JP3787249B2 - Planetarium star projector - Google Patents

Planetarium star projector Download PDF

Info

Publication number
JP3787249B2
JP3787249B2 JP28373499A JP28373499A JP3787249B2 JP 3787249 B2 JP3787249 B2 JP 3787249B2 JP 28373499 A JP28373499 A JP 28373499A JP 28373499 A JP28373499 A JP 28373499A JP 3787249 B2 JP3787249 B2 JP 3787249B2
Authority
JP
Japan
Prior art keywords
star
projection
light
optical fiber
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28373499A
Other languages
Japanese (ja)
Other versions
JP2001109063A (en
Inventor
健一 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Planetarium Co Ltd
Original Assignee
Konica Minolta Planetarium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Planetarium Co Ltd filed Critical Konica Minolta Planetarium Co Ltd
Priority to JP28373499A priority Critical patent/JP3787249B2/en
Publication of JP2001109063A publication Critical patent/JP2001109063A/en
Application granted granted Critical
Publication of JP3787249B2 publication Critical patent/JP3787249B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Instructional Devices (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Projection Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プラネタリウムの恒星投影機に関し、特に光ファイバを用いて導光する恒星投影機に関するものである。
【0002】
【従来の技術】
プラネタリウムで光ファイバを用いて光源からの光を導びくことにより光エネルギーを有効に活用しようとする試みは従来から行われている。特に、光源から多数の恒星投映筒へ光ファイバにより案内して導く技術は既に公知である。
【0003】
また、特許第2632438号公報は光ファイバの利用につき、プラネタリウムの小型化を目的としたときの、各恒星投映筒の光軸を一点に集中させないための一手段として挙げている。
【0004】
さらに、光ファイバを利用したプラネタリウムにおいて、コンデンサレンズで集光した光源からの光を、光ファイバ束の集束部に入射するようにし、その反対側を複数に分割して、それぞれの光ファイバを恒星原板の開口部に接続することで、恒星投影機の昇温防止や映像輝度向上を達成した投影機がカールツアイスイエナ社により既に製品化されている。
【0005】
【発明が解決しようとする課題】
ところが、上記のような光ファイバを利用したプラネタリウムの恒星投影機では、以下のような2つの問題がある。
【0006】
その1つは、光源から多数の恒星投影筒へ光ファイバで光を供給した場合、各恒星の階調性を実際の星空に近づけるために上位等級の恒星投映像の輝度を上げようとすると、光源のパワーを相当に上げる必要があって、結果的に恒星投影機の昇温を助長してしまう。また、逆に、光源のパワー不足を投映原板の孔径を大きくすることにより補った場合、スクリーン上の投映像の直径が原板の孔径を大きくした割合だけ大きくなり、投映像は点でなく丸い星として視認されて実際と異なる星空の演出になってしまう。
【0007】
今1つは、コンデンサレンズで集光した光源からの光を、光ファイバ束の集束部に入射するようにし、その反対側を複数に分割して、それぞれの光ファイバを恒星原板の開口部に接続する場合、恒星原板の開口部は全天に投映する恒星の数だけ存在するため、組み立て作業、および光ファイバの原板との接続が外れた場合の修復作業が困難である。
【0008】
本発明の目的は、光源のパワーを上げないで、昇温を抑えるとともに投映像が点に見える視直径を維持し、しかも上位等級の恒星の映像輝度を上げられ、組み立ておよび修復が容易なプラネタリウムの恒星投影機を提供することにある。
【0009】
上記のような目的を達成するために、本発明のプラネタリウムの恒星投映機は、投映されるべき恒星中、所定の高輝星が高輝星投映筒から投映され、上記所定の高輝星以外の恒星が恒星投映筒から投映されるプラネタリウムの恒星投映機であって、高輝星原板と高輝星投映用レンズを有して構成された複数個の高輝星投映筒と、これよりも多い恒星を投映する恒星原板と集光レンズおよび恒星投影用レンズを有して構成された複数の恒星投映筒と、光源から個々に分岐した光ファイバないし光ファイバ束により光源からの光を導くのに、分配する光エネルギは恒星投映筒の側よりも高輝星投映筒の側を低くしたことを特徴としている。
【0010】
このような構成では、少ない上位等級の恒星のみを高輝星投映筒が分担して投映し、全天におけるその他の恒星を恒星投映筒が分担して投映する関係から、全天を複数に分割して投映することになる恒星投映筒での投映画角に対し、少ない上位等級の恒星のみを投映する高輝星投映筒での投映画角が格段に小さくなって高輝星投映に必要な光エネルギが恒星投映筒に必要な光エネルギに対し大きく低減し、これら投映画角の比に応じた各恒星投映筒および各高輝星投映筒への光源からの光エネルギの分配を、光源から個々に分岐する光ファイバないし光ファイバ束を用いた導光により満足して、光源のパワーを上げたり高輝星原板の透過孔を大きくしたりせずに高輝星投映像の輝度を十分に高めることができる。従って、高輝星を含む全ての恒星が点と認識される視直径による演出ができるし、光源のパワーを上げることによる昇温の問題も解消する。また、光ファイバは各恒星投映筒および高輝星投映筒に接続するだけであるので、組み立て作業および光ファイバの接続が外れたときの修復作業が簡単である。
【0011】
この場合、高輝星原板が高輝星1個または適数個を表現し、恒星原板がそれら複数の高輝星を除いた恒星から恒星投映筒の数で分割した恒星数の投映像を表現するものであるのが上記の特徴を発揮するのに好適である。
【0012】
光ファイバないし光ファイバ束の光源側の集束部と光源との間に、集束部端面の一部を遮光しながら移動する遮光子を備えると、集束部端面に落ちる遮光子の光を透過させない部分の影の移動により、投映像が明滅する瞬き効果を発揮することができる。
【0013】
光ファイバないし光ファイバ束の光源側の集束部と光源との間に、投影機外部からの信号によって絞りの口径を変化させて光源から集束部への光の照射量を変化させる調光手段を設けると、機械的に調光でき、光源の種類などによって電気的な調光ができない場合に好適である。
【0014】
各高輝星投映筒の投映レンズの前後付近に遮光子を設け、それぞれの高輝星投映筒からの光線を独立して遮光できるようにすると、各高輝星投映筒での高輝星の投映、投映停止を個々に制御することができ、演出上便利である。
【0015】
なお、上記各場合において、恒星投映筒の恒星原板は、電圧をかけた液晶部分だけ光の透過を可能にする液晶原板で構成することができ、電圧を印加する液晶位置を制御するだけで、投映する恒星の位置や数を自由に制御することができる。
【0016】
本発明のそれ以上の目的および特徴は、以下の詳細な説明および図面によって明らかになる。本発明の各特徴は、それ単独で、あるいは可能な限り種々な組み合わせで複合して用いることができる。
【0017】
【発明の実施の形態】
以下本発明の代表的な実施の形態のプラネタリウムの恒星投機について、その実施例とともに図1〜図6を参照しながら詳細に説明し、本発明の理解に供する。
【0018】
本実施の形態は、図1に示すようなプラネタリウムの恒星投影機に本発明を適用した場合の一例であり、恒星投影機のベースとなる恒星球1に、光軸が恒星球1の中心に向かう姿勢にて恒星投映筒2が必要数固定されている。恒星投映筒2の必要数は概して32個である。また、恒星球1の恒星投映筒2が取り付けられていない部分を利用してリフレクタ付きのハロゲンランプやリフレクタ付きのメタルハライドランプなどの光源3、および高輝星投映筒4が取り付けられている。
【0019】
図1〜図3に示す第1の実施例では、高輝星投映筒4は図1、図3に示すように、その胴部の球面部4aを恒星球1にある座22に回動できるように保持されて、投映方向にある程度の幅を持っている。光源3の図1に示す恒星球1内に向く投射口3aには恒星球1での投映において必要な数の光ファイバ5を束ねた集束部5aが接続されている。この光源3側の集束部5aは光源3からの光を前記各恒星投映筒2および各高輝星投映筒4に導くように図1に示すように個々に分岐され、分岐した先端はそれぞれ対応する各恒星投映筒2および各高輝星投映筒4に接続されている。
【0020】
恒星投映筒2は図2に示すように、恒星原板8の背部と前部に集光レンズ6および投映レンズ7を有し、集光レンズ6の背部に前記分岐光ファイバ5の先端が集光レンズ6の光軸上で光ファイバ5からの光を集光レンズ6に有効に取り込める位置に接続されている。恒星原板8には恒星を表す透過孔が分担して投映すべき数、例えば約300〜800個開口している。
【0021】
高輝星投映筒4は図3に示すように、前端に投映レンズ9が設けられ後部に前記光ファイバ5の分岐先端が接続されている。この接続された光ファイバ5の先端には高輝星原板10が貼り付けられている。高輝星原板10には高輝星を表す透過孔が1個開口しており、透過孔の中心が投映レンズ9の光軸21上で、その投映レンズ9の焦点位置付近になるように光ファイバ5は高輝星投映筒4に接続されている。
【0022】
ここで、例えば、恒星投映筒2からの投映半画角が約28°あり、高輝星投映筒4からの投映半画角を0.05°とすると、その投映面積比は半径の二乗倍が利いて約37万倍になる。言い換えると、恒星投映筒2と高輝星投映筒4に等しい光エネルギーを与えた場合、高輝星投映筒4による高輝星の投映像の明るさは恒星投映筒2での恒星の投映像の約37万倍になる。
【0023】
しかし、高輝星の投映といってもそこまでの明るさ比は必要ないので、一例として、高輝星投映筒4へ光源3から導光する光ファイバ5を直径50μmの素線1本にし、恒星投映筒2へ光源3から導光する光ファイバ5を直径5mmの束線として、それらがなす導光路の断面積ないしは導光面の面積比を1万倍程度に抑えると、恒星および高輝星の各投映像の明るさ比は約37倍となり、それでも約3.9等星分の明るさ比を得ることができる。
【0024】
このように、高輝星投映筒4が上位等級の高輝星を1つ投映するのに必要最小限の光エネルギが得られるように、集束部5aから個々に分岐して光源3からの光を導光する光ファイバ5の分配数を配慮することにより、光源3のパワーを上げたり高輝星原板10の透過孔を大きくしたりせずに高輝星投映像の輝度を十分に高めることができる。従って、高輝星を含む全ての恒星が点と認識される視直径による演出ができるし、光源3のパワーを上げることによる昇温の問題も解消する。同時に、光ファイバ5は各恒星投映筒2および高輝星投映筒4に接続するだけであるので、組み立て作業および光ファイバ5の接続が外れたときの修復作業が簡単である。
【0025】
このような特徴は、高輝星投映筒4が少ない上位等級の恒星のみを分担して投映し、全天におけるその他の恒星を恒星投映筒2が分担して投映する関係から、全天を複数に分割して投映することになる恒星投映筒2での投映画角に対し、少ない上位等級の恒星のみを投映する高輝星投映筒4での投映画角が格段に小さくなって高輝星投映に必要な光エネルギが恒星投映筒2に必要な光エネルギに対し大きく低減すること、およびこれら投映画角の比に応じた各恒星投映筒2および各高輝星投映筒4への光源3からの光エネルギの分配が、光源3から個々に分岐する光ファイバ5ないし光ファイバ5の束を用いた導光により満足できることによるものである。従って、1つの高輝星投映筒4で1つの高輝星を投映するのが好適ではあるが、これに限られることはなく1つの恒星投映筒2が投映する恒星の数に比し格段に少なければ上記特徴による利点は発揮される。
【0026】
図4に示す第2の実施例は、光源部においてさらに、第1の実施例での恒星投映筒2や高輝星投映筒4などが投映する投映像の瞬きをができるようにしている。このような瞬きは光束を透過させる部分と透過させない部分がランダムに存在する網状の遮光子11が移動することによって達成される。遮光子11は光源3側の集光束5aと光源3との間に配置され、光源3のユニットに取付けられたアクチュエータ12の回転軸12aに支持したスイング棒12bに固着している。遮光子11の不透過部分は光ファイバ5の集束部5aの光源3側の端面に影を落とし、アクチュエータ12の働きでスイング棒12bのスイングに従いその影が移動することにより、各恒星投映像がランダムに明滅し、恰も瞬いているかのように見える。また、光ファイバ5の集束部5aの光源3側の端面に影を落とさない側方位置に、遮光子11を退避させておけば投映像の明滅を停止させることができる。
【0027】
また、光源3にメタルハライドランプ等の放電系ランプを使用する場合、ランプを電気的に調光することができない。このため、機構的な調光装置が必要になる。図5は機械的な調光ができるようにした光源部を第3の実施例として示している。調光は絞りの開口径を変化することにより行うことができ、微妙な調光を行う点でいわゆる虹彩絞りを用いるのが好適であり、本実施例はこれを採用している。虹彩絞り13は外周の回動リング13aがそれに有した受動ピン13bを介して回動されることで開口径が変化し調光をおこなう。
【0028】
この調光の制御のために光源3のユニットにアクチュエータ25を取付け、アクチュエータ25の回転軸25aに設けたスイング棒25bと前記受動ピン13bとをリンク26により連結している。アクチュエータ25により回転軸25aの回転角を制御すれば、虹彩絞り13の開口径を決めることができ、光源3から光ファイバ5の集束部5aの光源3側の端面に入射する光束の量を制御することができこの制御が調光となる。
【0029】
図6に示す第4の実施例は、複数ある各高輝星投映筒4に遮光子14を設けて、遮光、遮光解除ができるようにしてある。遮光子14は投映レンズ9の光軸上で、光ファイバ5からの光束の広がりと同じ形状の円錐体をなして同心状態で位置するとともに、光軸方向の光ファイバ5側または投映レンズ9側の面が、光軸に垂直な横方向から半円面14aをなすように切除された形状になっている。一方、高輝星投映筒4のユニットには前記半円面14aの軸線と前記光軸との交点を通りそれらに垂直となる向きの軸線まわりの回転軸31aを持ったアクチュエータ31を取付け、前記回転軸31aに遮光子14を固着してある。
【0030】
図6に示す状態では光ファイバ5からの光束が遮光子14によって完全に遮られ、投映ができない。この状態からアクチュエータ31が働いて遮光子14が90°回転されると、半円面14aの中を光束が通るので投映できる。従って、各高輝星投映筒4のアクチュエータ31を個別に制御することにより、ドームスクリーンの見切り線以下に高輝星を投映するのを阻止する制御だけでなく、ビデオプロジェクターからの投映像と重なった高輝星をも投映しないように制御することもできる。
【0031】
最後に、図2に示す恒星投映筒2において、恒星原板8は2枚の遮光板に液晶と電極を挟み、電圧をかけた部分だけ光の透過を可能にするユニットでもよい。通常、液晶は熱に弱く、プラネタリウムには向かないとされてきたが、光ファイバ5を通過した光束のみが液晶に当たるので、光源3からの熱の影響は受けない。液晶原板によれば、例えば電圧を印加する液晶位置を制御するだけで、投映する恒星の位置や数を自由に制御することができる。
【0032】
さらに、偏向板によって光束の透過率は50%以下に落ちるため、輝度の高い恒星を投映するのは困難であったが、輝度の高い恒星は高輝星投映筒4から投映することでそれを補うことができる。
【0033】
【発明の効果】
本発明によれば、上記の説明から明らかなように、光源のパワーを上げたり高輝星原板の透過孔を大きくしたりせずに高輝星投映像の輝度を十分に高めて、高輝星を含む全ての恒星が点と認識される視直径による演出ができるし、光源のパワーを上げることによる昇温の問題も解消する。また、光ファイバは各恒星投映筒および高輝星投映筒に接続するだけであるので、組み立て作業および光ファイバの接続が外れたときの修復作業が簡単である。
【図面の簡単な説明】
【図1】本発明の代表的な一実施の形態に係る第1の実施例の恒星投映機を示す一部の概略構成図である。
【図2】図1の恒星投映筒の断面図である。
【図3】図1の高輝星投映筒の断面図である。
【図4】第2の実施例の遮光子を備えた光源部を示す斜視図である。
【図5】第3の実施例を示す調光手段を設けた光源部を示す斜視図である。
【図6】第4の実施例を示す遮光子を備えた高輝星投映筒の断面図である。
【符号の説明】
1 恒星球
2 恒星投映筒
3 光源
4 高輝星投映筒
5 光ファイバ
5a 集束部
6 集光レンズ
7 恒星投映用レンズ
8 恒星原板
9 高輝星投映用レンズ
10 高輝星原板
11、14 遮光子
13 虹彩絞り
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a planetarium star projector, and more particularly to a star projector that guides light using an optical fiber.
[0002]
[Prior art]
Attempts have been made to effectively utilize light energy by guiding light from a light source using an optical fiber in a planetarium. In particular, a technique for guiding and guiding light from a light source to a number of stellar projection tubes by an optical fiber is already known.
[0003]
Japanese Patent No. 2632438 mentions the use of optical fiber as one means for preventing the optical axis of each star projection tube from concentrating at one point when the purpose is to reduce the size of the planetarium.
[0004]
Furthermore, in a planetarium using an optical fiber, the light from the light source collected by the condenser lens is made incident on the converging part of the optical fiber bundle, and the opposite side is divided into a plurality of optical fibers. A projector that achieves prevention of temperature rise and image brightness improvement by connecting it to the opening of the original plate has already been commercialized by Carl Zeiss Jena.
[0005]
[Problems to be solved by the invention]
However, the planetarium star projector using the optical fiber as described above has the following two problems.
[0006]
One of them is that when light is supplied from a light source to a large number of star projection cylinders using an optical fiber, in order to increase the gradation of each star to the actual starry sky, an attempt is made to increase the brightness of a high-grade star projection image. It is necessary to increase the power of the light source considerably, and as a result, the temperature rise of the star projector is promoted. Conversely, if the lack of light source power is compensated by increasing the hole diameter of the projection original plate, the projected image diameter on the screen increases by the ratio of the original plate hole diameter increased, and the projected image is not a dot but a round star. As a result, it becomes a starry sky production that is different from the actual.
[0007]
The other is that the light from the light source collected by the condenser lens is made incident on the converging part of the optical fiber bundle, and the opposite side is divided into a plurality of parts, and each optical fiber is made into the opening of the stellar original plate. When connecting, since there are as many star openings as the number of stars projected on the whole sky, it is difficult to perform assembly work and repair work when the connection with the optical fiber master is disconnected.
[0008]
An object of the present invention is a planetarium that does not increase the power of the light source, suppresses the temperature rise, maintains the visual diameter at which the projected image can be seen as a dot, increases the image brightness of a higher-grade star, and is easy to assemble and repair. Is to provide a stellar projector.
[0009]
In order to achieve the above-described object, the planetarium star projector of the present invention projects a predetermined brilliant star from a brilliant star projection cylinder among the stars to be projected, and stars other than the predetermined brilliant star are projected. A planetarium star projector projected from a star projection tube, which is composed of a plurality of high star star tubes and a high star star projection lens, and a star that projects more stars. to the original plate and the focusing lens and the fixed star projection lens movies plurality stellar projection that is configured with a tubular, light from the light source to guide Kuno by an optical fiber or optical fiber bundle branching individually from the light source, distribute The light energy is characterized in that the high star projection tube side is lower than the star projection tube side .
[0010]
In such a configuration, the high sky star projection tube shares only a small number of higher-grade stars, and other stars in the whole sky are projected by the star projection tube. Compared to the projection angle of a star projection tube that will be projected in a long time, the projection angle of a high brightness star projection tube that projects only a small number of higher-grade stars will be much smaller, and the light energy required for high brightness star projection will be reduced. The light energy required for the star projection tube is greatly reduced, and the distribution of light energy from the light source to each star projection tube and each high-brightness star projection tube according to the ratio of the projection angle is individually branched from the light source. Satisfied by light guiding using an optical fiber or a bundle of optical fibers, the brightness of the bright star projection image can be sufficiently increased without increasing the power of the light source or enlarging the transmission hole of the bright star original plate. Therefore, it is possible to produce an effect based on the visual diameter in which all the stars including high brightness stars are recognized as points, and the problem of temperature rise caused by increasing the power of the light source is solved. Further, since the optical fiber is simply connected to each star projection tube and the high brightness star projection tube, the assembly work and the repair work when the optical fiber is disconnected are easy.
[0011]
In this case, the high brightness star plate expresses one or a suitable number of high brightness stars, and the star base plate expresses the projected image of the number of stars divided by the number of star projection tubes from the stars excluding those high brightness stars. It is suitable for exhibiting the above characteristics.
[0012]
When a light shield that moves while shielding a part of the end face of the converging part is provided between the converging part on the light source side of the optical fiber or optical fiber bundle and the light source, a part that does not transmit the light of the light shield that falls on the end face of the converging part By moving the shadow, the blinking effect of blinking the projected image can be exhibited.
[0013]
A dimming means that changes the aperture of the diaphragm by a signal from the outside of the projector and changes the amount of light irradiated from the light source to the converging unit between the converging unit on the light source side of the optical fiber or the optical fiber bundle and the light source. If provided, the light can be adjusted mechanically, and this is suitable when electrical light control cannot be performed depending on the type of light source.
[0014]
By installing a light shield near the front and rear of the projection lens of each shining star projection tube so that the light from each shining star projection tube can be shielded independently, projection of the shining star in each shining star projection tube is stopped. Can be controlled individually, which is convenient for production.
[0015]
In each of the above cases, the star projection master plate of the star projection tube can be constituted by a liquid crystal master plate that allows light to pass through only the liquid crystal portion to which voltage is applied, and only by controlling the position of the liquid crystal to which the voltage is applied, The position and number of stars to be projected can be freely controlled.
[0016]
Further objects and features of the present invention will become apparent from the following detailed description and drawings. Each feature of the present invention can be used alone or in combination in various combinations as much as possible.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Below typical embodiment of planetarium stellar throw shadows machine of the present invention, described in detail and with reference to FIGS. 1 to 6 together with its embodiments, provided for understanding of the present invention.
[0018]
This embodiment is an example when the present invention is applied to a planetarium star projector as shown in FIG. 1, and the optical axis is set to the center of the star sphere 1 in the star sphere 1 serving as the base of the star projector. The required number of stellar projection tubes 2 is fixed in the direction of heading. The required number of star projection tubes 2 is generally 32. Further, a light source 3 such as a halogen lamp with a reflector or a metal halide lamp with a reflector, and a bright star projection cylinder 4 are attached using a portion of the stellar sphere 1 to which the star projection cylinder 2 is not attached.
[0019]
In the first embodiment shown in FIGS. 1 to 3, the high-brightness star projection cylinder 4 can rotate the spherical surface portion 4 a of its trunk to a seat 22 in the stellar sphere 1 as shown in FIGS. 1 and 3. And has a certain width in the projection direction. A converging unit 5a in which a number of optical fibers 5 necessary for projection on the stellar sphere 1 are bundled is connected to a projection port 3a facing the inside of the stellar sphere 1 shown in FIG. The converging part 5a on the light source 3 side is individually branched as shown in FIG. 1 so as to guide the light from the light source 3 to each of the fixed star projection cylinders 2 and each of the high brightness star projection cylinders 4, and the branched tips correspond respectively. Each star projection cylinder 2 and each high brightness star projection cylinder 4 are connected.
[0020]
As shown in FIG. 2, the stellar projection tube 2 has a condensing lens 6 and a projection lens 7 on the back and front of the stellar original plate 8, and the tip of the branch optical fiber 5 condenses on the back of the condensing lens 6. On the optical axis of the lens 6, it is connected to a position where the light from the optical fiber 5 can be effectively taken into the condenser lens 6. A number of transmission holes representing stars, for example, about 300 to 800 are opened on the star original plate 8 to be projected.
[0021]
As shown in FIG. 3, the high-bright star projection cylinder 4 is provided with a projection lens 9 at the front end, and the branching tip of the optical fiber 5 is connected to the rear portion. A high-gloss star plate 10 is attached to the tip of the connected optical fiber 5. The brilliant star base plate 10 has one transmission hole representing a brilliant star, and the optical fiber 5 is positioned so that the center of the transmission hole is on the optical axis 21 of the projection lens 9 and near the focal position of the projection lens 9. Is connected to the high brightness star projection tube 4.
[0022]
Here, for example, if the projection half angle of view from the star projection cylinder 2 is about 28 ° and the projection half angle of view from the high brightness star projection cylinder 4 is 0.05 °, the projected area ratio is the square of the radius. It is about 370,000 times better. In other words, when equal light energy is applied to the star projection tube 2 and the high-brightness star projection tube 4, the brightness of the high-brightness star projection image by the high-brightness star projection tube 4 is about 37 of the star projection image in the star projection tube 2. Million times.
[0023]
However, even if high brightness stars are projected, the brightness ratio up to that point is not necessary. Therefore, as an example, the optical fiber 5 guided from the light source 3 to the high brightness star projection tube 4 is made as a single strand having a diameter of 50 μm. When the optical fiber 5 that guides light from the light source 3 to the projection tube 2 is bundled with a diameter of 5 mm, and the cross-sectional area of the light guide path or the area ratio of the light guide surface is reduced to about 10,000 times, The brightness ratio of each projected image is about 37 times, and it is still possible to obtain the brightness ratio of about 3.9 stars.
[0024]
In this way, the light from the light source 3 is guided by diverging from the focusing unit 5a so that the high luminous star projection cylinder 4 can obtain the minimum light energy necessary for projecting one high-grade high-luminance star. Considering the number of distributions of the optical fibers 5 that emit light, the brightness of the bright star projection image can be sufficiently increased without increasing the power of the light source 3 or increasing the transmission hole of the bright star original plate 10. Therefore, it is possible to produce an effect based on the visual diameter in which all the stars including high brightness stars are recognized as points, and the problem of temperature rise caused by increasing the power of the light source 3 is solved. At the same time, since the optical fiber 5 is only connected to each star projection cylinder 2 and the high-brightness star projection cylinder 4, the assembling work and the repair work when the optical fiber 5 is disconnected are simple.
[0025]
Such a feature is that the high-luminance star projection tube 4 projects only high-ranking stars, and the other star in the whole sky is projected by the star projection tube 2, so that the whole sky is divided into a plurality of stars. Projection angle in the high star projection tube 4 that projects only a few upper-grade stars is much smaller than the projection angle in the star projection tube 2 that will be divided and projected, and is necessary for high brightness star projection Light energy from the light source 3 to each star projection tube 2 and each high-brightness star projection tube 4 according to the ratio of projection angles is greatly reduced with respect to the light energy required for the star projection tube 2 This is because the optical fiber 5 or the bundle of optical fibers 5 branched individually from the light source 3 can be satisfied by the light guide. Therefore, it is preferable to project one high-luminance star with one high-luminance star projection tube 4, but the present invention is not limited to this. If the number of stars projected by one star-projection tube 2 is much smaller, it is preferable. The advantages of the above features are exhibited.
[0026]
In the second embodiment shown in FIG. 4, the light source unit further enables blinking of the projected image projected by the star projection cylinder 2 and the high-brightness star projection cylinder 4 in the first embodiment. Such blinking is achieved by the movement of the net-shaped light shield 11 in which there are randomly transmitting portions and non-transmitting portions. The light shield 11 is disposed between the collected light beam 5 a on the light source 3 side and the light source 3, and is fixed to a swing rod 12 b supported on the rotary shaft 12 a of the actuator 12 attached to the unit of the light source 3. The opaque portion of the light shield 11 casts a shadow on the light source 3 side end face of the converging part 5a of the optical fiber 5, and the shadow moves by the action of the actuator 12 according to the swing of the swing rod 12b. It blinks randomly, and it looks as if the eyelids are blinking. Further, if the light shield 11 is retracted to a side position where no shadow is cast on the end face on the light source 3 side of the converging part 5a of the optical fiber 5, blinking of the projected image can be stopped.
[0027]
Further, when a discharge lamp such as a metal halide lamp is used as the light source 3, the lamp cannot be electrically dimmed. For this reason, a mechanical light control device is required. FIG. 5 shows a light source unit capable of mechanical light control as a third embodiment. Dimming can be performed by changing the aperture diameter of the stop, and it is preferable to use a so-called iris stop in terms of performing delicate light control, and this embodiment employs this. The iris diaphragm 13 performs dimming by changing the aperture diameter by rotating the outer peripheral rotation ring 13a via the passive pin 13b included therein.
[0028]
In order to control the light control, an actuator 25 is attached to the unit of the light source 3, and a swing rod 25 b provided on a rotation shaft 25 a of the actuator 25 and the passive pin 13 b are connected by a link 26. If the rotation angle of the rotary shaft 25a is controlled by the actuator 25, the aperture diameter of the iris diaphragm 13 can be determined, and the amount of the light beam incident from the light source 3 onto the light source 3 side end face of the converging part 5a of the optical fiber 5 is controlled. This control is dimming.
[0029]
In the fourth embodiment shown in FIG. 6, a light shield 14 is provided in each of a plurality of high-brightness star projection cylinders 4 so that light shielding and light shielding can be canceled. The light shield 14 is concentrically located on the optical axis of the projection lens 9 on the optical axis of the projection lens 9 while forming a conical body having the same shape as the spread of the light flux from the optical fiber 5, and the optical fiber 5 side or the projection lens 9 side in the optical axis direction. This surface is cut out from the lateral direction perpendicular to the optical axis so as to form a semicircular surface 14a. On the other hand, an actuator 31 having a rotation axis 31a around an axis passing through the intersection of the semicircular surface 14a and the optical axis and perpendicular to them is attached to the unit of the high-brightness projection cylinder 4 and the rotation The light shield 14 is fixed to the shaft 31a.
[0030]
In the state shown in FIG. 6, the light beam from the optical fiber 5 is completely blocked by the light shield 14 and cannot be projected. If the actuator 31 is operated from this state and the light shield 14 is rotated by 90 °, the light beam passes through the semicircular surface 14a, so that projection can be performed. Therefore, by individually controlling the actuator 31 of each high-brightness star projection cylinder 4, not only the control for preventing high-brightness stars from being projected below the parting line of the dome screen, but also the high brightness overlapping with the projected image from the video projector. It can also be controlled not to project stars.
[0031]
Finally, in the stellar projection tube 2 shown in FIG. 2, the stellar original plate 8 may be a unit that allows light to pass through only a portion where voltage is applied by sandwiching liquid crystal and electrodes between two light shielding plates. Normally, the liquid crystal is weak against heat and is not suitable for a planetarium. However, since only the light beam that has passed through the optical fiber 5 hits the liquid crystal, it is not affected by the heat from the light source 3. According to the liquid crystal original plate, for example, the position and number of the star to be projected can be freely controlled only by controlling the position of the liquid crystal to which the voltage is applied.
[0032]
Furthermore, since the transmittance of the light flux is reduced to 50% or less by the deflecting plate, it was difficult to project a star with high brightness. However, a star with high brightness compensates for it by projecting from the bright star projection cylinder 4. be able to.
[0033]
【The invention's effect】
According to the present invention, as is apparent from the above description, the brightness of the bright star projection image is sufficiently increased without increasing the power of the light source or enlarging the transmission hole of the high bright star base plate, and includes high bright stars. All stars can be produced with a visual diameter that is recognized as a point, and the problem of temperature rise caused by increasing the power of the light source is solved. Further, since the optical fiber is simply connected to each star projection tube and the high brightness star projection tube, the assembly work and the repair work when the optical fiber is disconnected are easy.
[Brief description of the drawings]
FIG. 1 is a partial schematic configuration diagram showing a stellar projector of a first example according to a typical embodiment of the present invention.
2 is a cross-sectional view of the star projection cylinder of FIG. 1. FIG.
3 is a cross-sectional view of the high-brightness star projection cylinder of FIG. 1. FIG.
FIG. 4 is a perspective view illustrating a light source unit including a light shield according to a second embodiment.
FIG. 5 is a perspective view showing a light source unit provided with a light control means according to a third embodiment.
FIG. 6 is a cross-sectional view of a high-brightness star projection cylinder provided with a light shield according to a fourth embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Stellar sphere 2 Stellar projection cylinder 3 Light source 4 High star projection cylinder 5 Optical fiber 5a Condensing part 6 Condensing lens 7 Stellar projection lens 8 Stellar original plate 9 High star projection lens 10 High bright star original plates 11, 14 Shading element 13 Iris stop

Claims (9)

投映されるべき恒星中、所定の高輝星が高輝星投映筒から投映され、上記所定の高輝星以外の恒星が恒星投映筒から投映されるプラネタリウムの恒星投映機であって、高輝星原板と高輝星投映用レンズを有して構成された複数個の高輝星投映筒と、これよりも多い恒星を投映する恒星原板と集光レンズおよび恒星投影用レンズを有して構成された複数の恒星投映筒と、光源から個々に分岐した光ファイバないし光ファイバ束により光源からの光を導くのに、分配する光エネルギは恒星投映筒の側よりも高輝星投映筒の側を低くしたことを特徴とするプラネタリウムの恒星投影機。During stellar be projected imaged, a predetermined high bright star is projected from Koteru Review projection tube, a star projector of planetarium star other than the predetermined high bright star is projected from the star projection tube, Koteru Hoshihara plate and Koteru A plurality of high star projection cylinders configured with a star projection lens, a plurality of star projections configured with a star original plate, a condenser lens, and a star projection lens for projecting more stars. in a cylindrical, light from the light source to guide Kuno by an optical fiber or optical fiber bundle is branched from the light source individually, that light energy for distribution was lower side of the high-bright star projection tube of the side of the stellar projection tube A planetarium star projector. 高輝星原板は、高輝星1個または適数個を表現し、恒星原板はそれら複数の高輝星を除いた恒星から恒星投映筒の数で分割した恒星数の投映像を表現する請求項1に記載のプラネタリウムの恒星投影機。  The high brightness star plate expresses one or a suitable number of high brightness stars, and the star base plate expresses a projected image of the number of stars divided by the number of star projection tubes from a star excluding the plurality of high brightness stars. Planetarium star projector as described. 光ファイバないし光ファイバ束の光源側の集束部と光源との間に、集束部端面の一部を遮光しながら移動する遮光子を備えた請求項1、2のいずれか1項に記載のプラネタリウムの恒星投影機。  The planetarium according to any one of claims 1 and 2, further comprising a light-shielding element that moves while shielding a part of the end face of the converging part between the converging part on the light source side of the optical fiber or the optical fiber bundle and the light source. Stellar projector. 光ファイバないし光ファイバ束の光源側の集束部と光源との間に、投影機外部からの信号によって絞りの口径を変化させて光源から集束部への光の照射量を変化させる調光手段を設けた請求項1〜3のいずれか1項に記載のプラネタリウムの恒星投影機。  A dimming means that changes the aperture of the diaphragm by a signal from the outside of the projector and changes the amount of light irradiated from the light source to the converging unit between the converging unit on the light source side of the optical fiber or the optical fiber bundle and the light source. The planetarium star projector according to any one of claims 1 to 3. 各高輝星投映筒の投映レンズの前後付近に遮光子を設け、それぞれの高輝星投映筒からの光を独立して遮光、遮光解除できるようにした請求項1〜4のいずれか1項に記載のプラネタリウムの恒星投影機。  The light shielding element is provided in the vicinity of the front and rear of the projection lens of each high-brightness star projection tube so that light from each high-brightness star projection tube can be independently shielded and released from light shielding. Planetarium star projector. 恒星投映筒の恒星原板は、電圧をかけた液晶部分だけ光の透過を可能にする液晶原板である請求項1〜5のいずれか1項に記載のプラネタリウムの恒星投影機。  6. The planetarium star projector according to claim 1, wherein the star base plate of the star projection cylinder is a liquid crystal base plate that allows light to pass through only a liquid crystal portion to which voltage is applied. 光源から個々に分岐した光ファイバないし光ファイバ束は、恒星投影筒と高輝星投影筒への光エネルギの分配が好適となるように、その分配数が設定され、高輝星投映筒へ分岐する光ファイバまたはファイバ束の先端は、投映レンズの後部の高輝星原板に達し、恒星投映筒へ分岐する光ファイバまたは光ファイバ束の先端は恒星投映筒の恒星原板の背部にある集光レンズの有効取り込み位置に達していることを特徴とする請求項1〜6のいずれか1項に記載のプラネタリウムの恒星投影機。The optical fibers or optical fiber bundles individually branched from the light source are set to have a distribution number so that the light energy distribution to the stellar projection tube and the high brightness star projection tube is suitable, and the light branched to the high brightness star projection tube The tip of the fiber or fiber bundle reaches the high star base plate at the rear of the projection lens, and the tip of the optical fiber or optical fiber bundle that branches to the star projection tube is effectively captured by the condenser lens at the back of the star projection plate of the star projection tube. The planetarium star projector according to any one of claims 1 to 6, wherein the planetarium star projector has reached a position . 恒星投映筒と高輝星投映筒への光エネルギの分配は、それぞれの投映画角の比に応じて設定されることを特徴とする請求項7に記載のプラネタリウムの恒星投影機。  8. The planetarium star projector according to claim 7, wherein the distribution of light energy between the star projection cylinder and the high-brightness star projection cylinder is set in accordance with a ratio of the projection angle of each. 高輝星投映筒と恒星投映筒とに対し、光ファイバないし光ファイバ束がなす導光路の断面積ないしは導光面の面積比を設定したことを特徴とする請求項1〜6のいずれか1項に記載のプラネタリウムの恒星投影機。  The cross-sectional area of the light guide path formed by the optical fiber or the optical fiber bundle or the area ratio of the light guide surface is set for the high brightness star projection tube and the star projection tube. Planetarium star projector as described in
JP28373499A 1999-10-05 1999-10-05 Planetarium star projector Expired - Lifetime JP3787249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28373499A JP3787249B2 (en) 1999-10-05 1999-10-05 Planetarium star projector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28373499A JP3787249B2 (en) 1999-10-05 1999-10-05 Planetarium star projector

Publications (2)

Publication Number Publication Date
JP2001109063A JP2001109063A (en) 2001-04-20
JP3787249B2 true JP3787249B2 (en) 2006-06-21

Family

ID=17669421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28373499A Expired - Lifetime JP3787249B2 (en) 1999-10-05 1999-10-05 Planetarium star projector

Country Status (1)

Country Link
JP (1) JP3787249B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005266037A (en) * 2004-03-17 2005-09-29 Konica Minolta Planetarium Co Ltd Star image projector
JP4898297B2 (en) * 2006-05-26 2012-03-14 貴之 大平 Planetarium star projector
JP5089085B2 (en) * 2006-06-02 2012-12-05 貴之 大平 Planetarium star projector
JP4482544B2 (en) * 2006-07-18 2010-06-16 コニカミノルタプラネタリウム株式会社 Planetarium equipment, planetarium, and Hoshino projection original plate
JP5105917B2 (en) * 2007-03-15 2012-12-26 有限会社大平技研 Compound planetarium system
JP5274860B2 (en) * 2008-03-05 2013-08-28 有限会社大平技研 Planetarium equipment
JP5414193B2 (en) * 2008-03-28 2014-02-12 有限会社大平技研 Planetarium fiber illuminator
JP5295411B2 (en) * 2012-06-21 2013-09-18 有限会社大平技研 Compound planetarium system
WO2015079715A1 (en) * 2013-11-30 2015-06-04 株式会社五藤光学研究所 Fixed star projection barrel
JP6999097B2 (en) * 2016-07-20 2022-01-18 株式会社五藤光学研究所 Star projection tube

Also Published As

Publication number Publication date
JP2001109063A (en) 2001-04-20

Similar Documents

Publication Publication Date Title
EP0385262B1 (en) Observation apparatus with reflecting object illumination appliance
JP3787249B2 (en) Planetarium star projector
JP2004513382A (en) Coupling light from a light source to a target using two elliptical reflectors
US10132470B2 (en) Versatile beam and wash optical system for an automated luminaire
CN106249511B (en) Lighting apparatus
JP3722547B2 (en) Illumination optics
JPS59211014A (en) Variable power observing device
US4422736A (en) Eye fundus camera having ring slit mask in illuminating system
WO2004010213A2 (en) Planetarium and point light source for the use in same
JP3891663B2 (en) Stereo microscope
JPH03128033A (en) Ophthalmological machinery
JP2002090635A (en) Illumination optical system
JPWO2019045094A1 (en) Scanning fundus photography device
JP4590095B2 (en) Light source device
JPS60130713A (en) Stop device of light source device for endoscope
JPS60119001A (en) Light shielding headlight of vehicle
JP3841484B2 (en) Microscope epi-illumination system
JP3890158B2 (en) Macro flash lighting device
JPH1080400A (en) Illuminating apparatus for retinal camera
JPS63139316A (en) Vertical illuminating device for dark field of microscope
JPH03136633A (en) Ophthalmic lighting device
JPH11283422A (en) Light source device
JP3642599B2 (en) Lighting device for observation / imaging device
JPH0333732A (en) Light source unit for projector
JPH0534599A (en) Illuminating optical system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041015

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041130

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060324

R150 Certificate of patent or registration of utility model

Ref document number: 3787249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140331

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term