JP3788854B2 - Rolling bearing steel - Google Patents

Rolling bearing steel Download PDF

Info

Publication number
JP3788854B2
JP3788854B2 JP22822697A JP22822697A JP3788854B2 JP 3788854 B2 JP3788854 B2 JP 3788854B2 JP 22822697 A JP22822697 A JP 22822697A JP 22822697 A JP22822697 A JP 22822697A JP 3788854 B2 JP3788854 B2 JP 3788854B2
Authority
JP
Japan
Prior art keywords
steel
content
rolling
comparative example
rolling bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22822697A
Other languages
Japanese (ja)
Other versions
JPH1161338A (en
Inventor
利光 木村
敦彦 太田
清幸 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
JTEKT Corp
Original Assignee
Daido Steel Co Ltd
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, JTEKT Corp filed Critical Daido Steel Co Ltd
Priority to JP22822697A priority Critical patent/JP3788854B2/en
Publication of JPH1161338A publication Critical patent/JPH1161338A/en
Application granted granted Critical
Publication of JP3788854B2 publication Critical patent/JP3788854B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、回転曲げ疲れ特性及び転がり疲れ特性に優れた転がり軸受用の鋼に関する。
【0002】
【従来の技術】
転がり軸受部品では、耐摩耗性は勿論のことながら、ボール、ころ、レース等の転動面における転がり疲れ特性が重視される。転がり軸受の外輪や転動部を有するシャフトでは、耐摩耗性、転がり疲れ特性のほか、回転曲げ疲れ特性が高いことが要求される。
【0003】
従来、このような転がり軸受に用いられる鋼として、1質量%のCと1.4質量%のCrとを含有するSUJ2が最も代表的な鋼として用いられている。この鋼は、球状化焼なましによって炭化物を球状とし、次いで焼入れ焼もどしすることによって、強靱な鋼マトリックスに微細な球状炭化物が均一に分散した金属組織として使用される。
【0004】
転がり軸受用鋼の転がり疲れ特性、回転曲げ疲れ特性を向上するためには、鋼中の非金属介在物の量の低減、形態・形状の無害化、寸法の微細化などが有効であることが知られており、非金属介在物を形成するOやSなどの含有量、あるいはこれらの元素の弊害を低減する努力が払われてきた。最近の製鋼技術の進歩により、鋼中のO含有率を大幅に低減することが可能となっているが、しかし、鋼中のO含有率をさらに低減することによって、これらの特性を現状以上に向上させるためには著しいコスト増を招くこととなり、実用的な意味を失うのが実情である。
【0005】
【発明が解決しようとする課題】
本発明は、上記の現状に鑑みてなされたもので、その目的とするところは、大幅なコスト増を招くことなく、優れた回転曲げ疲れ特性及び転がり疲れ特性を有する転がり軸受用鋼を提供することにある。
【0006】
【課題を解決するための手段】
本発明の発明者は、転がり軸受用鋼の回転曲げ疲れ特性及び転がり疲れ特性を向上するための方策を研究した結果、次の所見を得た。すなわち、
(1)回転曲げ疲れ特性は、鋼中のO含有率の低減によって向上するが、O含有率が0.0008質量%以下となると、O含有率による特性の優劣は判じ難く、疲れ強さのばらつきの範囲内となる。
【0007】
(2)O含有率が0.0008質量%以下であるとき、焼入れ焼もどし組織に存在する円相当径10μm以上の大型炭化物が曲げ疲れにおける破壊発生起点になることがある。ここに、炭化物の円相当径とは、組織観察面における当該炭化物の面積と同じ面積をもつ円の直径とする。
(3)JIS−SUJ2は鋳造後の鋼塊に、高温で長時間の拡散焼なましを施すことによって前記のごとき大型炭化物の大きさを小さくすることができる。これによって、疲れ強さのばらつきを小さくすることができる。しかし、このように拡散焼なましを行えば鋼の製造に長時間を要し、また、製造コストを高める。
【0008】
以上の所見に基づいて種々検討した結果、以下の手段を講じることにより前記目的を達成し得ることが判明した。すなわち、本発明の転がり軸受用鋼は、合金元素の含有率が質量%で、
C :0.75〜0.90%、
Si:0.04〜0.14%、
Mn:0.15〜0.35%、
Cr:1.00〜1.40%、
Mo:0.01〜0.20%、
O :0.0008%以下、
残部Feおよび不可避的不純物からなることを特徴とする。
【0009】
【発明の実施の形態】
本発明は、O含有率が0.0008質量%以下で、非金属介在物が極めて少ない超清浄鋼となると、軸受用鋼の疲れ特性は焼入れ焼もどし後に鋼中に存在する円相当径10μm以上の大型炭化物によって支配されるという知見に基づき、さらに、部品加工における加工性を損わないために素材硬さをSUJ2と同等とし、耐摩耗性の観点から焼入れ焼もどし硬さをSUJ2と同等として、鋼の化学組成を種々検討した結果得られたものである。
【0010】
以下、本発明の転がり軸受用鋼における各成分の限定理由について説明する。
C:0.75〜0.90%
Cは、鋼の焼入れ焼もどし後の硬さを維持するために0.75%以上の含有を必要とする。しかし、過剰にCを含有する鋼においては、鋼塊の拡散焼なましを省略した場合に、焼入れ焼もどし後に円相当径10μm以上の大型の炭化物が残存し、該大型炭化物が鋼の疲労特性を劣化するので、このような大型炭化物の形成を阻止するために、C含有率の上限を0.90%とする。
【0011】
Si:0.04〜0.14
Siは、溶鋼の脱酸剤として含有率0.04%以上となるように添加するが、鋼中に過度に含有されれば、鋼のマトリックスに固溶して焼なまし後の硬さ、変形抵抗を高め、冷間加工性を損うのでSi含有率の上限を0.14%とする。
Mn:0.15〜0.35%
Mnは、溶鋼の脱酸に必要であるとともに、鋼の焼入性を確保するために添加する。そのためには、0.15%以上のMn含有率が必要である。しかし過度に含有した場合、鋼の焼なまし硬さを高め、鋼の機械加工性を損うのでMn含有率の上限を0.35%とする。
【0012】
Cr:1.00〜1.40%
Crは、鋼の焼入性を確保するために必要な元素である。また、鋼の焼なまし時に炭化物の形状を球状化し易くする。これらの効果を得るために、Cr含有率を1.00%以上とする必要がある。しかし過度に含有した場合、鋼の焼なまし硬さを高め、鋼の機械加工性を損うのでCr含有率の上限を1.40%とする。
【0013】
Mo:0.01〜0.20%
Moは、鋼マトリックスの靭性を高め、疲れ特性を向上するために添加する。そのためには、Mo含有率は0.01%以上とする必要がある。しかし過度にMoを添加しても、疲れ特性の向上に対する効果は飽和し、徒に素材費の上昇を招くばかりなのでMo含有率の上限を0.20%とする。
【0014】
O:0.0008%以下
Oは、鋼中に介在して疲れ特性を劣化せしめる非金属介在物を形成するので、その含有率は可及的低いことが望ましい。非金属介在物が鋼の疲労特性に大きな影響およぼさない範囲としてO含有率の上限は0.0008%とする。
【0015】
【実施例】
以下、本発明の実施例について説明する。
表1に示す化学組成の鋼をそれぞれ溶製し、4.6トン鋼塊とした後、熱間圧延して直径20mmおよび70mmの棒材を得た。比較例10はSUJ2相当鋼で、比較例10については鋼塊の状態で1240℃×6時間の拡散焼なましを施した後熱間圧延した。これらの棒材に760℃×5時間加熱保持後15℃/hで室温まで冷却の球状化焼なましを施して供試材とした。
【0016】
【表1】

Figure 0003788854
【0017】
前記供試材の横断面について金属組織を檢出し、前記横断面内に認められた最大の炭化物径(円相当径)を求めた。また、前記供試材の横断面について球状化焼なまし硬さを測定した。
直径20mmの供試材から回転曲げ疲れ試験片の粗形材を、また、直径70mmの供試材から転動寿命試験片の粗形材をそれぞれ削出して、840℃焼入れ、160℃焼もどしの熱処理を施した後仕上加工して各試験片を得た。回転曲げ疲れ試験片は平行部直径8mmとし、平行部をエメリー紙で鏡面仕上して試験に供した。また、転動寿命試験片は円盤状のスラスト型転動寿命試験片とし、転動面はラップ仕上げして試験に供した。
【0018】
回転曲げ疲れ試験を行って107 強さを求め、これによって曲げ疲れ特性を評価した。転動寿命試験は、JIS−SUJ2製ボールを組み合せ、面圧4880MPaで#68タービン油を用いて行い、比較例10からなる試料の累積破損確率10%時の応力繰返し数を1とした場合の寿命比で評価した。また、転動寿命試験片の転動面について焼入れ焼もどし硬さを測定した。
【0019】
これらの試験結果を表2に示す。
【0020】
【表2】
Figure 0003788854
【0021】
比較例1は、曲げ疲れ特性は優れているがC含有率が少ないために焼入れ焼もどし後の硬さが低く、これにより転がり疲労寿命が短い。
比較例2は、C含有率が多いために焼入れ焼もどし後に巨大な炭化物が残存し、回転曲げ疲れ特性が劣る。
比較例3は、Si含有率が本発明の範囲を超えて多い。このため球状化焼なまし後の硬さが高く、冷間加工性に劣り、SUJ2相当鋼である比較例10に比べて材料加工に高いコストを要することが判った。
【0022】
比較例4は、Mn含有率が低いため十分な焼入性が得られず、焼入れ焼もどし後の硬さが低い。そのためSUJ2相当鋼である比較例10に比べて転がり疲労寿命が短い。
比較例5は、Mn含有率が高いため、球状化焼なまし後の硬さが高く、冷間加工性が劣るため、材料加工に高いコストがかかる。
【0023】
比較例6は、Cr含有率が低く、球状化焼なまし時に板状の炭化物が多量に生成した。このため焼なまし硬さが下がらず、材料加工に高いコストがかかる。
比較例7は、Cr含有率が高く、球状化焼なまし時に微細な球状炭化物が多量に生成した。焼なまし硬さを下げるためには球状炭化物の大きさは粗大である方が望ましいのであるが、比較例7では炭化物が微細化したために焼なまし硬さは高く、材料加工に高いコストがかかる。さらに、巨大な炭化物も一部で残存し、回転曲げ疲れ特性も劣化している。
【0024】
比較例8は、Moを含有しておらず、鋼マトリックスの靭性が劣っているために曲げ疲れ特性がSUJ2相当鋼である比較例10と同程度になっている。
比較例9は、O含有率が本発明の範囲を超えて多い。そのため非金属介在物量が増加し、本発明の実施例に比べて転がり疲労寿命が短くなっている。
本発明の実施例は、SUJ2相当鋼である比較例10に比べて焼なまし後の硬さは同等以下に低く、焼入れ焼もどし後の硬さは比較例10と同等に高い。そして曲げ疲れ特性および転がり疲労寿命は比較例10に比べて著しく優れている。
【0025】
実施例1および比較例10の鋼塊について、造塊後、1240℃で種々の時間で加熱保持を行った。該供試材の横断面について金属組織を檢出し、前記横断面内に認められた最大の炭化物の円相当径を求め、これを最大炭化物径とした。
図1に加熱保持時間と最大炭化物径との関係を示す。加熱保持なしのとき、本発明の実施例の最大炭化物径は15μm程度で、比較例に比べて著しく小さい。また、比較例に比べて遥かに短時間での加熱によって炭化物を微細化することがわかる。
【0026】
以上に詳述したように、本発明が限定する化学組成とすることによって、炭化物を微細とすることができ、鋼塊における拡散焼なまし時間を短くしても従来材に比べて十分に優れた回転曲げ疲れ特性および転がり疲労寿命を示し、しかも、焼なまし硬さが低くて加工性に優れた、高性能でかつ経済的な転がり軸受用鋼を得ることができる。
【0027】
なお、本発明で示した転がり軸受用鋼は、焼入れ焼もどしの熱処理によって強度を発揮するものであるが、この熱処理に限定されず、焼入れ加熱時に窒化雰囲気に曝し、鋼表面に窒素を富化させる熱処理にも適している。
【0028】
【発明の効果】
以上のように、本発明によれば、鋼塊における拡散焼なまし時間を短くしても従来材に比べて十分に優れた回転曲げ疲れ特性および転がり疲労寿命を示し、しかも、球状化焼なまし硬さが低くて加工性に優れた、高性能でかつ経済的な転がり軸受用鋼を提供することができる。
【図面の簡単な説明】
【図1】鋼塊の拡散焼なましにおける加熱時間と球状化焼なまし後の最大炭化物径との関係を示す特性図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel for rolling bearings having excellent rotational bending fatigue characteristics and rolling fatigue characteristics.
[0002]
[Prior art]
In rolling bearing parts, not only wear resistance but also rolling fatigue characteristics on rolling surfaces such as balls, rollers, and races are emphasized. A shaft having an outer ring or a rolling part of a rolling bearing is required to have high rotational bending fatigue characteristics in addition to wear resistance and rolling fatigue characteristics.
[0003]
Conventionally, SUJ2 containing 1% by mass of C and 1.4% by mass of Cr has been used as the most typical steel as a steel used for such rolling bearings. This steel is used as a metal structure in which fine spherical carbides are uniformly dispersed in a tough steel matrix by making the carbides spherical by spheroidizing annealing and then quenching and tempering.
[0004]
In order to improve the rolling fatigue properties and rotational bending fatigue properties of rolling bearing steel, it is effective to reduce the amount of non-metallic inclusions in the steel, make the form and shape harmless, and reduce the size. Efforts have been made to reduce the content of O and S that form non-metallic inclusions, or the harmful effects of these elements. Recent progress in steelmaking technology has made it possible to significantly reduce the O content in steel, but by further reducing the O content in steel, these characteristics can be made higher than current levels. In order to improve it, it will cause a significant increase in cost, and the practical situation is lost.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described present situation, and an object of the present invention is to provide a rolling bearing steel having excellent rotational bending fatigue characteristics and rolling fatigue characteristics without incurring a significant cost increase. There is.
[0006]
[Means for Solving the Problems]
The inventors of the present invention have studied the measures for improving the rotational bending fatigue characteristics and rolling fatigue characteristics of rolling bearing steels, and as a result, have obtained the following findings. That is,
(1) Rotating bending fatigue properties are improved by reducing the O content in steel, but when the O content is 0.0008 mass% or less, it is difficult to determine the superiority or inferiority of the properties due to the O content. Within the range of variation.
[0007]
(2) When the O content is 0.0008% by mass or less, large carbides having an equivalent circle diameter of 10 μm or more present in the quenching and tempering structure may become a starting point for fracture occurrence in bending fatigue. Here, the equivalent-circle diameter of the carbide is a diameter of a circle having the same area as that of the carbide on the structure observation surface.
(3) JIS-SUJ2 can reduce the size of large carbides as described above by subjecting the steel ingot after casting to diffusion annealing at a high temperature for a long time. As a result, the variation in fatigue strength can be reduced. However, if diffusion annealing is performed in this way, it takes a long time to manufacture steel, and the manufacturing cost is increased.
[0008]
As a result of various studies based on the above findings, it has been found that the above object can be achieved by taking the following measures. That is, the rolling bearing steel of the present invention has an alloy element content of mass%,
C: 0.75 to 0.90%,
Si: 0.04 to 0.14 %,
Mn: 0.15-0.35%,
Cr: 1.00 to 1.40%,
Mo: 0.01-0.20%,
O: 0.0008% or less,
It consists of the remainder Fe and inevitable impurities.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, when the O content is 0.0008% by mass or less and the ultra-clean steel has very few non-metallic inclusions, the fatigue characteristics of the bearing steel are 10 μm or more equivalent circle diameter present in the steel after quenching and tempering. Based on the knowledge that it is dominated by large carbides, the material hardness is equivalent to SUJ2 in order not to impair the workability in parts processing, and the quenching and tempering hardness is equivalent to SUJ2 from the viewpoint of wear resistance. It was obtained as a result of various studies on the chemical composition of steel.
[0010]
Hereinafter, the reasons for limitation of each component in the rolling bearing steel of the present invention will be described.
C: 0.75 to 0.90%
C needs to contain 0.75% or more in order to maintain the hardness after quenching and tempering of steel. However, in steel containing excessive C, when the diffusion annealing of the steel ingot is omitted, large carbides having an equivalent circle diameter of 10 μm or more remain after quenching and tempering, and the large carbides are fatigue characteristics of the steel. In order to prevent the formation of such large carbides, the upper limit of the C content is set to 0.90%.
[0011]
Si: 0.04 to 0.14 %
Si is added as a deoxidizer for molten steel so as to have a content of 0.04% or more. If excessively contained in steel, the hardness after annealing by solid solution in the steel matrix, Since the deformation resistance is increased and the cold workability is impaired, the upper limit of the Si content is set to 0.14 %.
Mn: 0.15 to 0.35%
Mn is necessary for deoxidizing molten steel and is added to ensure the hardenability of the steel. For that purpose, a Mn content of 0.15% or more is necessary. However, when it contains excessively, the annealing hardness of steel is raised and the machinability of steel is impaired, so the upper limit of the Mn content is made 0.35%.
[0012]
Cr: 1.00-1.40%
Cr is an element necessary for ensuring the hardenability of steel. In addition, the shape of the carbide is easily spheroidized during steel annealing. In order to obtain these effects, the Cr content needs to be 1.00% or more. However, when it contains excessively, the annealing hardness of steel is raised and the machinability of steel is impaired, so the upper limit of the Cr content is made 1.40%.
[0013]
Mo: 0.01-0.20%
Mo is added to increase the toughness of the steel matrix and improve fatigue properties. For that purpose, the Mo content needs to be 0.01% or more. However, even if Mo is added excessively, the effect on the improvement of fatigue characteristics is saturated and the material cost is merely increased, so the upper limit of the Mo content is set to 0.20%.
[0014]
O: 0.0008% or less O is a non-metallic inclusion that intervenes in the steel and deteriorates the fatigue characteristics. Therefore, the content is desirably as low as possible. The upper limit of the O content is set to 0.0008% so that non-metallic inclusions do not greatly affect the fatigue characteristics of the steel.
[0015]
【Example】
Examples of the present invention will be described below.
Steels having chemical compositions shown in Table 1 were melted to form 4.6 ton steel ingots, and then hot rolled to obtain bar materials having diameters of 20 mm and 70 mm. Comparative Example 10 was SUJ2-equivalent steel. Comparative Example 10 was hot rolled after being subjected to diffusion annealing at 1240 ° C. for 6 hours in the form of a steel ingot. These rods were heated and maintained at 760 ° C. for 5 hours, and then subjected to spheroidizing annealing at 15 ° C./h to room temperature to obtain test materials.
[0016]
[Table 1]
Figure 0003788854
[0017]
The metal structure was crushed about the cross section of the test material, and the maximum carbide diameter (equivalent circle diameter) found in the cross section was determined. Further, the spheroidizing annealing hardness was measured for the cross section of the specimen.
A rough shaped material of a rotating bending fatigue test piece is cut out from a test material having a diameter of 20 mm, and a rough shaped material of a rolling life test piece is cut out from a test material having a diameter of 70 mm. Each test piece was obtained by finishing after the heat treatment. The rotating bending fatigue test piece had a parallel part diameter of 8 mm, and the parallel part was mirror-finished with emery paper and used for the test. The rolling life test piece was a disc-shaped thrust type rolling life test piece, and the rolling surface was lapped and used for the test.
[0018]
A rotating bending fatigue test was performed to obtain a strength of 10 7 , thereby evaluating the bending fatigue characteristics. The rolling life test was performed by combining JIS-SUJ2 balls, using # 68 turbine oil at a surface pressure of 4880 MPa, and assuming the stress repetition rate when the cumulative failure probability of the sample of Comparative Example 10 is 10% as 1. The life ratio was evaluated. Moreover, quenching and tempering hardness was measured on the rolling surface of the rolling life test piece.
[0019]
These test results are shown in Table 2.
[0020]
[Table 2]
Figure 0003788854
[0021]
Comparative Example 1 has excellent bending fatigue properties, but has a low C content, so that the hardness after quenching and tempering is low, and thus the rolling fatigue life is short.
In Comparative Example 2, since the C content is large, a huge carbide remains after quenching and tempering, and the rotational bending fatigue characteristics are inferior.
Comparative Example 3 has a large Si content exceeding the range of the present invention. For this reason, it was found that the hardness after spheroidizing annealing was high, the cold workability was inferior, and the material processing cost was higher than that of Comparative Example 10 which is SUJ2 equivalent steel.
[0022]
In Comparative Example 4, since the Mn content is low, sufficient hardenability cannot be obtained, and the hardness after quenching and tempering is low. Therefore, compared with the comparative example 10 which is SUJ2 equivalent steel, a rolling fatigue life is short.
Since the comparative example 5 has a high Mn content, the hardness after spheroidizing annealing is high, and the cold workability is inferior, so that high cost is required for material processing.
[0023]
In Comparative Example 6, the Cr content was low, and a large amount of plate-like carbide was generated during spheroidizing annealing. For this reason, the annealing hardness is not lowered, and the material processing is expensive.
Comparative Example 7 had a high Cr content and produced a large amount of fine spherical carbide during spheroidizing annealing. In order to lower the annealing hardness, it is desirable that the size of the spherical carbide is coarse. However, in Comparative Example 7, the annealing hardness is high because the carbide is refined, and the material processing is expensive. Take it. Furthermore, some of the huge carbides remain, and the rotational bending fatigue characteristics are also deteriorated.
[0024]
Since Comparative Example 8 does not contain Mo and the toughness of the steel matrix is inferior, the bending fatigue characteristics are comparable to those of Comparative Example 10 which is SUJ2-equivalent steel.
In Comparative Example 9, the O content is higher than the range of the present invention. Therefore, the amount of non-metallic inclusions is increased, and the rolling fatigue life is shortened as compared with the embodiment of the present invention.
In the examples of the present invention, the hardness after annealing is lower than or equal to that of Comparative Example 10 which is SUJ2-equivalent steel, and the hardness after quenching and tempering is as high as that of Comparative Example 10. The bending fatigue characteristics and rolling fatigue life are remarkably superior to those of Comparative Example 10.
[0025]
The steel ingots of Example 1 and Comparative Example 10 were heated and held at 1240 ° C. for various times after ingot forming. The metallographic structure was squeezed out from the cross section of the test material, and the circle equivalent diameter of the largest carbide found in the cross section was determined, and this was taken as the maximum carbide diameter.
FIG. 1 shows the relationship between the heating and holding time and the maximum carbide diameter. When there is no heating and holding, the maximum carbide diameter of the example of the present invention is about 15 μm, which is significantly smaller than the comparative example. Moreover, it turns out that carbide | carbonized_material is refined | miniaturized by heating in a much shorter time compared with a comparative example.
[0026]
As described in detail above, by using the chemical composition limited by the present invention, the carbide can be made fine, and even if the diffusion annealing time in the steel ingot is shortened, it is sufficiently superior to conventional materials. It is possible to obtain a high-performance and economical steel for rolling bearings that exhibits high rotational bending fatigue characteristics and rolling fatigue life, and has low annealing hardness and excellent workability.
[0027]
The rolling bearing steel shown in the present invention exhibits strength by quenching and tempering heat treatment, but is not limited to this heat treatment, and is exposed to a nitriding atmosphere during quenching heating to enrich the steel surface with nitrogen. Suitable for heat treatment.
[0028]
【The invention's effect】
As described above, according to the present invention, even when the diffusion annealing time in the steel ingot is shortened, the rotational bending fatigue characteristics and the rolling fatigue life are sufficiently excellent as compared with the conventional material, and the spheroidizing annealing is performed. It is possible to provide a high-performance and economical steel for rolling bearings with low hardness and excellent workability.
[Brief description of the drawings]
FIG. 1 is a characteristic diagram showing a relationship between a heating time in diffusion annealing of a steel ingot and a maximum carbide diameter after spheroidizing annealing.

Claims (2)

合金元素の含有率が質量%で、
C :0.75〜0.90%、
Si:0.04〜0.14%、
Mn:0.15〜0.35%、
Cr:1.00〜1.40%、
Mo:0.01〜0.20%、
O :0.0008%以下、
残部Feおよび不可避的不純物からなり、造塊後の最大炭化物径が15μm以下であることを特徴とする転がり軸受用鋼。
The alloy element content is mass%,
C: 0.75 to 0.90%,
Si: 0.04 to 0.14%,
Mn: 0.15-0.35%,
Cr: 1.00 to 1.40%,
Mo: 0.01-0.20%,
O: 0.0008% or less,
Ri Do the balance Fe and unavoidable impurities, for the rolling bearing steel, wherein the maximum carbide size after ingot is 15μm or less.
合金元素の含有率が質量%で、The alloy element content is mass%,
C :0.75〜0.90%、          C: 0.75 to 0.90%,
Si:0.04〜0.14%、          Si: 0.04 to 0.14%,
Mn:0.15〜0.35%、          Mn: 0.15-0.35%,
Cr:1.00〜1.40%、          Cr: 1.00 to 1.40%,
Mo:0.01〜0.20%、          Mo: 0.01-0.20%,
O :0.0008%以下、          O: 0.0008% or less,
残部Feおよび不可避的不純物からなる転がり軸受用鋼を造塊後、10時間以下の加熱保持を行うことを特徴とする転がり軸受用鋼材の製造方法。  A method for producing a steel material for a rolling bearing, characterized by performing heating and holding for 10 hours or less after the ingot of the steel for a rolling bearing composed of the remaining Fe and inevitable impurities.
JP22822697A 1997-08-25 1997-08-25 Rolling bearing steel Expired - Fee Related JP3788854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22822697A JP3788854B2 (en) 1997-08-25 1997-08-25 Rolling bearing steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22822697A JP3788854B2 (en) 1997-08-25 1997-08-25 Rolling bearing steel

Publications (2)

Publication Number Publication Date
JPH1161338A JPH1161338A (en) 1999-03-05
JP3788854B2 true JP3788854B2 (en) 2006-06-21

Family

ID=16873155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22822697A Expired - Fee Related JP3788854B2 (en) 1997-08-25 1997-08-25 Rolling bearing steel

Country Status (1)

Country Link
JP (1) JP3788854B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3975314B2 (en) 1999-08-27 2007-09-12 株式会社ジェイテクト Bearing part material and rolling bearing raceway manufacturing method

Also Published As

Publication number Publication date
JPH1161338A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
JP5556151B2 (en) Manufacturing method of bearing parts with excellent rolling fatigue characteristics under foreign environment
KR20070074664A (en) Method for manufacturing steel having excellent rolling fatigue life
JP5400089B2 (en) Bearing steel excellent in rolling fatigue life characteristics, ingot material for bearing, and production method thereof
JP5723233B2 (en) Steel material for spheroidized heat-treated bearings with excellent rolling fatigue life
JP2905243B2 (en) Manufacturing method of bearing material with excellent rolling fatigue life
JPH07188857A (en) Bearing parts
JP6801782B2 (en) Steel and parts
JP2841468B2 (en) Bearing steel for cold working
JP3788854B2 (en) Rolling bearing steel
JP4313983B2 (en) Steel for case hardening bearings with excellent toughness and rolling fatigue life in sub-high temperature range
JP7464822B2 (en) Steel for bearing raceways and bearing raceways
JP3882538B2 (en) Round steel for bearing element parts formed by hot working
JP3919076B2 (en) Rolling bearing and manufacturing method thereof
JP3721723B2 (en) Machine structural steel with excellent machinability, cold forgeability and hardenability
JP3426495B2 (en) Long-life bearing steel excellent in delayed fracture resistance and method of manufacturing the same
JP3394439B2 (en) Bearing steel with excellent machinability
JP2005307320A (en) Steel having excellent cold forgeability, cutting property, and fatigue strength
JPH07216508A (en) Bearing steel
JP7464821B2 (en) Steel for bearing raceways and bearing raceways
JP2001329333A (en) Steel for cold forging and induction hardening
JP2008088482A (en) Roller or ball in bearing having excellent rolling fatigue property and crushing strength, and bearing
JP2003193199A (en) Steel for bearing having excellent cold workability as hot-worked and production method therefor
JP3374006B2 (en) Bearing steel
JP3426496B2 (en) High strength long life carburizing steel excellent in delayed fracture resistance and method of manufacturing the same
JP2004285460A (en) Rolling and/or sliding parts, and manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060202

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060324

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees