JP3784143B2 - Measuring method of load harmonic characteristics of power system - Google Patents

Measuring method of load harmonic characteristics of power system Download PDF

Info

Publication number
JP3784143B2
JP3784143B2 JP19513197A JP19513197A JP3784143B2 JP 3784143 B2 JP3784143 B2 JP 3784143B2 JP 19513197 A JP19513197 A JP 19513197A JP 19513197 A JP19513197 A JP 19513197A JP 3784143 B2 JP3784143 B2 JP 3784143B2
Authority
JP
Japan
Prior art keywords
capacitor
harmonic
load harmonic
load
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19513197A
Other languages
Japanese (ja)
Other versions
JPH1123623A (en
Inventor
崇 元治
直幸 野崎
賢良 澤田
荘治 西村
俊彦 志方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Nissin Electric Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Nissin Electric Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP19513197A priority Critical patent/JP3784143B2/en
Publication of JPH1123623A publication Critical patent/JPH1123623A/en
Application granted granted Critical
Publication of JP3784143B2 publication Critical patent/JP3784143B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、電力系統に設けたコンデンサを開閉(入切)することによって、その前後の系統条件から、電力系統の負荷高調波特性(より具体的には負荷高調波アドミタンスおよび負荷高調波電流源電流)を測定する方法(いわゆるSC開閉法)の改良に関する。
【0002】
【従来の技術】
この種の測定方法はSC(力率改善用コンデンサ)開閉法と呼ばれており、その概略は次のとおりである。
【0003】
図3に、電力系統の一例を簡略化して示し、図4にその等価回路を示す。上位系統2に変電所変圧器4を経由して幾つかの配電系統6が接続されている。図中の符号の意味は以下のとおりである。nは任意の正の整数である。
【0004】
Esn:上位系統のn次調波相電圧(二次側換算値)
Vn :配電系統のn次調波相電圧
Ign:配電線負荷のn次調波電流源電流
In :変電所変圧器の二次側を流れるn次調波電流
Ztn:変電所変圧器を含んだ上位側のn次調波インピーダンス(二次側換算値)
Yn :配電線負荷のn次調波アドミタンス
Ysn:一定な容量性のn次調波アドミタンス
【0005】
図4の等価回路において、次式が成立する。
【0006】
【数1】
Esn=Vn +ZtnIn
In =(Yn +Ysn)Vn −Ign
Vn =(Esn+ZtnIgn)/{1+Ztn(Yn +Ysn)}
【0007】
ここで、Esn、Vn およびIn は実測することができ、ZtnおよびYsnは計算で求めることができるけれども、これらの値を数1のVn の式に代入しても、Yn およびIgnの二つが明らかでないため、Yn およびIgnの値を個別に求めることはできない。従って、単に、Esn、Vn およびIn を計測するだけでは、配電線を適切な高調波等価回路にモデル化して、精度の高い高調波特性解析を行うことができない。
【0008】
この問題を解決するのがSC開閉法であり、そのためのコンデンサ(力率改善用コンデンサ)8およびスイッチ10を図3の電力系統に付加した電力系統を図5に、その等価回路を図6にそれぞれ示す。図6(a)はコンデンサ8の投入前、図6(b)は投入後の等価回路である。なお、上記Ysnは一定で既知であるため、図5および図6においては(更に図2においても)それを省略している。
【0009】
コンデンサ8の投入前後において、Esn、Yn およびIgnが変化しないものと仮定すると、コンデンサ8の投入前は、図6(a)の等価回路より、次式が成立する。
【0010】
【数2】
Ina=YnVna−Ign
Esn=Vna+ZtnIna
【0011】
コンデンサ8の投入後は、図6(b)の等価回路より、次式が成立する。
【0012】
【数3】
Inb=YnVnb+YcnVnb−Ign
Esn=Vnb+ZtnInb
【0013】
上記数2および数3において、Vn およびIn の添字aはコンデンサ8の投入前、添字bは投入後をそれぞれ表す。
【0014】
上記数2および数3より、次式が成立し、これによってn次調波アドミタンスYn およびn次調波電流源電流Ignの値を個別に求めることができる。
【0015】
【数4】
Yn =YcnVnb/(Vna−Vnb)−1/Ztn
Ign=Esn/Ztn−YcnVnaVnb/(Vna−Vnb)
【0016】
【発明が解決しようとする課題】
上記測定方法において、コンデンサ8の投入前後の測定中に、コンデンサ8の開閉以外の要因によって系統条件が変化した場合、例えば何らかの原因で上位系統2の高調波条件が変動した場合、下位の配電系統6の高調波条件も変動し、コンデンサ8の投入による変動分以外の変動条件も加わるため、正しい負荷高調波特性(具体的には前述したYn およびIgn)を求めることができない。
【0017】
また、当然ながら、配電系統6の負荷変動等によって負荷高調波特性そのものが変動した場合も、それらの正しい値を求めることはできない。
【0018】
そこでこの発明は、SC開閉法において、測定期間中のコンデンサ開閉以外の要因による系統条件の変動の影響を排除して、負荷高調波特性を正しく測定する方法を提供することを主たる目的とする。
【0019】
【課題を解決するための手段】
この発明の測定方法は、10秒以内の間に前記コンデンサの開閉を行い、当該コンデンサの投入前と投入後の系統条件を測定して当該系統条件から第1の負荷高調波特性を求め、当該コンデンサの投入後と開放後の系統条件を測定して当該系統条件から第2の負荷高調波特性を求め、この第1および第2の負荷高調波特性を互いに比較し、両特性が互いにほぼ等しい場合に当該第1または第2の負荷高調波特性を測定結果として採用することを特徴としている。
【0020】
上記測定方法によれば、10秒以内という短時間の間にコンデンサの開閉を行うので、測定期間中に、コンデンサの開閉以外の要因によって系統条件が変動する可能性を小さくすることができる。
【0021】
しかも、第1および第2の負荷高調波特性を互いに比較してほぼ等しければ、測定期間中に、コンデンサの開閉以外の要因による系統条件の変動はなかったと言うことができる。反対に、第1および第2の負荷高調波特性がほぼ等しくなければ、測定期間中に、コンデンサの開閉以外の要因によって系統条件が変動したと考えられ、二つの負荷高調波特性の内のどちらかが、または両方共が、正しく測定されていないと言える。
【0022】
従って、第1および第2の負荷高調波特性が互いにほぼ等しいときのものを測定結果として採用することよって、測定期間中のコンデンサ開閉以外の要因による系統条件の変動の影響を排除して、負荷高調波特性を正しく測定することができる。
【0023】
【発明の実施の形態】
図1は、この発明に係る測定方法におけるコンデンサの開閉状況を示す図である。図2は、コンデンサの投入前(a)、投入後(b)および開放後(c)の電力系統の等価回路図である。電力系統の構成は、図5と同様であるのでそれを参照するものとする。図3〜図6の従来例と同一または相当する部分には同一符号を付し、以下においては当該従来例との相違点を主に説明する。
【0024】
この発明に係る測定方法では、図1に示すように、短い時間tの間に、前述したコンデンサ8の開閉(具体的にはスイッチ10の開閉)を行い、次のようにして、コンデンサ8の投入前(図1中の測定時点a)と投入後(図1中の測定時点b)の系統条件を測定して当該系統条件から第1の負荷高調波特性(具体的には前述したアドミタンスYn および電流源電流Ign)を求め、コンデンサ8の投入後(図1中の測定時点b)と開放後(図1中の測定時点c)の系統条件を測定して当該系統条件から第2の負荷高調波特性(具体的にはアドミタンスYn および電流源電流Ign)を求める。
【0025】
経験によれば、10秒を超えると電力系統の条件(具体的には上位系統2の高調波条件および/または下位側の配電系統6の負荷高調波特性)が変動する可能性が大きいので、コンデンサ8の開閉を行う上記時間tは、10秒以内という短時間にするのが好ましく、その内でもこれまでの経験から、5秒以内であれば系統条件は殆ど変動しないので、5秒以内にするのがより好ましい。
【0026】
また、測定期間中の系統条件の変動をできるだけ排除するために、測定時点aはコンデンサ8の投入時点に、測定時点cはコンデンサ8の開放時点に、それぞれ近づける(例えば5秒以内に近づける)のが好ましい。
【0027】
コンデンサ8の投入前、投入後および開放後の等価回路を図2(a)、(b)および(c)にそれぞれ示す。ここで、Ycnは、投入するコンデンサ8のn次調波アドミタンスである。また、添字a〜cは、コンデンサ8の投入前、投入後および開放後をそれぞれ表す。
【0028】
コンデンサ8の投入前(図2(a))および投入後(図2(b))から、数2および数3の場合と同様に、次の数5の連立方程式が成立する。
【0029】
【数5】
Vna=(Esna +ZtnIgna )/(1+ZtnYna)
Vnb=(Esnb +ZtnIgnb )/{1+Ztn(Ynb+Ycn)}
【0030】
ここで、数6の条件が成立すると仮定したとき、即ちコンデンサ8の投入前および投入後で上位系統2の高調波条件および下位の配電系統6の負荷高調波特性が変化していないと仮定したとき、数7が成立する。このときの負荷高調波特性を表すn次調波アドミタンスをYn1、n次調波電流源電流をIgn1 とする。
【0031】
【数6】
Yna=Ynb=Yn1
Igna =Ignb =Ign1
Esna =Esnb =Esn
【0032】
【数7】
Yn1=YcnVnb/(Vna−Vnb)−1/Ztn
Ign1 =Esn/Ztn−YcnVnaVnb/(Vna−Vnb)
【0033】
同様に、コンデンサ8の投入後(図2(b))および開放後(図2(c))から、次の数8の連立方程式が成立する。
【0034】
【数8】
Vnb=(Esnb +ZtnIgnb )/{1+Ztn(Ynb+Ycn)}
Vnc=(Esnc +ZtnIgnc )/(1+ZtnYnc)
【0035】
ここで、数9の条件が成立すると仮定したとき、即ちコンデンサ8の投入後および開放後で上位系統2の高調波条件および下位の配電系統6の負荷高調波特性が変化していないと仮定したとき、数10が成立する。このときの負荷高調波特性を表すn次調波アドミタンスをYn2、n次調波電流源電流をIgn2 とする。
【0036】
【数9】
Ynb=Ync=Yn2
Ignb =Ignc =Ign2
Esnb =Esnc =Esn
【0037】
【数10】
Yn2=YcnVnb/(Vnc−Vnb)−1/Ztn
Ign2 =Esn/Ztn−YcnVncVnb/(Vnc−Vnb)
【0038】
そして、上記数7および数10でそれぞれ求めた負荷高調波特性を互いに比較し、より具体的にはここでは、互いに対応するYn1とYn2とを互いに比較し、かつIgn1 とIgn2 とを互いに比較し、各特性がそれぞれ互いにほぼ等しい(即ちYn1≒Yn2かつIgn1 ≒Ign2 )場合に、数7または数10で求めた負荷高調波特性(Yn およびIgn)を測定結果として採用する。ほぼ等しくない場合は、正しい負荷高調波特性を求めたとは言えないので、どちらの特性も、測定結果として採用しない。この場合は、例えば再度測定を行う。
【0039】
これは、数7および数10で求めた負荷高調波特性が互いに等しければ、数6および数9が同時に成り立ち、これは即ち、Esn、Yn およびIgnが、コンデンサ開閉による計測の間に変動がなく、従って求められた負荷高調波特性(Yn およびIgn)も正しい結果を表していると言えるからである。
【0040】
【実施例】
関西電力株式会社の山崎実験センターの模擬配電線において行った実験の第5調波の結果を表1に示す。この実験は、図1に示したコンデンサの投入から開放までの時間tを5秒とし、測定時点bをコンデンサ投入後約1秒とし、測定時点aを測定時点bの約5秒前、測定時点cを測定時点bの約5秒後とした。
【0041】
【表1】

Figure 0003784143
【0042】
この表から分かるように、17時の計測では、前述した数7および数10に従って算出した負荷高調波特性は、コンデンサの投入前および投入後の条件で求めた値と、投入後および開放後の条件で求めた値とでは、かなり差がある。これは、約10秒間の計測期間中に、上位側高調波条件および/または下位側負荷特性が変動したためであると考えられ、正しい負荷高調波特性を算出しているとは言えない。従ってこのような場合の負荷高調波特性を、測定結果として採用してはいけない。
【0043】
これに対して、21時の計測では、コンデンサの投入前および投入後の条件で求めた値と、投入後および開放後の条件で求めた値とは、ほぼ等しい。これは、約10秒間の計測期間中に、上位側高調波条件および下位側負荷特性に変動が無かったためであると考えられ、正しい負荷高調波特性を算出していると言える。従ってこの場合の負荷高調波特性を、測定結果として採用すれば良い。
【0044】
【発明の効果】
以上のようにこの発明によれば、10秒以内という短時間の間にコンデンサの開閉を行うので、測定期間中に系統条件が変動する可能性を小さくすることができる。しかも、コンデンサの投入前と投入後の系統条件から求めた第1の負荷高調波特性と、コンデンサの投入後と開放後の系統条件から求めた第2の負荷高調波特性とを互いに比較して、両特性が互いにほぼ等しいときの負荷高調波特性を測定結果として採用することにしたので、測定期間中のコンデンサ開閉以外の要因による系統条件の変動の影響を排除して、負荷高調波特性を正しく測定することができる。
【図面の簡単な説明】
【図1】この発明に係る測定方法におけるコンデンサの開閉状況を示す図である。
【図2】コンデンサの投入前(a)、投入後(b)および開放後(c)の電力系統の等価回路図である。
【図3】電力系統の一例を簡略化して示す単線接続図である。
【図4】図3の電力系統の等価回路図である。
【図5】図3の電力系統に開閉用のコンデンサを設けた例をより簡略化して示す単線接続図である。
【図6】図5の電力系統のコンデンサの投入前(a)および投入後(b)の等価回路図である。
【符号の説明】
2 上位系統
4 変電所変圧器
6 配電系統
8 力率改善用コンデンサ
10 スイッチ
Yn n次調波アドミタンス
Ign n次調波電流源電流[0001]
BACKGROUND OF THE INVENTION
By opening and closing (turning on and off) a capacitor provided in the power system, the present invention can determine the load harmonic characteristics (more specifically, load harmonic admittance and load harmonic current) of the power system from the system conditions before and after that. The present invention relates to an improvement of a method (so-called SC switching method) for measuring (source current).
[0002]
[Prior art]
This type of measurement method is called the SC (power factor improving capacitor) switching method, and the outline is as follows.
[0003]
FIG. 3 shows a simplified example of the power system, and FIG. 4 shows an equivalent circuit thereof. Several distribution systems 6 are connected to the upper system 2 via a substation transformer 4. The meanings of the symbols in the figure are as follows. n is an arbitrary positive integer.
[0004]
Esn: n-order harmonic phase voltage of the upper system (secondary side converted value)
Vn: nth-order harmonic phase voltage Ign of distribution system ngn: n-order harmonic current source current of distribution line load In: n-order harmonic current Ztn flowing through secondary side of substation transformer: including substation transformer Upper n-order harmonic impedance (secondary equivalent)
Yn: nth harmonic admittance of distribution line load Ysn: nth harmonic admittance of constant capacitance
In the equivalent circuit of FIG.
[0006]
[Expression 1]
Esn = Vn + ZtnIn
In = (Yn + Ysn) Vn-Ign
Vn = (Esn + ZtnIgn) / {1 + Ztn (Yn + Ysn)}
[0007]
Here, Esn, Vn and In can be actually measured, and Ztn and Ysn can be obtained by calculation. However, even if these values are substituted into the equation of Vn in Equation 1, two of Yn and Ign are apparent. Therefore, the values of Yn and Ign cannot be obtained individually. Therefore, by simply measuring Esn, Vn and In, it is impossible to model the distribution line into an appropriate harmonic equivalent circuit and perform high-accuracy harmonic characteristic analysis.
[0008]
The SC open / close method solves this problem. FIG. 5 shows a power system in which a capacitor (capacitor for power factor improvement) 8 and a switch 10 for this purpose are added to the power system of FIG. 3, and FIG. 6 shows an equivalent circuit thereof. Each is shown. 6A is an equivalent circuit before the capacitor 8 is turned on, and FIG. 6B is an equivalent circuit after the capacitor is turned on. Since Ysn is constant and known, it is omitted in FIGS. 5 and 6 (and also in FIG. 2).
[0009]
Assuming that Esn, Yn, and Ign do not change before and after the capacitor 8 is turned on, the following equation is established from the equivalent circuit of FIG.
[0010]
[Expression 2]
Ina = YnVna-Ign
Esn = Vna + ZtnIna
[0011]
After the capacitor 8 is turned on, the following equation is established from the equivalent circuit of FIG.
[0012]
[Equation 3]
Inb = YnVnb + YcnVnb-Ign
Esn = Vnb + ZtnInb
[0013]
In the above formulas 2 and 3, the subscript a of Vn and In represents the state before the capacitor 8 is charged, and the subscript b represents the state after the charging.
[0014]
From the above formulas 2 and 3, the following equation is established, whereby the values of the nth harmonic admittance Yn and the nth harmonic current source current Ign can be obtained individually.
[0015]
[Expression 4]
Yn = YcnVnb / (Vna-Vnb) -1 / Ztn
Ign = Esn / Ztn-YcnVnaVnb / (Vna-Vnb)
[0016]
[Problems to be solved by the invention]
In the above measurement method, if the system conditions change due to factors other than the opening and closing of the capacitor 8 during the measurement before and after the capacitor 8 is turned on, for example, if the harmonic conditions of the upper system 2 fluctuate for some reason, the lower distribution system Since the harmonic condition of 6 also fluctuates and fluctuation conditions other than the fluctuation due to the insertion of the capacitor 8 are added, correct load harmonic characteristics (specifically, Yn and Ign described above) cannot be obtained.
[0017]
Of course, even when the load harmonic characteristics themselves change due to a load change of the power distribution system 6 or the like, the correct values cannot be obtained.
[0018]
Therefore, the main object of the present invention is to provide a method for correctly measuring the load harmonic characteristics in the SC switching method by eliminating the influence of fluctuations in system conditions due to factors other than the switching of the capacitor during the measurement period. .
[0019]
[Means for Solving the Problems]
The measurement method of the present invention opens and closes the capacitor within 10 seconds, measures system conditions before and after the capacitor is inserted, and obtains a first load harmonic characteristic from the system conditions. The system condition after the capacitor is inserted and after the capacitor is opened is measured to determine the second load harmonic characteristic from the system condition, and the first and second load harmonic characteristics are compared with each other. The first or second load harmonic characteristic is employed as a measurement result when they are substantially equal to each other.
[0020]
According to the above measurement method, the capacitor is opened and closed within a short time of 10 seconds or less, so that the possibility that the system condition fluctuates due to factors other than the opening and closing of the capacitor during the measurement period can be reduced.
[0021]
In addition, if the first and second load harmonic characteristics are substantially equal to each other, it can be said that there was no fluctuation in system conditions due to factors other than the opening and closing of the capacitor during the measurement period. On the other hand, if the first and second load harmonic characteristics are not substantially equal, it is considered that the system conditions have fluctuated during the measurement period due to factors other than the opening and closing of the capacitor. It can be said that either or both are not measured correctly.
[0022]
Therefore, by adopting the measurement results when the first and second load harmonic characteristics are substantially equal to each other, the influence of fluctuations in system conditions due to factors other than the opening and closing of the capacitor during the measurement period is eliminated. Load harmonic characteristics can be measured correctly.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a diagram showing the open / close state of a capacitor in the measurement method according to the present invention. FIG. 2 is an equivalent circuit diagram of the power system before (a), after charging (b), and after opening (c). The configuration of the power system is the same as that shown in FIG. Portions that are the same as or correspond to those in the conventional example of FIGS. 3 to 6 are denoted by the same reference numerals, and differences from the conventional example will be mainly described below.
[0024]
In the measurement method according to the present invention, as shown in FIG. 1, the capacitor 8 is opened and closed (specifically, the switch 10 is opened and closed) during a short time t, and the capacitor 8 is opened and closed as follows. The system conditions before input (measurement time point a in FIG. 1) and after input (measurement time point b in FIG. 1) are measured, and the first load harmonic characteristic (specifically, the admittance described above) is determined from the system conditions. Yn and current source current Ign) are obtained, and the system conditions after the capacitor 8 is turned on (measurement time point b in FIG. 1) and after the capacitor 8 is opened (measurement time point c in FIG. 1) are measured. Load harmonic characteristics (specifically, admittance Yn and current source current Ign) are obtained.
[0025]
According to experience, if it exceeds 10 seconds, the power system conditions (specifically, the harmonic conditions of the upper system 2 and / or the load harmonic characteristics of the lower distribution system 6) are likely to change. The time t for opening / closing the capacitor 8 is preferably set to a short time of 10 seconds or less, and even within that time, the system conditions hardly change if it is within 5 seconds from the experience so far, so within 5 seconds. More preferably.
[0026]
Further, in order to eliminate fluctuations in system conditions during the measurement period as much as possible, the measurement time point a approaches the time point when the capacitor 8 is turned on, and the measurement time point c approaches the time point when the capacitor 8 is opened (for example, within 5 seconds). Is preferred.
[0027]
2A, 2B, and 2C show equivalent circuits before, after, and opening the capacitor 8, respectively. Here, Ycn is the nth harmonic admittance of the capacitor 8 to be input. Subscripts a to c represent before, after, and after opening of the capacitor 8, respectively.
[0028]
Before the capacitor 8 is turned on (FIG. 2 (a)) and after it is turned on (FIG. 2 (b)), the following simultaneous equations of Equation 5 are established in the same manner as in Equations 2 and 3.
[0029]
[Equation 5]
Vna = (Esna + ZtnIgna) / (1 + ZtnYna)
Vnb = (Esnb + ZtnIgnb) / {1 + Ztn (Ynb + Ycn)}
[0030]
Here, when it is assumed that the condition of Formula 6 is satisfied, that is, before and after the capacitor 8 is turned on, the harmonic conditions of the upper system 2 and the load harmonic characteristics of the lower power distribution system 6 are not changed. Then, Equation 7 is established. The nth harmonic admittance representing the load harmonic characteristics at this time is Yn1, and the nth harmonic current source current is Ign1.
[0031]
[Formula 6]
Yna = Ynb = Yn1
Igna = Ignb = Ign1
Esna = Esnb = Esn
[0032]
[Expression 7]
Yn1 = YcnVnb / (Vna−Vnb) −1 / Ztn
Ign1 = Esn / Ztn-YcnVnaVnb / (Vna-Vnb)
[0033]
Similarly, after the capacitor 8 is turned on (FIG. 2 (b)) and after being opened (FIG. 2 (c)), the following simultaneous equations of Formula 8 are established.
[0034]
[Equation 8]
Vnb = (Esnb + ZtnIgnb) / {1 + Ztn (Ynb + Ycn)}
Vnc = (Esnc + ZtnIgnc) / (1 + ZtnYnc)
[0035]
Here, when it is assumed that the condition of Formula 9 is satisfied, that is, after the capacitor 8 is turned on and off, it is assumed that the harmonic conditions of the upper system 2 and the load harmonic characteristics of the lower distribution system 6 have not changed. Then, Equation 10 is established. The nth harmonic admittance representing the load harmonic characteristics at this time is Yn2, and the nth harmonic current source current is Ign2.
[0036]
[Equation 9]
Ynb = Ync = Yn2
Ignb = Ignc = Ign2
Esnb = Esnc = Esn
[0037]
[Expression 10]
Yn2 = YcnVnb / (Vnc-Vnb) -1 / Ztn
Ign2 = Esn / Ztn-YcnVncVnb / (Vnc-Vnb)
[0038]
Then, the load harmonic characteristics obtained in the equations 7 and 10 are compared with each other. More specifically, here, Yn1 and Yn2 corresponding to each other are compared with each other, and Ign1 and Ign2 are compared with each other. When the characteristics are almost equal to each other (that is, Yn1≈Yn2 and Ign1≈Ign2), the load harmonic characteristics (Yn and Ign) obtained by the equation 7 or 10 are adopted as the measurement results. If they are not approximately equal, it cannot be said that the correct load harmonic characteristics have been obtained, and neither characteristic is adopted as the measurement result. In this case, for example, measurement is performed again.
[0039]
If the load harmonic characteristics obtained in Equations 7 and 10 are equal to each other, Equations 6 and 9 hold simultaneously. That is, Esn, Yn, and Ign vary during measurement due to opening and closing of the capacitor. Therefore, it can be said that the obtained load harmonic characteristics (Yn and Ign) also represent the correct result.
[0040]
【Example】
Table 1 shows the results of the fifth harmonic of the experiment conducted on the simulated distribution line of the Yamazaki Experiment Center of Kansai Electric Power Co., Inc. In this experiment, the time t from the insertion of the capacitor to the opening shown in FIG. 1 is 5 seconds, the measurement time point b is about 1 second after the capacitor is inserted, the measurement time point a is about 5 seconds before the measurement time point b, c was about 5 seconds after the measurement time point b.
[0041]
[Table 1]
Figure 0003784143
[0042]
As can be seen from this table, in the measurement at 17 o'clock, the load harmonic characteristics calculated according to the above-mentioned equations 7 and 10 are the values obtained under the conditions before and after the introduction of the capacitor, and after the introduction and after the release. There is a considerable difference from the value obtained under the above conditions. This is considered to be because the higher harmonic conditions and / or lower load characteristics fluctuated during the measurement period of about 10 seconds, and it cannot be said that the correct load harmonic characteristics are calculated. Therefore, the load harmonic characteristics in such a case should not be adopted as a measurement result.
[0043]
On the other hand, in the measurement at 21:00, the values obtained under the conditions before and after the introduction of the capacitor are substantially equal to the values obtained under the conditions after the introduction and after the opening. This is considered to be because there was no change in the upper harmonic condition and the lower load characteristic during the measurement period of about 10 seconds, and it can be said that the correct load harmonic characteristic is calculated. Therefore, the load harmonic characteristics in this case may be adopted as the measurement result.
[0044]
【The invention's effect】
As described above, according to the present invention, since the capacitor is opened and closed within a short time of 10 seconds or less, the possibility that the system condition fluctuates during the measurement period can be reduced. In addition, the first load harmonic characteristic obtained from the system conditions before and after the capacitor is introduced and the second load harmonic characteristic obtained from the system conditions after the capacitor is introduced and after the capacitor is opened are compared with each other. Therefore, we decided to adopt the load harmonic characteristics when the two characteristics are almost equal to each other as the measurement results. Wave characteristics can be measured correctly.
[Brief description of the drawings]
FIG. 1 is a diagram showing an open / close state of a capacitor in a measurement method according to the present invention.
FIG. 2 is an equivalent circuit diagram of a power system before (a), after charging (b), and after opening (c).
FIG. 3 is a single line connection diagram showing a simplified example of a power system.
4 is an equivalent circuit diagram of the power system of FIG. 3. FIG.
5 is a single line connection diagram showing a simplified example in which a switching capacitor is provided in the power system of FIG. 3; FIG.
6 is an equivalent circuit diagram before (a) and after (b) turning on the capacitor of the power system of FIG. 5;
[Explanation of symbols]
2 Upper system 4 Substation transformer 6 Distribution system 8 Power factor improving capacitor 10 Switch Yn nth order harmonic admittance Ign nth order harmonic current source current

Claims (1)

測定しようとする電力系統に設けたコンデンサの開閉によって系統条件を変動させて、この変動の前後の系統条件から電力系統の負荷高調波特性を測定する方法において、10秒以内の間に前記コンデンサの開閉を行い、当該コンデンサの投入前と投入後の系統条件を測定して当該系統条件から第1の負荷高調波特性を求め、当該コンデンサの投入後と開放後の系統条件を測定して当該系統条件から第2の負荷高調波特性を求め、この第1および第2の負荷高調波特性を互いに比較し、両特性が互いにほぼ等しい場合に当該第1または第2の負荷高調波特性を測定結果として採用することを特徴とする電力系統の負荷高調波特性測定方法。In a method of measuring a load harmonic characteristic of a power system from a system condition before and after the fluctuation by changing a system condition by opening and closing a capacitor provided in a power system to be measured, the capacitor is measured within 10 seconds. Measure the system conditions before and after turning on the capacitor to determine the first load harmonic characteristics from the system conditions, and measure the system conditions after turning on and off the capacitor. A second load harmonic characteristic is obtained from the system condition, the first and second load harmonic characteristics are compared with each other, and when both characteristics are substantially equal to each other, the first or second load harmonic characteristic is obtained. A method of measuring load harmonic characteristics of a power system, wherein the characteristics are adopted as measurement results.
JP19513197A 1997-07-03 1997-07-03 Measuring method of load harmonic characteristics of power system Expired - Fee Related JP3784143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19513197A JP3784143B2 (en) 1997-07-03 1997-07-03 Measuring method of load harmonic characteristics of power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19513197A JP3784143B2 (en) 1997-07-03 1997-07-03 Measuring method of load harmonic characteristics of power system

Publications (2)

Publication Number Publication Date
JPH1123623A JPH1123623A (en) 1999-01-29
JP3784143B2 true JP3784143B2 (en) 2006-06-07

Family

ID=16336003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19513197A Expired - Fee Related JP3784143B2 (en) 1997-07-03 1997-07-03 Measuring method of load harmonic characteristics of power system

Country Status (1)

Country Link
JP (1) JP3784143B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3689643B2 (en) * 2001-03-28 2005-08-31 キヤノン株式会社 Image forming method using liquid droplets, image forming apparatus, and droplet discharge flying method
JP6121671B2 (en) * 2012-08-27 2017-04-26 東北電力株式会社 Harmonic measurement method and harmonic measurement apparatus

Also Published As

Publication number Publication date
JPH1123623A (en) 1999-01-29

Similar Documents

Publication Publication Date Title
Thomas et al. Evaluation of frequency tracking methods
JPH08507368A (en) Method and apparatus for determining the state of charge of an electrochemical cell
MXPA03011888A (en) System for estimating the frequency of the power signal on a power transmission line.
CN104865506A (en) Insulation detection apparatus for DC gas system
US4608533A (en) Automatic compensation circuit for use with analog multiplier
MY105336A (en) Method and system for concurrent electronic component testing and lead verification
JP2829063B2 (en) Subscriber line measuring method and its measuring device
JP3784143B2 (en) Measuring method of load harmonic characteristics of power system
JP3788212B2 (en) Harmonic detection method between orders
MY115116A (en) Capacitor charging current measurement method
JPH1114677A (en) Method for estimating higher harmonics voltage of power system
JP3784141B2 (en) Measuring method of load harmonic characteristics of power system
CN109639261A (en) Comparison circuit, delay removing method
Chen et al. ADALINE-based shunt active power filter for power quality modification of power system
JP2001242204A (en) Direct current resistance measuring method of capacitor and its device
Ramm et al. Calibration of electronic capacitance and dissipation factor bridges
JP2008059128A (en) Power supply system
JP2940598B2 (en) Power system harmonic measurement method
JP3564476B2 (en) Uninterruptible power supply control circuit
Mazumdar et al. Predicting load harmonics in three phase systems using neural networks
JPH1123627A (en) Harmonic measuring method
Herath et al. A Novel Sensor to Measure the DC Bias at the Point of Common Coupling of Distribution Transformers
SU1017998A2 (en) Electronic coulorimeter having controlled potential
JPH04305165A (en) Voltage measuring cirucit
JPS59131173A (en) Measuring device of active component and reactive component of alternating current

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees