JP3781882B2 - Engine fuel control device - Google Patents

Engine fuel control device Download PDF

Info

Publication number
JP3781882B2
JP3781882B2 JP35956997A JP35956997A JP3781882B2 JP 3781882 B2 JP3781882 B2 JP 3781882B2 JP 35956997 A JP35956997 A JP 35956997A JP 35956997 A JP35956997 A JP 35956997A JP 3781882 B2 JP3781882 B2 JP 3781882B2
Authority
JP
Japan
Prior art keywords
atmospheric pressure
engine
fuel
acceleration
correction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35956997A
Other languages
Japanese (ja)
Other versions
JPH11193737A (en
Inventor
毅 古谷
祥伸 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusan Denki Co Ltd
Suzuki Motor Co Ltd
Original Assignee
Kokusan Denki Co Ltd
Suzuki Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusan Denki Co Ltd, Suzuki Motor Co Ltd filed Critical Kokusan Denki Co Ltd
Priority to JP35956997A priority Critical patent/JP3781882B2/en
Publication of JPH11193737A publication Critical patent/JPH11193737A/en
Application granted granted Critical
Publication of JP3781882B2 publication Critical patent/JP3781882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エンジンの燃料制御装置に係り、特にエンジンの加速時の燃料制御装置に関する。
【0002】
【従来の技術】
従来、電子式の燃料噴射制御装置を備えたエンジンの加速時に空燃比を補正する燃料増量制御方法が、例えば特公昭54−27491号公報や特公昭62−31177号公報等に提案されている。
【0003】
また、近年の制御装置では大気圧センサにより大気圧を検出し、そのデータを利用して空燃比の補正を行っている。以下、図6に大気圧のデータを利用したエンジンの加速時の燃料増量制御方法を示す。
【0004】
エンジンの基準クランク位置から噴射を開始する通常の噴射パルスに加速時の燃料増量分を加算して噴射させる同期式加速増量噴射方法の場合、図6の式Aに示すように、通常噴射基本パルス時間(T)に加速増量基本パルス時間(TACC0)を加えたものに吸入空気温度、冷却水温度および大気圧の各補正係数(K,K,K)を掛け合わせることにより総パルス時間(Ti)が算出される。
【0005】
一方、エンジンのクランク位置に関わらず、加速と判断したと同時に加速燃料増量噴射を行う非同期式噴射方法の場合、通常時は通常噴射基本パルス時間(T)に上記各補正係数(K,K,K)を掛け合わせることにより通常分補正後パルス時間(Tu)が算出され(図6の式B−1参照)、また、加速増量時は加速増量基本パルス時間(TACC0)に上記各補正係数(K,K,K)を掛け合わせることにより加速増量分補正後パルス時間(TACC)が算出される(図6の式B−2参照)。なお、非同期式の通常分補正後パルス時間と加速増量基本パルス時間とを加算すると同期式加速増量噴射方法の総パルス時間と同じなる(Tu+TACC=Ti)。
【0006】
【発明が解決しようとする課題】
しかしながら、上述した式Aまたは式B−1およびB−2を用いた大気圧による空燃比の補正方法では、以下に述べる理由からエンジンの加速時に良好な大気圧補正が行われない。
【0007】
その理由とは、例えばスロットルを閉位置から開位置へ開くような加速操作時、スロットルの開度(α)に比例した量の吸入空気が直ちにシリンダ内に供給されるが、同時刻に吸気通路内に噴射された燃料は吸入空気より遅れてシリンダ内に達する。
【0008】
吸気通路内に噴射された燃料のうち、霧状になって空気流に乗り、シリンダ内に達する量は、燃料の噴射状態やエンジンの温度、吸入空気の量や温度、気圧および燃料の噴射口からシリンダまでの距離や吸気通路の形状などの諸条件によって左右されるが、概ね十分の一から二分の一程度である。そして、残りの燃料は吸気通路やエンジンの内壁面に付着して壁面付着燃料となり、実際にシリンダ内に供給される燃料の量はこの壁面付着燃料が直接噴射された燃料に加わったものとなる。
【0009】
加速時には、吸入空気の流量が増加して壁面付着燃料がシリンダ内に送り込まれる。また、加速状態と判断されて増量噴射された燃料のうち、上述したように一部のみが直接シリンダ内に送り込まれるが、加速直後の一回〜数回の燃焼は既存の壁面付着燃料からの補助によってまかなわれることになる。
【0010】
上述した現象は、吸気通路に設けられる噴射口からシリンダまでの距離が長く、壁面の面積が大きいクランク室与圧式2サイクルエンジンの場合特に顕著に現れる。
【0011】
本来、エンジンに供給される燃料の量は排気ガスの浄化や燃料消費率(燃費)の向上を考慮して薄目(リーン)に設定することが望ましい。従って、壁面付着燃料の量も通常運転時には燃費がよくなるように設定される。そして、気圧の低い高地では空気密度の低下に合わせて大気圧補正によって燃料の噴射量が減量補正されるようになっている。
【0012】
この場合、高地での壁面付着燃料の量は当然低地より少なく、エンジンの加速時に増量噴射された燃料だけでは不足分を補うことが困難になり易い。さらに、空気密度の低い高地では燃焼圧力も低下するため、加速時のリーン化に伴う運転フィーリングの悪化が低地における同様な状況下に比べ顕著に表れる。
【0013】
そこで、気圧の低い高地では加速増量分の大気圧補正量の割合を通常分噴射量の補正量より大きくする必要があるが、図6の式A、式B−1およびB−2で示した従来の制御方法では一つの大気圧補正係数(K)で通常分と増量分との両方を補正しているため、低地で適切となる加速増量基本パルス時間(TACC0)を設定すると高地における加速時に空燃比がリーン状態となり、運転フィーリングが悪化する一方、高地で適切となる加速増量基本パルス時間(TACC0)を設定すると低地における加速時に空燃比がリッチ状態となり、排気ガスの状態や燃費が悪化する。
【0014】
さらに、カルマン渦式や熱線式等のエアフローメータを備え、直接吸入空気流量を測定するシステムを備えたエンジンにおいてはエンジンの加速操作による吸入空気量の変化が瞬時に判断できるが、スロットル開度(α)とエンジン回転数(N)とから吸入空気量を推測するα―Nシステムを備えたエンジンにおいてはスロットル開度の変化量を判別した後に加速動作を判断するため、スロットル操作が所定の変化量を示すまで燃料の増加操作が遅れてしまう。
【0015】
そのため、加速を判断し、燃料を増量するまでの間は通常分の噴射燃料と壁面付着燃料とでエンジンの燃焼を賄うことになるので、加速操作時の燃料はリーン状態になりやすく、特に空気密度の低い高地においては前述した理由により著しい運転フィーリングの悪化を招く虞がある。
【0016】
本発明は上述した事情を考慮してなされたもので、大気圧に関わらず、燃料消費率、排気ガス状態および運転フィーリングの向上を図ったエンジンの燃料制御装置を提供することを目的とする。
【0017】
【課題を解決するための手段】
本発明に係るエンジンの燃料制御装置は、上述した課題を解決するために、請求項1に記載したように、大気圧情報に基づいて加速時の燃料噴射量を電子的に増量制御するエンジンの燃料制御装置において、通常運転時に利用する一般用大気圧補正係数とは別に、気圧が低い領域では上記一般用大気圧補正係数を利用する場合よりも増量補正となるように、上記一般用大気圧補正係数の気圧に対する変化量よりも緩やかに変化する加速増量分専用大気圧補正係数を設定し、上記エンジンの加速運転時に上記加速増量分専用大気圧補正係数を利用して燃料噴射量を増量制御するように構成したものである。
【0018】
また、上述した課題を解決するために、請求項2に記載したように、上記エンジンをクランク室与圧式の2サイクルエンジンとしたものである。
【0019】
さらに、上述した課題を解決するために、請求項3に記載したように、エンジン回転信号と、スロットルバルブの開度信号とを基に吸入空気量を推測するα―N制御方式を備えたものである。
【0020】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
【0021】
図1は、2サイクルエンジンに用いられる一般的な電子式燃料噴射制御装置(EFI)のシステム概要図である。
【0022】
この2サイクルエンジン1は一般的なクランク室与圧式の水冷二気筒2サイクルエンジンであり、その2内にはクランクシャフト3が回転自在に軸支される。また、シリンダブロック4内にはシリンダ5が形成され、その内部にはピストン6がクランクシャフト3と直角方向に摺動自在に挿入される。そして、ピストン6とクランクシャフト3とがコンロッド7によって連結され、ピストン6の往復ストロークがクランクシャフト3の回転運動に変換されるようになっている。
【0023】
クランクシャフト3の一端にはマグネト装置8が設けられ、そのフライホイールマグネト9の例えば周縁近傍に気筒を判別したりクランクシャフト3の回転角度やその回転数、すなわちエンジン1の回転数(N)を検出する電磁ピックアップコイル10が設置される。また、フライホイールマグネト9の内部にはエキサイタ11が配置される。
【0024】
さらに、マグネト装置8はAC電力を出力すると共に、後述するコントロールユニット12やフューエルインジェクタ13、燃料ポンプ14等の各機器にも電力を供給する。
【0025】
一方、例えばシリンダブロック4にはエンジン1の冷却水温度を検出する冷却水温センサ15が設けられる。また、シリンダヘッド16とシリンダブロック4との接合部には燃焼室17が形成され、その中央部には外方から点火プラグ18が装着される。
【0026】
クランク室2にはスロットルバルブ19を備えた吸気通路20が接続される。吸気通路20の例えば外部にはスロットルバルブ19の開度(α)を検出するスロットル開度センサ21が設けられる。さらに、スロットルバルブ19より下流の吸気通路20には、外方からフューエルインジェクタ13が装着される。そして、燃料タンク22内の燃料は燃料ポンプ14によって汲み上げられ、デリバリパイプ23を通ってフューエルインジェクタ13に導かれる。また、デリバリパイプ23内の燃圧は、フューエルインジェクタ13にかかる燃圧が常に一定になるよう、プレッシャレギュレータ24により調整される。
【0027】
フューエルインジェクタ13による燃料噴射は、上述したEFI25によって電子的に制御される。EFI25はエレクトロニックフューエルコントロールユニット12(以下、ECUと略す)を備える。ECU12は、例えば上記電磁ピックアップコイル10から送られるエンジン回転信号(N)と、スロットル開度センサ21から送られるスロットルバルブ19の開度信号(α)とを基に吸入空気量を推測するα―N制御方式を備え、さらにシリンダブロック4壁に設けられた冷却水温センサ15からの冷却水温度のデータ、吸気通路20に設けられた空気温センサ26からの吸入空気温度のデータ、およびエンジン1外に配置された大気圧センサ27からの大気圧のデータを利用して最適な空燃比となるように燃料の噴射時間を制御する。
【0028】
さらにまた、電磁ピックアップコイル10から送られるクランクシャフト3の回転角度信号によりECU12は各シリンダ5ごとに燃料を噴射する時期を制御する。すなわち、各シリンダ5のフューエルインジェクタ13は、ECU12からの信号に従って決められた時期に決められた時間だけ燃料を噴射するように制御される。
【0029】
そして、ECU12は燃料の噴射時間やタイミングを制御するほかに、点火プラグ18を作動させる点火コイル28に点火信号を送ったり、燃料ポンプ14の作動制御も行う。
【0030】
次に、図2に大気圧のデータを利用したエンジン加速時の燃料増量制御方法の一実施形態を説明する。
【0031】
エンジン1の基準クランク位置から噴射を開始する通常の噴射パルスに加速時の燃料増量分を加算して噴射させる同期式加速増量噴射方法の場合、図2の式1に示すように、通常噴射基本パルス時間(T)に一般用の大気圧補正係数(K)を掛け合わせたものと、加速増量基本パルス時間(TACC0)に加速増量分専用大気圧補正係数(KPACC)を掛け合わせたものとを合わしたものに吸入空気温度および冷却水温度の各補正係数(K,K)を掛け合わせることにより総パルス時間(Ti)が算出される。
【0032】
一方、エンジン1のクランク位置に関わらず、加速と判断したと同時に加速燃料増量噴射を行う非同期式噴射方法の場合、通常時は通常噴射基本パルス時間(T)に上記各補正係数(K,K,K)を掛け合わせることにより通常分補正後パルス時間(Tu)が算出され(図2の式2−1参照)、また、加速増量時は加速増量基本パルス時間(TACC0)に吸入空気温度と冷却水温度の各補正係数(K,K)および加速増量分専用大気圧補正係数(KPACC)を掛け合わせることにより加速増量分補正後パルス時間(TACC)が算出される(図2の式2−2参照)。なお、非同期式の通常分補正後パルス時間と加速増量基本パルス時間とを加算すると同期式加速増量噴射方法の総パルス時間と同じなる(Tu+TACC=Ti)。
【0033】
次に、図3に大気圧のデータを利用したエンジン加速時の燃料増量制御方法の第2実施形態を説明する。
【0034】
エンジン1の基準クランク位置から噴射を開始する通常の噴射パルスに加速時の燃料増量分を加算して噴射させる同期式加速増量噴射方法の場合、図3の式3に示すように、通常噴射基本パルス時間(T)に一般用の大気圧補正係数(K)を掛け合わせたものと、大気圧補正加速増量基本パルス時間(TACC1)とを合わしたものに吸入空気温度および冷却水温度の各補正係数(K,K)を掛け合わせることにより総パルス時間(Ti)が算出される。
【0035】
一方、エンジン1のクランク位置に関わらず、加速と判断したと同時に加速燃料増量噴射を行う非同期式噴射方法の場合、通常時は通常噴射基本パルス時間(T)に上記各補正係数(K,K,K)を掛け合わせることにより通常分補正後パルス時間(Tu)が算出され(図3の式4−1参照)、また、加速増量時は大気圧補正加速増量基本パルス時間(TACC1)に吸入空気温度および冷却水温度の各補正係数(K,K)を掛け合わせることにより加速増量分補正後パルス時間(TACC)が算出される(図3の式4−2参照)。なお、大気圧補正加速増量基本パルス時間(TACC1)は加速増量基本パルス時間(TACC0)と加速増量分専用大気圧補正係数(KPACC)とを掛け合わせることにより得られる(TACC0×KPACC=TACC1)。また、非同期式の通常分補正後パルス時間と加速増量基本パルス時間とを加算すると同期式加速増量噴射方法の総パルス時間と同じなる(Tu+TACC=Ti)。
【0036】
そして、図4(a)および(b)に加速増量基本パルス時間(TACC0)とエンジン回転数(N)との関係を示すグラフと、一般用の大気圧補正係数(K)および加速増量分専用大気圧補正係数(KPACC)と大気圧(P)との関係を示すグラフとを示す。また、図5に大気圧補正加速増量基本パルス時間(T CC01)をエンジン回転数(N)と大気圧(P)とから求めるための三次元マップを示す。
【0037】
上述したように、通常運転時に利用する一般用大気圧補正係数(K)とは別に加速増量分専用大気圧補正係数(KPACC)を設定し、エンジン1の加速運転時にこの専用大気圧補正係数(KPACC)を利用して燃料噴射量を増量制御するように構成したことにより、従来高度差などの要因から生じた空気密度の変化による燃料消費率、排気ガス状態および運転フィーリングの悪化が防止される。
【0038】
【発明の効果】
以上説明したように、本発明に係るエンジンの燃料制御装置によれば、大気圧情報に基づいて加速時の燃料噴射量を電子的に増量制御するエンジンの燃料制御装置において、通常運転時に利用する一般用大気圧補正係数とは別に、気圧が低い領域では上記一般用大気圧補正係数を利用する場合よりも増量補正となるように、上記一般用大気圧補正係数の気圧に対する変化量よりも緩やかに変化する加速増量分専用大気圧補正係数を設定し、上記エンジンの加速運転時に上記加速増量分専用大気圧補正係数を利用して燃料噴射量を増量制御するように構成したため、大気圧に関わらず、燃料消費率、排気ガス状態および運転フィーリングが向上する。
【0039】
また、上記エンジンをクランク室与圧式の2サイクルエンジンとしたため、上記効果がさらに高まる。
【0040】
さらに、エンジン回転信号と、スロットルバルブの開度信号とを基に吸入空気量を推測するα―N制御方式を備えたため、上記効果がさらに高まる。
【図面の簡単な説明】
【図1】2サイクルエンジンに用いられる一般的な電子式燃料噴射制御装置のシステム概要図。
【図2】本発明に係るエンジンの燃料制御装置の、エンジン加速時の燃料増量制御方法の第一実施形態を示す式。
【図3】本発明に係るエンジンの燃料制御装置の、エンジン加速時の燃料増量制御方法の第二実施形態を示す式。
【図4】(a)および(b)はそれぞれ加速増量基本パルス時間とエンジン回転数との関係を示すグラフと、一般用の大気圧補正係数および加速増量分専用大気圧補正係数と大気圧との関係を示すグラフ。
【図5】大気圧補正加速増量基本パルス時間をエンジン回転数と大気圧とから求めるための三次元マップ。
【図6】従来の大気圧データを利用したエンジンの加速時の燃料増量制御方法を示す式。
【符号の説明】
1 2サイクルエンジン
12 エレクトロニックフューエルコントロールユニット(ECU)
15 冷却水温センサ
21 スロットル開度センサ
25 電子式燃料噴射制御装置(EFI)
26 空気温センサ
27 大気圧センサ
吸入空気温度の補正係数
一般用の大気圧補正係数
PACC 加速増量分専用大気圧補正係数
冷却水温度の補正係数
通常噴射基本パルス時間
ACC 加速増量分補正後パルス時間
ACC0 加速増量基本パルス時間
ACC1 大気圧補正加速増量基本パルス時間
Ti 総パルス時間
Tu 通常分補正後パルス時間
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an engine fuel control device, and more particularly to a fuel control device at the time of engine acceleration.
[0002]
[Prior art]
Conventionally, a fuel increase control method for correcting an air-fuel ratio at the time of acceleration of an engine equipped with an electronic fuel injection control device has been proposed in, for example, Japanese Patent Publication Nos. 54-27491 and 62-31177.
[0003]
In recent control apparatuses, atmospheric pressure is detected by an atmospheric pressure sensor, and the air-fuel ratio is corrected using the detected data. FIG. 6 shows a fuel increase control method during engine acceleration using atmospheric pressure data.
[0004]
In the case of the synchronous acceleration increase injection method in which the fuel increase amount at the time of acceleration is added to the normal injection pulse that starts injection from the reference crank position of the engine for injection, as shown in the equation A in FIG. By multiplying the time (T 0 ) by the acceleration increase basic pulse time (T ACC0 ) and the correction factors (K A , K W , K P ) for the intake air temperature, cooling water temperature, and atmospheric pressure, The pulse time (Ti) is calculated.
[0005]
On the other hand, regardless of the crank position of the engine, when the asynchronous injection method simultaneously accelerating fuel increment injection and it is determined that the acceleration, normal normal injection basic pulse time (T 0) to the above correction coefficient (K A, By multiplying (K W , K P ), the pulse time after normal correction (Tu) is calculated (see equation B-1 in FIG. 6), and at the time of acceleration increase, the acceleration increase basic pulse time (T ACC0 ) is calculated . By multiplying each of the correction coefficients (K A , K W , K P ), a pulse time after correction for acceleration increase (T ACC ) is calculated (see equation B-2 in FIG. 6). Note that the sum of the asynchronous post-correction pulse time and the acceleration boost basic pulse time is the same as the total pulse time of the synchronous acceleration boost injection method (Tu + T ACC = Ti).
[0006]
[Problems to be solved by the invention]
However, in the method for correcting the air-fuel ratio based on the atmospheric pressure using the above-described formula A or formulas B-1 and B-2, good atmospheric pressure correction is not performed during engine acceleration for the reasons described below.
[0007]
The reason for this is that, for example, during an acceleration operation that opens the throttle from the closed position to the open position, intake air in an amount proportional to the throttle opening (α) is immediately supplied into the cylinder, but at the same time, the intake passage The fuel injected into the cylinder reaches the cylinder after the intake air.
[0008]
Of the fuel injected into the intake passage, the amount that reaches the cylinder in the form of a mist and reaches the cylinder is the fuel injection state, engine temperature, intake air amount and temperature, air pressure, and fuel injection port Although it depends on various conditions such as the distance from the cylinder to the cylinder and the shape of the intake passage, it is approximately one-half to one-half. The remaining fuel adheres to the intake passage and the inner wall surface of the engine to become a wall-attached fuel, and the amount of fuel actually supplied into the cylinder is added to the fuel directly injected with the wall-attached fuel. .
[0009]
At the time of acceleration, the flow rate of the intake air is increased and the wall-attached fuel is sent into the cylinder. In addition, as described above, only a part of the fuel that has been determined to be in an accelerated state and injected in an increased amount is directly fed into the cylinder, but one to several combustions immediately after acceleration are generated from the existing wall-attached fuel. It will be covered by assistance.
[0010]
The phenomenon described above is particularly noticeable in the case of a crank chamber pressurized two-cycle engine in which the distance from the injection port provided in the intake passage to the cylinder is long and the wall surface area is large.
[0011]
Originally, it is desirable to set the amount of fuel supplied to the engine to be thin in consideration of purification of exhaust gas and improvement of fuel consumption rate (fuel consumption). Therefore, the amount of fuel attached to the wall surface is also set so that fuel efficiency is improved during normal operation. In high altitudes where the atmospheric pressure is low, the fuel injection amount is corrected to decrease by atmospheric pressure correction in accordance with the decrease in air density.
[0012]
In this case, the amount of fuel adhering to the wall surface at high altitude is naturally less than that at low altitude, and it is difficult to make up for the shortage with only the fuel injected in an increased amount when the engine is accelerated. Furthermore, since the combustion pressure also decreases at high altitudes where the air density is low, the deterioration of driving feeling accompanying leaning at the time of acceleration appears more conspicuously than under similar conditions in low altitudes.
[0013]
Therefore, in the high altitude where the atmospheric pressure is low, it is necessary to make the ratio of the atmospheric pressure correction amount corresponding to the acceleration increase amount larger than the correction amount of the normal injection amount, which is shown by equations A, B-1 and B-2 in FIG. In the conventional control method, both the normal amount and the increase amount are corrected by one atmospheric pressure correction coefficient (K P ). Therefore, if the acceleration increase basic pulse time (T ACC0 ) appropriate in the lowland is set, the high altitude While the air-fuel ratio becomes lean during acceleration and the driving feeling deteriorates, if the acceleration increase basic pulse time (T ACC0 ) appropriate for high altitude is set, the air-fuel ratio becomes rich during acceleration in low altitude, and the exhaust gas state and Fuel consumption deteriorates.
[0014]
Furthermore, in an engine equipped with a Karman vortex type or hot wire type air flow meter and a system for directly measuring the intake air flow rate, the change in intake air amount due to the acceleration operation of the engine can be determined instantaneously, but the throttle opening ( In an engine equipped with an α-N system that estimates the intake air amount from α) and the engine speed (N), the throttle operation changes to a predetermined value in order to determine the acceleration operation after determining the amount of change in the throttle opening. The fuel increase operation is delayed until the amount is indicated.
[0015]
For this reason, the engine is burned by the normal amount of injected fuel and wall-attached fuel until acceleration is determined and fuel is increased, so the fuel during acceleration operation tends to be in a lean state, especially air. In high altitude areas where the density is low, there is a risk of significant deterioration in driving feeling for the reasons described above.
[0016]
The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide an engine fuel control device that improves the fuel consumption rate, the exhaust gas state, and the operation feeling regardless of the atmospheric pressure. .
[0017]
[Means for Solving the Problems]
In order to solve the above-described problem, an engine fuel control apparatus according to the present invention is an engine fuel control system that electronically increases the fuel injection amount during acceleration based on atmospheric pressure information . In the fuel control device, in addition to the general atmospheric pressure correction coefficient used during normal operation, the general atmospheric pressure is adjusted so that the increase correction is performed in a region where the atmospheric pressure is low than when the general atmospheric pressure correction coefficient is used. Set a dedicated atmospheric pressure correction coefficient for the acceleration increase that changes more slowly than the change amount of the correction coefficient with respect to the atmospheric pressure, and increase the fuel injection amount using the dedicated atmospheric pressure correction coefficient for the acceleration increase during the acceleration operation of the engine It is comprised so that it may do.
[0018]
In order to solve the above-described problem, as described in claim 2, the engine is a crank chamber pressurized two-cycle engine.
[0019]
Further, in order to solve the above-mentioned problem, as described in claim 3, an α-N control system for estimating the intake air amount based on the engine rotation signal and the throttle valve opening signal is provided. It is.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0021]
FIG. 1 is a system schematic diagram of a general electronic fuel injection control apparatus (EFI) used in a two-cycle engine.
[0022]
The two-cycle engine 1 is a general crank chamber pressurization type water-cooled two-cylinder two-cycle engine, and a crankshaft 3 is rotatably supported in the two-cycle engine 1. A cylinder 5 is formed in the cylinder block 4, and a piston 6 is inserted into the cylinder block 4 so as to be slidable in a direction perpendicular to the crankshaft 3. The piston 6 and the crankshaft 3 are connected by a connecting rod 7 so that the reciprocating stroke of the piston 6 is converted into the rotational motion of the crankshaft 3.
[0023]
A magnet device 8 is provided at one end of the crankshaft 3, and a cylinder is discriminated near the periphery of the flywheel magneto 9, for example, and the rotation angle of the crankshaft 3 and its rotation speed, that is, the rotation speed (N) of the engine 1 is determined. An electromagnetic pickup coil 10 to be detected is installed. An exciter 11 is arranged inside the flywheel magneto 9.
[0024]
Further, the magnet device 8 outputs AC power and also supplies power to various devices such as a control unit 12, a fuel injector 13, and a fuel pump 14 described later.
[0025]
On the other hand, for example, the cylinder block 4 is provided with a coolant temperature sensor 15 that detects the coolant temperature of the engine 1. A combustion chamber 17 is formed at the joint between the cylinder head 16 and the cylinder block 4, and a spark plug 18 is attached to the center of the combustion chamber 17 from the outside.
[0026]
An intake passage 20 having a throttle valve 19 is connected to the crank chamber 2. A throttle opening sensor 21 that detects the opening (α) of the throttle valve 19 is provided, for example, outside the intake passage 20. Further, a fuel injector 13 is attached to the intake passage 20 downstream from the throttle valve 19 from the outside. Then, the fuel in the fuel tank 22 is pumped up by the fuel pump 14 and guided to the fuel injector 13 through the delivery pipe 23. The fuel pressure in the delivery pipe 23 is adjusted by the pressure regulator 24 so that the fuel pressure applied to the fuel injector 13 is always constant.
[0027]
Fuel injection by the fuel injector 13 is electronically controlled by the EFI 25 described above. The EFI 25 includes an electronic fuel control unit 12 (hereinafter abbreviated as ECU). The ECU 12 estimates the intake air amount based on, for example, the engine rotation signal (N) sent from the electromagnetic pickup coil 10 and the opening signal (α) of the throttle valve 19 sent from the throttle opening sensor 21. The cooling water temperature data from the cooling water temperature sensor 15 provided on the wall of the cylinder block 4, the intake air temperature data from the air temperature sensor 26 provided in the intake passage 20, and the outside of the engine 1 The fuel injection time is controlled using the atmospheric pressure data from the atmospheric pressure sensor 27 arranged at the position so as to obtain an optimum air-fuel ratio.
[0028]
Furthermore, the ECU 12 controls the timing of injecting fuel for each cylinder 5 based on the rotation angle signal of the crankshaft 3 sent from the electromagnetic pickup coil 10. That is, the fuel injector 13 of each cylinder 5 is controlled to inject fuel for a predetermined time at a time determined according to a signal from the ECU 12.
[0029]
In addition to controlling the fuel injection time and timing, the ECU 12 also sends an ignition signal to the ignition coil 28 that operates the spark plug 18 and controls the operation of the fuel pump 14.
[0030]
Next, FIG. 2 illustrates an embodiment of a fuel increase control method during engine acceleration using atmospheric pressure data.
[0031]
In the case of the synchronous acceleration increase injection method in which the fuel increase amount at the time of acceleration is added to the normal injection pulse that starts injection from the reference crank position of the engine 1 and the injection is performed, as shown in Equation 1 of FIG. Multiply pulse time (T 0 ) by general atmospheric pressure correction coefficient (K P ) and multiply acceleration basic pulse time (T ACC0 ) by acceleration increase dedicated atmospheric pressure correction coefficient (K PACC ) The total pulse time (Ti) is calculated by multiplying the sum of the above and the correction coefficients (K A , K W ) of the intake air temperature and the cooling water temperature.
[0032]
On the other hand, regardless of the crank position of the engine 1, the case of asynchronous injection method simultaneously accelerating fuel increment injection and it is determined that the acceleration, normal normal injection basic pulse time (T 0) to the above correction coefficient (K A , K W , K P ) to calculate the normal corrected pulse time (Tu) (see Equation 2-1 in FIG. 2), and during acceleration increase, the acceleration increase basic pulse time (T ACC0 ) Is multiplied by the correction factor (K A , K W ) for the intake air temperature and the cooling water temperature and the atmospheric pressure correction factor (K PACC ) for acceleration increase, and the pulse time after correction for acceleration increase (T ACC ) is calculated (See Equation 2-2 in FIG. 2). Note that the sum of the asynchronous post-correction pulse time and the acceleration boost basic pulse time is the same as the total pulse time of the synchronous acceleration boost injection method (Tu + T ACC = Ti).
[0033]
Next, a second embodiment of the fuel increase control method during engine acceleration using atmospheric pressure data will be described with reference to FIG.
[0034]
In the case of the synchronous acceleration increase injection method in which the fuel increase amount at the time of acceleration is added to the normal injection pulse that starts the injection from the reference crank position of the engine 1 and the injection is performed, as shown in Equation 3 in FIG. The intake air temperature and cooling water temperature combined with the product of the pulse time (T 0 ) multiplied by the general atmospheric pressure correction factor (K P ) and the atmospheric pressure correction acceleration increase basic pulse time (T ACC1 ) The total pulse time (Ti) is calculated by multiplying the correction coefficients (K A , K W ).
[0035]
On the other hand, regardless of the crank position of the engine 1, the case of asynchronous injection method simultaneously accelerating fuel increment injection and it is determined that the acceleration, normal normal injection basic pulse time (T 0) to the above correction coefficient (K A , K W , K P ) to calculate the normal corrected pulse time (Tu) (see Equation 4-1 in FIG. 3), and at the time of acceleration increase, the atmospheric pressure correction acceleration increase basic pulse time ( By multiplying T ACC1 ) by the correction coefficients (K A , K W ) of the intake air temperature and the cooling water temperature, the pulse time after correction for acceleration increase (T ACC ) is calculated (formula 4-2 in FIG. 3). reference). Incidentally, the atmospheric pressure correction acceleration increase basic pulse time (T ACC1) is obtained by multiplying the acceleration increase basic pulse time (T ACC0) and the acceleration increment only atmospheric pressure correction coefficient (K PACC) (T ACC0 × K PACC = T ACC1). Further, when the asynchronous normal pulse time after correction and the acceleration boost basic pulse time are added, the total pulse time of the synchronous acceleration boost injection method is the same (Tu + T ACC = Ti).
[0036]
4 (a) and 4 (b) are graphs showing the relationship between the acceleration increase basic pulse time (T ACC0 ) and the engine speed (N), a general atmospheric pressure correction coefficient (K P ), and acceleration increase. The graph which shows the relationship between a minute exclusive atmospheric pressure correction coefficient ( KPACC ) and atmospheric pressure (P) is shown. Also shows a three-dimensional map for determining from the atmospheric pressure correction acceleration increase basic pulse time in FIG. 5 and (T A CC0 1) the engine speed (N) and the atmospheric pressure (P).
[0037]
As described above, an acceleration increase dedicated atmospheric pressure correction coefficient (K PACC ) is set separately from the general atmospheric pressure correction coefficient (K P ) used during normal operation, and this dedicated atmospheric pressure correction is performed during engine 1 acceleration operation. By using the coefficient (K PACC ) to increase the fuel injection amount, the fuel consumption rate, exhaust gas condition and operating feeling deteriorated due to changes in air density caused by factors such as conventional altitude differences. Is prevented.
[0038]
【The invention's effect】
As described above, according to the engine fuel control apparatus of the present invention, the engine fuel control apparatus that electronically increases the fuel injection amount during acceleration based on atmospheric pressure information is used during normal operation. Aside from the general atmospheric pressure correction coefficient, the general atmospheric pressure correction coefficient is slower than the amount of change with respect to the atmospheric pressure so that the increase correction is performed in the low atmospheric pressure region than when the general atmospheric pressure correction coefficient is used. to set the acceleration increment only atmospheric pressure correction coefficient which varies, because that is configured to increase control of the fuel injection quantity by using the acceleration increment only atmospheric pressure correction coefficient at the time of acceleration operation of the engine, regardless of the atmospheric pressure Therefore, the fuel consumption rate, the exhaust gas state and the driving feeling are improved.
[0039]
Further, since the engine is a crank chamber pressurization type two-cycle engine, the above effect is further enhanced.
[0040]
Further, since the α-N control method for estimating the intake air amount based on the engine rotation signal and the throttle valve opening signal is provided, the above effect is further enhanced.
[Brief description of the drawings]
FIG. 1 is a system schematic diagram of a general electronic fuel injection control device used in a two-cycle engine.
FIG. 2 is a formula showing a first embodiment of a fuel increase control method during engine acceleration of the engine fuel control apparatus according to the present invention.
FIG. 3 is a formula showing a second embodiment of the fuel increase control method during engine acceleration of the engine fuel control apparatus according to the present invention.
FIGS. 4A and 4B are a graph showing the relationship between the acceleration increase basic pulse time and the engine speed, a general atmospheric pressure correction coefficient, an acceleration increase dedicated atmospheric pressure correction coefficient, and atmospheric pressure, respectively. The graph which shows the relationship.
FIG. 5 is a three-dimensional map for obtaining an atmospheric pressure correction acceleration increase basic pulse time from an engine speed and atmospheric pressure.
FIG. 6 is a formula showing a method for controlling fuel increase during acceleration of an engine using conventional atmospheric pressure data.
[Explanation of symbols]
1 2-cycle engine 12 Electronic fuel control unit (ECU)
15 Cooling water temperature sensor 21 Throttle opening sensor 25 Electronic fuel injection control device (EFI)
26 Air temperature sensor 27 Atmospheric pressure sensor K A Intake air temperature correction coefficient K P General-purpose atmospheric pressure correction coefficient K PACC acceleration increment dedicated atmospheric pressure correction coefficient K W Cooling water temperature correction coefficient T 0 Normal injection basic pulse time T ACC acceleration increment correction after the pulse time T ACC0 acceleration increase basic pulse time T ACC1 atmospheric pressure correction acceleration increase basic pulse time Ti total pulse time Tu normal amount corrected pulse time

Claims (3)

大気圧情報に基づいて加速時の燃料噴射量を電子的に増量制御するエンジンの燃料制御装置において、通常運転時に利用する一般用大気圧補正係数とは別に、気圧が低い領域では上記一般用大気圧補正係数を利用する場合よりも増量補正となるように、上記一般用大気圧補正係数の気圧に対する変化量よりも緩やかに変化する加速増量分専用大気圧補正係数を設定し、上記エンジンの加速運転時に上記加速増量分専用大気圧補正係数を利用して燃料噴射量を増量制御するように構成したことを特徴とするエンジンの燃料制御装置。In an engine fuel control device that electronically increases the amount of fuel injected during acceleration based on atmospheric pressure information, the above-mentioned general-purpose large pressure is applied in a low-pressure region separately from the general atmospheric pressure correction coefficient used during normal operation. Set a dedicated atmospheric pressure correction coefficient for acceleration increase that changes more slowly than the amount of change in the general atmospheric pressure correction coefficient relative to the atmospheric pressure so that the increase correction is greater than when using the atmospheric pressure correction coefficient. A fuel control apparatus for an engine, characterized in that the fuel injection amount is controlled to be increased using the atmospheric pressure correction coefficient dedicated to the acceleration increase amount during operation. 上記エンジン1をクランク室与圧式の2サイクルエンジンとした請求項1記載のエンジンの燃料制御装置。The engine fuel control device according to claim 1, wherein the engine 1 is a crank chamber pressurized two-cycle engine. エンジン回転信号(α)と、スロットルバルブ19の開度信号(N)とを基に吸入空気量を推測するα―N制御方式を備えた請求項1または2記載のエンジンの燃料制御装置。The engine fuel control device according to claim 1 or 2, further comprising an α-N control method for estimating an intake air amount based on an engine rotation signal (α) and an opening signal (N) of the throttle valve 19.
JP35956997A 1997-12-26 1997-12-26 Engine fuel control device Expired - Fee Related JP3781882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35956997A JP3781882B2 (en) 1997-12-26 1997-12-26 Engine fuel control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35956997A JP3781882B2 (en) 1997-12-26 1997-12-26 Engine fuel control device

Publications (2)

Publication Number Publication Date
JPH11193737A JPH11193737A (en) 1999-07-21
JP3781882B2 true JP3781882B2 (en) 2006-05-31

Family

ID=18465179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35956997A Expired - Fee Related JP3781882B2 (en) 1997-12-26 1997-12-26 Engine fuel control device

Country Status (1)

Country Link
JP (1) JP3781882B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6129097B2 (en) * 2014-02-26 2017-05-17 ヤンマー株式会社 diesel engine

Also Published As

Publication number Publication date
JPH11193737A (en) 1999-07-21

Similar Documents

Publication Publication Date Title
JPH04219436A (en) Fuel controlling device and method for small-sized internal combustion engine
EP1437498B1 (en) 4−STROKE ENGINE CONTROL DEVICE AND CONTROL METHOD
JP2829891B2 (en) Fuel injection timing control device for internal combustion engine
JPH09287507A (en) Throttle valve controller for internal combustion engine
US5462031A (en) Air-to-fuel ratio control unit for internal combustion engine
JPH02227527A (en) Intake air amount control method for internal combustion engine
JPWO2003038262A1 (en) Apparatus and method for detecting atmospheric pressure of 4-stroke engine
JP3823643B2 (en) Engine fuel injection control device
JP2004092605A (en) Fuel injection device of internal combustion engine
JP3781882B2 (en) Engine fuel control device
JPH0217704B2 (en)
JP2003065138A (en) Atmospheric pressure detection method and device for controlling internal combustion engine
JP3536596B2 (en) Fuel injection control device for direct injection spark ignition type internal combustion engine
JPH05187305A (en) Air amount calculating device of internal combustion engine
JPH07310577A (en) Fuel supply controller for internal combustion engine
JP2005069045A (en) Fuel injection control device for internal combustion engine
JPS5827827A (en) Fuel supplier of internal combustion engine
JP2003056378A (en) Rotation sensor for crank shaft
JP2917183B2 (en) Start control device for fuel injection device of internal combustion engine
JP3329660B2 (en) Engine fuel injection device
JPH07233749A (en) Fuel supply quantity correcting device for internal combustion engine
JP4415824B2 (en) Start control device for internal combustion engine
JPH0559994A (en) Control device for engine
JP3329659B2 (en) Engine fuel injection device
JP3817830B2 (en) Ignition timing control device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees