JP3790130B2 - Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid - Google Patents

Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid Download PDF

Info

Publication number
JP3790130B2
JP3790130B2 JP2001193899A JP2001193899A JP3790130B2 JP 3790130 B2 JP3790130 B2 JP 3790130B2 JP 2001193899 A JP2001193899 A JP 2001193899A JP 2001193899 A JP2001193899 A JP 2001193899A JP 3790130 B2 JP3790130 B2 JP 3790130B2
Authority
JP
Japan
Prior art keywords
catalyst
methacrylic acid
producing
molded product
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001193899A
Other languages
Japanese (ja)
Other versions
JP2003001113A (en
Inventor
邦彦 重松
直輝 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2001193899A priority Critical patent/JP3790130B2/en
Publication of JP2003001113A publication Critical patent/JP2003001113A/en
Application granted granted Critical
Publication of JP3790130B2 publication Critical patent/JP3790130B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明はメタクロレインを気相にて分子状酸素または分子状酸素を含有するガスにより酸化してメタクリル酸を製造する触媒の製造方法および該製造方法により得られた触媒を用いたメタクリル酸の製造方法に関する。
【0002】
【従来の技術】
メタクロレインを気相接触酸化してメタクリル酸を製造するための触媒の製造方法に関しては数多くの提案がなされている。これら提案のうち触媒の細孔構造を規制し触媒の選択性を向上させることを目的として、触媒に必須の成分以外の添加物を加える触媒調製法としては、例えば特開昭55−73347号公報にはセルロース、ポリビニルアルコール等の有機物質を1〜10wt%添加して成型し触媒とする方法が、また特開昭60−239439号公報にはピリジン等の有機含窒素化合物を添加し触媒とする方法が提案されている。さらに特開平4−367737号公報には平均粒径0.01〜10μmのポリメタクリル酸メチル等の高分子有機化合物を添加して成型し、触媒とする方法が提案されている。
【0003】
成型に際して有機化合物を添加しない例として、特開平10−244160号公報においては、平均粒径が0.1〜100μmである炭酸アンモニウム等の炭酸化合物の粉体を添加して成型し、触媒とする方法が提案されている。
【0004】
【発明が解決しようとする課題】
しかしながら有機化合物を添加剤として用いた場合、その後の熱処理時に有機化合物の燃焼による触媒の局所的な還元や焼結が生じ、触媒性能を損ねる原因となる。
【0005】
一方、炭酸化合物の粉体を添加する方法では、粉体の粒径を好適な範囲に調整するために、粉砕する工程や分級する工程が必要となり、製造工程が煩雑になるという問題を有している。
【0006】
さらに上記先行文献に記載された技術は主として、添加物の種類やその物性に関するものであり、焼成前の成型品の処理方法については開示されていない。
【0007】
また、成型に際しては水や助剤を添加して成型する方法が提案されているが、その場合の成型直後の成型品は、工業スケールの製造で取り扱うには成型品の強度が弱いという問題があり、何らかの処理を実施して工業スケールの取り扱いが可能なレベルまで強度を上げる必要がある。このため、特開平5―309273号公報や特開平8―10621号公報において、60〜150℃の温度で乾燥する技術が開示されている。しかし、乾燥方法や温度以外の乾燥条件に関しては、何ら開示されていない。
【0008】
本発明の目的は、高い反応活性および選択性を有し、かつ工業スケールにおいて均質で再現性良く製造し得るメタクリル酸製造用触媒の製造方法および該製造方法により製造した触媒を用いたメタクリル酸の製造方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明は、メタクロレインを気相にて分子状酸素または分子状酸素を含有するガスにより酸化してメタクリル酸を製造する際に用いられる、少なくともリン、モリブデン、バナジウムを含む触媒を製造するに際し、触媒成分を含む混合溶液または水性スラリーから得られる触媒前駆体乾燥粉を成型することにより得た触媒前駆体成型品を、連続式乾燥機により乾燥し、次いで焼成することを特徴とする。
【0010】
本発明により、高い反応活性および選択性を有し、かつ工業スケールにおいて均質で再現性良く製造し得るメタクリル酸製造用触媒を得ることができる。
【0011】
本発明においては、前記触媒前駆体成型品は、硝酸アンモニウムを含むことが好ましく、触媒前駆体成型品を得る成型工程において、硝酸アンモニウムを成型助剤として使用することにより、高分子有機化合物やアルコール類等を使用することなく、均質で再現性良く、高い反応活性および選択性を有するメタクリル酸製造用触媒を得ることができる。
【0012】
本発明においては、触媒前駆体成形品は、連続式乾燥機により、温度が40〜100℃、相対湿度が10〜60%にそれぞれ調整された雰囲気下で0. 5〜10時間乾燥することが好ましい。
【0013】
本発明で用いる連続式乾燥機は、材料移送型であることが好ましい。
【0014】
乾燥方法としては箱型乾燥機に代表される回分式静置乾燥方式と連続式乾燥方式がある。実験室スケールの製造では前者が採用されることが多いが、工業スケールの製造で使用するには以下の問題点がある。回分式静置乾燥方式では、乾燥一回分の成型品を製造し、成型品を金網やパンチングプレートや金属板等の上に積載して一度に乾燥機に入れて乾燥する。かかる回分式静置乾燥方式によれば、工業スケールの製造では通常一回分の成型品の製造に数時間から数十時間必要である。成型品製造の初期に製造された成型品は、乾燥機に入るまでに数時間から数十時間かかるのに対して、成型後に直ちに乾燥機に入る成型品も存在することになる。即ち、連続成型法により成型品を製造し、乾燥まで保管すると、成型品保管雰囲気条件での乾燥が進行することになり、乾燥履歴が大きく違う成型品が共存することになるという問題が生じる。また、工業スケールでの回分式静置乾燥方式では、乾燥機内の風速分布や温度分布や湿度分布によっても、成型品の乾燥履歴に差が生じるという問題も生じる。本発明者らは、乾燥条件が触媒性能に大きく影響することを見出し、工業スケールの製造では連続式乾燥機を使用して乾燥履歴を均一化することで、工業スケールにおいて均一な性能の触媒を再現性良く製造し得ることを見出し、本発明を完成させたのである。
【0015】
本発明は、一般式Pa Mobcdef (式中、P、Mo、V、Oはそれぞれリン、モリブデン、バナジウムおよび酸素を表し、Xはカリウム、ルビジウム、セシウム及びタリウムからなる群より選ばれた少なくとも一種の元素を表し、Yは銅、ヒ素、アンチモン、ホウ素、銀、ビスマス、鉄、コバルト、ランタン及びセリウムからなる群より選ばれた少なくとも一種の元素を表し、また添字a 、b、c、d、eおよびfは各元素の原子比を表し、b=12としたとき、a 、c、d、およびeは0(ゼロ)を含まない3以下の値であり、fはそれぞれの元素の酸化状態および原子比によって定まる値である)で示されるヘテロポリ酸の部分中和塩からなるメタクリル酸製造用触媒の請求項1〜4のいずれかに記載の製造方法であることを特徴とする。
【0016】
かかる触媒は、高い反応活性および選択性を有し、かつ均質で安定した性能を有する。
【0017】
本発明のメタクリル酸の製造方法は、請求項1〜5のいずれかに記載の触媒を使用し、メタクロレインを気相にて分子状酸素または分子状酸素を含有するガスにより酸化してメタクリル酸を製造することを特徴とする。
【0018】
かかる製造方法により、高活性かつ高収率にてメタクリル酸を製造することができる。
【0019】
【発明の実施の形態】
以下、本発明をさらに詳細に説明する。
本発明の触媒の基本的な構造は従来からよく知られているリンモリブデン酸のルビジウム、セシウム、等のアルカリ金属またはタリウムによる部分中和塩であるが、さらに必須成分としてバナジウムを含んだ化合物である。本発明の触媒は、さらにヒ素、アンチモン、銅等から選ばれるひとつ以上の元素を含有するものであることが好ましい。
【0020】
本発明における触媒の製造方法の1例を説明する。まず主として水溶液として触媒原料を混合し、沈殿を析出させ、水性スラリーとする。この水性スラリーを乾燥することにより、触媒前駆体乾燥粉が得られる(前駆体乾燥粉製造工程)。触媒前駆体乾燥粉は必要に応じて他の成分を添加して、所定形状の触媒前駆体成型品に成型される(成型工程)。
【0021】
触媒前駆体成型品は所定の条件にて乾燥され(乾燥工程)、乾燥された触媒前駆体成型品を焼成することにより(焼成工程)、触媒が得られる。
【0022】
触媒調製に用いる原料としては各元素の酸化物、硝酸塩、炭酸塩、アンモニウム塩、水酸化物、ハロゲン化物などを組み合わせて使用することができる。例えば、モリブデン原料としてはパラモリブデン酸アンモニウム、三酸化モリブデン、塩化モリブデン等が、バナジウム原料としては、メタバナジン酸アンモニウム、五酸化バナジウム、塩化バナジウム等が、また、アンチモン原料としては、三酸化アンチモン、五酸化アンチモン等が使用できる。
【0023】
本発明の触媒前駆体乾燥粉製造工程において、触媒成分を含む混合溶液又はこれらの水性スラリーを乾燥して触媒前駆体乾燥粉とする方法としては、特に限定されるものではなく、成分の著しい偏在を伴わない限り従来から公知である方法が使用でき、具体的にはニーダーによる蒸発乾固法、箱型乾燥機、ドラム型通気乾燥装置、スプレードライヤー、気流乾燥機等の公知の乾燥装置を使用した乾燥方法を用いることができる。
【0024】
成型工程においては、触媒前駆体乾燥粉は、必要成分を混合した粉体にて触媒前駆体成型品に成型してもよく、さらに水を添加して可塑性材料として成型しても良い。粉体にて成型する方法としては打錠成型が例示され、可塑性材料として成型する方法としては押出し成型が例示される。成型品の形状は目的に応じて適宜選定され、特に限定されないが、例えば、リング状、ペレット状又は球状等である。成型に際しては、触媒の強度を高めるためにセラミックファイバーやグラスファイバー等の無機繊維を補強材として加えることは好適な態様である。
【0025】
本発明において、触媒前駆体成型品中に含有する硝酸アンモニウムの量は、少なくとも10wt%以上、好ましくは15wt%以上40wt%以下である。硝酸アンモニウムの量が40wt%を超える場合は無機繊維を添加しても成型品の強度を確保することが難しい。硝酸アンモニウムの量が10wt%以下の場合は、特に押出し成型の場合に押出し性が悪く問題がある。原料として多く用いられるパラモリブデン酸アンモニウム、メタバナジン酸アンモニウムおよび硝酸塩に由来するアンモニウム根、硝酸根だけでは通常10wt%に満たず、新たに硝酸アンモニウムを添加することが好ましい。
【0026】
押出し成型時の触媒前駆体成型品中の硝酸アンモニウム含有量を増加させる方法については、触媒前駆体の水性スラリー製造時、熟成中または終了時にアンモニア水と硝酸または硝酸アンモニウムを添加する方法が例示される。これらの成分の添加は、所定量を一度に添加してもよいし、分割して添加してもよい。硝酸アンモニウムは、成型時に助剤として添加してもよい。この際は、固体状で添加してもよいし、水溶液として添加してもよい。
【0027】
本発明の乾燥工程においては、触媒前駆体成型品を、連続式乾燥機により乾燥し、次いで焼成する。
【0028】
乾燥工程における乾燥温度は、乾燥を速やかに終了させるためには高い方が好ましいが、高すぎると触媒の選択性が低下するので、好ましくは40〜100℃の範囲である。
【0029】
乾燥工程における相対湿度は、触媒の活性と選択性に大きな影響を及ぼす因子であって、低すぎても高すぎても触媒性能を損ねる。相対湿度が高すぎると触媒中の硝酸アンモニウムが吸湿して乾燥できなくなるため、10%〜60%の範囲に設定することが好ましい。
【0030】
上記範囲の乾燥雰囲気において、乾燥時間が長くなりすぎると得られる触媒の触媒活性が低下する。従って、好ましくは0. 5〜10h、さらに好ましくは1〜6hである。ここでいう成型品の乾燥とは乾燥品の残存水分が必ずしも0(ゼロ)なることを意味しているわけでなく、乾燥前の状態より水分が減少し、成型品の強度が高くなれば足りることを意味する。通常乾燥後の成型品は0. 5〜5wt%の水分を含む。
【0031】
乾燥工程において使用する連続式乾燥機としては、特に限定されるものではないが、バンド乾燥機に代表される材料移送型や回転乾燥機に代表される材料攪拌型や気流乾燥機に代表される熱風搬送型等があり、いずれも使用可能である。水を多く含んで成型品の強度が弱い場合には、形状破壊を防止するために、材料移送型を使用することが好ましい。成型品を金網やパンチングプレートや金属板等の上に積載して乾燥機内を移送することで、成型品を均一な乾燥履歴とすることが出来る。
【0032】
材料移送型乾燥機としては特に限定はなく、バンド乾燥機やタワーコンベア型乾燥機やスパイラルコンベア型乾燥機やトンネル型乾燥機等が例示される。
【0033】
本発明の乾燥工程において、乾燥時の雰囲気ガスの種類に特に限定はなく、通常空気を使用するが、窒素等の不活性ガスを用いることもできる。
【0034】
焼成工程において、焼成は空気中350℃から400℃で行ってもよいが、窒素などの不活性ガス中で400℃から500℃で焼成することができる。不活性ガスで焼成した触媒は過還元状態にあるので、さらに空気中400℃以下で焼成するのが好ましい。
【0035】
このようにして特定の乾燥条件により処理された触媒が高い選択性を発現する理由は明らかではないが、乾燥速度を制御することにより触媒や硝酸アンモニウムの結晶成長も制御され、逐次酸化が進行する微細な細孔が適度に喪失され、メタクロレインからメタクリル酸への酸化反応にとって理想的な細孔構造が構築されるためと考えられる。
【0036】
本発明のメタクリル酸の製造方法における気相接触酸化反応は、本発明の製造方法により得たメタクリル酸製造用触媒触媒を用いることを特徴とし、その他の構成は従来公知の方法で行うことができる。例えば、固定床多管式反応器に本触媒を充填し、原料ガス中のメタクロレイン濃度1〜10%、メタクロレインに対する酸素の比1〜5、圧力0.1〜0.3MPa、空間速度500〜5000h-1(STP)、反応温度250〜350℃で適宜行われる。
【0037】
【実施例】
以下に実施例をあげて、本発明をさらに具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。転化率および選択率の定義は下記の通りである。
【0038】
メタクロレイン転化率(%)=[(反応したメタクロレインのモル数)÷(供給したメタクロレインのモル数)]×100
メタクリル酸選択率(%)=[(生成したメタクリル酸のモル数)÷(反応したメタクロレインのモル数)]×100
メタクリル酸収率(%)=[(生成したメタクリル酸のモル数)÷(供給したメタクロレインのモル数)]×100
(実施例1)
40℃に加熱したイオン交換水374kgに、硝酸セシウム [CsNO3] 65. 1kg、リン酸水溶液 [75%−H3 PO4 ] 46. 8kg、硝酸 [68%−HNO3 ] 44. 6kgを溶解し、これをA液とした。40℃に加熱したイオン交換水529kgにモリブデン酸アンモニウム [(NH4 )6Mo724・4H2 O] 505kgを溶解し、メタバナジン酸アンモニウム[ NH4 VO3 ] 13. 9kgを懸濁させ、これをB液とした。撹拌しているB液に、A液を滴下した。これに硝酸銅 [Cu(NO32 ・3H2 O] 17. 3kgと三酸化アンチモン[ Sb23 ] 17. 4kgを添加し、密封容器中で120℃で11時間加熱撹拌熟成を行った。得られたスラリーのpHは6.3であった。これをスプレードライヤーを用いて乾燥し触媒前駆体乾燥粉を得た。この触媒前駆体乾燥粉の硝酸アンモニウム含有量は約12wt%であった。
【0039】
この触媒前駆体乾燥粉100部(重量部)に対して、セラミックファイバー(東芝モノフラックス400SL)4部、硝酸アンモニウム13部、イオン交換水9部を加え混練し、直径5mm、高さ6mmの円柱状に45kg/ hの速度で36時間押出し成型して、触媒前駆体成型品を得た。該成型品を直ちに金網のトレー上に積載し、タワーコンベア型の連続乾燥機にて、90℃、30%RHで3時間乾燥して乾燥成型品を得た。押出し成型開始から8時間経過後に乾燥機から出てきたトレー上の乾燥成型品を、空気流通下220℃で22時間、さらに250℃で1時間焼成する。さらに窒素流通下435℃で3時間、再び空気流通下390℃で3時間焼成して触媒を得た。この触媒の酸素と無機繊維を除く組成はP1.5 Mo120.5 Sb0.5 Cu0.3 Cs1.4 である。
【0040】
上記にて得られた触媒9mlを内径15mmのガラス製反応管に充填し、メタクロレイン4モル%、酸素12モル%、水蒸気16モル%、残りが窒素からなる組成の原料ガスを空間速度(STP基準)670hr-1で反応管を通し、炉温280℃で活性試験を行った。その結果を表1に示す。
【0041】
(実施例2)
実施例1において、押出し成型開始から16時間経過後に乾燥機から出てきたトレー上の乾燥成型品を焼成した以外は、実施例1と同じ方法で触媒を製造し、活性評価を行った。その結果を表1に示す。
【0042】
(実施例3)
実施例1において、押出し成型開始から24時間経過後に乾燥機から出てきたトレー上の乾燥成型品を焼成した以外は、実施例1と同じ方法で触媒を製造し、活性評価を行った。その結果を表1に示す。
【0043】
(実施例4)
実施例1において、押出し成型後に乾燥した全ての成型乾燥品を一度に工業スケールで焼成した以外は、実施例1と同じ方法で触媒を製造し、活性評価を行った。その結果を表1に示す。
【0044】
(比較例1)
実施例1において、5段の箱型乾燥機を使用して上から1段目と上から5段目で乾燥した以外は実施例1と同様にして乾燥成型品を得た。さらに実施例1と同様の方法で触媒を焼成し、活性評価を行った。その結果を表1に示す。
【0045】
(比較例2)
実施例1において、成型品を押出し成型後0. 5時間経過した後に、5段の箱型乾燥機を使用して上から1段目で乾燥した以外は実施例1と同様にして乾燥成型品を得た。さらに実施例1と同様の方法で触媒を焼成し、活性評価を行った。その結果を表1に示す。
【0046】
(比較例3)
実施例1において、成型品を押出し成型後2.5時間経過した後に、5段の箱型乾燥機を使用して上から1段目で乾燥した以外は実施例1と同様にして乾燥成型品を得た。さらに実施例1と同様の方法で触媒を焼成し、活性評価を行った。その結果を表1に示す。
【0047】
【表1】

Figure 0003790130
【発明の効果】
本発明の方法により、工業スケールのメタクリル酸製造において均質で再現性良く高い選択性を持つ触媒を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing methacrylic acid by oxidizing methacrolein in the gas phase with molecular oxygen or a gas containing molecular oxygen, and production of methacrylic acid using the catalyst obtained by the production method. Regarding the method.
[0002]
[Prior art]
Many proposals have been made regarding a method for producing a catalyst for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein. Among these proposals, for the purpose of regulating the pore structure of the catalyst and improving the selectivity of the catalyst, as a catalyst preparation method for adding additives other than essential components to the catalyst, for example, JP-A-55-73347 Is a method in which an organic substance such as cellulose and polyvinyl alcohol is added to form a catalyst by adding 1 to 10 wt%, and JP-A-60-239439 adds an organic nitrogen-containing compound such as pyridine as a catalyst. A method has been proposed. Further, JP-A-4-367737 proposes a method in which a polymer organic compound such as polymethyl methacrylate having an average particle size of 0.01 to 10 μm is added to form a catalyst.
[0003]
As an example in which an organic compound is not added at the time of molding, in Japanese Patent Laid-Open No. 10-244160, a powder of a carbonate compound such as ammonium carbonate having an average particle size of 0.1 to 100 μm is added to form a catalyst. A method has been proposed.
[0004]
[Problems to be solved by the invention]
However, when an organic compound is used as an additive, the catalyst is locally reduced or sintered due to combustion of the organic compound during the subsequent heat treatment, which is a cause of impairing the catalyst performance.
[0005]
On the other hand, the method of adding carbonic acid compound powder has the problem that a pulverization step and a classification step are required to adjust the particle size of the powder to a suitable range, and the manufacturing process becomes complicated. ing.
[0006]
Furthermore, the technique described in the above-mentioned prior art mainly relates to the type of additive and its physical properties, and does not disclose a method for treating a molded product before firing.
[0007]
In addition, a method has been proposed in which water or an auxiliary agent is added during molding, but the molded product immediately after molding in that case has a problem that the strength of the molded product is weak to handle in the manufacture of industrial scales. Yes, it is necessary to increase the strength to such a level that an industrial scale can be handled by performing some kind of processing. For this reason, Japanese Patent Application Laid-Open Nos. 5-309273 and 8-10621 disclose a technique for drying at a temperature of 60 to 150 ° C. However, no disclosure is made regarding drying conditions other than the drying method and temperature.
[0008]
An object of the present invention is to provide a method for producing a catalyst for producing methacrylic acid that has high reaction activity and selectivity, and can be produced homogeneously and reproducibly on an industrial scale, and of methacrylic acid using the catalyst produced by the production method. It is to provide a manufacturing method.
[0009]
[Means for Solving the Problems]
The present invention, when producing methacrolein in the gas phase with molecular oxygen or a gas containing molecular oxygen to produce methacrylic acid to produce a catalyst containing at least phosphorus, molybdenum, vanadium, A catalyst precursor molded product obtained by molding a catalyst precursor dry powder obtained from a mixed solution or an aqueous slurry containing a catalyst component is dried by a continuous dryer and then calcined.
[0010]
According to the present invention, it is possible to obtain a catalyst for producing methacrylic acid, which has high reaction activity and selectivity, and can be produced on an industrial scale with good reproducibility.
[0011]
In the present invention, the catalyst precursor molded product preferably contains ammonium nitrate, and in the molding step for obtaining the catalyst precursor molded product, by using ammonium nitrate as a molding aid, a polymer organic compound, alcohol, etc. Thus, a catalyst for producing methacrylic acid having a high reaction activity and selectivity can be obtained with high uniformity and reproducibility.
[0012]
In the present invention, the catalyst precursor molded product may be dried for 0.5 to 10 hours in an atmosphere adjusted to a temperature of 40 to 100 ° C. and a relative humidity of 10 to 60% by a continuous dryer. preferable.
[0013]
The continuous dryer used in the present invention is preferably a material transfer type.
[0014]
As a drying method, there are a batch-type stationary drying method represented by a box dryer and a continuous drying method. The former is often employed in the production of laboratory scales, but there are the following problems when used in the production of industrial scales. In the batch-type static drying method, a molded product for one drying is manufactured, and the molded product is loaded on a wire mesh, a punching plate, a metal plate, etc., and put into a dryer at a time for drying. According to such a batch-type static drying method, it usually takes several hours to several tens of hours to manufacture a single molded product in manufacturing an industrial scale. A molded product manufactured in the early stage of manufacturing a molded product takes several hours to several tens of hours to enter the dryer. On the other hand, there is a molded product that enters the dryer immediately after molding. That is, when a molded product is manufactured by a continuous molding method and stored until drying, drying under a molded product storage atmosphere condition proceeds, and there arises a problem that molded products having greatly different drying histories coexist. Further, in the batch-type stationary drying method on the industrial scale, there is a problem that a difference in the drying history of the molded product occurs depending on the wind speed distribution, temperature distribution, and humidity distribution in the dryer. The present inventors have found that the drying conditions greatly affect the catalyst performance, and in the production of industrial scale, a continuous dryer is used to equalize the drying history, thereby producing a catalyst with uniform performance on the industrial scale. The present inventors have found that it can be manufactured with good reproducibility and completed the present invention.
[0015]
The present invention has the general formula P a Mo b V c X d Y e O f (wherein P, Mo, V and O represent phosphorus, molybdenum, vanadium and oxygen, respectively, X represents potassium, rubidium, cesium and thallium) Y represents at least one element selected from the group consisting of copper, arsenic, antimony, boron, silver, bismuth, iron, cobalt, lanthanum, and cerium, and Y represents at least one element selected from the group consisting of The subscripts a, b, c, d, e, and f represent the atomic ratio of each element. When b = 12, a, c, d, and e are values of 3 or less that do not include 0 (zero). , F is a value determined by the oxidation state and atomic ratio of each element), and the production method according to any one of claims 1 to 4, comprising a partially neutralized salt of a heteropolyacid represented by To be Features.
[0016]
Such a catalyst has high reaction activity and selectivity, and has homogeneous and stable performance.
[0017]
The method for producing methacrylic acid of the present invention uses methacrylic acid by oxidizing methacrolein with molecular oxygen or a gas containing molecular oxygen in a gas phase using the catalyst according to any one of claims 1 to 5. It is characterized by manufacturing.
[0018]
By this production method, methacrylic acid can be produced with high activity and high yield.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
The basic structure of the catalyst of the present invention is a partially neutralized salt of alkali metal such as rubidium, cesium, etc. of phosphomolybdate or thallium, which is well known in the art, and is a compound containing vanadium as an essential component. is there. The catalyst of the present invention preferably further contains one or more elements selected from arsenic, antimony, copper and the like.
[0020]
An example of the method for producing a catalyst in the present invention will be described. First, a catalyst raw material is mainly mixed as an aqueous solution, and a precipitate is deposited to obtain an aqueous slurry. By drying this aqueous slurry, a catalyst precursor dry powder is obtained (precursor dry powder production step). The catalyst precursor dry powder is formed into a catalyst precursor molded product having a predetermined shape by adding other components as necessary (molding step).
[0021]
The catalyst precursor molded product is dried under predetermined conditions (drying step), and the catalyst is obtained by firing the dried catalyst precursor molded product (firing step).
[0022]
As raw materials used for catalyst preparation, oxides, nitrates, carbonates, ammonium salts, hydroxides, halides and the like of each element can be used in combination. For example, ammonium paramolybdate, molybdenum trioxide, molybdenum chloride, etc. as molybdenum raw materials, ammonium metavanadate, vanadium pentoxide, vanadium chloride, etc. as vanadium raw materials, and antimony trioxide, pentavalent as antimony raw materials. Antimony oxide or the like can be used.
[0023]
In the catalyst precursor dry powder production process of the present invention, the method of drying the mixed solution containing the catalyst components or the aqueous slurry thereof to obtain the catalyst precursor dry powder is not particularly limited, and the components are significantly unevenly distributed. As long as it is not accompanied by a conventional method, a known method can be used. Specifically, a known drying device such as an evaporating and drying method using a kneader, a box-type dryer, a drum-type aeration dryer, a spray dryer, an air dryer or the like is used. Drying methods can be used.
[0024]
In the molding step, the catalyst precursor dry powder may be molded into a catalyst precursor molded product with a powder in which necessary components are mixed, or may be further molded as a plastic material by adding water. An example of a method of molding with powder is tableting molding, and an example of a method of molding as a plastic material is extrusion molding. The shape of the molded product is appropriately selected according to the purpose, and is not particularly limited, but is, for example, a ring shape, a pellet shape, or a spherical shape. At the time of molding, it is a preferred embodiment to add inorganic fibers such as ceramic fibers and glass fibers as a reinforcing material in order to increase the strength of the catalyst.
[0025]
In the present invention, the amount of ammonium nitrate contained in the catalyst precursor molded product is at least 10 wt% or more, preferably 15 wt% or more and 40 wt% or less. When the amount of ammonium nitrate exceeds 40 wt%, it is difficult to ensure the strength of the molded product even if inorganic fibers are added. When the amount of ammonium nitrate is 10 wt% or less, there is a problem that extrudability is poor particularly in the case of extrusion molding. Ammonium roots and nitrate roots derived from ammonium paramolybdate, ammonium metavanadate and nitrate, which are often used as raw materials, are usually less than 10 wt%, and it is preferable to newly add ammonium nitrate.
[0026]
Examples of the method for increasing the ammonium nitrate content in the catalyst precursor molded product at the time of extrusion molding include a method of adding aqueous ammonia and nitric acid or ammonium nitrate at the time of producing or aging the catalyst precursor aqueous slurry. As for the addition of these components, a predetermined amount may be added at once, or may be added in divided portions. Ammonium nitrate may be added as an auxiliary during molding. In this case, it may be added as a solid or as an aqueous solution.
[0027]
In the drying step of the present invention, the catalyst precursor molded product is dried by a continuous dryer and then calcined.
[0028]
The drying temperature in the drying step is preferably high in order to quickly finish the drying, but if it is too high, the selectivity of the catalyst is lowered, and therefore it is preferably in the range of 40 to 100 ° C.
[0029]
Relative humidity in the drying process is a factor that greatly affects the activity and selectivity of the catalyst, and impairs catalyst performance if it is too low or too high. If the relative humidity is too high, the ammonium nitrate in the catalyst absorbs moisture and cannot be dried, so it is preferable to set it in the range of 10% to 60%.
[0030]
In a dry atmosphere within the above range, if the drying time is too long, the catalytic activity of the resulting catalyst is reduced. Therefore, it is preferably 0.5 to 10 h, more preferably 1 to 6 h. The drying of the molded product here does not necessarily mean that the residual moisture of the dried product becomes 0 (zero), but it is sufficient if the moisture is reduced from the state before drying and the strength of the molded product is increased. Means that. Usually, the molded product after drying contains 0.5 to 5 wt% of water.
[0031]
The continuous dryer used in the drying process is not particularly limited, but is represented by a material transfer type represented by a band dryer, a material agitation type represented by a rotary dryer, and a flash dryer. There are hot air conveyance types, and any of them can be used. When the molded product contains a large amount of water and the strength of the molded product is weak, it is preferable to use a material transfer mold in order to prevent shape destruction. A molded product can be made into a uniform drying history by loading the molded product on a wire mesh, a punching plate, a metal plate or the like and transporting it inside the dryer.
[0032]
There are no particular limitations on the material transfer dryer, and examples include a band dryer, a tower conveyor dryer, a spiral conveyor dryer, a tunnel dryer, and the like.
[0033]
In the drying step of the present invention, there is no particular limitation on the type of atmospheric gas at the time of drying, and normally air is used, but an inert gas such as nitrogen can also be used.
[0034]
In the firing step, the firing may be performed in air at 350 ° C. to 400 ° C., but can be performed at 400 ° C. to 500 ° C. in an inert gas such as nitrogen. Since the catalyst calcined with an inert gas is in an overreduced state, it is preferably calcined at 400 ° C. or lower in air.
[0035]
The reason why the catalyst treated under specific drying conditions in this way exhibits high selectivity is not clear, but by controlling the drying rate, the crystal growth of the catalyst and ammonium nitrate is also controlled, and the minute oxidation in which sequential oxidation proceeds. This is considered to be due to the loss of moderate pores and the creation of an ideal pore structure for the oxidation reaction from methacrolein to methacrylic acid.
[0036]
The gas phase catalytic oxidation reaction in the production method of methacrylic acid of the present invention is characterized by using a catalyst catalyst for methacrylic acid production obtained by the production method of the present invention, and the other constitution can be performed by a conventionally known method. . For example, this catalyst is packed in a fixed bed multitubular reactor, the concentration of methacrolein in the raw material gas is 1 to 10%, the ratio of oxygen to methacrolein is 1 to 5, the pressure is 0.1 to 0.3 MPa, and the space velocity is 500. It is suitably carried out at ˜5000 h −1 (STP) and a reaction temperature of 250 to 350 ° C.
[0037]
【Example】
The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples. The definitions of conversion and selectivity are as follows.
[0038]
Conversion rate of methacrolein (%) = [(number of moles of methacrolein reacted) ÷ (number of moles of methacrolein supplied)] × 100
Methacrylic acid selectivity (%) = [(moles of methacrylic acid formed) ÷ (moles of reacted methacrolein)] × 100
Methacrylic acid yield (%) = [(moles of methacrylic acid produced) ÷ (moles of methacrolein supplied)] × 100
Example 1
In 374 kg of ion-exchanged water heated to 40 ° C., 65.1 kg of cesium nitrate [CsNO 3], 46.8 kg of phosphoric acid aqueous solution [75% -H 3 PO 4 ] and 44.6 kg of nitric acid [68% -HNO 3 ] are dissolved. This was designated as liquid A. 505 kg of ammonium molybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] is dissolved in 529 kg of ion-exchanged water heated to 40 ° C., and 13.9 kg of ammonium metavanadate [NH 4 VO 3 ] is suspended. This was designated as solution B. A liquid was dripped at the B liquid which is stirring. To this was added 17.3 kg of copper nitrate [Cu (NO 3 ) 2 .3H 2 O] and 17.4 kg of antimony trioxide [Sb 2 O 3 ], and the mixture was aged with heating and stirring at 120 ° C. for 11 hours in a sealed container. It was. The resulting slurry had a pH of 6.3. This was dried using a spray dryer to obtain a dried catalyst precursor powder. The ammonium nitrate content of this catalyst precursor dry powder was about 12 wt%.
[0039]
To 100 parts (parts by weight) of the catalyst precursor dry powder, 4 parts of ceramic fiber (Toshiba Monoflux 400SL), 13 parts of ammonium nitrate, and 9 parts of ion-exchanged water are added and kneaded, and a cylindrical shape having a diameter of 5 mm and a height of 6 mm. Was extruded at a rate of 45 kg / h for 36 hours to obtain a catalyst precursor molded product. The molded product was immediately loaded on a wire mesh tray and dried at 90 ° C. and 30% RH for 3 hours in a tower conveyor type continuous dryer to obtain a dried molded product. The dried molded product on the tray that has come out of the dryer after the elapse of 8 hours from the start of extrusion molding is baked at 220 ° C. for 22 hours and further at 250 ° C. for 1 hour under air flow. Further, the catalyst was obtained by calcination at 435 ° C. for 3 hours under nitrogen flow and again at 390 ° C. for 3 hours under air flow. The composition of this catalyst excluding oxygen and inorganic fibers is P 1.5 Mo 12 V 0.5 Sb 0.5 Cu 0.3 Cs 1.4 .
[0040]
9 ml of the catalyst obtained above was filled in a glass reaction tube having an inner diameter of 15 mm, and a raw material gas having a composition comprising methacrolein 4 mol%, oxygen 12 mol%, water vapor 16 mol%, and the balance nitrogen was used as a space velocity (STP). Criteria) An activity test was conducted at a furnace temperature of 280 ° C. through a reaction tube at 670 hr −1 . The results are shown in Table 1.
[0041]
(Example 2)
In Example 1, a catalyst was produced in the same manner as in Example 1 except that the dried molded product on the tray that came out of the dryer after 16 hours from the start of extrusion molding was calcined, and the activity was evaluated. The results are shown in Table 1.
[0042]
Example 3
In Example 1, a catalyst was produced in the same manner as in Example 1 except that the dried molded product on the tray that came out of the dryer after 24 hours from the start of extrusion molding was calcined, and the activity was evaluated. The results are shown in Table 1.
[0043]
(Example 4)
In Example 1, a catalyst was produced in the same manner as in Example 1 except that all molded and dried products dried after extrusion molding were calcined on an industrial scale at the same time, and activity evaluation was performed. The results are shown in Table 1.
[0044]
(Comparative Example 1)
In Example 1, a dried molded product was obtained in the same manner as in Example 1 except that the drying was performed in the first stage from the top and the fifth stage from the top using a five-stage box-type dryer. Further, the catalyst was calcined by the same method as in Example 1 and the activity was evaluated. The results are shown in Table 1.
[0045]
(Comparative Example 2)
In Example 1, the molded product was dried and molded in the same manner as in Example 1 except that 0.5 hour had passed after extrusion molding and the product was dried in the first stage from the top using a five-stage box dryer. Got. Further, the catalyst was calcined by the same method as in Example 1 and the activity was evaluated. The results are shown in Table 1.
[0046]
(Comparative Example 3)
In Example 1, the molded product was dried and molded in the same manner as in Example 1 except that 2.5 hours had passed after extrusion molding and the product was dried in the first stage from the top using a 5-stage box dryer. Got. Further, the catalyst was calcined by the same method as in Example 1 and the activity was evaluated. The results are shown in Table 1.
[0047]
[Table 1]
Figure 0003790130
【The invention's effect】
By the method of the present invention, it is possible to obtain a catalyst having high selectivity with high homogeneity and reproducibility in industrial scale methacrylic acid production.

Claims (5)

メタクロレインを気相にて分子状酸素または分子状酸素を含有するガスにより酸化してメタクリル酸を製造する際に用いられる、少なくともリン、モリブデン、バナジウムを含む触媒を製造するに際し、触媒成分を含む混合溶液または水性スラリーから得られる触媒前駆体乾燥粉を成型することにより得た触媒前駆体成型品を、連続式乾燥機により乾燥し、次いで焼成することを特徴とするメタクリル酸製造用触媒の製造方法。  In the production of methacrylic acid by oxidizing methacrolein in the gas phase with molecular oxygen or a gas containing molecular oxygen, a catalyst component is included when producing a catalyst containing at least phosphorus, molybdenum, and vanadium. Production of catalyst for methacrylic acid production, characterized in that catalyst precursor molded product obtained by molding catalyst precursor dry powder obtained from mixed solution or aqueous slurry is dried by a continuous dryer and then calcined Method. 前記触媒前駆体成型品中に硝酸アンモニウムを含むことを特徴とする請求項1に記載のメタクリル酸製造用触媒の製造方法。  The method for producing a catalyst for methacrylic acid production according to claim 1, wherein the catalyst precursor molded product contains ammonium nitrate. 前記連続式乾燥機が、材料移送型であることを特徴とする請求項1又は2に記載のメタクリル酸製造用触媒の製造方法。The method for producing a catalyst for methacrylic acid production according to claim 1 or 2, wherein the continuous dryer is a material transfer type. 一般式Pa Mob Vc Xd Ye Of (式中、P、Mo、V、Oはそれぞれリン、モリブデン、バナジウムおよび酸素を表し、Xはカリウム、ルビジウム、セシウム及びタリウムからなる群より選ばれた少なくとも一種の元素を表し、Yは銅、ヒ素、アンチモン、ホウ素、銀、ビスマス、鉄、コバルト、ランタン及びセリウムからなる群より選ばれた少なくとも一種の元素を表し、また添字a 、b、c、d、eおよびfは各元素の原子比を表し、b=12としたとき、a 、c、d、およびeは0(ゼロ)を含まない3以下の値であり、fはそれぞれの元素の酸化状態および原子比によって定まる値である)で示されるヘテロポリ酸の部分中和塩からなるメタクリル酸製造用触媒の請求項1〜のいずれかに記載の製造方法。General formula Pa Mob Vc Xd Ye Of (wherein P, Mo, V and O represent phosphorus, molybdenum, vanadium and oxygen, respectively, X is at least one selected from the group consisting of potassium, rubidium, cesium and thallium) Y represents at least one element selected from the group consisting of copper, arsenic, antimony, boron, silver, bismuth, iron, cobalt, lanthanum and cerium, and the subscripts a, b, c, d, e And f represent the atomic ratio of each element, and when b = 12, a, c, d, and e are values of 3 or less not including 0 (zero), and f is the oxidation state of each element and The production method according to any one of claims 1 to 3 , wherein the catalyst for producing methacrylic acid comprises a partially neutralized salt of a heteropolyacid represented by the atomic ratio. メタクロレインを気相にて分子状酸素または分子状酸素を含有するガスにより酸化してメタクリル酸を製造する際に、請求項1〜のいずれかに記載のメタクリル酸製造用触媒の製造方法により製造したメタクリル酸製造用触媒を用いることを特徴とするメタクリル酸の製造方法。When the methacrolein is oxidized with molecular oxygen or a gas containing molecular oxygen in the gas phase to produce methacrylic acid, the method for producing a methacrylic acid production catalyst according to any one of claims 1 to 4 A method for producing methacrylic acid, comprising using the produced catalyst for producing methacrylic acid.
JP2001193899A 2001-06-27 2001-06-27 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid Expired - Lifetime JP3790130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001193899A JP3790130B2 (en) 2001-06-27 2001-06-27 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001193899A JP3790130B2 (en) 2001-06-27 2001-06-27 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid

Publications (2)

Publication Number Publication Date
JP2003001113A JP2003001113A (en) 2003-01-07
JP3790130B2 true JP3790130B2 (en) 2006-06-28

Family

ID=19032102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001193899A Expired - Lifetime JP3790130B2 (en) 2001-06-27 2001-06-27 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid

Country Status (1)

Country Link
JP (1) JP3790130B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238161A (en) * 2007-02-27 2008-10-09 Sumitomo Chemical Co Ltd Method for manufacturing catalyst
JP5097413B2 (en) * 2007-02-27 2012-12-12 住友化学株式会社 Catalyst production method
CN105665020B (en) * 2009-11-30 2019-09-06 日本化药株式会社 Methacrylate manufactures the manufacturing method of catalyst and the manufacturing method of methacrylate
EP3659491A1 (en) 2011-12-13 2020-06-03 EndoChoice Innovation Center Ltd. Removable tip endoscope
WO2017094468A1 (en) * 2015-12-01 2017-06-08 三菱レイヨン株式会社 Method for producing catalyst for (meth)acrylic acid production and method for producing (meth)acrylic acid
KR20180055154A (en) 2016-11-16 2018-05-25 주식회사 엘지화학 Preparation method of catalyst

Also Published As

Publication number Publication date
JP2003001113A (en) 2003-01-07

Similar Documents

Publication Publication Date Title
JP4280797B2 (en) Method for producing composite oxide catalyst
EP3263213B1 (en) Catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid and manufacturing method of same, and manufacturing method of unsaturated aldehyde and/or unsaturated carboxylic acid
KR101776796B1 (en) Catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid, method for manufacturing same, and method for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid
JP4848813B2 (en) A method for producing a catalyst for producing methacrylic acid and a method for producing methacrylic acid.
KR20110047994A (en) Method for producing catalyst for methacrylic acid production and method for producing methacrylic acid
JP3800043B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP3790130B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP3797148B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP5214500B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4200744B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4595769B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2005169311A (en) Production method for complex oxide catalyst
JP5042658B2 (en) Method for producing catalyst for producing acrylonitrile, and method for producing acrylonitrile
JP5069152B2 (en) Unsaturated carboxylic acid synthesis catalyst, method for producing the same, and method for producing unsaturated carboxylic acid using the catalyst
JP5261231B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid
JP2000296336A (en) Catalyst for production of methacrylic acid and production of methacrylic acid
JP3797146B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP5485013B2 (en) Method for producing a catalyst for methacrylic acid production
JP4629886B2 (en) Catalyst for producing methacrolein and / or methacrylic acid, method for producing the same, and method for producing methacrolein and / or methacrylic acid
JP5024183B2 (en) Method for producing shaped catalyst comprising heteropolyacid compound
JP4017864B2 (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
JPH11226412A (en) Production of catalyst for production of methacrylic acid and production of methacrylic acid
JP2003154273A (en) Method for manufacturing catalyst for manufacture of methacrylic acid, catalyst for manufacture of methacrylic acid and method for manufacturing methacrylic acid
KR20190046853A (en) Catalyst for the production of acrylic acid and method for producing acrylic acid
JP3764805B2 (en) Method for preparing catalyst for production of methacrylic acid and method for producing methacrylic acid

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3790130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8