JP3784221B2 - Wiring board and manufacturing method thereof - Google Patents

Wiring board and manufacturing method thereof Download PDF

Info

Publication number
JP3784221B2
JP3784221B2 JP27809699A JP27809699A JP3784221B2 JP 3784221 B2 JP3784221 B2 JP 3784221B2 JP 27809699 A JP27809699 A JP 27809699A JP 27809699 A JP27809699 A JP 27809699A JP 3784221 B2 JP3784221 B2 JP 3784221B2
Authority
JP
Japan
Prior art keywords
weight
ratio
clinoenstatite
enstatite
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27809699A
Other languages
Japanese (ja)
Other versions
JP2001102698A (en
Inventor
紀彰 浜田
正也 國分
謙一 永江
均 隈田原
保秀 民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP27809699A priority Critical patent/JP3784221B2/en
Publication of JP2001102698A publication Critical patent/JP2001102698A/en
Application granted granted Critical
Publication of JP3784221B2 publication Critical patent/JP3784221B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]

Description

【0001】
【発明の属する技術分野】
本発明は、メタライズ配線層を具備する配線基板およびその製造方法に関するものである。
【0002】
【従来技術】
従来から、絶縁基板の表面あるいは内部にメタライズ配線層が配設された配線基板が知られており、その代表的な例である半導体素子を収容するための半導体素子収納用パッケージは、例えば、アルミナセラミックス等の電気絶縁材料からなり、その上面中央部に半導体素子を収容するための凹部を有する絶縁基板と、前記絶縁基板の凹部周辺から下面にかけて導出されるタングステン、モリブデン等の高融点金属粉末から成る複数個のメタライズ配線層と、前記絶縁基板の下面に形成され、メタライズ配線層が電気的に接続される複数個の接続パッドと、前記接続パッドにロウ付け取着される接続端子と、蓋体とから構成される。
【0003】
そして、絶縁基板の凹部底面に半導体素子を実装、固定し、半導体素子の各電極とメタライズ配線層とをボンディングワイヤを介して電気的に接続させるとともに、絶縁基板上面に蓋体を封止材によって接合し、絶縁基板と蓋体とからなるキャビティ内部に半導体素子を気密に封止し、さらに、前記絶縁基板下面の接続パッドに接続された接続端子を外部回路基板の配線導体と半田等によりロウ付けすることによって、パッケージを外部回路基板表面に電気的に接続、実装することができる。
【0004】
一般に、半導体素子の集積度が高まるほど、半導体素子に形成される電極数も増大するが、これに伴いパッケージにおける端子数も増大する。ところが、パッケージ自体の寸法を大きくするにも限界があり、小型化の要求に対して、必然的にパッケージにおける端子の密度を高くする必要がある。
【0005】
パッケージにおける端子の密度を高める構造としては、パッケージの下面にコバールなどの金属ピンを接続したピングリッドアレイ(PGA)、パッケージの側面からガルウイング状(L字状)の金属ピンが導出されたクワッドフラットパッケージ(QFP)、さらに接続端子を半田や半田からなる球状端子により構成したランドグリッドアレイ(LGA)やボールグリッドアレイ(BGA)等があり、これらの中でも、接続端子を接続パッドに半田などのロウ材からなる球状端子をロウ付けした端子により構成し、この球状端子を外部回路基板の配線導体上に載置当接させて、前記端子を約250〜400℃の温度で加熱溶融し、球状端子を配線導体に接合させるボールグリッドアレイ(BGA)が最も高密度化が可能である。
【0006】
ところで、これらのパッケージにおける絶縁基板として広く使用されているアルミナの熱膨張係数は約4〜7ppm/℃程度であるのに対して、パッケージが実装される外部回路基板として最も多用されているガラス−エポキシ絶縁層からなるプリント基板の熱膨張係数は11〜18ppm/℃と非常に大きい。
【0007】
そのため、半導体素子収納用パッケージを外部回路基板に実装した場合、半導体素子の作動時に発する熱が絶縁基板と外部回路基板の両方に繰り返し印加されるとパッケージの絶縁基板と外部回路基板との間に両者の熱膨張係数差に起因する大きな熱応力が発生する。この熱応力は、端子数が300を超え、パッケージが大型化するにつれて影響が増大し、パッケージの作動および停止の繰り返しにより熱応力が繰り返し印加されると、絶縁基板下面の接続パッドの外周部、及び外部回路基板の配線導体と端子との接合界面に熱応力に伴う応力集中が生じる結果、接続パッドや接続端子が絶縁基板や配線導体より剥離し、半導体素子収納用パッケージを外部回路基板に長期にわたり安定に電気的接続することができないという問題があった。
【0008】
また、BGA構造を持ちパッケージサイズが半導体のチップサイズに近似したチップスケールパッケージ(CSP)でもパッケージとプリント基板との接続距離が小さいため、上述した理由により10〜15mm角の大きさでは両者間の熱膨張差が問題となる。
【0009】
一方、上記課題に対し、配線基板における絶縁基板として、上述した外部回路基板との熱膨張差が小さく、CuやAg等の低抵抗導体との同時焼成が可能なガラス−セラミックスが開発されており、例えば、特開平6−191887号公報では、熱膨張係数が100〜150×10-7のガラス中に熱膨張係数11.0ppm/℃のフォルステライト(2MgO・SiO2 )を30〜70重量%分散させて磁器の熱膨張係数を高めたガラスセラミックや、特開昭63−117929号公報では、ZnO−Al2 3 −SiO2 系ガラスを用い、化学組成と熱処理条件の制御によって珪酸亜鉛、コーディライト、亜鉛尖小石の結晶を生成させて熱膨張係数を制御できることが提案されている。
【0010】
また、本出願人は、特開平9−142880号公報において、ガラス相1〜50重量%と、結晶相50〜99重量%とを含有し、かつフォルステライト及びエンスタタイトを合計で20〜85重量%の比率で含有するガラスセラミックスの熱膨張係数が9〜18ppm/℃と高く、これを配線基板の絶縁基板として用いることにより外部回路基板の実装信頼性を向上できることを提案した。
【0011】
【発明が解決しようとする課題】
しかしながら、特開昭63−117929号公報におけるガラスセラミックスを具備するパッケージでは高い熱膨張係数の基板が得られるものの、公報に記載されているように同一の組成でもわずかな熱処理条件の相違により析出結晶相が変化し熱膨張係数を安定して制御することが難しく、しかも高価な結晶性ガラスを使用するため、パッケージを安価に製造することができないものであった。
【0012】
また、特開平6−191887号公報におけるガラスセラミックスを具備するパッケージ基板では高い熱膨張係数の基板が得られるものの、ガラスとフォルステライトとの組み合わせだけでは、9ppm/℃以上の高熱膨張係数を得ることが困難であった。
【0013】
さらにまた、特願平9−142880号公報によって得られる磁器では、エンスタタイト原料が不安定であるために、焼成後の磁器特性の再現性が低く、特に200MPa以上の機械的強度が安定して得られないものであった。
【0014】
従って、本発明は、高熱膨張係数で、かつ安定して機械的強度の高い絶縁基板を具備する配線基板を得ることにより、これをプリント基板等の外部回路基板に実装した場合、強固に且つ長期にわたり安定した接続状態を維持できる高信頼性の配線基板およびその製造方法を提供することにある。
【0015】
【課題を解決するための手段】
本発明者らは、上記問題点に対して検討を重ねた結果、絶縁基板としてガラスとエンスタタイトとクォーツとを所定の比率で含有し、かつエンスタタイト原料中のクリノエンスタタイトの比率を高めることによって、焼成によるエンスタタイトの体積収縮を防止し、低温で緻密な磁器が得られること、また磁器中のクリノエンスタタイトの比率を高めることによって、磁器強度を高めることを知見した。
【0016】
すなわち、本発明の配線基板は、絶縁基板の表面あるいは内部にメタライズ配線層が配設され、前記絶縁基板が、ガラス20〜60重量%と、下記式により計算されるクリノエンスタタイトの比率が20%以上のエンスタタイト10〜60重量%と、クォーツ5〜60重量%との含有比率で含有する混合物を成形してグリーンシートを作製し、該グリーンシート表面にメタライズペーストを被着形成した後、970℃以下で焼成してなるものであって、ガラス20〜60重量%と、下記式により計算されるクリノエンスタタイトの比率が30%以上のエンスタタイト10〜60重量%と、クォーツ5〜60重量との比率で含有し、40℃〜400℃における熱膨張係数が9〜18ppm/℃、抗折強度200MPa以上であることを特徴とするものである。
P= I(Clino_310)*100/(I(Proto_310)/0.4+ I(Clino_310))
ただし、P:クリノエンスタタイトの比率(%)、
I(Clino_310):クリノエンスタタイトの(310)のX線回折ピーク強度、
I(Proto_310):プロトエンスタタイトの(310)のX線回折ピーク強度、
である。
【0017】
また、本発明の配線基板の製造方法は、ガラス20〜60重量%と、下記式により計算されるクリノエンスタタイトの比率が20%以上のエンスタタイト10〜60重量%と、クォーツ5〜60重量との含有比率で含有する混合物を成形してグリーンシートを作製し、該グリーンシート表面にメタライズペーストを被着形成した後、970℃以下で焼成することを特徴とするものである。
P= I(Clino_310)*100/(I(Proto_310)/0.4+ I(Clino_310))
ただし、P:クリノエンスタタイトの比率(%)、
I(Clino_310):クリノエンスタタイトの(310)のX線回折ピーク強度、
I(Proto_310):プロトエンスタタイトの(310)のX線回折ピーク強度、
である。
【0018】
【作用】
エンスタタイトはMgOとSiO2 を1200℃以上で熱処理して以下の反応式(1)により合成される。
MgO+SiO2 →(MgO・SiO2 ) (1)
上記反応式(1)においては、一般的にプロトエンスタタイトが生成されるが、この結晶相は高温(1050℃以上)で安定であるため、これを原料として用い、970℃以下の温度で焼成すると体積収縮を伴って低温で安定なクリノエンスタタイト等に変化する結果、磁器の緻密化を阻害する。すなわち、磁器を緻密化させるためには、より高温にて焼成する必要がある。
【0019】
そこで、プロトエンスタタイトに代えてクリノエンスタタイトを出発原料にすることにより、焼成時の体積収縮が防止でき、磁器を容易に緻密化させることができるから、低温焼成化が可能であるとともに、磁器強度を高めることができる。
【0020】
従って、970℃以下の焼成にて安定した密度および磁器強度を得るためには、エンスタタイト原料中のクリノエンスタタイトの比率を制御し、焼成時のエンスタタイトの相変態比率を低めることが重要である。 なお、エンスタタイトに代えてフォルステライトを出発原料とした場合、フォルステライトはクォーツと下記反応式(2)によりエンスタタイトを生成する。
【0021】
2MgO・SiO2 +SiO2 →2(MgO・SiO2 ) (2)
上記の反応は900℃付近で起こるため、例えば、Agメタライズとの同時焼成には不向きである。
【0022】
また、本発明によれば、絶縁基板の40〜400℃の温度範囲における熱膨張係数が9〜18ppm/℃であることから、ガラス−エポキシ基板などのプリント基板からなる外部回路基板のそれと近似し、絶縁基板と外部回路基板の熱膨張係数差に起因する熱応力を抑制して、絶縁基板と接続端子と外部回路基板との間でクラックや剥離が発生して接続不良を起こすことがなく、配線基板を外部回路基板に長期間にわたり正確に、且つ強固に電気的接続させることが可能となる。
【0023】
なお、本発明における熱膨張係数とは、特記しない限り40〜400℃の温度範囲における線熱膨張係数の平均値を指す。
【0024】
また、パッケージのメタライズ配線層として使用されるCuの熱膨張係数18ppm/℃に対しても近似の熱膨張係数を有するため、メタライズ配線層の絶縁基板への密着性をも高めることができる。
【0025】
【発明の実施の形態】
図1は、本発明の配線基板の代表例である半導体素子収納用パッケージの一例を示す概略断面図であり、Aは半導体素子収納用パッケージ、Bは外部回路基板である。
【0026】
半導体素子収納用パッケージAは、絶縁基板1と蓋体2とメタライズ配線層3と接続端子4およびパッケージの内部に収納される半導体素子5により構成され、絶縁基板1及び蓋体2によって半導体素子5を内部に気密に収容するためのキャビティ6を構成し、キャビティ6内には、半導体素子5が、ガラス、樹脂等の接着剤を介して接着固定される。
【0027】
また、絶縁基板1の表面および内部には、メタライズ配線層3が配設され、半導体素子5と絶縁基板1の下面に形成された接続端子4とを電気的に接続するように配設されている。図1のパッケージによれば、接続端子4は、接続パッド4aを介して高融点の半田(錫−鉛合金)からなる球状端子4bがロウ材により取着されているが、球状端子4bを使用せず、接続パッドに直接半田を塗布して外部回路基板に接続してもよい。
【0028】
一方、外部回路基板Bは、絶縁体7と配線導体8とから構成され、絶縁体7は、少なくとも有機樹脂を含む絶縁材料からなり、具体的には、ガラス−エポキシ系複合材料などのように40〜400℃の熱膨張係数が12〜18ppm/℃の特性を有し、一般的にはプリント基板等が用いられる。
【0029】
なお、パッケージAのメタライズ配線層3と外部回路基板Bの表面に形成される配線導体8は、絶縁基板1または絶縁体7との熱膨張係数の整合性と、電気抵抗の低減の点で、Cu、Au、Ag、Al、Ni、Pb−Snから選ばれる少なくとも1種の金属導体からなることが望ましい。
【0030】
また、パッケージAの絶縁基板1下面の球状端子4bを外部回路基板Bの配線導体8上に載置当接させ、しかる後、低融点の半田等のロウ材により約250〜400℃の温度で半田を溶融させて、接続端子4と配線導体8とを接合させることによって半導体素子収納用パッケージAを外部回路基板Bに実装することができる。この時、配線導体8の表面には接続端子4との接続を容易に行うためにロウ材が被着形成されていることが望ましい。
【0031】
(絶縁基板)本発明によれば、上記配線基板の絶縁基板1として、ガラス20〜60重量%と、後述の式(3)により計算されるクリノエンスタタイトの比率が20%以上のエンスタタイト10〜60重量%と、クォーツ5〜60重量%との含有比率で含有する混合物を成形してグリーンシートを作製し、該グリーンシート表面にメタライズペーストを被着形成した後、970℃以下で焼成してなるものであって、ガラス20〜60重量%、特に30〜50重量%と、後述の式(3)により計算されるクリノエンスタタイトの比率が30%以上、特に50%以上のエンスタタイト10〜60重量%、特に20〜50重量%と、クォーツ5〜60重量、特に10〜50重量%との比率で含有する。
【0032】
そして、40℃〜400℃における熱膨張係数が9〜18ppm/℃、特に10〜16ppm/℃、抗折強度200MPa以上、特に220MPa以上であることが大きな特徴であり、これによって、前述した外部回路基板Bとの熱膨張差に起因する熱応力の発生を緩和し、外部回路基板BとパッケージAとの電気的接続状態を長期にわたり良好に維持することができるとともに、配線基板自体の強度を高めることができる。
【0033】
すなわち、ガラスが20重量%より少ないと、970℃以下の温度にて磁器を緻密化させることができず、60重量%を越えると原料単価が上昇してしまうとともに、磁器の焼結温度が低下しすぎ、CuやAgのメタライズ配線層との焼成収縮挙動が合わず、配線基板が変形する恐れがある。
【0034】
また、エンスタタイトが10重量%より少ないと、原料のクォーツの一部がクリストバライトに変態して200〜250℃に急激な熱膨張変化が発生し、接続端子部でのクラックや剥離の要因となるとともに、磁器強度が低下する。また、エンスタタイトが60重量%を越える場合、磁器の熱膨張係数を9ppm/℃以上とすることが難しい。さらに、クォーツが5重量%より少ないと、磁器の熱膨張係数を9ppm/℃以上とできず、60重量%を越える場合、磁器強度を200MPa以上とすることができない。
【0035】
なお、上記ガラスは、後述するバインダの効率的な除去および高価なガラスの含有比率の低減、絶縁基板と同時に焼成されるメタライズとの焼成条件のマッチングの点で、屈伏点が400℃〜800℃で、熱膨張係数が6〜18ppm/℃、特に7〜13ppm/℃の結晶化ガラスであることが望ましく、具体的には、
SiO2 −Li2 O−CaO−Al2 3
SiO2 −Li2 O−Al2 3
SiO2 −Li2 O−MgO、
SiO2 −Li2 O−CaO−Al2 3 −MgO−TiO2
SiO2 −Li2 O−CaO−Al2 3 −MgO−Na2 O−F、
SiO2 −Li2 O−CaO−Al2 3 −K2 O−Na2 O−ZnO、
SiO2 −Li2 O−CaO−Al2 3 −K2 O−P2 5
SiO2 −Li2 O−Al2 3 −K2 O−P2 5 −Sb2 3
SiO2 −Li2 O−CaO−Al2 3 −K2 O−P2 5 −ZnO−Na2 O、
SiO2 −Li2 O−CaO−MgO、
SiO2 −Li2 O−CaO−ZnO、
SiO2 −BaO−B2 3
SiO2 −BaO−B2 3 −Al2 3
SiO2 −BaO−B2 3 −CaO
SiO2 −BaO−B2 3 −MgO
SiO2 −BaO−B2 3 −CaO−Al2 3
SiO2 −BaO−B2 3 −MgO−Al2 3
SiO2 −BaO−B2 3 −CaO−Al2 3 −ZnO
等の結晶化ガラスが挙げられる。
【0036】
また、本発明によれば、エンスタタイト中には、クリノエンスタタイトを30%以上、特に50%以上、さらに70%以上含有することが重要であり、これによって、磁器強度を200MPa以上に高めることができる。なお、エンスタタイトとしては、クリノエンスタタイト以外にも、プロトエンスタタイトやそれ以外のエンスタタイト結晶相が存在する。
【0037】
(配線基板の製造方法)次に、本発明の配線基板を製造するには、ガラス20〜60重量%と、後述の式(3)により計算されるクリノエンスタタイトの比率が20%以上、特に40%以上のエンスタタイト10〜60重量%と、クォーツ5〜60重量との含有比率で混合する。なお、エンスタタイト中のクリノエンスタタイトの比率を20%以上とするためには、上記式(1)の反応時に触媒としてLi成分を添加するか、またはプロトエンスタタイト原料に対して、例えば、ボールミル、アトライタミル、振動ミル、ジェットミル等の公知の粉砕方法を用いてプロトエンスタタイトに衝撃を付与することによって、プロトエンスタタイトをクリノエンスタタイトに相変態させることによって制御できる。
【0038】
なお、本発明では、エンスタタイト中のクリノエンスタタイトの比率は、図2に示すX線回折ピークから下記式(3)によって求めた値である。
P= I(Clino_310)*100/(I(Proto_310)/0.4+ I(Clino_310)) (3)
ただし、P:クリノエンスタタイトの比率(%)、
I(Clino_310):クリノエンスタタイトの(310)のX線回折ピーク強度、
I(Proto_310):プロトエンスタタイトの(310)のX線回折ピーク強度、
である。
【0039】
上記結晶性ガラスとフィラーとの混合物に、適当な有機樹脂バインダを添加して泥漿物を作るとともに、該泥漿物をドクターブレード法やカレンダーロール法を採用することによってグリーンシートを作製する。そして、メタライズ配線層及び接続パッドとして、上述した金属粉末に有機バインダ、可塑剤、溶剤等を添加、混合して得た金属ペーストを前記グリーンシートに周知のスクリーン印刷法により所定パターンに印刷塗布する。また、場合によっては、前記グリーンシートに適当な打ち抜き加工してスルーホールを形成し、このホール内にもメタライズペーストを充填する。そしてこれらのグリーンシートを複数枚積層し、グリーンシートとメタライズとを同時焼成することにより多層構造のパッケージを得ることができる。
【0040】
焼成にあたっては、まず、成形のために配合したバインダ成分を除去する。バインダの除去は、700℃前後の大気雰囲気中で行われるか、または配線導体としてCu等の卑金属を用いる場合には、100〜700℃の水蒸気を含有する窒素雰囲気中で行われることが望ましい。この時、成形体の焼成による収縮開始温度は700〜850℃程度であることが望ましく、かかる収縮開始温度によりバインダを容易に除去できることから、成形体中の結晶化ガラスの屈伏点を400℃〜800℃に制御することが望ましい。
【0041】
焼成は、800℃〜970℃の酸化性または還元性雰囲気中で行われ、これにより相対密度90%以上、特に95%以上まで緻密化される。焼成温度が970℃を越えると、メタライズ層が溶融してしまう。
【0042】
【実施例】
結晶性ガラスとして、重量比率で

Figure 0003784221
の2種のガラスを準備した。
【0043】
このガラスに対してフィラー成分として、エンスタタイト(2MgO・SiO2 、熱膨張係数10ppm/℃)、クォーツ(SiO2 、熱膨張係数15ppm/℃)を用いて表1に示す調合組成になるように秤量混合した。
【0044】
なお、上記エンスタタイト原料については、所望時間振動ミルを行い、粉末X線回折測定にて上述の式(3)に基づくエンスタタイト中のクリノエンスタタイトの比率を算出したものを用いた。エンスタタイト原料エンスタタイト中のクリノエンスタタイトの比率は表1に示した。
【0045】
この混合物に有機バインダを添加した後、プレス成形により、3.5×3.5×15mmの形状の成形体を作製し、この成形体を700℃のN2 +H2 O中で脱バインダ処理した後、窒素雰囲気中で表1に示す温度にて焼成した。
【0046】
得られた磁器に対して、アルキメデス法により理論密度に対する比率である相対密度を測定し、また、40〜400℃の熱膨張係数およびJISR1601に基づいて磁器強度を測定した。さらに、磁器表面でX線回折測定を行い、上述の式(3)に基づいてエンスタタイト中のクリノエンスタタイトの比率を算出した。結果は表1に示した。
【0047】
また、上記ガラスとフィラーとからなる混合物に有機バインダ、可塑剤、分散剤、溶剤を添加、混合してスラリーを調整し、ドクターブレード法にてグリーンシートを作製した。得られたグリーンシートを所定の形状にカットした後、グリーンシートの所定箇所にスルーホールを形成し、スルーホール内にCu粉末と有機ビヒクルとからなるCuメタライズペーストを充填した。また、グリーンシートの表面にCuメタライズペーストを用いてスクリーン印刷法によりメタライズ配線層を塗布した。そして、メタライズペーストが塗布されたグリーンシートをスルーホールの位置合わせを行いながら6枚積層し圧着した。
【0048】
なお、配線基板の下面にはスルーホールに接続する箇所にCuメタライズからなる接続パッドを形成した。この積層体を700℃でN2 +H2 O中で脱バインダ後、窒素雰囲気中、表1に示す温度で同時焼成した。
【0049】
そして、前記接続パッドに図1に示すような半田(錫70〜10%−鉛30〜90%)からなる接続端子を取着した。なお、接続端子は、1cm2 当たり30端子の密度で配線基板の下面全体に形成した。
【0050】
一方、ガラス−エポキシ基板からなる40〜800℃における熱膨張係数が13ppm/℃の絶縁体の表面に銅箔からなる配線導体が形成されたプリント基板を準備した。
【0051】
そして、上記のパッケージに取着した接続端子をプリント基板の配線導体に接続されるように位置合わせし、これをN2 雰囲気中で260℃で3分間熱処理してパッケージをプリント基板表面に実装した。この熱処理により接続端子が溶けてパッケージとプリント基板とが電気的に接続されたことを確認した。
【0052】
次に、得られた実装物を大気の雰囲気にて−40℃と125℃の各温度に制御した恒温槽に15分/15分の保持を1サイクルとして最高1000サイクル繰り返した。そして、100サイクル毎にプリント基板の配線導体とパッケージ用配線基板との電気抵抗を測定し、電気抵抗が増大したサイクル数をパッケージ(PKG)の熱サイクルテスト回数(TCT)として表1に示した。
【0053】
【表1】
Figure 0003784221
【0054】
表1より明らかなように、ガラスの含有量が20重量%より少ない試料No.1では、緻密な焼結体を得ることができず、ガラスの含有量が60重量%より多い試料No.6では、パッケージに変形が生じた。また、エンスタタイトの含有量が10重量%より少ない試料No.7では、磁器強度が低下し、また、200℃付近で急激に熱膨張変化が生じて熱膨張係数を18ppm/℃以下とすることができず、TCTにて500回でパッケージと外部回路基板との間に接続不良が発生した。
【0055】
さらに、クォーツの含有量が5重量%より少ない試料No.13、18では、熱膨張係数が9ppm/℃より低くなり、TCTにて300回でパッケージと外部回路基板との間に接続不良が発生した。また、クォーツの含有量が60重量%を越える試料No.24では、磁器強度が低下した。
【0056】
さらに、エンスタタイト原料中のクリノエンスタタイトの比率が20%より低く、磁器中のそれが30%より低い試料No.14、25では、磁器を95%以上に緻密化させることができず、また、磁器強度も低いものであった。
【0057】
これに対して、本発明の範囲内である試料No.2〜5、8〜12、15〜17、19〜23、26、27は、いずれも相対密度95%以上、熱膨張係数9〜18ppm/℃、磁器強度200MPa以上で、TCTにて1000サイクルまで良好な接続状態を維持できた。
【0058】
【発明の効果】
以上詳述したように、本発明の配線基板および半導体素子収納用パッケージによれば、配線基板における絶縁基板の磁器強度を高めることができるとともに、絶縁基板の熱膨張係数を高めてプリント基板等の外部回路基板との熱膨張係数差を小さくできることから、外部回路基板に実装した場合に、両者の熱膨張係数の差に起因する応力発生を抑制し、パッケージと外部回路とを長期間にわたり正確、かつ強固に電気的接続させることが可能となる。
【図面の簡単な説明】
【図1】本発明の配線基板の代表例である半導体素子収納用パッケージの一例を示す概略断面図である。
【図2】エンスタタイト中の式(3)により計算されるクリノエンスタタイトの比率を求める方法を説明するための図である。
【符号の説明】
1・・・絶縁基板
2・・・蓋体
3・・・メタライズ配線層
4・・・接続端子
4a・・接続パッド
4b・・球状端子
5・・・半導体素子
6・・・キャビティ
7・・・絶縁体
8・・・配線導体
A・・・半導体素子収納用パッケージ
B・・・外部回路基板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wiring board having a metallized wiring layer and a manufacturing method thereof.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a wiring board in which a metallized wiring layer is provided on the surface or inside of an insulating substrate is known. A typical example of a package for housing a semiconductor element for housing a semiconductor element is, for example, alumina. An insulating substrate made of an electrically insulating material such as ceramics and having a recess for accommodating a semiconductor element at the center of the upper surface thereof, and a refractory metal powder such as tungsten and molybdenum derived from the periphery of the recess to the lower surface of the insulating substrate A plurality of metallized wiring layers, a plurality of connection pads formed on the lower surface of the insulating substrate and electrically connected to the metallized wiring layers, connection terminals brazed to the connection pads, and a lid It consists of the body.
[0003]
Then, the semiconductor element is mounted and fixed on the bottom surface of the concave portion of the insulating substrate, and each electrode of the semiconductor element and the metallized wiring layer are electrically connected through the bonding wires, and the lid is formed on the upper surface of the insulating substrate with a sealing material. The semiconductor element is hermetically sealed inside the cavity formed by the insulating substrate and the lid, and the connection terminals connected to the connection pads on the lower surface of the insulating substrate are brazed with the wiring conductor of the external circuit substrate and solder or the like. By attaching, the package can be electrically connected and mounted on the surface of the external circuit board.
[0004]
In general, as the degree of integration of a semiconductor element increases, the number of electrodes formed on the semiconductor element increases, but the number of terminals in the package also increases accordingly. However, there is a limit to increasing the size of the package itself, and it is inevitably necessary to increase the density of terminals in the package in response to the demand for miniaturization.
[0005]
The structure to increase the terminal density in the package includes a pin grid array (PGA) in which metal pins such as Kovar are connected to the lower surface of the package, and a quad flat in which gull-wing (L-shaped) metal pins are led out from the side of the package There are packages (QFP) and land grid arrays (LGA) and ball grid arrays (BGA) in which the connection terminals are composed of solder or spherical terminals made of solder. Among these, the connection terminals are connected to the connection pads with solder or the like. A spherical terminal made of a material is constituted by a brazed terminal, the spherical terminal is placed on and abutted on the wiring conductor of the external circuit board, and the terminal is heated and melted at a temperature of about 250 to 400 ° C. A ball grid array (BGA) that joins a wire conductor to the wiring conductor can achieve the highest density.
[0006]
By the way, the thermal expansion coefficient of alumina widely used as an insulating substrate in these packages is about 4 to 7 ppm / ° C., whereas glass that is most frequently used as an external circuit substrate on which the package is mounted. The thermal expansion coefficient of a printed circuit board made of an epoxy insulating layer is as large as 11 to 18 ppm / ° C.
[0007]
Therefore, when a package for housing a semiconductor element is mounted on an external circuit board, if heat generated during operation of the semiconductor element is repeatedly applied to both the insulating board and the external circuit board, the package is formed between the insulating board and the external circuit board. A large thermal stress is generated due to the difference in thermal expansion coefficient between the two. This thermal stress has an effect that increases as the number of terminals exceeds 300 and the package becomes larger. When thermal stress is repeatedly applied by repeated operation and stop of the package, the outer peripheral portion of the connection pad on the lower surface of the insulating substrate, As a result of stress concentration due to thermal stress occurring at the bonding interface between the wiring conductor and the terminal of the external circuit board, the connection pad and the connection terminal are peeled off from the insulating board and the wiring conductor, and the semiconductor element storage package is attached to the external circuit board for a long There has been a problem that stable electrical connection cannot be achieved.
[0008]
Further, even in a chip scale package (CSP) having a BGA structure and having a package size approximate to a semiconductor chip size, the connection distance between the package and the printed circuit board is small. The difference in thermal expansion becomes a problem.
[0009]
On the other hand, glass-ceramics having a small difference in thermal expansion from the above-described external circuit board and capable of co-firing with a low-resistance conductor such as Cu or Ag have been developed as an insulating board in a wiring board. For example, in Japanese Patent Application Laid-Open No. 6-191887, forsterite (2MgO.SiO 2 ) having a thermal expansion coefficient of 11.0 ppm / ° C. is contained in 30 to 70% by weight in a glass having a thermal expansion coefficient of 100 to 150 × 10 −7. In a glass ceramic in which the thermal expansion coefficient of the porcelain is increased by dispersion, or in Japanese Patent Laid-Open No. 63-117929, ZnO—Al 2 O 3 —SiO 2 glass is used, and zinc silicate is controlled by controlling the chemical composition and heat treatment conditions, It has been proposed that the coefficient of thermal expansion can be controlled by generating cordierite and zinc spine crystals.
[0010]
In addition, the present applicant, in JP-A-9-142880, contains 1 to 50% by weight of a glass phase and 50 to 99% by weight of a crystal phase, and a total of 20 to 85% by weight of forsterite and enstatite. It was proposed that the mounting reliability of the external circuit board can be improved by using the glass ceramic contained at a ratio of% as high as 9 to 18 ppm / ° C. and using this as the insulating board of the wiring board.
[0011]
[Problems to be solved by the invention]
However, although a package having a glass ceramic in Japanese Patent Laid-Open No. 63-117929 can provide a substrate having a high thermal expansion coefficient, the crystallized crystals are different due to slight differences in heat treatment conditions even in the same composition as described in the publication. It has been difficult to stably control the thermal expansion coefficient by changing the phase, and since expensive crystalline glass is used, the package cannot be manufactured at low cost.
[0012]
Moreover, although a substrate having a high thermal expansion coefficient can be obtained with a package substrate having glass ceramics disclosed in Japanese Patent Laid-Open No. 6-191887, a high thermal expansion coefficient of 9 ppm / ° C. or more can be obtained only with a combination of glass and forsterite. It was difficult.
[0013]
Furthermore, in the porcelain obtained by Japanese Patent Application No. 9-142880, the enstatite raw material is unstable, so the reproducibility of the porcelain characteristics after firing is low, especially the mechanical strength of 200 MPa or more is stable. It was not obtained.
[0014]
Therefore, the present invention provides a wiring substrate having an insulating substrate having a high thermal expansion coefficient and stable and high mechanical strength. When this wiring substrate is mounted on an external circuit board such as a printed circuit board, the wiring board is strong and long-term. An object of the present invention is to provide a highly reliable wiring board capable of maintaining a stable connection state and a method for manufacturing the same.
[0015]
[Means for Solving the Problems]
As a result of repeated investigations on the above problems, the present inventors include glass, enstatite, and quartz in a predetermined ratio as an insulating substrate, and increase the ratio of clinoenstatite in the enstatite raw material. Thus, it has been found that enstatite volume shrinkage due to firing can be prevented, a dense porcelain can be obtained at low temperature, and that the porcelain strength can be increased by increasing the ratio of clinoenstatite in the porcelain.
[0016]
That is, in the wiring board of the present invention, a metallized wiring layer is disposed on the surface or inside of the insulating substrate, and the insulating substrate has a glass ratio of 20 to 60% by weight and a clinnoenstatite ratio calculated by the following formula of 20. % Of enstatite 10 to 60% by weight and a mixture containing quartz in a content ratio of 5 to 60% by weight to produce a green sheet, and after forming a metallized paste on the surface of the green sheet, The glass is fired at 970 ° C. or lower, and is composed of 20 to 60% by weight of glass, 10 to 60% by weight of enstatite having a ratio of clinoenstatite calculated by the following formula of 30% or more, and 5 to 60 quartz. and wherein the containing a ratio of the weight%, the thermal expansion coefficient at 40 ° C. to 400 ° C. is 9~18ppm / ℃, is bending strength 200MPa or more Is shall.
P = I (Clino_310) * 100 / (I (Proto_310) /0.4+I (Clino_310))
However, P: ratio of clinoenstatite (%),
I (Clino_310): X-ray diffraction peak intensity of (310) of clinoenstatite,
I (Proto_310): X-ray diffraction peak intensity of (310) of protoenstatite,
It is.
[0017]
Moreover, the manufacturing method of the wiring board of the present invention includes 20 to 60% by weight of glass, 10 to 60% by weight of enstatite in which the ratio of clinoenstatite calculated by the following formula is 20 % or more, and 5 to 60 quartz. A green sheet is produced by molding a mixture containing the content by weight %, and a metallized paste is deposited on the surface of the green sheet, and then fired at 970 ° C. or lower.
P = I (Clino_310) * 100 / (I (Proto_310) /0.4+I (Clino_310))
However, P: ratio of clinoenstatite (%),
I (Clino_310): X-ray diffraction peak intensity of (310) of clinoenstatite,
I (Proto_310): X-ray diffraction peak intensity of (310) of protoenstatite,
It is.
[0018]
[Action]
Enstatite is synthesized by the following reaction formula (1) by heat-treating MgO and SiO 2 at 1200 ° C. or higher.
MgO + SiO 2 → (MgO · SiO 2 ) (1)
In the above reaction formula (1), protoenstatite is generally generated, but since this crystal phase is stable at a high temperature (1050 ° C. or higher), it is used as a raw material and fired at a temperature of 970 ° C. or lower. Then, as a result of changing to stable clinoenstatite etc. at a low temperature with volume shrinkage, densification of porcelain is inhibited. That is, in order to densify the porcelain, it is necessary to fire at a higher temperature.
[0019]
Therefore, by using clinoenstatite as a starting material instead of protoenstatite, volume shrinkage during firing can be prevented, and the porcelain can be easily densified. Strength can be increased.
[0020]
Therefore, in order to obtain a stable density and porcelain strength by firing at 970 ° C. or lower, it is important to control the ratio of clinoenstatite in the enstatite raw material and reduce the phase transformation ratio of enstatite during firing. is there. When forsterite is used as a starting material instead of enstatite, forsterite produces enstatite by quartz and the following reaction formula (2).
[0021]
2MgO · SiO 2 + SiO 2 → 2 (MgO · SiO 2 ) (2)
Since the above reaction occurs near 900 ° C., for example, it is not suitable for simultaneous firing with Ag metallization.
[0022]
Further, according to the present invention, since the thermal expansion coefficient in the temperature range of 40 to 400 ° C. of the insulating substrate is 9 to 18 ppm / ° C., it approximates that of an external circuit board made of a printed board such as a glass-epoxy board. The thermal stress caused by the difference in thermal expansion coefficient between the insulating substrate and the external circuit board is suppressed, and cracks and peeling occur between the insulating substrate, the connection terminal, and the external circuit board, causing no connection failure. The wiring board can be accurately and firmly electrically connected to the external circuit board for a long period of time.
[0023]
In addition, the thermal expansion coefficient in this invention points out the average value of the linear thermal expansion coefficient in the temperature range of 40-400 degreeC unless it mentions specially.
[0024]
Moreover, since it has an approximate thermal expansion coefficient with respect to the thermal expansion coefficient of 18 ppm / ° C. of Cu used as the metallized wiring layer of the package, the adhesion of the metallized wiring layer to the insulating substrate can also be enhanced.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic cross-sectional view showing an example of a package for housing a semiconductor element, which is a typical example of a wiring board according to the present invention. A is a package for housing a semiconductor element, and B is an external circuit board.
[0026]
The package A for housing a semiconductor element includes an insulating substrate 1, a lid 2, a metallized wiring layer 3, a connection terminal 4, and a semiconductor element 5 housed inside the package. A cavity 6 is stored in the cavity 6, and the semiconductor element 5 is bonded and fixed in the cavity 6 via an adhesive such as glass or resin.
[0027]
Further, a metallized wiring layer 3 is disposed on the surface and inside of the insulating substrate 1 so as to electrically connect the semiconductor element 5 and the connection terminal 4 formed on the lower surface of the insulating substrate 1. Yes. According to the package of FIG. 1, the connection terminal 4 has a spherical terminal 4b made of solder (tin-lead alloy) having a high melting point via a connection pad 4a, which is attached by a brazing material. Instead, the solder may be applied directly to the connection pads and connected to the external circuit board.
[0028]
On the other hand, the external circuit board B is composed of an insulator 7 and a wiring conductor 8, and the insulator 7 is made of an insulating material containing at least an organic resin, specifically, a glass-epoxy composite material or the like. A thermal expansion coefficient of 40 to 400 ° C. has a characteristic of 12 to 18 ppm / ° C., and generally a printed board or the like is used.
[0029]
Note that the wiring conductor 8 formed on the surface of the metallized wiring layer 3 of the package A and the external circuit board B is in terms of the consistency of the thermal expansion coefficient with the insulating substrate 1 or the insulator 7 and the reduction of electric resistance. It is desirable to be made of at least one metal conductor selected from Cu, Au, Ag, Al, Ni, and Pb—Sn.
[0030]
In addition, the spherical terminal 4b on the lower surface of the insulating substrate 1 of the package A is placed and brought into contact with the wiring conductor 8 of the external circuit substrate B, and then, at a temperature of about 250 to 400 ° C. by a brazing material such as low melting point solder. The semiconductor element housing package A can be mounted on the external circuit board B by melting the solder and joining the connection terminals 4 and the wiring conductors 8. At this time, it is desirable that a brazing material is formed on the surface of the wiring conductor 8 so that the connection with the connection terminal 4 can be easily performed.
[0031]
(Insulating substrate) According to the present invention, as the insulating substrate 1 of the above wiring substrate, an enstatite 10 having a ratio of 20 to 60% by weight of glass and a clinoenstatite calculated by the following formula (3) of 20% or more. A green sheet is formed by molding a mixture containing ˜60 wt% and quartz 5-60 wt%, and a metallized paste is deposited on the surface of the green sheet, and then fired at 970 ° C. or lower. The enstatite 10 having a glass ratio of 20 to 60% by weight, particularly 30 to 50% by weight, and a ratio of clinoenstatite calculated by the following formula (3) of 30% or more, particularly 50% or more. It is contained in a ratio of ˜60% by weight, especially 20 to 50% by weight, and quartz 5 to 60 % by weight, particularly 10 to 50% by weight.
[0032]
The thermal expansion coefficient at 40 ° C. to 400 ° C. is 9 to 18 ppm / ° C., particularly 10 to 16 ppm / ° C., the bending strength is 200 MPa or more, particularly 220 MPa or more. The generation of thermal stress due to the difference in thermal expansion with the substrate B can be reduced, the electrical connection state between the external circuit substrate B and the package A can be maintained well over a long period of time, and the strength of the wiring substrate itself is increased. be able to.
[0033]
That is, if the glass content is less than 20% by weight, the porcelain cannot be densified at a temperature of 970 ° C. or less, and if it exceeds 60% by weight, the raw material unit price increases and the sintering temperature of the porcelain decreases. However, the firing shrinkage behavior with the metalized wiring layer of Cu or Ag is not suitable, and the wiring board may be deformed.
[0034]
If the enstatite content is less than 10% by weight, a part of the raw material quartz is transformed into cristobalite and a rapid thermal expansion change occurs at 200 to 250 ° C., which causes cracks and peeling at the connection terminal portion. At the same time, the porcelain strength decreases. Moreover, when enstatite exceeds 60 weight%, it is difficult to make the thermal expansion coefficient of a porcelain 9 ppm / degrees C or more. Furthermore, if the quartz content is less than 5% by weight, the thermal expansion coefficient of the porcelain cannot be 9 ppm / ° C. or more, and if it exceeds 60% by weight, the porcelain strength cannot be 200 MPa or more.
[0035]
The above glass has a yield point of 400 ° C. to 800 ° C. in terms of efficient removal of the binder described later, reduction in the content ratio of expensive glass, and matching of firing conditions with metallization fired simultaneously with the insulating substrate. And preferably a crystallized glass having a thermal expansion coefficient of 6 to 18 ppm / ° C, particularly 7 to 13 ppm / ° C.
SiO 2 —Li 2 O—CaO—Al 2 O 3 ,
SiO 2 —Li 2 O—Al 2 O 3 ,
SiO 2 —Li 2 O—MgO,
SiO 2 -Li 2 O-CaO- Al 2 O 3 -MgO-TiO 2,
SiO 2 —Li 2 O—CaO—Al 2 O 3 —MgO—Na 2 O—F,
SiO 2 —Li 2 O—CaO—Al 2 O 3 —K 2 O—Na 2 O—ZnO,
SiO 2 —Li 2 O—CaO—Al 2 O 3 —K 2 O—P 2 O 5 ,
SiO 2 —Li 2 O—Al 2 O 3 —K 2 O—P 2 O 5 —Sb 2 O 3 ,
SiO 2 -Li 2 O-CaO- Al 2 O 3 -K 2 O-P 2 O 5 -ZnO-Na 2 O,
SiO 2 —Li 2 O—CaO—MgO,
SiO 2 —Li 2 O—CaO—ZnO,
SiO 2 —BaO—B 2 O 3
SiO 2 —BaO—B 2 O 3 —Al 2 O 3
SiO 2 —BaO—B 2 O 3 —CaO
SiO 2 —BaO—B 2 O 3 —MgO
SiO 2 —BaO—B 2 O 3 —CaO—Al 2 O 3
SiO 2 —BaO—B 2 O 3 —MgO—Al 2 O 3
SiO 2 -BaO-B 2 O 3 -CaO-Al 2 O 3 -ZnO
And crystallized glass.
[0036]
Further, according to the present invention, it is important that enstatite contains 30% or more, particularly 50% or more, and further 70% or more of clinoenstatite, thereby increasing the porcelain strength to 200 MPa or more. Can do. In addition to clinnoenstatite, protoenstatite and other enstatite crystal phases exist as enstatite.
[0037]
(Manufacturing method of wiring board) Next, in order to manufacture the wiring board of the present invention, the ratio of 20 to 60% by weight of glass and clinoenstatite calculated by the formula (3) described later is 20 % or more, In particular, they are mixed at a content ratio of 10 to 60% by weight of enstatite of 40 % or more and 5 to 60 % by weight of quartz. In addition, in order to make the ratio of clinoenstatite in enstatite 20 % or more, Li component is added as a catalyst during the reaction of the above formula (1), or for protoenstatite raw material, for example, It can be controlled by transforming protoenstatite to clinoenstatite by applying an impact to protoenstatite using a known pulverization method such as a ball mill, an attritor mill, a vibration mill, or a jet mill.
[0038]
In the present invention, the ratio of clinoenstatite in enstatite is a value obtained by the following formula (3) from the X-ray diffraction peak shown in FIG.
P = I (Clino_310) * 100 / (I (Proto_310) /0.4+I (Clino_310)) (3)
However, P: ratio of clinoenstatite (%),
I (Clino_310): X-ray diffraction peak intensity of (310) of clinoenstatite,
I (Proto_310): X-ray diffraction peak intensity of (310) of protoenstatite,
It is.
[0039]
A suitable organic resin binder is added to the mixture of the crystalline glass and the filler to make a slurry, and a green sheet is prepared by employing the doctor blade method or the calender roll method. Then, as a metallized wiring layer and a connection pad, a metal paste obtained by adding and mixing an organic binder, a plasticizer, a solvent and the like to the above-described metal powder is printed and applied to the green sheet in a predetermined pattern by a well-known screen printing method. . In some cases, the green sheet is appropriately punched to form a through hole, and this hole is also filled with a metallized paste. A multilayer package can be obtained by laminating a plurality of these green sheets and simultaneously firing the green sheets and the metallization.
[0040]
In baking, the binder component mix | blended for shaping | molding is removed first. The removal of the binder is preferably performed in an air atmosphere around 700 ° C., or when a base metal such as Cu is used as the wiring conductor, it is preferably performed in a nitrogen atmosphere containing water vapor at 100 to 700 ° C. At this time, the shrinkage start temperature due to firing of the molded body is preferably about 700 to 850 ° C., and since the binder can be easily removed by the shrinkage start temperature, the yield point of the crystallized glass in the formed body is 400 ° C. to It is desirable to control at 800 ° C.
[0041]
Firing is performed in an oxidizing or reducing atmosphere at 800 ° C. to 970 ° C., thereby densifying to a relative density of 90% or more, particularly 95% or more. If the firing temperature exceeds 970 ° C., the metallized layer will melt.
[0042]
【Example】
As crystalline glass, by weight ratio
Figure 0003784221
Two types of glasses were prepared.
[0043]
Using enstatite (2MgO · SiO 2 , coefficient of thermal expansion of 10 ppm / ° C.) and quartz (SiO 2 , coefficient of thermal expansion of 15 ppm / ° C.) as filler components for this glass, the composition shown in Table 1 is obtained. Weighed and mixed.
[0044]
In addition, about the said enstatite raw material, what performed the vibration mill for the desired time and computed the ratio of the clinoenstatite in the enstatite based on the above-mentioned Formula (3) by the powder X-ray diffraction measurement was used. The ratio of clinoenstatite in the enstatite raw material enstatite is shown in Table 1.
[0045]
After adding an organic binder to this mixture, a molded body having a shape of 3.5 × 3.5 × 15 mm was produced by press molding, and this molded body was subjected to binder removal treatment in N 2 + H 2 O at 700 ° C. Then, it baked at the temperature shown in Table 1 in nitrogen atmosphere.
[0046]
For the obtained porcelain, the relative density, which is a ratio to the theoretical density, was measured by the Archimedes method, and the porcelain strength was measured based on a thermal expansion coefficient of 40 to 400 ° C. and JIS R1601. Further, X-ray diffraction measurement was performed on the surface of the porcelain, and the ratio of clinoenstatite in enstatite was calculated based on the above formula (3). The results are shown in Table 1.
[0047]
Moreover, an organic binder, a plasticizer, a dispersing agent, and a solvent were added to and mixed with the mixture of glass and filler to prepare a slurry, and a green sheet was prepared by a doctor blade method. After the obtained green sheet was cut into a predetermined shape, a through hole was formed in a predetermined portion of the green sheet, and a Cu metallized paste made of Cu powder and an organic vehicle was filled in the through hole. Further, a metallized wiring layer was applied to the surface of the green sheet by screen printing using Cu metallized paste. Then, six green sheets coated with metallized paste were stacked and pressure-bonded while aligning the through holes.
[0048]
Note that a connection pad made of Cu metallization was formed on the lower surface of the wiring board at a location connected to the through hole. The laminate was debindered in N 2 + H 2 O at 700 ° C. and then co-fired at a temperature shown in Table 1 in a nitrogen atmosphere.
[0049]
And the connection terminal which consists of solder (Tin 70-10% -lead 30-90%) as shown in FIG. 1 was attached to the said connection pad. The connection terminals were formed on the entire lower surface of the wiring board at a density of 30 terminals per 1 cm 2 .
[0050]
On the other hand, a printed board was prepared in which a wiring conductor made of copper foil was formed on the surface of an insulator having a coefficient of thermal expansion of 13 ppm / ° C. at 40 to 800 ° C. made of a glass-epoxy substrate.
[0051]
Then, the connection terminals attached to the package are aligned so as to be connected to the wiring conductor of the printed board, and this is heat-treated at 260 ° C. for 3 minutes in an N 2 atmosphere to mount the package on the printed board surface. . It was confirmed that the connection terminals were melted by this heat treatment and the package and the printed circuit board were electrically connected.
[0052]
Next, the obtained mounted product was repeated 1000 times at maximum in a constant temperature bath controlled at −40 ° C. and 125 ° C. in an air atmosphere with 15 minutes / 15 minutes held as one cycle. The electrical resistance between the printed circuit board wiring conductor and the package wiring board is measured every 100 cycles, and the number of cycles in which the electrical resistance has increased is shown in Table 1 as the number of thermal cycle tests (TCT) of the package (PKG). .
[0053]
[Table 1]
Figure 0003784221
[0054]
As can be seen from Table 1, the sample No. 1 has a glass content of less than 20% by weight. In Sample No. 1, a dense sintered body could not be obtained, and the sample No. 1 with a glass content of more than 60% by weight was obtained. In 6, the package was deformed. In addition, the sample no. No. 7, the porcelain strength is reduced, and the thermal expansion coefficient is abruptly changed around 200 ° C., and the thermal expansion coefficient cannot be reduced to 18 ppm / ° C. or less. Connection failure occurred during
[0055]
Further, the sample No. 5 having a quartz content of less than 5% by weight. 13 and 18, the thermal expansion coefficient was lower than 9 ppm / ° C., and poor connection occurred between the package and the external circuit board 300 times in TCT. Sample No. with a quartz content exceeding 60% by weight. 24, the porcelain strength decreased.
[0056]
In addition, the sample no. 14 and 25, the porcelain could not be densified to 95% or more, and the porcelain strength was low.
[0057]
On the other hand, the sample No. within the scope of the present invention. 2-5, 8-12, 15-17, 19-23, 26, 27 are all having a relative density of 95% or more, a thermal expansion coefficient of 9-18 ppm / ° C., a ceramic strength of 200 MPa or more, and up to 1000 cycles at TCT A good connection was maintained.
[0058]
【The invention's effect】
As described above in detail, according to the wiring board and the package for housing semiconductor elements of the present invention, the magnetic strength of the insulating board in the wiring board can be increased, and the thermal expansion coefficient of the insulating board can be increased to increase the printed circuit board and the like. Since the difference in thermal expansion coefficient with the external circuit board can be reduced, when mounted on the external circuit board, the generation of stress due to the difference in thermal expansion coefficient between the two is suppressed, and the package and external circuit are accurately connected over a long period of time. In addition, it is possible to make a strong electrical connection.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an example of a package for housing a semiconductor element, which is a typical example of a wiring board according to the present invention.
FIG. 2 is a diagram for explaining a method for obtaining a ratio of clinoenstatite calculated by the formula (3) in enstatite.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Insulating substrate 2 ... Cover body 3 ... Metallized wiring layer 4 ... Connection terminal 4a ... Connection pad 4b ... Spherical terminal 5 ... Semiconductor element 6 ... Cavity 7 ... Insulator 8 ... Wiring conductor A ... Package for housing semiconductor element B ... External circuit board

Claims (2)

絶縁基板の表面あるいは内部にメタライズ配線層が配設された配線基板において、前記絶縁基板が、ガラス20〜60重量%と、下記式により計算されるクリノエンスタタイトの比率が20%以上のエンスタタイト10〜60重量%と、クォーツ5〜60重量%との含有比率で含有する混合物を成形してグリーンシートを作製し、該グリーンシート表面にメタライズペーストを被着形成した後、970℃以下で焼成してなるものであって、ガラス20〜60重量%と、下記式により計算されるクリノエンスタタイトの比率が30%以上のエンスタタイト10〜60重量%と、クォーツ5〜60重量との比率で含有し、40℃〜400℃における熱膨張係数が9〜18ppm/℃、抗折強度200MPa以上であることを特徴とする配線基板。
P= I(Clino_310)*100/(I(Proto_310)/0.4+ I(Clino_310))
ただし、P:クリノエンスタタイトの比率(%)、
I(Clino_310):クリノエンスタタイトの(310)のX線回折ピーク強度、
I(Proto_310):プロトエンスタタイトの(310)のX線回折ピーク強度、
である。
In the wiring board in which the metallized wiring layer is disposed on the surface or inside of the insulating board, the insulating board is 20-60% by weight of glass and the enstatite in which the ratio of clinoenstatite calculated by the following formula is 20% or more. A green sheet is formed by molding a mixture containing 10 to 60% by weight and 5 to 60% by weight of quartz, and a metallized paste is deposited on the surface of the green sheet and then fired at 970 ° C. or lower. be one and formed by the ratio of the 20 to 60% by weight of glass, and enstatite 10-60 wt% ratio of clino enstatite is more than 30% as calculated by the following equation, a quartz 5-60 wt% A wiring board having a thermal expansion coefficient of 9 to 18 ppm / ° C. and a bending strength of 200 MPa or more at 40 ° C. to 400 ° C.
P = I (Clino_310) * 100 / (I (Proto_310) /0.4+I (Clino_310))
However, P: ratio of clinoenstatite (%),
I (Clino_310): X-ray diffraction peak intensity of (310) of clinoenstatite,
I (Proto_310): X-ray diffraction peak intensity of (310) of protoenstatite,
It is.
ガラス20〜60重量%と、下記式により計算されるクリノエンスタタイトの比率が20%以上のエンスタタイト10〜60重量%と、クォーツ5〜60重量との含有比率で含有する混合物を成形してグリーンシートを作製し、該グリーンシート表面にメタライズペーストを被着形成した後、970℃以下で焼成することを特徴とする配線基板の製造方法。
P= I(Clino_310)*100/(I(Proto_310)/0.4+ I(Clino_310))
ただし、P:クリノエンスタタイトの比率(%)、
I(Clino_310):クリノエンスタタイトの(310)のX線回折ピーク強度、
I(Proto_310):プロトエンスタタイトの(310)のX線回折ピーク強度、
である。
A mixture containing 20 to 60% by weight of glass, 10 to 60% by weight of enstatite whose ratio of clinoenstatite calculated by the following formula is 20 % or more, and 5 to 60 % by weight of quartz is formed. A method of manufacturing a wiring board, comprising: producing a green sheet, depositing a metallized paste on the surface of the green sheet, and firing at 970 ° C. or lower.
P = I (Clino_310) * 100 / (I (Proto_310) /0.4+I (Clino_310))
However, P: ratio of clinoenstatite (%),
I (Clino_310): X-ray diffraction peak intensity of (310) of clinoenstatite,
I (Proto_310): X-ray diffraction peak intensity of (310) of protoenstatite,
It is.
JP27809699A 1999-09-30 1999-09-30 Wiring board and manufacturing method thereof Expired - Fee Related JP3784221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27809699A JP3784221B2 (en) 1999-09-30 1999-09-30 Wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27809699A JP3784221B2 (en) 1999-09-30 1999-09-30 Wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001102698A JP2001102698A (en) 2001-04-13
JP3784221B2 true JP3784221B2 (en) 2006-06-07

Family

ID=17592591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27809699A Expired - Fee Related JP3784221B2 (en) 1999-09-30 1999-09-30 Wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3784221B2 (en)

Also Published As

Publication number Publication date
JP2001102698A (en) 2001-04-13

Similar Documents

Publication Publication Date Title
JP3426926B2 (en) Wiring board and its mounting structure
JP4549028B2 (en) Glass ceramic composition, glass ceramic sintered body, method for producing glass ceramic sintered body, and wiring board
JP4549029B2 (en) Glass ceramic composition, glass ceramic sintered body, method for producing glass ceramic sintered body, and wiring board
JP3346693B2 (en) Glass-ceramic sintered body and wiring board using the same
JP3784221B2 (en) Wiring board and manufacturing method thereof
JP3297567B2 (en) Package for housing semiconductor element and its mounting structure
JP3740225B2 (en) Wiring board mounting structure
JP3699571B2 (en) Wiring board and its mounting structure
JP3347583B2 (en) Wiring board mounting structure
JP3450998B2 (en) Wiring board and its mounting structure
JP3339999B2 (en) Wiring board, semiconductor device storage package using the same, and mounting structure thereof
JP3323074B2 (en) Wiring board, package for housing semiconductor element and its mounting structure
JP3830296B2 (en) Manufacturing method of high thermal expansion glass ceramic sintered body
JP3323043B2 (en) Wiring board, semiconductor device storage package using the same, and mounting structure thereof
JP3450119B2 (en) Metallized composition and wiring board using the same
JP3934811B2 (en) High thermal expansion glass ceramic sintered body and manufacturing method thereof, wiring board and mounting structure thereof
JP3210837B2 (en) Wiring board, semiconductor device storage package using the same, and mounting structure thereof
JP3193275B2 (en) Wiring board, semiconductor device storage package using the same, and mounting structure thereof
JP3314131B2 (en) Wiring board
JP3210844B2 (en) Wiring board, semiconductor device storage package using the same, and mounting structure thereof
JP3420447B2 (en) Wiring board mounting structure
JP2004231453A (en) Glass-ceramic composition, glass-ceramic sintered compact, wiring substrate using the compact, and packaging structure of the wiring substrate
JP3305579B2 (en) Wiring board, semiconductor element storage package and mounting structure
JP3748315B2 (en) Wiring board, semiconductor element storage package and mounting structure
JP4497627B2 (en) Glass ceramic sintered body, method for producing the same, wiring board, and mounting structure thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060314

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees