し、反応室11内の空気を排出する。その後、反応室11内に、被処理物20に対して反応性のガスを所定圧力となるまで入れ、コイル15に高周波電流(通常、13.56MHz)を流す。これにより、反応室11内の被処理物20の上部にシート状のプラズマ雲21が形成され、下部電極12に印加されたバイアス電圧により、プラズマ21中のイオンが被処理物20の表面に衝突する。このバイアス電圧を制御することにより、イオンの衝突エネルギーの最適化を行なう。
【0018】
本実施例のプラズマエッチング装置10では、予備処理により被処理物20全面各部のエッチングの度合いを調べ、その結果に基づいてインバーテッド・トルネード形コイル15の中央部の高さ及び水平方向の位置を決定することにより、被処理物20全面において均一なエッチングレートを得ることができる。
【0019】
このような調整を更に容易にするために、インバーテッド・トルネード形コイル15の中心部を3次元的に移動させるための機構を設けてもよい。図4にその一例を示すが、この機構30では、ベース31に対してヘッド32が上下移動及び回転移動を行ない、コイル15の中心部を保持するビーム33がヘッド32から伸縮するようになっている。
【0020】
なお、このような3次元移動に加え、コイル15の中心部をねじるための機構を設けてもよい。これは丁度ゼンマイバネを巻くのと同様であり、コイル15の中心部をねじることにより渦巻(平面スパイラル形の場合及びインバーテッド・トルネード形の場合ともに)の巻き込みが強く或いは弱くなり、コイル15を構成する線の分布密度を中心部と周辺部との間で変化させることができる。
【図面の簡単な説明】
【図1】 本発明の一実施例であるプラズマエッチング装置の概略構成図。
【図2】 本発明に係るプラズマ処理装置で用いられるインバーテッド・トルネード形励起コイルの斜視図。
【図3】 従来の誘導結合型プラズマ処理装置で用いられている平面スパイラル形励起コイルの斜視図。
【図4】 本発明の別の実施例であるプラズマ処理装置の概略構成図。
【符号の説明】
10…プラズマエッチング装置
11…反応室
12…下部電極
13…バイアス用交流電源
14…石英板
15…励起コイル
16…高周波回路
17…冷却水供給装置
20…被処理物
21…プラズマ雲
30…コイル中心部移動機構
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plasma processing apparatus such as a plasma etching apparatus, a plasma CVD apparatus, and a plasma surface processing apparatus.
[0002]
[Prior art]
The trend toward higher integration and larger area of semiconductor elements is still unknown, and there is a further demand for development of processing technology corresponding to them. Further, further improvement in processing speed is desired. The problem on the plasma processing apparatus side in response to such a request is to increase the density of plasma and make it uniform over a large area. In other words, high aspect ratio processing (vertical processability) is necessary to ensure fine processing, but the plasma density is controlled even if the direction of ions is controlled by a strong electric field or magnetic field under low pressure. If it is not sufficient, it is impossible to secure a process with sufficient direction at high speed. Similarly, even if high-density plasma is generated in the plasma generation unit, if the distance from the object to be processed is long in order to ensure uniformity, it is difficult to perform high speed and high aspect ratio processing.
[0003]
For the generation of high-density plasma, an inductively coupled plasma generating apparatus using a high frequency coil is more suitable than a capacitively coupled type using parallel plate electrodes. In order to shorten the distance from the plasma generation unit to the object to be processed, it is desirable to use a planar coil in the inductively coupled plasma generation apparatus. Many literatures and patent applications have already been issued for plasma generators using planar excitation coils (for example, Japanese Patent Laid-Open No. 3-79025).
[0004]
However, in the planar coil type plasma generating apparatus, it is very difficult to increase the area of the coil and make the plasma density uniform within the large area while shortening the distance between the coil and the object to be processed. For such a problem, an apparatus has been proposed in which two or more planar coils are used so that adjacent coils generate a high-frequency magnetic field having an opposite phase (Japanese Patent Laid-Open No. 7-245195). . According to this, by using a plurality of coils and changing the arrangement and number of turns of the coils, the distribution of the high-frequency magnetic field can be controlled to generate uniform plasma over the entire surface above the electrode on which the workpiece is placed. It is described that it can be done (paragraph 0017 of the publication).
[0005]
[Problems to be solved by the invention]
In order to make the plasma density uniform with the plasma processing apparatus described in the above-mentioned JP-A-7-245195, it is necessary to adjust the positions of a plurality of coils and the high-frequency currents / voltages flowing through the coils. Is a very subtle and time consuming task. Further, in order to make the plasma density more uniform, the number of coils must be increased. However, when the number of coils is increased, the number of parameters to be adjusted increases, and the adjustment work becomes extremely difficult in practice. In addition, as the number of coils increases, the peripheral circuit also becomes complicated accordingly, so that an increase in cost becomes a problem.
[0006]
The present invention has been made to solve the above-described problems, and provides a plasma processing apparatus that can make the plasma density uniform over a wide area and is easy to adjust while having a simple configuration. It is.
[0007]
[Means for Solving the Problems]
The plasma processing apparatus according to the present invention, which has been made to solve the above-mentioned problems, is characterized by comprising an excitation coil having a spiral shape that gradually separates from the surface of the object to be processed from the peripheral part to the central part. To do. That is, all the conventional excitation coils of this type have a flat spiral shape (spiral shape) as shown in FIG. 3, but the excitation coil of the plasma processing apparatus according to the present invention has a three-dimensional spiral shape (as shown in FIG. Hereinafter, it is called an inverted tornado type).
[0008]
In addition, you may make it provide the mechanism for moving the center part of such an excitation coil in parallel with the surface of a to-be-processed object, perpendicular | vertical, or three-dimensionally.
[0009]
Similarly, a mechanism for moving the central portion of the conventional planar spiral excitation coil in parallel, perpendicularly or three-dimensionally to the surface of the workpiece may be provided.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The density of the plasma generated by the high frequency coil depends on the strength of the electric field generated by the coil. According to the theory of antennas, when taking spherical coordinates with a certain minute portion of the coil as the origin, the θ component Eθ of the electric field generated at the position (r, θ, φ) represents the current flowing through the coil as I 0 · exp ( j · ω · t)
Eθ = A · {−1 / (k · r) + j / (k · r) 2 + 1 / (k · r) 3 } · sin θ (1)
(A is a constant, k is the wave number of electromagnetic waves). The magnitude of the electric field generated at that position by the entire coil is a value obtained by integrating the above equation (1) with the entire coil. In Equation (1), the first term on the right side corresponds to the electromagnetic wave propagating far away, the other term is a near field localized near the coil (k · r << 1), and the second term is Inductive near field induced by time change of magnetic field, the third term corresponds to capacitive near field induced by electric charge (Hideo Sakurai, "New development of low-pressure and high-density plasma", "Applied Physics" 63, No. 6, p.560). Since the second term is dominant in the coil-type plasma generating apparatus in which the excitation coil is brought close to the object to be processed and a high-frequency current is passed through the coil, the electric field E in the vicinity of the object to be processed by this term (the integral value thereof) is uniform. It is necessary to adjust the coil shape, winding method, etc.
[0011]
Naturally, the strength of the magnetic field excited by the conventional planar spiral coil is weak in the peripheral portion where there is no adjacent portion and strong in the central portion. In order to compensate for this and make the magnetic field uniform, the winding density of the spiral wire must be increased at the periphery and the winding density must be decreased at the center, but the strength of the magnetic field must be uniform. It is difficult to adjust the winding density of each part of the spiral so that even if such adjustment work can be done, the winding density of the spiral made of metal wire is different between the peripheral part and the central part, It is very difficult to fix.
[0012]
In the plasma processing apparatus according to the present invention, the excitation coil is in an inverted tornado shape, so that the strength of the magnetic field in the central portion is relatively weaker than that in the peripheral portion on the plane below the excitation coil. It is only necessary to change the height of the central part to adjust the strength, and it is much easier than adjusting the winding density of each part of the spiral. Further, fixing the coil shape after adjustment is much easier than the case where it is necessary to consider the return of height due to elasticity, and it is necessary to fix the coil shape while changing the winding density.
[0013]
The above is the case where the shape of the excitation coil is fixed to the inverted tornado shape, and furthermore, a mechanism for moving the central portion horizontally, vertically or three-dimensionally is provided in the plasma processing apparatus. By providing it, it is possible to compensate for various fluctuation factors that occur during actual work on the spot and to further improve the uniformity of the plasma density in the vicinity of the workpiece.
[0014]
The same applies to a conventional planar spiral excitation coil provided with a mechanism for moving the central portion thereof horizontally, vertically or three-dimensionally.
[0015]
As will be fully understood from the above description, the principle of the present invention is not related to the processing contents such as etching, CVD, plasma surface treatment and the like. Therefore, as described above, the present invention can be applied to any of these plasma processing apparatuses.
[0016]
【Example】
As an embodiment of the present invention, a plasma etching apparatus 10 is shown in FIG. A flat lower electrode 12 is provided in the sealed reaction chamber 11, and the lower electrode 12 is connected to a bias AC power source 13. The upper surface of the reaction chamber 11 is composed of a quartz plate 14, and an excitation coil 15 is arranged immediately above (outside the reaction chamber 11). The excitation coil 15 is the above-described inverted tornado coil. The coil 15 is formed of a copper tube, and both ends thereof are connected to a high-frequency circuit 16 for flowing a high-frequency current through the coil 15 and a cooling water supply device 17 for circulating cooling water inside the coil 15. By allowing the cooling water to flow through the coil, the third term on the right side of the equation (1) can be reduced. The high-frequency circuit 16 shown in FIG. 1 is an example, and other various excitation circuits can be used.
[0017]
When using the plasma etching apparatus 10 of the present embodiment, first, the workpiece 20 is placed on the upper surface of the lower electrode 12 and the air in the reaction chamber 11 is discharged. Thereafter, a gas reactive to the object to be processed 20 is put into the reaction chamber 11 until a predetermined pressure is reached, and a high-frequency current (usually 13.56 MHz) is passed through the coil 15. As a result, a sheet-like plasma cloud 21 is formed on the workpiece 20 in the reaction chamber 11, and ions in the plasma 21 collide with the surface of the workpiece 20 by the bias voltage applied to the lower electrode 12. To do. By controlling this bias voltage, ion collision energy is optimized.
[0018]
In the plasma etching apparatus 10 of the present embodiment, the degree of etching of each part of the entire surface of the workpiece 20 is examined by preliminary treatment, and the height and horizontal position of the central part of the inverted tornado coil 15 are determined based on the result. By determining, a uniform etching rate can be obtained over the entire surface of the workpiece 20.
[0019]
In order to further facilitate such adjustment, a mechanism for moving the central portion of the inverted tornado coil 15 three-dimensionally may be provided. An example is shown in FIG. 4. In this mechanism 30, the head 32 moves up and down and rotates with respect to the base 31, and the beam 33 that holds the central portion of the coil 15 expands and contracts from the head 32. Yes.
[0020]
In addition to such a three-dimensional movement, a mechanism for twisting the central portion of the coil 15 may be provided. This is exactly the same as winding the mainspring, and by twisting the central portion of the coil 15, the winding of the spiral (both in the case of the planar spiral type and in the case of the inverted tornado type) becomes stronger or weaker, and the coil 15 is configured. The distribution density of the lines to be changed can be changed between the central portion and the peripheral portion.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a plasma etching apparatus according to an embodiment of the present invention.
FIG. 2 is a perspective view of an inverted tornado excitation coil used in the plasma processing apparatus according to the present invention.
FIG. 3 is a perspective view of a planar spiral excitation coil used in a conventional inductively coupled plasma processing apparatus.
FIG. 4 is a schematic configuration diagram of a plasma processing apparatus according to another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Plasma etching apparatus 11 ... Reaction chamber 12 ... Lower electrode 13 ... AC power supply 14 for bias ... Quartz plate 15 ... Excitation coil 16 ... High frequency circuit 17 ... Cooling water supply apparatus 20 ... To-be-processed object 21 ... Plasma cloud 30 ... Coil center Part moving mechanism

Claims (5)

周辺部から中心部にかけて徐々に被処理物の表面から離れるような渦巻形状を有する励起コイルを備えたプラズマ処理装置において、該励起コイルの中心部をコイル周辺部の固定位置に対して被処理物の表面に平行に及び/又は垂直に移動させるための機構を備えたことを特徴とするプラズマ処理装置。In a plasma processing apparatus having an excitation coil having a spiral shape that gradually moves away from the surface of an object to be processed from the peripheral part to the center part, the object to be processed is arranged with respect to the fixed position of the coil peripheral part . A plasma processing apparatus comprising a mechanism for moving in parallel and / or perpendicular to the surface of the substrate. 被処理物の表面に平行な平面渦巻状の励起コイルを有するプラズマ処理装置において、該励起コイルの中心部をコイル周辺部の固定位置に対して被処理物の表面に平行に及び/又は垂直に移動させるための機構を備えたプラズマ処理装置。In a plasma processing apparatus having a planar spiral excitation coil parallel to the surface of an object to be processed, the central portion of the excitation coil is parallel to and / or perpendicular to the surface of the object to be processed with respect to a fixed position on the periphery of the coil. A plasma processing apparatus provided with a mechanism for moving. 周辺部から中心部にかけて徐々に被処理物の表面から離れるような渦巻形状又は平面渦巻形状の励起コイルを備えたプラズマ処理装置において、該励起コイルの中心部をコイル周辺部に対してねじるための機構を備えたことを特徴とするプラズマ処理装置。In a plasma processing apparatus having an excitation coil having a spiral shape or a planar spiral shape that gradually moves away from the surface of the workpiece from the peripheral portion to the central portion, for twisting the central portion of the excitation coil with respect to the coil peripheral portion A plasma processing apparatus comprising a mechanism. 該励起コイルの両端の間に高周波電流を供給する高周波回路を有することを特徴とする請求項1〜3のいずれかに記載のプラズマ処理装置。  The plasma processing apparatus according to claim 1, further comprising a high-frequency circuit that supplies a high-frequency current between both ends of the excitation coil. 該励起コイル内部に冷却水を流通させるための冷却水供給装置を備えることを特徴とする請求項1〜のいずれかに記載のプラズマ処理装置。The plasma processing apparatus according to any one of claims 1-4, characterized in that it comprises a cooling water supply device for circulating cooling water therein該Reiki coil.
JP06014696A 1996-02-21 1996-02-21 Plasma processing equipment Expired - Lifetime JP3790291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06014696A JP3790291B2 (en) 1996-02-21 1996-02-21 Plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06014696A JP3790291B2 (en) 1996-02-21 1996-02-21 Plasma processing equipment

Publications (2)

Publication Number Publication Date
JPH09228056A JPH09228056A (en) 1997-09-02
JP3790291B2 true JP3790291B2 (en) 2006-06-28

Family

ID=13133724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06014696A Expired - Lifetime JP3790291B2 (en) 1996-02-21 1996-02-21 Plasma processing equipment

Country Status (1)

Country Link
JP (1) JP3790291B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7713432B2 (en) * 2004-10-04 2010-05-11 David Johnson Method and apparatus to improve plasma etch uniformity
JP4997619B2 (en) * 2005-03-09 2012-08-08 サムコ株式会社 Inductively coupled plasma processing equipment
US7504041B2 (en) * 2006-05-03 2009-03-17 Applied Materials, Inc. Method of processing a workpiece in a plasma reactor employing a dynamically adjustable plasma source power applicator
JP4933937B2 (en) * 2007-03-30 2012-05-16 パナソニック株式会社 Plasma processing method
JP5200221B2 (en) * 2008-03-11 2013-06-05 サムコ株式会社 Plasma processing equipment
JP5554047B2 (en) * 2009-10-27 2014-07-23 東京エレクトロン株式会社 Plasma processing equipment
WO2011102083A1 (en) * 2010-02-19 2011-08-25 株式会社アルバック Plasma processing device and plasma processing method
KR101720339B1 (en) * 2010-10-12 2017-03-27 엘지디스플레이 주식회사 Inductive coupled plasma reactor apparatus and driving method thereof
KR101256962B1 (en) * 2011-05-31 2013-04-26 세메스 주식회사 Antenna unit, substrate treating apparatus including the unit and substrate treating method using the apparatus
CN103560068B (en) * 2013-11-04 2016-06-08 中微半导体设备(上海)有限公司 Uniformly change plasma treatment appts and the control method thereof of plasma distribution
JP6955791B1 (en) * 2020-06-15 2021-10-27 アダプティブ プラズマ テクノロジー コーポレーション Plasma source coil with structural deformation and its adjustment method

Also Published As

Publication number Publication date
JPH09228056A (en) 1997-09-02

Similar Documents

Publication Publication Date Title
JP3224529B2 (en) Plasma processing system
TW312815B (en)
JP3097957B2 (en) High quality inductively coupled plasma reactor
TWI829781B (en) Apparatus for generating plasma
JP4769586B2 (en) Plasma reactor and method for improving the uniformity of plasma ion concentration distribution
JP4928077B2 (en) Method for improving uniformity of plasma processing, plasma processing apparatus, and antenna apparatus used therefor
JP3790291B2 (en) Plasma processing equipment
JPH10513301A (en) System and method for generating an oscillating magnetic field at a working gap useful for illuminating a surface with atomic and molecular ions
JP4541557B2 (en) Plasma etching equipment
JP2004111960A (en) Apparatus for producing inductively coupled plasma
EP0594706A4 (en) Method of producing flat ecr layer in microwave plasma device and apparatus therefor
JP2000323298A (en) Plasma treatment device and method
WO2003025971A2 (en) Plasma processing apparatus with coil magnet system
US10115566B2 (en) Method and apparatus for controlling a magnetic field in a plasma chamber
CN111183504B (en) Superlocal and plasma uniformity control in manufacturing processes
US8216420B2 (en) Plasma processing apparatus
JP3462865B2 (en) Feeding antenna and semiconductor manufacturing apparatus
JPH1197430A (en) High-density plasma processing chamber
JP6530859B2 (en) Plasma processing system
JP2002151481A (en) Plasma processing apparatus and plasma processing method
JP3197739B2 (en) Plasma processing equipment
JP2679756B2 (en) Plasma processing equipment
US6106683A (en) Grazing angle plasma polisher (GAPP)
JP3043215B2 (en) Plasma generator
JP2003323999A (en) High frequency inductively coupled plasma generating device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term