JP2008059128A - Power supply system - Google Patents

Power supply system Download PDF

Info

Publication number
JP2008059128A
JP2008059128A JP2006233464A JP2006233464A JP2008059128A JP 2008059128 A JP2008059128 A JP 2008059128A JP 2006233464 A JP2006233464 A JP 2006233464A JP 2006233464 A JP2006233464 A JP 2006233464A JP 2008059128 A JP2008059128 A JP 2008059128A
Authority
JP
Japan
Prior art keywords
power supply
power
product
voltage
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006233464A
Other languages
Japanese (ja)
Inventor
Satoru Nakamura
哲 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006233464A priority Critical patent/JP2008059128A/en
Publication of JP2008059128A publication Critical patent/JP2008059128A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Voltage And Current In General (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately measure the power source switching time of a real system without being affected by the characteristics of a switch or signal propagation delay between devices. <P>SOLUTION: Power supply voltage detection signals "Va", "Vb" and "Vn" to be respectively output from transformers 5a, 5b and 6 are fetched by a measurement device 8, and sampling hold processing, A/D conversion processing, data storage processing, difference voltage amplitude value arithmetic processing, difference voltage data storage processing, product variation arithmetic processing, comparison decision processing, and power supply switching time arithmetic processing are executed so that it is possible to measure a power supply switching time(excess duration). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、複数の電源から供給される電源電圧を選択して、負荷に供給する電力システムに係わり、特に電源切替動作が良好かどうかを判定する電力システムに関する。   The present invention relates to a power system that selects power supply voltages supplied from a plurality of power supplies and supplies them to a load, and more particularly to a power system that determines whether a power supply switching operation is good.

例えば、新幹線の電源系統では、数10km毎に変電所が存在しており、電源供給先の変電所が切り替わる都度、300ms程度(250〜350ms)時間で高速切替えを実行している。   For example, in the Shinkansen power supply system, there are substations every several tens of kilometers, and high-speed switching is executed in about 300 ms (250 to 350 ms) each time the power supply destination substation is switched.

図3はこのような複数の電源系統を持つ電源システムの一例を示すブロック図である。   FIG. 3 is a block diagram showing an example of a power supply system having such a plurality of power supply systems.

この図に示す電源システム101は、電源電圧を供給する複数の交流電源102a、102bと、これら各交流電源102a、102b毎に設けられ、入力された開閉指示に応じて主接点を開閉する複数の開閉器103a、103bと、電源電圧の状況に応じて、各開閉器103a、103bを開閉する制御装置104と、制御装置104によって各開閉器103a、103bの開閉が行われたとき、各開閉器103a、103bに設けられた各補助接点105a、105bの開閉状況に基づき、電源切替時間を計測する計測装置106とを備えている。   The power supply system 101 shown in this figure is provided with a plurality of AC power supplies 102a and 102b for supplying a power supply voltage, and a plurality of AC power supplies 102a and 102b for opening and closing a main contact according to an input opening / closing instruction. The switches 103a and 103b, the control device 104 that opens and closes the switches 103a and 103b according to the power supply voltage, and when the switches 103a and 103b are opened and closed by the control device 104, the switches And a measuring device 106 that measures the power switching time based on the open / closed state of each of the auxiliary contacts 105a and 105b provided in 103a and 103b.

そして、制御装置104によって、各交流電源102a、102bのいずれか、例えば交流電源102aを選択して、開閉器103aを閉状態にさせ、交流電源102a→開閉器103a→負荷107なる経路で、負荷107に電源電圧を供給している状態で、交流電源102aに何らかの異常が発生したとき、開閉器103aに開指示を出して、交流電源102aと負荷107との間を遮断するとともに、予め決められた停電時間後に、開閉器103bに閉指示を出して、交流電源102bと負荷107とを接続し、交流電源102b→開閉器103b→負荷107なる経路で、負荷107に電源電圧を供給する。   Then, the control device 104 selects one of the AC power supplies 102a and 102b, for example, the AC power supply 102a, closes the switch 103a, and loads the load on the path of the AC power supply 102a → the switch 103a → the load 107. When any abnormality occurs in the AC power supply 102a while the power supply voltage is supplied to the power supply 107, an opening instruction is issued to the switch 103a to cut off the connection between the AC power supply 102a and the load 107 and to be determined in advance. After the power failure time, the switch 103b is instructed to close, the AC power supply 102b and the load 107 are connected, and the power supply voltage is supplied to the load 107 through the path of the AC power supply 102b → the switch 103b → the load 107.

ところで、このような従来の電源システム101では、電力設備を構成している各機器、回路の特性変化、経年変化などにより、電源切替時間が変化する。このため、予め設定された周期で、制御装置104によって、各開閉器103a、103bを開閉し、計測装置106によって、各開閉器103a、103bの主接点と同じ動きをする各補助接点105a、105bの開閉内容を取り込んで、電源切替時間が正常な範囲に入っているかどうかを確認するようにしている。   By the way, in such a conventional power supply system 101, the power supply switching time changes due to changes in the characteristics and aging of each device and circuit constituting the power equipment. Therefore, the control device 104 opens and closes the switches 103a and 103b at a preset period, and the measuring device 106 moves the auxiliary contacts 105a and 105b in the same manner as the main contacts of the switches 103a and 103b. The contents of opening and closing are taken in to check whether the power switching time is in the normal range.

しかしながら、このような電源切替時間計測方法では、各開閉器103a、103bに設けられた主接点と補助接点105a、105bとの動作に差があることから、実系統電源切替時間を正確に計測することができないという問題があった。   However, in such a power supply switching time measuring method, since there is a difference in operation between the main contacts and the auxiliary contacts 105a and 105b provided in the respective switches 103a and 103b, the actual system power supply switching time is accurately measured. There was a problem that I could not.

また、経年劣化などにより、各開閉器103a、103b本体の動作特性、各補助接点105a、105bの動作特性などが変化することから、実回路上の切替時間に対する精度管理が困難であるという問題があった。   In addition, since the operating characteristics of the switches 103a and 103b, the operating characteristics of the auxiliary contacts 105a and 105b, and the like change due to deterioration over time, it is difficult to manage the accuracy of the switching time on the actual circuit. there were.

本発明は上記の事情に鑑み、開閉器の特性や装置間の信号伝搬遅れなどに左右されることなく、実系統の電源切替時間を正確に測定することができる電源システムを提供することを目的としている。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a power supply system capable of accurately measuring a power supply switching time of an actual system without being influenced by characteristics of a switch or a signal propagation delay between devices. It is said.

上記の目的を達成するために本発明は、2つの電源と、2つの電源の選択制御を実行する制御装置と、制御装置の選択指示によって入切を実行して各電源から出力される電源電圧のいずれかを選択して負荷に供給する開閉器とを備えた電源システムにおいて、各電源側の電源電圧とこの電源電圧が供給される負荷側の電源電圧との差電圧を演算する差電圧演算手段と、差電圧演算手段で得られた今回の差電圧と前回の差電圧との差分を演算し、この差分に基づき、選択装置が電源切替中かどうかを判定する電源切替判定手段と、電源切替判定手段で前記選択装置が電源切替中と判定されている時間を計測し、電源切替時間を求める電源切替時間演算手段とを備えたことを特徴としている。   In order to achieve the above object, the present invention provides two power supplies, a control apparatus that executes selection control of the two power supplies, and a power supply voltage that is output from each power supply by performing on / off according to a selection instruction of the control apparatus. In a power supply system equipped with a switch that selects any of the above and supplies it to a load, a difference voltage calculation that calculates a difference voltage between the power supply voltage on each power supply side and the power supply voltage on the load side to which the power supply voltage is supplied And a power supply switching determining means for calculating a difference between the current differential voltage obtained by the differential voltage calculating means and the previous differential voltage, and determining whether the selection device is switching power based on the difference; It is characterized by comprising a power switching time calculating means for measuring a time during which the selection device is determined to be switching power by the switching determining means and obtaining a power switching time.

この場合、前記電源切替判定手段は、次式が満たされているとき、前記選択装置が電源切替動中であると判定することを特徴としている。   In this case, the power supply switching determination unit determines that the selection device is in a power supply switching operation when the following expression is satisfied.

△V積1syc>k△V積1syc
但し、△V積1syc:電源切替指標となる積変化量
k△V積1syc:予め設定されている基準値
ΔV product 1syc > kΔV product 1syc
However, ΔV product 1 syc : product change amount serving as a power supply switching index kΔV product 1 syc : preset reference value

本発明によれば、開閉器の特性や装置間の信号伝搬遅れなどに左右されることなく、実系統の電源切替時間を正確に測定することができる。   According to the present invention, it is possible to accurately measure the power supply switching time of an actual system without being influenced by the characteristics of the switch or the signal propagation delay between devices.

図1は本発明による電源システムの実施形態を示すブロック図である。   FIG. 1 is a block diagram showing an embodiment of a power supply system according to the present invention.

この図に示す電源システム1は、電源電圧を供給する複数の交流電源2a、2bと、これら各交流電源2a、2b毎に設けられ、入力された開閉指示に応じて主接点を開閉する複数の開閉器3a、3bと、電源電圧の状況に応じて、各開閉器3a、3bを開閉する制御装置4と、各開閉器3a、3bと各交流電源2a、2bとの間に介挿され、各交流電源2a、2bから供給される各電源電圧を各々、変圧して、電源電圧検出信号“Va”、“Vb”を出力する複数の変圧器5a、5bと、各開閉器3a、3bと負荷7との間に介挿され、電源電圧を変圧して、電源電圧検出信号“Vn”を出力する変圧器6と、各変圧器5a、5b、6から出力される電源電圧検出信号“Va”、“Vb”、“Vn”を取り込み、電源切替時間を計測する計測装置8とを備えている。   The power supply system 1 shown in this figure is provided with a plurality of AC power supplies 2a and 2b for supplying a power supply voltage, and a plurality of AC power supplies 2a and 2b that open and close a main contact according to an input opening / closing instruction. According to the state of the switches 3a and 3b, the power supply voltage, the control device 4 that opens and closes the switches 3a and 3b, and the switches 3a and 3b and the AC power supplies 2a and 2b. A plurality of transformers 5a and 5b for transforming each power supply voltage supplied from each AC power supply 2a and 2b and outputting power supply voltage detection signals “Va” and “Vb”, and switches 3a and 3b A transformer 6 inserted between the load 7 and transforming the power supply voltage to output a power supply voltage detection signal “Vn”, and a power supply voltage detection signal “Va” output from each of the transformers 5a, 5b, 6 ”,“ Vb ”,“ Vn ”, and measure the power switching time And a device 8.

制御装置4は、制御プログラムなどがインストールされた制御基板などを備えており、各交流電源2a、2bのいずれか、例えば交流電源2aを選択して、開閉器3aを閉状態にし、交流電源2a→開閉器3a→負荷7なる経路で、負荷7に電源電圧を供給している状態で、交流電源2aから交流電源2bへの切替え時には、開閉器3aに開指示を出して、交流電源2aと負荷7との間を遮断するとともに、予め決められた停電時間後に、開閉器3bに閉指示を出して、交流電源2bと負荷7とを接続させ、交流電源2b→開閉器3b→負荷7なる経路で、負荷7に電源電圧を供給する。   The control device 4 includes a control board on which a control program or the like is installed, and selects one of the AC power sources 2a and 2b, for example, the AC power source 2a, closes the switch 3a, and turns on the AC power source 2a. When the power supply voltage is supplied to the load 7 through the path of the switch 3a → the load 7, when switching from the AC power supply 2a to the AC power supply 2b, the switch 3a is instructed to open and the AC power supply 2a In addition to shutting off the load 7 and after a predetermined power failure time, the switch 3b is instructed to close, and the AC power source 2b and the load 7 are connected, so that the AC power source 2b → the switch 3b → the load 7 A power supply voltage is supplied to the load 7 through the path.

また、計測装置8は、図2に示すように、入力変換手段9と、サンプリングホールド手段10と、A/D変換手段11と、デジタルデータ格納手段12と、差電圧振幅値演算手段13と、差電圧データ格納手段14と、積変化量演算手段15と、比較判定手段16と、電源切替時間演算手段17とを備えている
入力変換手段9は、各変圧器5a、5b、6から出力される電源電圧検出信号“Va”、“Vb”、“Vn”を取り込み、アナログ値に変換する。
In addition, as shown in FIG. 2, the measuring device 8 includes an input conversion means 9, a sampling hold means 10, an A / D conversion means 11, a digital data storage means 12, a differential voltage amplitude value calculation means 13, The input conversion means 9 including the differential voltage data storage means 14, the product change amount calculation means 15, the comparison determination means 16, and the power supply switching time calculation means 17 is output from each transformer 5 a, 5 b, 6. The power supply voltage detection signals “Va”, “Vb” and “Vn” are taken in and converted to analog values.

サンプリングホールド手段10は、入力変換手段9で得られた各アナログ値を一定周期でサンプリングホールドする。   The sampling hold means 10 samples and holds each analog value obtained by the input conversion means 9 at a constant period.

A/D変換手段11は、サンプリングホールド手段10でサンプリングホールドされた各アナログ値をA/D変換してデジタル値に変換する。デジタルデータ格納手段12は、A/D変換手段11で得られた各デジタル値を格納する。   The A / D conversion unit 11 performs A / D conversion on each analog value sampled and held by the sampling and holding unit 10 and converts it into a digital value. The digital data storage unit 12 stores each digital value obtained by the A / D conversion unit 11.

差電圧振幅値演算手段13は、デジタルデータ格納手段12に格納されている各デジタル値を取り込み、下記の(1)式、(2)式に示す演算を行い、差電圧“△Va”、“△Vb”を求める。 Differential voltage amplitude value computing means 13 takes in the digital values stored in the digital data storage means 12, (1) below, (2) performs an operation shown in the expression, the voltage difference "△ Va n", “ΔVb n ” is obtained.

差電圧データ格納手段14は、差電圧振幅値演算手段13で新たな差電圧“△Va”、“△Vb”が得られる毎に、これを取り込んで、FIFO(First In First out)方式で記憶するとともに、記憶している前回の差電圧“△Va”、“△Vb”を前回の差電圧“△Van−1syc”、“△Vbn−1syc”として出力する。 Differential voltage data storage means 14, a new differential voltage at the differential voltage amplitude value computing means 13 "△ Va n", each time the "△ Vb n" is obtained, captures this, FIFO (First In First out) method stores in the previous differential voltage stored "△ Va n", "△ Vb n" previous differential voltage "△ Va n-1syc", is output as "△ Vb n-1syc".

積変化量演算手段15は、差電圧振幅値演算手段13で得られた今回の差電圧“△Va”、“△Vb”と差電圧データ格納手段14から出力される前回の差電圧“△Van−1syc”、“△Vbn−1syc”とを取り込み、下記の(3)式に示す演算を行い、積変化量“△V積1syc”を求める。 Product change amount calculation means 15, this differential voltage obtained by the differential voltage amplitude value computing means 13 "△ Va n", " △ Vb n" and the previous differential voltage output from the differential voltage data storage means 14 " “ ΔVan−1syc ” and “ ΔVbn −1syc ” are taken in and the calculation shown in the following equation (3) is performed to obtain the product change amount “ΔV product 1syc ”.

比較判定手段16は、積変化量演算手段15で得られた積変化量“△V積1syc”と予め設定されている基準値“k△V積1syc”とを比較する。 The comparison determination unit 16 compares the product change amount “ΔV product 1 syc ” obtained by the product change amount calculation unit 15 with a preset reference value “ kΔV product 1 syc ”.

電源切替時間演算手段17は、比較判定手段16によって、積変化量“△V積1syc”が基準値“k△V積1syc”を超えていると判定されている時間(超過継続時間)を測定して、電源切替時間(超過継続時間)を演算する。 The power switching time calculating means 17 measures the time (excess continuation time) in which the comparison determining means 16 determines that the product change amount “ΔV product 1 syc ” exceeds the reference value “ kΔV product 1 syc ”. Then, the power supply switching time (excess continuation time) is calculated.

△Va=Va−Vn …(1)
△Vb=Vb−Vn …(2)
但し、△Va:交流電源2a側の差電圧
△Vb:交流電源2b側の差電圧
Va:交流電源2a側の電源電圧値
Vb:交流電源2b側の電源電圧値
Vn:負荷7に供給される電源電圧値
△V積1syc=|△Va×△Vb
−|△Van−1syc×△Vbn−1syc| …(3)
但し、||:絶対値符号
△V積1syc:電源切替指標となる積変化量
△Va:交流電源2a側の差電圧(今回)
△Vb:交流電源2b側の差電圧(今回)
△Van−1syc:交流電源2a側の差電圧(前回)
△Vbn−1syc:交流電源2b側の差電圧(前回)
そして、制御装置4によって、各開閉器3a、3bが開閉されて、各交流電源2a、2bのいずれか、例えば交流電源2a→開閉器3a→負荷7なる経路で、負荷7に電源電圧を供給している状態から開閉器3aに開指示が出されて、交流電源2aと負荷7との間が遮断されるとともに、予め決められた停電時間後に、開閉器3bに閉指示が出されて、交流電源2bと負荷7とが接続され、交流電源2b→開閉器3b→負荷7なる経路で、負荷7に電源電圧が供給されるとき、計測装置8によって、各変圧器5a、5b、6から出力される電源電圧検出信号“Va”、“Vb”、“Vn”を取り込んで、サンプリングホールド処理、A/D変換処理、データ格納処理、差電圧振幅値演算処理、差電圧データ格納処理、積変化量演算処理、比較判定処理、電源切替時間演算処理を行い、電源切替時間(超過継続時間)を計測する。
△ Va n = Va n -Vn n ... (1)
ΔVb n = Vb n −Vn n (2)
However, △ Va n: difference voltage △ Vb n of the AC power source 2a side: AC voltage difference Va n of the power supply 2b side: power supply voltage Vb n of the AC power source 2a side: AC power supply 2b side power supply voltage value Vn n: Load supply voltage value supplied to 7 △ V product 1syc = | △ Va n × △ Vb n |
− | ΔVa n−1 sy × ΔVb n−1 syc | (3)
However, ||: absolute value sign △ V product 1Syc: product variation at the power supply switching indication △ Va n: AC power source 2a of the differential voltage (current)
ΔVb n : differential voltage on the AC power supply 2b side (current)
ΔVan-1sync : Differential voltage on the AC power supply 2a side (previous)
ΔVb n-1 syc : differential voltage on the AC power supply 2b side (previous)
Then, each switch 3a, 3b is opened / closed by the control device 4, and the power supply voltage is supplied to the load 7 through one of the AC power supplies 2a, 2b, for example, the path of the AC power supply 2a → the switch 3a → the load 7. When the switch 3a is instructed to open, the AC power source 2a is disconnected from the load 7, and after a predetermined power failure time, the switch 3b is instructed to close. When the AC power source 2b and the load 7 are connected and the power source voltage is supplied to the load 7 through the path of the AC power source 2b → the switch 3b → the load 7, the measuring device 8 causes the transformers 5a, 5b, 6 to The output power supply voltage detection signals “Va”, “Vb”, “Vn” are fetched, and sampling hold processing, A / D conversion processing, data storage processing, differential voltage amplitude value calculation processing, differential voltage data storage processing, product Change calculation processing, comparison Constant process performs power switching time calculation processing, to measure the power switching time (excess duration).

次に、図3を用いて基準値“k△V積1syc”の決め方について具体的に説明する。図3に示す(a)〜(e)は電源切替時の1サイクル(サンプリング時間)を示している。 Next, how to determine the reference value “ kΔV product 1syc ” will be specifically described with reference to FIG. (A) to (e) shown in FIG. 3 indicate one cycle (sampling time) when the power source is switched.

今仮に、定格電圧30kVの系統で、電源電圧検出信号“Vn”の値が80%(=24kV)以上である場合、Vn=電圧有と判断するものとする。また、電源電圧検出信号VaとVbとは、90度の位相差があるものとし、電圧値が同一にならないため、仮にVxとする。さらに、電源電圧検出信号“Va”と“Vn”(VbとVnも同様)間は、計測装置や補助変圧器により、多少の誤差が発生するが、本例では誤差0とする(誤差範囲は任意の設定による。)
この状態において、各サイクル(a)〜(e)における積変化量“△V積1syc”は以下のように求めることができる。
If the power supply voltage detection signal “Vn” is 80% (= 24 kV) or more in a system with a rated voltage of 30 kV, it is determined that Vn = voltage exists. The power supply voltage detection signals Va and Vb are assumed to have a phase difference of 90 degrees, and the voltage values are not the same. Furthermore, a slight error occurs between the power supply voltage detection signals “Va” and “Vn” (the same applies to Vb and Vn) depending on the measuring device and the auxiliary transformer, but in this example, the error is 0 (the error range is (Depends on any setting.)
In this state, the product change amount “ΔV product 1sync ” in each of the cycles (a) to (e) can be obtained as follows.

《サイクル(a)、サイクル(b)の場合》
ΔVa=Va−Vn
=Va−Va
=24−24=0
ΔVb=Vb−Vn
=Vb−Va
=Vx
ΔV積1syc=|ΔVa×ΔVb
−|ΔVan−1syc×ΔVbn−1syc
=|0×Vx|−|0×Vx|
=0
《サイクル(c)の場合》
ΔVa=Va−Vn
=24−0
=24
ΔVb=Vb−Vn
=24−0
=24
ΔV積1syc=|ΔVa×ΔVb
−|ΔVan−1syc×ΔVbn−1syc
=|24×24|−|Vx×0|
=−576
《サイクル(d)の場合》
ΔVa=Va−Vn
=24−0
=24
ΔVb=Vb−Vn
=24−0
=24
ΔV積1syc=|ΔVa×ΔVb
−|ΔVan−1syc×ΔVbn−1syc
=|24×24|−|24×24|
=0
《サイクル(e)の場合》
ΔVa=Va−Vn
=Va−Vb
=Vx
ΔVb=Vb−Vn
=Vb−Va
=24−24=0
ΔV積1syc=|ΔVa×ΔVb
−|ΔVan−1syc×ΔVbn−1syc
=|Vx×0|−|24×24|
=576
上述した各式から理解できるように、図3に示すサイクル(a)、(b)、(d)のように、積変化量“△V積1syc”が1syc前と同一であれば変化量は0となる。また、サイクル(c)のようにVnが0になった場合はΔV積1sycがマイナスの値(−576)になる。さらに、サイクル(e)のようにVnが0から定格値なった場合はΔV積1sycがプラスの値(576)になる。
<< In the case of cycle (a), cycle (b) >>
ΔVa n = Va n -Vn n
= Va n -Va n
= 24-24 = 0
ΔVb n = Vb n −Vn n
= Vb n -Va n
= Vx
ΔV product 1syc = | ΔVa n × ΔVb n |
− | ΔVa n−1sync × ΔVb n−1sync |
= | 0 × Vx | − | 0 × Vx |
= 0
<< In the case of cycle (c) >>
ΔVa n = Va n -Vn n
= 24-0
= 24
ΔVb n = Vb n −Vn n
= 24-0
= 24
ΔV product 1syc = | ΔVa n × ΔVb n |
− | ΔVa n−1sync × ΔVb n−1sync |
= | 24 × 24 | − | Vx × 0 |
= -576
<< In the case of cycle (d) >>
ΔVa n = Va n -Vn n
= 24-0
= 24
ΔVb n = Vb n −Vn n
= 24-0
= 24
ΔV product 1syc = | ΔVa n × ΔVb n |
− | ΔVa n−1sync × ΔVb n−1sync |
= | 24 × 24 | − | 24 × 24 |
= 0
<< In the case of cycle (e) >>
ΔVa n = Va n -Vn n
= Va n -Vb n
= Vx
ΔVb n = Vb n −Vn n
= Vb n -Va n
= 24-24 = 0
ΔV product 1syc = | ΔVa n × ΔVb n |
− | ΔVa n−1sync × ΔVb n−1sync |
= | Vx × 0 | − | 24 × 24 |
= 576
As can be understood from the above equations, as shown in cycles (a), (b), and (d) shown in FIG. 3, if the product change amount “ΔV product 1syc ” is the same as that before 1 syc, the change amount is 0. Further, when Vn becomes 0 as in the cycle (c), the ΔV product 1syc becomes a negative value (−576). Further, when Vn becomes a rated value from 0 as in the cycle (e), the ΔV product 1syc becomes a positive value (576).

よって、kΔV積1sycの設定は、0からマイナス値になった場合、カウントを開始し、0からプラス値になった場合、カウントを停止する。 Therefore, the setting of the kΔV product 1 syc starts counting when it becomes a negative value from 0, and stops counting when it becomes a positive value from 0.

このように、この実施の形態では、各変圧器5a、5b、6から出力される電源電圧検出信号“Va”、“Vb”、“Vn”を取り込んで、サンプリングホールド処理、A/D変換処理、データ格納処理、差電圧振幅値演算処理、差電圧データ格納処理、積変化量演算処理、比較判定処理、電源切替時間演算処理を行い、電源切替時間(超過継続時間)を計測するようにしているので、各開閉器3a、3bの特性や装置間の信号伝搬遅れなどに左右されることなく、実系統の電源切替時間を正確に測定することができる。   As described above, in this embodiment, the power supply voltage detection signals “Va”, “Vb”, and “Vn” output from the transformers 5a, 5b, and 6 are acquired, and the sampling hold process and the A / D conversion process are performed. , Data storage processing, differential voltage amplitude value calculation processing, differential voltage data storage processing, product change amount calculation processing, comparison judgment processing, power supply switching time calculation processing, so as to measure the power supply switching time (excess duration) Therefore, it is possible to accurately measure the power supply switching time of the actual system without being affected by the characteristics of the switches 3a and 3b, the signal propagation delay between the devices, and the like.

また、この実施の形態では、(1)式〜(3)式を用いて、積変化量“△V積1syc”を求めるとともに、この積変化量“△V積1syc”と、予め設定されている基準値“k△V積1syc”との間に、“△V積1syc>k△V積1syc”が成り立っている間、電源切替中であると判定するようにしているので、判定計算を簡素化でき、各開閉器3a、3bの特性や装置間の信号伝搬遅れなどに左右されることなく、リアルタイムで、実系統の電源切替時間を正確に測定することができる。 Further, in this embodiment, using the equation (1) to (3), together with determining the product variation "△ V product 1Syc", this product variation "△ V product 1Syc", is set in advance Since “ΔV product 1 syc > kΔV product 1 syc ” is established between the reference value “ kΔV product 1 syc ” and the reference value “ kΔV product 1 syc ”, it is determined that the power supply is being switched. It is possible to simplify, and the power supply switching time of the actual system can be accurately measured in real time without being influenced by the characteristics of each switch 3a, 3b, the signal propagation delay between devices, and the like.

本発明による電源システムの一形態を示すブロック図である。It is a block diagram which shows one form of the power supply system by this invention. 図1に示す計測装置の詳細な構成例を示すブロック図である。It is a block diagram which shows the detailed structural example of the measuring device shown in FIG. 基準値“k△V積1syc”の設定方法を示す説明図である。It is explanatory drawing which shows the setting method of reference value "k ( DELTA) V product 1syc ". 従来から知られている電源システムの一例を示すブロック図である。It is a block diagram which shows an example of the power supply system known conventionally.

符号の説明Explanation of symbols

1:電源システム
2a、2b:交流電源
3a、3b:開閉器
4:制御装置
5a、5b:変圧器
6:変圧器
7:負荷
8:計測装置
9:入力変換手段
10:サンプリングホールド手段
11:A/D変換手段
12:デジタルデータ格納手段
13:差電圧振幅値演算手段(差電圧演算手段)
14:差電圧データ格納手段
15:積変化量演算手段
16:比較判定手段(電源切替判定手段)
17:電源切替時間演算手段
1: Power supply system 2a, 2b: AC power supply 3a, 3b: Switch 4: Control device 5a, 5b: Transformer 6: Transformer 7: Load 8: Measuring device 9: Input conversion means 10: Sampling hold means 11: A / D conversion means 12: Digital data storage means 13: Difference voltage amplitude value calculation means (difference voltage calculation means)
14: Differential voltage data storage means 15: Product change amount calculation means 16: Comparison determination means (power supply switching determination means)
17: Power switching time calculation means

Claims (2)

2つの電源と、2つの電源の選択制御を実行する制御装置と、制御装置の選択指示によって入切を実行して各電源から出力される電源電圧のいずれかを選択して負荷に供給する開閉器とを備えた電源システムにおいて、
各電源側の電源電圧とこの電源電圧が供給される負荷側の電源電圧との差電圧を演算する差電圧演算手段と、
差電圧演算手段で得られた今回の差電圧と前回の差電圧との差分を演算し、この差分に基づき、選択装置が電源切替中かどうかを判定する電源切替判定手段と、
電源切替判定手段で前記選択装置が電源切替中と判定されている時間を計測し、電源切替時間を求める電源切替時間演算手段と、
を備えたことを特徴とする電源システム。
Two power supplies, a control device that executes selection control of the two power supplies, and an open / close that performs on / off according to a selection instruction of the control device and selects one of the power supply voltages output from each power supply and supplies the load to the load In a power supply system equipped with
Differential voltage calculation means for calculating a differential voltage between the power supply voltage on each power supply side and the power supply voltage on the load side to which the power supply voltage is supplied;
Power difference determination means for calculating a difference between the current difference voltage obtained by the difference voltage calculation means and the previous difference voltage, and determining whether the selection device is switching power based on the difference;
A power switching time calculating means for measuring a time during which the selection device is determined to be in power switching by a power switching determination means and obtaining a power switching time;
A power supply system characterized by comprising:
請求項1に記載の電源システムにおいて、
前記電源切替判定手段は、次式が満たされているとき、前記選択装置が電源切替動中であると判定する、
△V積1syc>k△V積1syc
但し、△V積1syc:電源切替指標となる積変化量
k△V積1syc:予め設定されている基準値
ことを特徴とする電源システム。
The power supply system according to claim 1,
The power supply switching determination unit determines that the selection device is in a power supply switching operation when the following expression is satisfied:
ΔV product 1syc > kΔV product 1syc
However, ΔV product 1syc : product change amount serving as a power supply switching index kΔV product 1syc : preset reference value
JP2006233464A 2006-08-30 2006-08-30 Power supply system Pending JP2008059128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006233464A JP2008059128A (en) 2006-08-30 2006-08-30 Power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006233464A JP2008059128A (en) 2006-08-30 2006-08-30 Power supply system

Publications (1)

Publication Number Publication Date
JP2008059128A true JP2008059128A (en) 2008-03-13

Family

ID=39241814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006233464A Pending JP2008059128A (en) 2006-08-30 2006-08-30 Power supply system

Country Status (1)

Country Link
JP (1) JP2008059128A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012083649A1 (en) * 2010-12-20 2012-06-28 青岛四方车辆研究所有限公司 Ground power supply system for bullet trains
CN104477055A (en) * 2014-11-25 2015-04-01 南车青岛四方机车车辆股份有限公司 Passing neutral section operating system for train
CN112339620A (en) * 2020-10-28 2021-02-09 株洲中车时代电气股份有限公司 Switching method and system for power supply modes of multi-system train and related components

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012083649A1 (en) * 2010-12-20 2012-06-28 青岛四方车辆研究所有限公司 Ground power supply system for bullet trains
CN104477055A (en) * 2014-11-25 2015-04-01 南车青岛四方机车车辆股份有限公司 Passing neutral section operating system for train
CN112339620A (en) * 2020-10-28 2021-02-09 株洲中车时代电气股份有限公司 Switching method and system for power supply modes of multi-system train and related components
CN112339620B (en) * 2020-10-28 2022-04-19 株洲中车时代电气股份有限公司 Switching method and system for power supply modes of multi-system train and related components

Similar Documents

Publication Publication Date Title
CN101297210B (en) Relict flux measuring device
CN102187235B (en) For the Dynamic Signal switching method and apparatus of the merge cells in electric system
US7259947B2 (en) Phase control switching device
CA2666733C (en) Magnetic flux measuring device and magnetic flux measuring method for stationary induction electrical apparatus, and synchronous switching controlgear for circuit breaker
JP2018004596A (en) Ground fault detector
CN108226771A (en) Alternating current filter high-voltage circuit-breaker switching on-off time on-line monitoring method
JP4977481B2 (en) Insulation monitoring device
KR20110094431A (en) Measurement apparatus of power quality
JP2008059128A (en) Power supply system
JP2008140690A (en) Contact closing control method of circuit breaker, and its device
CN115453445A (en) Automatic detection device, method and medium for overload protection ammeter
JP3992212B2 (en) Power reverse power flow cause determination method and apparatus for automatic voltage regulator for power distribution, and automatic voltage regulator control method for power reverse power flow distribution
WO2012152793A1 (en) Automatic acquisition of circuit breaker operating times for controlled switching
KR100349622B1 (en) The method of faulted section detection using comparision of zero sequenc current angle
JPH08114634A (en) Contact resistance measuring device
JPH0943284A (en) Bypass capacity measuring apparatus of dut power source pin in ic test system and contact checker for bypass capacity opening/closing switch
JP2022515632A (en) Methods and equipment for monitoring the operation of switching equipment for controlled switching applications.
JP2000241461A (en) Measuring device and circuit breaker using the same
JP4045250B2 (en) Power switching time measuring method and apparatus
JPS61198070A (en) Control current monitor device for circuit breaker
US20240012053A1 (en) Insulation resistance monitoring apparatus provided with switch and capable of detecting failure in switch
JP3556443B2 (en) Board testing equipment for digital control equipment
JP4634740B2 (en) Power switching time measuring device
JPH04190636A (en) Method for making electric power system synchronously and apparatus thereof
JP2005184908A (en) Method of measuring power supply switching time