JPH11193737A - Fuel control of engine - Google Patents

Fuel control of engine

Info

Publication number
JPH11193737A
JPH11193737A JP35956997A JP35956997A JPH11193737A JP H11193737 A JPH11193737 A JP H11193737A JP 35956997 A JP35956997 A JP 35956997A JP 35956997 A JP35956997 A JP 35956997A JP H11193737 A JPH11193737 A JP H11193737A
Authority
JP
Japan
Prior art keywords
engine
fuel
atmospheric pressure
acceleration
correction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35956997A
Other languages
Japanese (ja)
Other versions
JP3781882B2 (en
Inventor
Takeshi Furuya
毅 古谷
Yoshinobu Arakawa
祥伸 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Mahle Electric Drive Systems Co Ltd
Original Assignee
Kokusan Denki Co Ltd
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusan Denki Co Ltd, Suzuki Motor Corp filed Critical Kokusan Denki Co Ltd
Priority to JP35956997A priority Critical patent/JP3781882B2/en
Publication of JPH11193737A publication Critical patent/JPH11193737A/en
Application granted granted Critical
Publication of JP3781882B2 publication Critical patent/JP3781882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the fuel control of the engine aiming at improvement of specific fuel consumption, state of exhaust gas, and drive feeling regardless of the atmospheric pressure. SOLUTION: This fuel control of engine, which electrically controls fuel injection amount in such a way that it increases when accelerating by using the atmospheric pressure, sets an atmospheric pressure correction coefficient only for the acceleration increase (KPACC) in addition to an atmospheric pressure correction coefficient for general (KP) to be used at the normal driving. It controls the fuel injection amount in such a way that it increases at the acceleration of the engine, using the atmospheric pressure correction coefficient only for acceleration increase (KPACC).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エンジンの燃料制
御装置に係り、特にエンジンの加速時の燃料制御装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel control system for an engine, and more particularly to a fuel control system for accelerating an engine.

【0002】[0002]

【従来の技術】従来、電子式の燃料噴射制御装置を備え
たエンジンの加速時に空燃比を補正する燃料増量制御方
法が、例えば特公昭54−27491号公報や特公昭6
2−31177号公報等に提案されている。
2. Description of the Related Art Conventionally, a fuel increase control method for correcting an air-fuel ratio at the time of acceleration of an engine equipped with an electronic fuel injection control device is disclosed in, for example, Japanese Patent Publication Nos.
It has been proposed in JP-A-2-31177.

【0003】また、近年の制御装置では大気圧センサに
より大気圧を検出し、そのデータを利用して空燃比の補
正を行っている。以下、図6に大気圧のデータを利用し
たエンジンの加速時の燃料増量制御方法を示す。
In recent control devices, the atmospheric pressure is detected by an atmospheric pressure sensor, and the data is used to correct the air-fuel ratio. FIG. 6 shows a fuel increase control method at the time of engine acceleration using atmospheric pressure data.

【0004】エンジンの基準クランク位置から噴射を開
始する通常の噴射パルスに加速時の燃料増量分を加算し
て噴射させる同期式加速増量噴射方法の場合、図6の式
Aに示すように、通常噴射基本パルス時間(T)に加
速増量基本パルス時間(T CC0)を加えたものに吸
入空気温度、冷却水温度および大気圧の各補正係数(K
,K,K)を掛け合わせることにより総パルス時
間(Ti)が算出される。
[0004] In the case of a synchronous acceleration-increased injection method in which a fuel injection amount during acceleration is added to a normal injection pulse for starting injection from a reference crank position of the engine for injection, as shown in equation A in FIG. injection basic pulse time (T 0) in the acceleration increase basic pulse time (T a CC0) the intake air temperature plus, the correction coefficient of the cooling water temperature and atmospheric pressure (K
A , K W , K P ) to calculate the total pulse time (Ti).

【0005】一方、エンジンのクランク位置に関わら
ず、加速と判断したと同時に加速燃料増量噴射を行う非
同期式噴射方法の場合、通常時は通常噴射基本パルス時
間(T)に上記各補正係数(K,K,K)を掛
け合わせることにより通常分補正後パルス時間(Tu)
が算出され(図6の式B−1参照)、また、加速増量時
は加速増量基本パルス時間(TACC0)に上記各補正
係数(K,K,K)を掛け合わせることにより加
速増量分補正後パルス時間(TACC)が算出される
(図6の式B−2参照)。なお、非同期式の通常分補正
後パルス時間と加速増量基本パルス時間とを加算すると
同期式加速増量噴射方法の総パルス時間と同じなる(T
u+TACC=Ti)。
On the other hand, regardless of the crank position of the engine, in the case of the asynchronous injection method in which acceleration is increased and fuel is injected at the same time as acceleration is determined, the above-described correction coefficients (T 0 ) are usually added to the normal injection basic pulse time (T 0 ). K a, K W, K P ) normal amount corrected pulse time by multiplying the (Tu)
There is calculated (see Equation B-1 in FIG. 6), Furthermore, each correction coefficient at the time of acceleration increase the acceleration increase basic pulse time (T ACC0) (K A, K W, K P) accelerated by crossing of The pulse time (T ACC ) after the increase correction is calculated (see equation B-2 in FIG. 6). It should be noted that when the pulse time after the normal correction of the asynchronous type is added to the basic pulse time for the increase in acceleration, the total pulse time becomes the same as the total pulse time in the synchronous type increase injection method (T
u + T ACC = Ti).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述し
た式Aまたは式B−1およびB−2を用いた大気圧によ
る空燃比の補正方法では、以下に述べる理由からエンジ
ンの加速時に良好な大気圧補正が行われない。
However, the method for correcting the air-fuel ratio based on the atmospheric pressure using the above-described formula A or the formulas B-1 and B-2 provides a good atmospheric pressure during acceleration of the engine for the following reason. No correction is made.

【0007】その理由とは、例えばスロットルを閉位置
から開位置へ開くような加速操作時、スロットルの開度
(α)に比例した量の吸入空気が直ちにシリンダ内に供
給されるが、同時刻に吸気通路内に噴射された燃料は吸
入空気より遅れてシリンダ内に達する。
The reason for this is that, for example, during an acceleration operation for opening the throttle from the closed position to the open position, an amount of intake air proportional to the opening degree (α) of the throttle is immediately supplied to the cylinder. The fuel injected into the intake passage reaches the cylinder later than the intake air.

【0008】吸気通路内に噴射された燃料のうち、霧状
になって空気流に乗り、シリンダ内に達する量は、燃料
の噴射状態やエンジンの温度、吸入空気の量や温度、気
圧および燃料の噴射口からシリンダまでの距離や吸気通
路の形状などの諸条件によって左右されるが、概ね十分
の一から二分の一程度である。そして、残りの燃料は吸
気通路やエンジンの内壁面に付着して壁面付着燃料とな
り、実際にシリンダ内に供給される燃料の量はこの壁面
付着燃料が直接噴射された燃料に加わったものとなる。
[0008] Of the fuel injected into the intake passage, the amount of mist that gets into the air flow and reaches the cylinder depends on the fuel injection state, the engine temperature, the amount and temperature of the intake air, the air pressure, and the fuel. Although it depends on various conditions such as the distance from the injection port to the cylinder and the shape of the intake passage, it is generally about one tenth to one half. The remaining fuel adheres to the intake passage and the inner wall surface of the engine to become wall-adhered fuel, and the amount of fuel actually supplied into the cylinder is obtained by adding the wall-adhered fuel to the directly injected fuel. .

【0009】加速時には、吸入空気の流量が増加して壁
面付着燃料がシリンダ内に送り込まれる。また、加速状
態と判断されて増量噴射された燃料のうち、上述したよ
うに一部のみが直接シリンダ内に送り込まれるが、加速
直後の一回〜数回の燃焼は既存の壁面付着燃料からの補
助によってまかなわれることになる。
At the time of acceleration, the flow rate of the intake air increases and the fuel adhering to the wall is sent into the cylinder. Further, as described above, only a part of the fuel injected in an increased amount determined to be in the accelerated state is directly sent into the cylinder, but once to several times immediately after acceleration, the combustion from the existing wall-adhered fuel is performed. It will be covered by assistance.

【0010】上述した現象は、吸気通路に設けられる噴
射口からシリンダまでの距離が長く、壁面の面積が大き
いクランク室与圧式2サイクルエンジンの場合特に顕著
に現れる。
The above-described phenomenon is particularly prominent in a crankcase pressurized two-cycle engine in which the distance from the injection port provided in the intake passage to the cylinder is long and the wall area is large.

【0011】本来、エンジンに供給される燃料の量は排
気ガスの浄化や燃料消費率(燃費)の向上を考慮して薄
目(リーン)に設定することが望ましい。従って、壁面
付着燃料の量も通常運転時には燃費がよくなるように設
定される。そして、気圧の低い高地では空気密度の低下
に合わせて大気圧補正によって燃料の噴射量が減量補正
されるようになっている。
Originally, it is desirable to set the amount of fuel supplied to the engine to be lean in consideration of purification of exhaust gas and improvement of fuel consumption rate (fuel consumption). Therefore, the amount of the fuel deposited on the wall is also set so that the fuel efficiency is improved during the normal operation. At high altitudes where the atmospheric pressure is low, the fuel injection amount is reduced by the atmospheric pressure correction in accordance with the decrease in the air density.

【0012】この場合、高地での壁面付着燃料の量は当
然低地より少なく、エンジンの加速時に増量噴射された
燃料だけでは不足分を補うことが困難になり易い。さら
に、空気密度の低い高地では燃焼圧力も低下するため、
加速時のリーン化に伴う運転フィーリングの悪化が低地
における同様な状況下に比べ顕著に表れる。
In this case, the amount of fuel deposited on the wall surface at high altitudes is naturally smaller than that at low altitudes, and it is likely that it is difficult to make up for the shortage with only the fuel injected in an increased amount during acceleration of the engine. Furthermore, at high altitudes where the air density is low, the combustion pressure also decreases,
Deterioration in driving feeling due to leaning during acceleration is more pronounced than in similar situations in lowlands.

【0013】そこで、気圧の低い高地では加速増量分の
大気圧補正量の割合を通常分噴射量の補正量より大きく
する必要があるが、図6の式A、式B−1およびB−2
で示した従来の制御方法では一つの大気圧補正係数(K
)で通常分と増量分との両方を補正しているため、低
地で適切となる加速増量基本パルス時間(TACC0
を設定すると高地における加速時に空燃比がリーン状態
となり、運転フィーリングが悪化する一方、高地で適切
となる加速増量基本パルス時間(TACC0)を設定す
ると低地における加速時に空燃比がリッチ状態となり、
排気ガスの状態や燃費が悪化する。
Therefore, at high altitudes where the atmospheric pressure is low, it is necessary to make the ratio of the atmospheric pressure correction amount for the acceleration increase larger than the correction amount for the normal injection amount, but the equations A, B-1 and B-2 in FIG.
In the conventional control method shown in FIG. 2, one atmospheric pressure correction coefficient (K
P ) corrects both the normal amount and the increased amount, so that the acceleration increased basic pulse time (T ACC0 ) that is appropriate at low altitudes
Setting the air-fuel ratio becomes lean state at the time of acceleration in high altitude, while the drive feeling is deteriorated, the air-fuel ratio becomes rich state by setting the appropriate become acceleration increase the base pulse time at high altitude (T ACC0) during acceleration in lowland,
Exhaust gas condition and fuel economy deteriorate.

【0014】さらに、カルマン渦式や熱線式等のエアフ
ローメータを備え、直接吸入空気流量を測定するシステ
ムを備えたエンジンにおいてはエンジンの加速操作によ
る吸入空気量の変化が瞬時に判断できるが、スロットル
開度(α)とエンジン回転数(N)とから吸入空気量を
推測するα―Nシステムを備えたエンジンにおいてはス
ロットル開度の変化量を判別した後に加速動作を判断す
るため、スロットル操作が所定の変化量を示すまで燃料
の増加操作が遅れてしまう。
Further, in an engine provided with an air flow meter of a Karman vortex type, a hot wire type or the like, and a system for directly measuring the intake air flow rate, a change in the intake air amount due to the acceleration operation of the engine can be instantaneously determined. In an engine equipped with an α-N system for estimating the intake air amount from the opening (α) and the engine speed (N), the throttle operation is determined after judging the amount of change in the throttle opening to determine the acceleration operation. The operation of increasing the fuel is delayed until a predetermined change amount is indicated.

【0015】そのため、加速を判断し、燃料を増量する
までの間は通常分の噴射燃料と壁面付着燃料とでエンジ
ンの燃焼を賄うことになるので、加速操作時の燃料はリ
ーン状態になりやすく、特に空気密度の低い高地におい
ては前述した理由により著しい運転フィーリングの悪化
を招く虞がある。
[0015] For this reason, the normal amount of injected fuel and the fuel deposited on the wall cover the combustion of the engine until acceleration is determined and the amount of fuel is increased, so that the fuel during the acceleration operation tends to be in a lean state. In particular, at a high altitude where the air density is low, the driving feeling may be significantly deteriorated for the above-mentioned reason.

【0016】本発明は上述した事情を考慮してなされた
もので、大気圧に関わらず、燃料消費率、排気ガス状態
および運転フィーリングの向上を図ったエンジンの燃料
制御装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and has as its object to provide a fuel control device for an engine in which the fuel consumption rate, the exhaust gas state, and the driving feeling are improved irrespective of the atmospheric pressure. Aim.

【0017】[0017]

【課題を解決するための手段】本発明に係るエンジンの
燃料制御装置は、上述した課題を解決するために、請求
項1に記載したように、大気圧を利用して加速時の燃料
噴射量を電子的に増量制御するエンジンの燃料制御装置
において、通常運転時に利用する一般用大気圧補正係数
とは別に加速増量分専用大気圧補正係数を設定し、上記
エンジンの加速運転時にこの専用大気圧補正係数を利用
して燃料噴射量を増量制御するように構成したものであ
る。
According to a first aspect of the present invention, there is provided a fuel control apparatus for an engine, which uses an atmospheric pressure to accelerate a fuel injection during acceleration. In an engine fuel control system for electronically increasing the amount of fuel, a dedicated atmospheric pressure correction coefficient is set for the acceleration increase separately from the general atmospheric pressure correction coefficient used during normal operation. The fuel injection amount is controlled to increase using the correction coefficient.

【0018】また、上述した課題を解決するために、請
求項2に記載したように、上記エンジンをクランク室与
圧式の2サイクルエンジンとしたものである。
According to another aspect of the present invention, the engine is a crankcase pressurized two-stroke engine.

【0019】さらに、上述した課題を解決するために、
請求項3に記載したように、エンジン回転信号と、スロ
ットルバルブの開度信号とを基に吸入空気量を推測する
α―N制御方式を備えたものである。
Further, in order to solve the above-mentioned problems,
According to a third aspect of the present invention, there is provided an α-N control system for estimating an intake air amount based on an engine rotation signal and a throttle valve opening signal.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0021】図1は、2サイクルエンジンに用いられる
一般的な電子式燃料噴射制御装置(EFI)のシステム
概要図である。
FIG. 1 is a system schematic diagram of a general electronic fuel injection control device (EFI) used in a two-stroke engine.

【0022】この2サイクルエンジン1は一般的なクラ
ンク室与圧式の水冷二気筒2サイクルエンジンであり、
その2内にはクランクシャフト3が回転自在に軸支され
る。また、シリンダブロック4内にはシリンダ5が形成
され、その内部にはピストン6がクランクシャフト3と
直角方向に摺動自在に挿入される。そして、ピストン6
とクランクシャフト3とがコンロッド7によって連結さ
れ、ピストン6の往復ストロークがクランクシャフト3
の回転運動に変換されるようになっている。
The two-stroke engine 1 is a common crankcase pressurized water-cooled two-cylinder two-stroke engine.
A crankshaft 3 is rotatably supported in the inside 2. A cylinder 5 is formed in the cylinder block 4, and a piston 6 is slidably inserted in the cylinder 5 in a direction perpendicular to the crankshaft 3. And piston 6
And the crankshaft 3 are connected by a connecting rod 7, and the reciprocating stroke of the piston 6 is
It is to be converted into a rotational motion.

【0023】クランクシャフト3の一端にはマグネト装
置8が設けられ、そのフライホイールマグネト9の例え
ば周縁近傍に気筒を判別したりクランクシャフト3の回
転角度やその回転数、すなわちエンジン1の回転数
(N)を検出する電磁ピックアップコイル10が設置さ
れる。また、フライホイールマグネト9の内部にはエキ
サイタ11が配置される。
A magnet device 8 is provided at one end of the crankshaft 3. The flywheel magnet 9 is provided with a cylinder, for example, near the periphery of the flywheel magnet 9. An electromagnetic pickup coil 10 for detecting N) is provided. An exciter 11 is arranged inside the flywheel magneto 9.

【0024】さらに、マグネト装置8はAC電力を出力
すると共に、後述するコントロールユニット12やフュ
ーエルインジェクタ13、燃料ポンプ14等の各機器に
も電力を供給する。
Further, the magneto device 8 outputs AC power, and also supplies power to devices such as a control unit 12, a fuel injector 13, and a fuel pump 14, which will be described later.

【0025】一方、例えばシリンダブロック4にはエン
ジン1の冷却水温度を検出する冷却水温センサ15が設
けられる。また、シリンダヘッド16とシリンダブロッ
ク4との接合部には燃焼室17が形成され、その中央部
には外方から点火プラグ18が装着される。
On the other hand, for example, the cylinder block 4 is provided with a cooling water temperature sensor 15 for detecting a cooling water temperature of the engine 1. Further, a combustion chamber 17 is formed at a joint between the cylinder head 16 and the cylinder block 4, and a spark plug 18 is attached to the center of the combustion chamber 17 from the outside.

【0026】クランク室2にはスロットルバルブ19を
備えた吸気通路20が接続される。吸気通路20の例え
ば外部にはスロットルバルブ19の開度(α)を検出す
るスロットル開度センサ21が設けられる。さらに、ス
ロットルバルブ19より下流の吸気通路20には、外方
からフューエルインジェクタ13が装着される。そし
て、燃料タンク22内の燃料は燃料ポンプ14によって
汲み上げられ、デリバリパイプ23を通ってフューエル
インジェクタ13に導かれる。また、デリバリパイプ2
3内の燃圧は、フューエルインジェクタ13にかかる燃
圧が常に一定になるよう、プレッシャレギュレータ24
により調整される。
An intake passage 20 having a throttle valve 19 is connected to the crank chamber 2. A throttle opening sensor 21 for detecting the opening (α) of the throttle valve 19 is provided, for example, outside the intake passage 20. Further, a fuel injector 13 is attached to the intake passage 20 downstream of the throttle valve 19 from outside. Then, the fuel in the fuel tank 22 is pumped up by the fuel pump 14 and guided to the fuel injector 13 through the delivery pipe 23. Delivery pipe 2
The fuel pressure in the fuel injector 3 is controlled so that the fuel pressure applied to the fuel injector 13 is always constant.
Is adjusted by

【0027】フューエルインジェクタ13による燃料噴
射は、上述したEFI25によって電子的に制御され
る。EFI25はエレクトロニックフューエルコントロ
ールユニット12(以下、ECUと略す)を備える。E
CU12は、例えば上記電磁ピックアップコイル10か
ら送られるエンジン回転信号(N)と、スロットル開度
センサ21から送られるスロットルバルブ19の開度信
号(α)とを基に吸入空気量を推測するα―N制御方式
を備え、さらにシリンダブロック4壁に設けられた冷却
水温センサ15からの冷却水温度のデータ、吸気通路2
0に設けられた空気温センサ26からの吸入空気温度の
データ、およびエンジン1外に配置された大気圧センサ
27からの大気圧のデータを利用して最適な空燃比とな
るように燃料の噴射時間を制御する。
The fuel injection by the fuel injector 13 is electronically controlled by the EFI 25 described above. The EFI 25 includes an electronic fuel control unit 12 (hereinafter abbreviated as ECU). E
The CU 12 estimates an intake air amount based on, for example, an engine rotation signal (N) sent from the electromagnetic pickup coil 10 and an opening signal (α) of the throttle valve 19 sent from the throttle opening sensor 21. N control system, and further, cooling water temperature data from a cooling water temperature sensor 15 provided on the wall of the cylinder block 4.
Injecting fuel to obtain an optimal air-fuel ratio by using data of the intake air temperature from the air temperature sensor 26 provided at 0 and data of the atmospheric pressure from the atmospheric pressure sensor 27 provided outside the engine 1. Control the time.

【0028】さらにまた、電磁ピックアップコイル10
から送られるクランクシャフト3の回転角度信号により
ECU12は各シリンダ5ごとに燃料を噴射する時期を
制御する。すなわち、各シリンダ5のフューエルインジ
ェクタ13は、ECU12からの信号に従って決められ
た時期に決められた時間だけ燃料を噴射するように制御
される。
Further, the electromagnetic pickup coil 10
The ECU 12 controls the timing for injecting fuel for each cylinder 5 based on the rotation angle signal of the crankshaft 3 sent from the ECU. That is, the fuel injector 13 of each cylinder 5 is controlled so as to inject fuel for a predetermined time at a predetermined time according to a signal from the ECU 12.

【0029】そして、ECU12は燃料の噴射時間やタ
イミングを制御するほかに、点火プラグ18を作動させ
る点火コイル28に点火信号を送ったり、燃料ポンプ1
4の作動制御も行う。
In addition to controlling the fuel injection time and timing, the ECU 12 sends an ignition signal to an ignition coil 28 for operating the ignition plug 18 and controls the fuel pump 1
4 is also controlled.

【0030】次に、図2に大気圧のデータを利用したエ
ンジン加速時の燃料増量制御方法の一実施形態を説明す
る。
Next, an embodiment of a fuel increase control method at the time of engine acceleration using atmospheric pressure data will be described with reference to FIG.

【0031】エンジン1の基準クランク位置から噴射を
開始する通常の噴射パルスに加速時の燃料増量分を加算
して噴射させる同期式加速増量噴射方法の場合、図2の
式1に示すように、通常噴射基本パルス時間(T)に
一般用の大気圧補正係数(K)を掛け合わせたもの
と、加速増量基本パルス時間(TACC0)に加速増量
分専用大気圧補正係数(KPACC)を掛け合わせたも
のとを合わしたものに吸入空気温度および冷却水温度の
各補正係数(K,K)を掛け合わせることにより総
パルス時間(Ti)が算出される。
In the case of the synchronous accelerated increasing injection method in which the fuel injection amount during acceleration is added to the normal injection pulse for starting the injection from the reference crank position of the engine 1 for injection, as shown in equation 1 in FIG. A normal injection basic pulse time (T 0 ) multiplied by a general atmospheric pressure correction coefficient (K P ), and an acceleration increase basic pulse time (T ACC0 ), an acceleration increase dedicated atmospheric pressure correction coefficient (K PACC ). The total pulse time (Ti) is calculated by multiplying the product of the multiplication by the respective correction coefficients (K A , K W ) of the intake air temperature and the cooling water temperature.

【0032】一方、エンジン1のクランク位置に関わら
ず、加速と判断したと同時に加速燃料増量噴射を行う非
同期式噴射方法の場合、通常時は通常噴射基本パルス時
間(T)に上記各補正係数(K,K,K)を掛
け合わせることにより通常分補正後パルス時間(Tu)
が算出され(図2の式2−1参照)、また、加速増量時
は加速増量基本パルス時間(TACC0)に吸入空気温
度と冷却水温度の各補正係数(K,K)および加速
増量分専用大気圧補正係数(KPACC)を掛け合わせ
ることにより加速増量分補正後パルス時間(TACC
が算出される(図2の式2−2参照)。なお、非同期式
の通常分補正後パルス時間と加速増量基本パルス時間と
を加算すると同期式加速増量噴射方法の総パルス時間と
同じなる(Tu+TACC=Ti)。
On the other hand, regardless of the crank position of the engine 1, in the case of the asynchronous injection method in which acceleration is determined at the same time that acceleration is determined to be accelerated, the above-described correction coefficients are normally added to the normal injection basic pulse time (T 0 ). (K A , K W , K P ) multiplied by the pulse time after normal correction (Tu)
(See equation 2-1 in FIG. 2). When the acceleration is increased, the correction coefficients (K A , K W ) of the intake air temperature and the cooling water temperature and the acceleration are increased during the acceleration increase basic pulse time (T ACC0 ). The pulse time (T ACC ) after the acceleration increase is corrected by multiplying by the atmospheric pressure correction coefficient (K PACC ) dedicated to the increase.
Is calculated (see Equation 2-2 in FIG. 2). It should be noted that the total pulse time of the synchronous acceleration-increase injection method is equal to the total pulse time (Tu + T ACC = Ti) when the non-synchronized pulse time after normal correction and the acceleration-increase basic pulse time are added.

【0033】次に、図3に大気圧のデータを利用したエ
ンジン加速時の燃料増量制御方法の第2実施形態を説明
する。
Next, a second embodiment of a fuel increase control method at the time of engine acceleration using atmospheric pressure data will be described with reference to FIG.

【0034】エンジン1の基準クランク位置から噴射を
開始する通常の噴射パルスに加速時の燃料増量分を加算
して噴射させる同期式加速増量噴射方法の場合、図3の
式3に示すように、通常噴射基本パルス時間(T)に
一般用の大気圧補正係数(K)を掛け合わせたもの
と、大気圧補正加速増量基本パルス時間(TACC1
とを合わしたものに吸入空気温度および冷却水温度の各
補正係数(K,K)を掛け合わせることにより総パ
ルス時間(Ti)が算出される。
In the case of a synchronous acceleration-increased injection method in which the fuel is increased at the time of acceleration and added to the normal injection pulse for starting injection from the reference crank position of the engine 1 for injection, as shown in Equation 3 in FIG. The normal injection basic pulse time (T 0 ) multiplied by a general atmospheric pressure correction coefficient (K P ) and the atmospheric pressure correction acceleration increase basic pulse time (T ACC1 )
The total pulse time (Ti) is calculated by multiplying the sum of these by the respective correction coefficients (K A , K W ) of the intake air temperature and the cooling water temperature.

【0035】一方、エンジン1のクランク位置に関わら
ず、加速と判断したと同時に加速燃料増量噴射を行う非
同期式噴射方法の場合、通常時は通常噴射基本パルス時
間(T)に上記各補正係数(K,K,K)を掛
け合わせることにより通常分補正後パルス時間(Tu)
が算出され(図3の式4−1参照)、また、加速増量時
は大気圧補正加速増量基本パルス時間(TACC1)に
吸入空気温度および冷却水温度の各補正係数(K,K
)を掛け合わせることにより加速増量分補正後パルス
時間(TACC)が算出される(図3の式4−2参
照)。なお、大気圧補正加速増量基本パルス時間(T
ACC1)は加速増量基本パルス時間(TAC C0)と
加速増量分専用大気圧補正係数(KPACC)とを掛け
合わせることにより得られる(TACC0×KPACC
=TACC1)。また、非同期式の通常分補正後パルス
時間と加速増量基本パルス時間とを加算すると同期式加
速増量噴射方法の総パルス時間と同じなる(Tu+T
ACC=Ti)。
On the other hand, regardless of the crank position of the engine 1, in the case of the asynchronous injection method in which the acceleration is determined and acceleration is performed at the same time as the accelerated fuel injection, the above correction coefficients are normally added to the normal injection basic pulse time (T 0 ). (K A , K W , K P ) multiplied by the pulse time after normal correction (Tu)
There is calculated (see equation 4-1 in FIG. 3), also, the correction coefficient at the time of acceleration increase the atmospheric pressure correction acceleration increase basic pulse time (T ACC1) intake air temperature and the coolant temperature (K A, K
By multiplying by W 2 ), the pulse time (T ACC ) after the acceleration increment correction is calculated (see equation 4-2 in FIG. 3). The atmospheric pressure correction acceleration increase basic pulse time (T
ACC1) is obtained by multiplying the acceleration increase basic pulse time (T AC C0) and the accelerating increment only atmospheric pressure correction coefficient (K PACC) (T ACC0 × K PACC
= T ACC1 ). When the pulse time after the normal correction of the asynchronous type is added to the basic pulse time for the increase in the acceleration, the total pulse time of the synchronous acceleration and the increase injection method becomes the same (Tu + T).
ACC = Ti).

【0036】そして、図4(a)および(b)に加速増
量基本パルス時間(TACC0)とエンジン回転数
(N)との関係を示すグラフと、一般用の大気圧補正係
数(K)および加速増量分専用大気圧補正係数(K
PACC)と大気圧(P)との関係を示すグラフとを示
す。また、図5に大気圧補正加速増量基本パルス時間
(T CC01)をエンジン回転数(N)と大気圧
(P)とから求めるための三次元マップを示す。
FIGS. 4A and 4B are graphs showing the relationship between the acceleration increase basic pulse time (T ACC0 ) and the engine speed (N), and a general atmospheric pressure correction coefficient (K P ). And the atmospheric pressure correction coefficient (K
3 shows a graph showing the relationship between PACC ) and the atmospheric pressure (P). Also shows a three-dimensional map for determining from the atmospheric pressure correction acceleration increase basic pulse time in FIG. 5 and (T A CC0 1) the engine speed (N) and the atmospheric pressure (P).

【0037】上述したように、通常運転時に利用する一
般用大気圧補正係数(K)とは別に加速増量分専用大
気圧補正係数(KPACC)を設定し、エンジン1の加
速運転時にこの専用大気圧補正係数(KPACC)を利
用して燃料噴射量を増量制御するように構成したことに
より、従来高度差などの要因から生じた空気密度の変化
による燃料消費率、排気ガス状態および運転フィーリン
グの悪化が防止される。
As described above, a special atmospheric pressure correction coefficient (K PACC ) is set for the acceleration increase separately from the general atmospheric pressure correction coefficient (K P ) used during normal operation. By increasing the fuel injection amount using the atmospheric pressure correction coefficient (K PACC ), the fuel consumption rate, the exhaust gas state, and the operation fee due to the change in air density caused by factors such as the altitude difference have been conventionally achieved. The deterioration of the ring is prevented.

【0038】[0038]

【発明の効果】以上説明したように、本発明に係るエン
ジンの燃料制御装置によれば、大気圧を利用して加速時
の燃料噴射量を電子的に増量制御するエンジンの燃料制
御装置において、通常運転時に利用する一般用大気圧補
正係数とは別に加速増量分専用大気圧補正係数を設定
し、上記エンジンの加速運転時にこの専用大気圧補正係
数を利用して燃料噴射量を増量制御するように構成した
ため、大気圧に関わらず、燃料消費率、排気ガス状態お
よび運転フィーリングが向上する。
As described above, according to the engine fuel control apparatus of the present invention, in the engine fuel control apparatus for electronically increasing the fuel injection amount during acceleration using the atmospheric pressure, A dedicated atmospheric pressure correction coefficient for increasing the acceleration is set separately from the general atmospheric pressure correction coefficient used during normal operation, and the fuel injection amount is controlled to be increased using the dedicated atmospheric pressure correction coefficient during the acceleration operation of the engine. Therefore, the fuel consumption rate, the exhaust gas state, and the driving feeling are improved regardless of the atmospheric pressure.

【0039】また、上記エンジンをクランク室与圧式の
2サイクルエンジンとしたため、上記効果がさらに高ま
る。
Further, since the engine is a crankcase pressurized two-cycle engine, the above-mentioned effect is further enhanced.

【0040】さらに、エンジン回転信号と、スロットル
バルブの開度信号とを基に吸入空気量を推測するα―N
制御方式を備えたため、上記効果がさらに高まる。
Further, α-N for estimating the intake air amount based on the engine rotation signal and the throttle valve opening signal.
Since the control method is provided, the above effect is further enhanced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】2サイクルエンジンに用いられる一般的な電子
式燃料噴射制御装置のシステム概要図。
FIG. 1 is a system schematic diagram of a general electronic fuel injection control device used for a two-cycle engine.

【図2】本発明に係るエンジンの燃料制御装置の、エン
ジン加速時の燃料増量制御方法の第一実施形態を示す
式。
FIG. 2 is a formula showing a first embodiment of a fuel increase control method during engine acceleration in the engine fuel control device according to the present invention.

【図3】本発明に係るエンジンの燃料制御装置の、エン
ジン加速時の燃料増量制御方法の第二実施形態を示す
式。
FIG. 3 is a formula showing a second embodiment of a fuel increase control method during engine acceleration in the engine fuel control apparatus according to the present invention.

【図4】(a)および(b)はそれぞれ加速増量基本パ
ルス時間とエンジン回転数との関係を示すグラフと、一
般用の大気圧補正係数および加速増量分専用大気圧補正
係数と大気圧との関係を示すグラフ。
4 (a) and 4 (b) are graphs respectively showing a relationship between an acceleration increase basic pulse time and an engine speed, and a general atmospheric pressure correction coefficient, an atmospheric pressure correction coefficient dedicated to an acceleration increase, and an atmospheric pressure. The graph which shows the relationship.

【図5】大気圧補正加速増量基本パルス時間をエンジン
回転数と大気圧とから求めるための三次元マップ。
FIG. 5 is a three-dimensional map for obtaining an atmospheric pressure correction acceleration increase basic pulse time from the engine speed and the atmospheric pressure.

【図6】従来の大気圧データを利用したエンジンの加速
時の燃料増量制御方法を示す式。
FIG. 6 is a formula showing a conventional fuel increase control method at the time of engine acceleration using atmospheric pressure data.

【符号の説明】[Explanation of symbols]

1 2サイクルエンジン 12 エレクトロニックフューエルコントロールユニッ
ト(ECU) 15 冷却水温センサ 21 スロットル開度センサ 25 電子式燃料噴射制御装置(EFI) 26 空気温センサ 27 大気圧センサ K 吸入空気温度の補正係数 K 一般用の大気圧補正係数 KPACC 加速増量分専用大気圧補正係数 K 冷却水温度の補正係数 T 通常噴射基本パルス時間 TACC 加速増量分補正後パルス時間 TACC0 加速増量基本パルス時間 TACC1 大気圧補正加速増量基本パルス時間 Ti 総パルス時間 Tu 通常分補正後パルス時間
1 Two-cycle engine 12 Electronic fuel control unit (ECU) 15 Coolant temperature sensor 21 Throttle opening sensor 25 Electronic fuel injection control device (EFI) 26 Air temperature sensor 27 Atmospheric pressure sensor K A Correction coefficient of intake air temperature K P General atmospheric pressure correction coefficient K PACC acceleration increment only atmospheric pressure correction coefficient K W coolant temperature correction coefficient T 0 normal injection basic pulse time T ACC acceleration increment correction after the pulse time T ACC0 acceleration increase basic pulse time T ACC1 sized use Atmospheric pressure correction acceleration increase basic pulse time Ti Total pulse time Tu Normally corrected pulse time

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 大気圧を利用して加速時の燃料噴射量を
電子的に増量制御するエンジンの燃料制御装置におい
て、通常運転時に利用する一般用大気圧補正係数
(K)とは別に加速増量分専用大気圧補正係数(K
PACC)を設定し、上記エンジン1の加速運転時にこ
の専用大気圧補正係数(KPACC)を利用して燃料噴
射量を増量制御するように構成したことを特徴とするエ
ンジンの燃料制御装置。
1. A fuel control device for an engine that electronically controls the fuel injection amount during acceleration using the atmospheric pressure, wherein acceleration is performed separately from a general atmospheric pressure correction coefficient (K P ) used during normal operation. Atmospheric pressure correction coefficient (K
PACC ), and the fuel injection amount is controlled to increase using the dedicated atmospheric pressure correction coefficient (K PACC ) during the acceleration operation of the engine 1.
【請求項2】 上記エンジン1をクランク室与圧式の2
サイクルエンジンとした請求項1記載のエンジンの燃料
制御装置。
2. The engine 1 is a crankcase pressurized type 2
The engine fuel control device according to claim 1, wherein the fuel control device is a cycle engine.
【請求項3】 エンジン回転信号(α)と、スロットル
バルブ19の開度信号(N)とを基に吸入空気量を推測
するα―N制御方式を備えた請求項1または2記載のエ
ンジンの燃料制御装置。
3. The engine according to claim 1, further comprising an α-N control system for estimating an intake air amount based on an engine rotation signal (α) and an opening signal (N) of a throttle valve 19. Fuel control device.
JP35956997A 1997-12-26 1997-12-26 Engine fuel control device Expired - Fee Related JP3781882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35956997A JP3781882B2 (en) 1997-12-26 1997-12-26 Engine fuel control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35956997A JP3781882B2 (en) 1997-12-26 1997-12-26 Engine fuel control device

Publications (2)

Publication Number Publication Date
JPH11193737A true JPH11193737A (en) 1999-07-21
JP3781882B2 JP3781882B2 (en) 2006-05-31

Family

ID=18465179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35956997A Expired - Fee Related JP3781882B2 (en) 1997-12-26 1997-12-26 Engine fuel control device

Country Status (1)

Country Link
JP (1) JP3781882B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129262A1 (en) * 2014-02-26 2015-09-03 ヤンマー株式会社 Engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129262A1 (en) * 2014-02-26 2015-09-03 ヤンマー株式会社 Engine
JP2015161185A (en) * 2014-02-26 2015-09-07 ヤンマー株式会社 engine
CN105917104A (en) * 2014-02-26 2016-08-31 洋马株式会社 Engine
US10502156B2 (en) 2014-02-26 2019-12-10 Yanmar Co., Ltd. Engine controller based on atmospheric pressure

Also Published As

Publication number Publication date
JP3781882B2 (en) 2006-05-31

Similar Documents

Publication Publication Date Title
JPH07247892A (en) Fuel injection control device for internal combustion engine
EP1437498B1 (en) 4−STROKE ENGINE CONTROL DEVICE AND CONTROL METHOD
US7178494B2 (en) Variable valve timing controller for internal combustion engine
JPH0518287A (en) Fuel injection type internal combustion engine
JPH0740671Y2 (en) Air-fuel ratio controller for 2-cycle engine
US6983738B2 (en) Engine control system
JP3823643B2 (en) Engine fuel injection control device
US5462031A (en) Air-to-fuel ratio control unit for internal combustion engine
JPWO2003038262A1 (en) Apparatus and method for detecting atmospheric pressure of 4-stroke engine
US7549409B2 (en) Fuel supply amount control system and boat propulsion unit
JP3781882B2 (en) Engine fuel control device
JPH0518294A (en) Electronic control fuel injection device for two-cycle internal combustion engine
JP3536596B2 (en) Fuel injection control device for direct injection spark ignition type internal combustion engine
JPH0510168A (en) Multicylinder type fuel injection two-cycle internal combustion engine
JP2003056378A (en) Rotation sensor for crank shaft
JP2005069045A (en) Fuel injection control device for internal combustion engine
JPH0718355B2 (en) Fuel injection amount control method for internal combustion engine
JP4415824B2 (en) Start control device for internal combustion engine
JP2917183B2 (en) Start control device for fuel injection device of internal combustion engine
JP2912420B2 (en) Port scavenging / fuel injection type 2-cycle engine
JPH07233749A (en) Fuel supply quantity correcting device for internal combustion engine
JP3327047B2 (en) Exhaust timing control method for internal combustion engine
JPH0436032A (en) Fuel injection controller of engine
JP2004353613A (en) Fuel injection control device of internal combustion engine
JP2002147280A (en) Engine control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees