JP3780398B2 - How to use refractories - Google Patents

How to use refractories Download PDF

Info

Publication number
JP3780398B2
JP3780398B2 JP35760998A JP35760998A JP3780398B2 JP 3780398 B2 JP3780398 B2 JP 3780398B2 JP 35760998 A JP35760998 A JP 35760998A JP 35760998 A JP35760998 A JP 35760998A JP 3780398 B2 JP3780398 B2 JP 3780398B2
Authority
JP
Japan
Prior art keywords
refractory
weight
basicity
zro
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35760998A
Other languages
Japanese (ja)
Other versions
JP2000178067A (en
Inventor
淳 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP35760998A priority Critical patent/JP3780398B2/en
Publication of JP2000178067A publication Critical patent/JP2000178067A/en
Application granted granted Critical
Publication of JP3780398B2 publication Critical patent/JP3780398B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/10Compositions or ingredients thereof characterised by the absence or the very low content of a specific material
    • C04B2111/1075Chromium-free or very low chromium-content materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3445Magnesium silicates, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、たとえば産業廃棄物等を溶融して減容化する溶融炉の炉材等として用いられる耐火物の使用方法に関する。
【0002】
【従来の技術】
従来、上記溶融炉の炉材としては、Cr10重量%を含み、残部Alからなる耐火物が用いられていた。Crは、この耐火物の耐食性を向上させるために含有させられている。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の耐火物はCrを含んでいるので、この耐火物からなる炉材を用いた溶融炉で産業廃棄物等を溶融する際に、毒性を有する6価のクロムが発生する可能性があり、しかも6価のクロムが発生するため耐火物の廃棄処理についても苦慮しているのが現状である。
【0004】
この発明の目的は、上記問題を解決し、Crを含有せず、しかも従来の耐火物と同等の耐食性を有する耐火物の使用方法を提供することにある。
【0005】
【課題を解決するための手段と発明の効果】
請求項1の発明による耐火物の使用方法は、MgAl5〜20重量%およびZrO5〜20重量%を含み、残部MgSiOからなる耐火物を、塩基度が0.7〜2.0の範囲である被溶融物を溶融する溶融炉の炉材に用いるものである。但し、上記耐火物には、不可避不純物が含まれていてもよい。
【0006】
請求項1の発明で使用される耐火物において、MgAl(スピネル)は、溶融物の塩基度(CaO/SiO)が0.7以上の領域において、耐火物の溶損を少なくして耐食性を向上させる効果を有するが、その含有量が5重量%未満であるとこの効果は得られず、20重量%を越えるとかえって溶損が大きくなり、耐食性が低下する。したがって、MgAlの含有量は5〜20重量%の範囲内で選ぶべきである。ZrOは、溶融される被溶融物の塩基度が0.3〜2.0の領域において、溶融物の耐火物組織内への浸透を抑制する効果を有するが、その含有量が5重量%未満であるとこの効果は得られず、20重量%を越えると溶損が大きくなり、耐食性が低下する。したがって、ZrOの含有量は5〜20重量%の範囲内で選ぶべきである。また、MgSiO(フォルステライト)は、耐溶損性および耐浸透性に優れたベース材料である。
【0007】
請求項1の発明の耐火物の使用方法によれば、上述した耐火物を、産業廃棄物等の溶融炉の炉材として使用した場合、毒性を呈することなく、しかも毒性を呈さないために廃棄処理を容易に行うことができる。さらに、塩基度が0.7〜2.0の範囲内にある溶融物に対して、従来の耐火物と同等の耐食性を有する。
【0008】
請求項2の発明による耐火物の使用方法は、3Al・2SiO5〜20重量%およびZrO5〜20重量%を含み、残部MgSiOからなる耐火物を、塩基度が0.3以上でかつ0.7未満である被溶融物を溶融する溶融炉の炉材に用いるものである。但し、上記耐火物には、不可避不純物が含まれていてもよい。
【0009】
請求項2の発明で使用される耐火物において、3Al・2SiO(ムライト)は、溶融物の塩基度が0.7未満の領域において、耐火物の溶損を少なくして耐食性を向上させる効果を有するが、その含有量が5重量%未満であるとこの効果は得られず、20重量%を越えるとかえって溶損が大きくなり、耐食性が低下する。したがって、3Al・2SiOの含有量は5〜20重量%の範囲内で選ぶべきである。ZrOは、溶融される被溶融物の塩基度が0.3〜2.0の領域において、溶融物の耐火物組織内への浸透を抑制する効果を有するが、その含有量が5重量%未満であるとこの効果は得られず、20重量%を越えると溶損が大きくなり、耐食性が低下する。したがって、ZrOの含有量は5〜20重量%の範囲内で選ぶべきである。また、MgSiO(フォルステライト)は、耐溶損性および耐浸透性に優れたベース材料である。
【0010】
請求項2の発明の耐火物の使用方法によれば、上述した耐火物を、産業廃棄物等の溶融炉の炉材として使用した場合、毒性を呈することなく、しかも毒性を呈さないために廃棄処理を容易に行うことができる。さらに、塩基度が0.3以上でかつ0.7未満である溶融物に対して、従来の耐火物と同等の耐食性を有する。
【0011】
請求項1または2の発明の耐火物の使用方法において、ZrOのうちの少なくとも一部をZrSiO(ジルコン)で置換することができる。この場合も、作用効果は変わることがない
【0012】
一般の産業廃棄物等の塩基度は0.3〜2.0の範囲内であり、塩基度が0.3以上でかつ0.7未満である被溶融物に対して、請求項2の発明において使用される耐火物、またはこの耐火物中のZrOのうちの少なくとも一部をZrSiOで置換した耐火物は十分な耐食性を有する。また、塩基度が0.7〜2.0の範囲内にある被溶融物に対して、請求項1の発明において使用される耐火物、またはこの耐火物中のZrOのうちの少なくとも一部をZrSiOで置換した耐火物は十分な耐食性を有する。
【0013】
【発明の実施の形態】
以下、この発明の具体的実施例を比較例とともに示す。
【0014】
実施例1〜6および比較例1〜16
MgAl粉末、3Al・2SiO粉末、ZrO粉末、ZrSiO粉末と、MgSiO粉末、Cr粉末およびAl粉末を用意した。全ての粉末の平均粒径はそれぞれ50μmである。ついで、これらの粉末のうち2種以上を表1に示す割合で混合した混合粉末、または単体粉末に、バインダーとしてポリビニルアルコール粉末を、混合粉末または単体粉末100重量部に対して3重量部の割合で添加した。ついで、バインダー添加粉末を、水を用いてボールミルで24時間攪拌混合した後乾燥器にて120℃で24時間乾燥させた。ついで、この乾燥粉末を300kg/cmの圧力でプレス成形し、さらに大気中において1500℃×2時間の焼結を行い、縦200mm、横100mm、高さ50mmの試料を得た。
【0015】
評価試験1
各試料の溶損速度および浸透深さを、回転浸食法により測定した。すなわち、各試料を回転ドラム中にセットし、プロパンガスバーナで1500℃に加熱した後、表2に示す浸食剤を投入し、浸食剤を30分毎に交換しつつ8時間経過した後の試料の平均減肉量を求め、この減肉量から溶損速度を算出した。また、浸透深さは、最大浸透深さで評価した。なお、浸食剤は産業廃棄物と同じ組成を有するものである。
【0016】
これらの結果も表1に示す。
【0017】
【表1】

Figure 0003780398
なお、表1の評価の欄において、○は比較例13〜16と同等の特性を有することを表し、×は比較例13〜16よりも劣る特性を有することを表す。
【0018】
【表2】
Figure 0003780398
表1に示す結果から、請求項1の発明の組成範囲の耐火物、またはこの耐火物中のZrOのうちの少なくとも一部をZrSiOで置換した耐火物によれば、塩基度が0.7〜2.0の範囲である浸食剤に対する耐食性が、従来のCr10重量%を含み、残部Alからなる耐火物と同等、もしくはそれ以上であることが分かる(実施例4〜6)。また、請求項2の発明の組成範囲の耐火物によれば、塩基度が0.3以上でかつ0.7未満である浸食剤に対する耐食性が、従来のCr10重量%を含み、残部Alからなる耐火物と同等、もしくはそれ以上であることが分かる(実施例1〜3)。
【0019】
また、MgAl、ZrOおよびMgSiOからなる耐火物であっても、MgAlの含有量が、5重量%未満あるいは20重量%を越えたものは、塩基度0.7〜2.0の範囲である浸食剤に対して溶損が大きくなるとともに(比較例15および13)、ZrOの含有量が5重量%未満のものは塩基度0.7〜2.0の範囲である浸食剤に対して浸透深さが大きくなり(比較例16)、同じく20重量%を越えたものは塩基度0.7〜2.0の範囲である浸食剤に対して溶損が大きくなる(比較例14)。
【0020】
さらに、3Al・2SiO、ZrOおよびMgSiOからなる耐火物であっても、3Al・2SiOの含有量が、5重量%未満あるいは20重量%を越えたものは塩基度0.7未満の浸食剤に対して溶損が大きくなるとともに(比較例11および9)、ZrOの含有量が5重量%未満のものは塩基度0.7未満である浸食剤に対して浸透深さが大きくなり(比較例12)、同じく20重量%を越えたものは塩基度0.7未満である浸食剤に対して溶損が大きくなる(比較例10)。
【0021】
したがって、いずれの場合も産業廃棄物の溶融炉に用いるのに適していないことが分かる。
【0022】
評価試験2
実施例2と同じ組成の耐火物から400mm×400mm×200mmのブロックを作製し、このブロックを塩基度0.5である産業廃棄物の溶融炉に組み込み、200時間の連続運転を行った。運転終了後上記ブロックを溶融炉から取出し、溶融炉に組み込まれている従来のCr10重量%を含み、残部Alからなる耐火物と比較した。その結果、従来の耐火物は20mm溶損したのに対し、上記ブロックの溶損は15mmであり、従来の耐火物に比べて耐食性に優れていることが判明した。
【0023】
評価試験3
実施例6と同じ組成の耐火物から400mm×400mm×200mmのブロックを作製し、このブロックを塩基度1.1である産業廃棄物の溶融炉に組み込み、200時間の連続運転を行った。運転終了後上記ブロックを溶融炉から取出し、溶融炉に組み込まれている従来のCr10重量%を含み、残部Alからなる耐火物と比較した。その結果、従来の耐火物は23mm溶損したのに対し、上記ブロックの溶損は17mmであり、従来の耐火物に比べて耐食性に優れていることが判明した。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of using a refractory material used as a furnace material or the like of a melting furnace that melts and reduces volume of industrial waste, for example.
[0002]
[Prior art]
Conventionally, as the furnace material of the melting furnace, a refractory material containing 10% by weight of Cr 2 O 3 and the balance being Al 2 O 3 has been used. Cr 2 O 3 is contained in order to improve the corrosion resistance of the refractory.
[0003]
[Problems to be solved by the invention]
However, since conventional refractories contain Cr 2 O 3 , toxic hexavalent chromium is generated when melting industrial wastes in a melting furnace using a furnace material made of this refractory. There is a possibility, and since hexavalent chromium is generated, it is difficult to dispose of refractories.
[0004]
An object of the present invention is to solve the above problems and provide a method of using a refractory that does not contain Cr 2 O 3 and has corrosion resistance equivalent to that of a conventional refractory.
[0005]
[Means for Solving the Problems and Effects of the Invention]
Using refractory according the invention of claim 1 includes a MgAl 2 O 4 5 to 20 wt% and ZrO 2 5 to 20 wt%, a refractory material and the balance Mg 2 SiO 4, basicity 0.7 It is used for a furnace material of a melting furnace for melting a material to be melted in a range of ~ 2.0 . However, the above-mentioned refractory, may contain inevitable impurities.
[0006]
In the refractory used in the invention of claim 1, MgAl 2 O 4 (spinel) reduces the refractory melting loss in the region where the melt basicity (CaO / SiO 2 ) is 0.7 or more. However, if the content is less than 5% by weight, this effect cannot be obtained. If the content exceeds 20% by weight, the melting loss increases, and the corrosion resistance decreases. Therefore, the content of MgAl 2 O 4 should be selected within the range of 5 to 20% by weight. ZrO 2 has the effect of suppressing penetration of the melt into the refractory structure in the region where the basicity of the melted material is 0.3 to 2.0, but the content is 5% by weight. If the amount is less than 20%, this effect cannot be obtained. If the amount exceeds 20% by weight, the melting loss increases and the corrosion resistance decreases. Therefore, the ZrO 2 content should be selected within the range of 5 to 20% by weight. Mg 2 SiO 4 (forsterite) is a base material that is excellent in resistance to melting and penetration.
[0007]
According to the method of using the refractory of the invention of claim 1, when the above-mentioned refractory is used as a furnace material of a melting furnace such as industrial waste, it is discarded because it does not exhibit toxicity and does not exhibit toxicity. Processing can be performed easily. Furthermore, it has a corrosion resistance equivalent to that of a conventional refractory against a melt having a basicity in the range of 0.7 to 2.0.
[0008]
Using refractory according the invention of claim 2 comprises a 3Al 2 O 3 · 2SiO 2 5~20 wt% and ZrO 2 5 to 20 wt%, a refractory material and the balance Mg 2 SiO 4, basicity It is used for a furnace material of a melting furnace that melts a material to be melted that is 0.3 or more and less than 0.7 . However, the above-mentioned refractory, may contain inevitable impurities.
[0009]
In refractories used in the invention of claim 2, 3Al 2 O 3 · 2SiO 2 ( mullite), in the region of basicity is less than 0.7 of the melt, the corrosion resistance with less erosion of the refractory Although it has an effect of improving, if the content is less than 5% by weight, this effect cannot be obtained, and if it exceeds 20% by weight, the melting loss becomes rather large and the corrosion resistance decreases. Accordingly, the content of 3Al 2 O 3 · 2SiO 2 should be chosen in the range of 5 to 20 wt%. ZrO 2 has the effect of suppressing penetration of the melt into the refractory structure in the region where the basicity of the melted material is 0.3 to 2.0, but the content is 5% by weight. If the amount is less than 20%, this effect cannot be obtained. If the amount exceeds 20% by weight, the melting loss increases and the corrosion resistance decreases. Therefore, the ZrO 2 content should be selected within the range of 5 to 20% by weight. Mg 2 SiO 4 (forsterite) is a base material that is excellent in resistance to melting and penetration.
[0010]
According to the method of using the refractory of the invention of claim 2, when the above-mentioned refractory is used as a furnace material of a melting furnace such as industrial waste, it is discarded because it does not exhibit toxicity and does not exhibit toxicity. Processing can be performed easily. Furthermore, it has a corrosion resistance equivalent to that of a conventional refractory against a melt having a basicity of 0.3 or more and less than 0.7.
[0011]
In the method for using a refractory according to the first or second aspect of the present invention, at least a part of ZrO 2 can be replaced with ZrSiO 4 (zircon). Also in this case, the operational effect does not change.
[0012]
The basicity of general industrial waste or the like is within a range of 0.3 to 2.0, and the invention according to claim 2 for a material to be melted having a basicity of 0.3 or more and less than 0.7. Or a refractory obtained by substituting at least a part of ZrO 2 in the refractory with ZrSiO 4 has sufficient corrosion resistance. Moreover, with respect to the to-be-melted material in which the basicity is in the range of 0.7 to 2.0, at least a part of the refractory used in the invention of claim 1 or ZrO 2 in the refractory The refractory in which is replaced with ZrSiO 4 has sufficient corrosion resistance.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, specific examples of the present invention will be described together with comparative examples.
[0014]
Examples 1-6 and Comparative Examples 1-16
MgAl 2 O 4 powder, 3Al 2 O 3 · 2SiO 2 powder were prepared ZrO 2 powder, and ZrSiO 4 powder, Mg 2 SiO 4 powder, the Cr 2 O 3 powder and Al 2 O 3 powder. The average particle size of all powders is 50 μm. Next, a mixed powder obtained by mixing two or more of these powders at a ratio shown in Table 1, or a simple powder, and a polyvinyl alcohol powder as a binder at a ratio of 3 parts by weight with respect to 100 parts by weight of the mixed powder or single powder. Added at. Next, the binder-added powder was stirred and mixed with water in a ball mill for 24 hours and then dried at 120 ° C. for 24 hours in a dryer. Next, this dry powder was press-molded at a pressure of 300 kg / cm 2 and further sintered in the atmosphere at 1500 ° C. for 2 hours to obtain a sample having a length of 200 mm, a width of 100 mm, and a height of 50 mm.
[0015]
Evaluation test 1
The erosion rate and penetration depth of each sample were measured by the rotary erosion method. That is, each sample was set in a rotating drum, heated to 1500 ° C. with a propane gas burner, then the erodant shown in Table 2 was added, and the sample after 8 hours had passed while changing the erodant every 30 minutes. The average thinning amount was obtained, and the rate of melting loss was calculated from this thinning amount. The penetration depth was evaluated by the maximum penetration depth. In addition, an erosion agent has the same composition as industrial waste.
[0016]
These results are also shown in Table 1.
[0017]
[Table 1]
Figure 0003780398
In addition, in the column of evaluation of Table 1, (circle) represents having a characteristic equivalent to Comparative Examples 13-16, and x represents having a characteristic inferior to Comparative Examples 13-16.
[0018]
[Table 2]
Figure 0003780398
From the results shown in Table 1, according to the refractory having the composition range of the invention of claim 1 or the refractory in which at least a part of ZrO 2 in the refractory is substituted with ZrSiO 4 , the basicity is 0. corrosion resistance to erosion agent in the range of 7 to 2.0 comprises a conventional Cr 2 O 3 10 wt%, it can be seen at equivalent refractory the balance being Al 2 O 3, or more (example 4-6). Further, according to the refractory having the composition range of the invention of claim 2, the corrosion resistance to an erodant having a basicity of 0.3 or more and less than 0.7 includes 10% by weight of conventional Cr 2 O 3 , It turns out that it is equivalent to or more than the refractory consisting of the balance Al 2 O 3 (Examples 1 to 3).
[0019]
Further, even if the refractory is composed of MgAl 2 O 4 , ZrO 2 and Mg 2 SiO 4 , the basicity of the refractory whose MgAl 2 O 4 content is less than 5% by weight or more than 20% by weight is 0.8. While the erosion with respect to the erodant in the range of 7 to 2.0 is increased (Comparative Examples 15 and 13), those having a ZrO 2 content of less than 5% by weight have a basicity of 0.7 to 2.0. The penetration depth was increased with respect to the erodant in the range of (Comparative Example 16), and the amount exceeding 20% by weight was also damaged by the erodant in the range of basicity of 0.7 to 2.0. Increases (Comparative Example 14).
[0020]
Even more, even refractory consisting 3Al 2 O 3 · 2SiO 2, ZrO 2 and Mg 2 SiO 4, the content of 3Al 2 O 3 · 2SiO 2 is, beyond the or 20 wt% less than 5 wt% Has a large dissolution loss with respect to an erosion agent having a basicity of less than 0.7 (Comparative Examples 11 and 9), and an erosion agent having a ZrO 2 content of less than 5% by weight has a basicity of less than 0.7. In contrast, the penetration depth becomes larger (Comparative Example 12), and when the amount exceeds 20% by weight, the erosion with respect to the erodant having a basicity of less than 0.7 becomes larger (Comparative Example 10).
[0021]
Therefore, it turns out that it is not suitable to use for the melting furnace of industrial waste in any case.
[0022]
Evaluation test 2
A 400 mm × 400 mm × 200 mm block was made from a refractory having the same composition as in Example 2, and this block was incorporated into an industrial waste melting furnace having a basicity of 0.5, and was continuously operated for 200 hours. After completion of the operation, the block was taken out from the melting furnace and compared with a refractory material containing 10% by weight of conventional Cr 2 O 3 incorporated in the melting furnace and the balance being Al 2 O 3 . As a result, the conventional refractory was melted by 20 mm, whereas the above-mentioned block had a melt damage of 15 mm, which was found to be superior to the conventional refractory in corrosion resistance.
[0023]
Evaluation test 3
A 400 mm × 400 mm × 200 mm block was prepared from a refractory having the same composition as in Example 6, and this block was incorporated into an industrial waste melting furnace having a basicity of 1.1, followed by continuous operation for 200 hours. After completion of the operation, the block was taken out from the melting furnace and compared with a refractory material containing 10% by weight of conventional Cr 2 O 3 incorporated in the melting furnace and the balance being Al 2 O 3 . As a result, the conventional refractory was melted by 23 mm, whereas the block had a melt damage of 17 mm, which was found to be superior to the conventional refractory in corrosion resistance.

Claims (3)

MgAl5〜20重量%およびZrO5〜20重量%を含み、残部MgSiOからなる耐火物を、塩基度が0.7〜2.0の範囲である被溶融物を溶融する溶融炉の炉材に用いる耐火物の使用方法 Melting a refractory material containing 5 to 20% by weight of MgAl 2 O 4 and 5 to 20% by weight of ZrO 2 and the balance Mg 2 SiO 4, and a material to be melted having a basicity in the range of 0.7 to 2.0 How to use refractories used in furnace materials for melting furnaces . 3Al・2SiO5〜20重量%およびZrO5〜20重量%を含み、残部MgSiOからなる耐火物を、塩基度が0.3以上でかつ0.7未満である被溶融物を溶融する溶融炉の炉材に用いる耐火物の使用方法3Al include 2 O 3 · 2SiO 2 5~20 wt% and ZrO 2 5 to 20 wt%, a refractory material and the balance Mg 2 SiO 4, the basicity is and less than 0.7 0.3 or more A method of using a refractory used for a furnace material of a melting furnace for melting a melt . 耐火物中のZrOのうちの少なくとも一部をZrSiOで置換した請求項1または2記載の耐火物の使用方法 The method for using a refractory according to claim 1 or 2, wherein at least a part of ZrO 2 in the refractory is substituted with ZrSiO 4 .
JP35760998A 1998-12-16 1998-12-16 How to use refractories Expired - Fee Related JP3780398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35760998A JP3780398B2 (en) 1998-12-16 1998-12-16 How to use refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35760998A JP3780398B2 (en) 1998-12-16 1998-12-16 How to use refractories

Publications (2)

Publication Number Publication Date
JP2000178067A JP2000178067A (en) 2000-06-27
JP3780398B2 true JP3780398B2 (en) 2006-05-31

Family

ID=18455005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35760998A Expired - Fee Related JP3780398B2 (en) 1998-12-16 1998-12-16 How to use refractories

Country Status (1)

Country Link
JP (1) JP3780398B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5573554B2 (en) * 2010-09-29 2014-08-20 三菱マテリアル株式会社 Vapor deposition material for forming a thin film, and a thin film sheet and a laminated sheet provided with the thin film
CN105198466A (en) * 2015-11-03 2015-12-30 万燕杰 Castable for branch iron trough of 1,250 m<3> blast furnace

Also Published As

Publication number Publication date
JP2000178067A (en) 2000-06-27

Similar Documents

Publication Publication Date Title
CA2093615C (en) Electric arc furnace dust as a raw material for brick
JPS6411590B2 (en)
JP3780398B2 (en) How to use refractories
JP3985082B2 (en) Refractories and how to use refractories
JP3610523B2 (en) Fused slag refractory material composition and molten slag refractory material
JP4744066B2 (en) Indefinite refractory
JP4328053B2 (en) Magnesia-spinel brick
JP2601134B2 (en) Alumina-chromia-zircon sintered refractory brick
JP2002241173A (en) Shaped refractory
JP3361581B2 (en) Taphole filler
JP2006232653A (en) Refractory brick and waste material melting furnace
EP0521679B1 (en) Burned refractories with low water soluble chromium(VI)oxide content
JPH11199317A (en) Refractory for furnace wall and melting furnace using the same
JP3604301B2 (en) Refractory raw materials, kneaded raw materials and refractories
JP3327536B2 (en) Irregular refractories for waste melting furnace pouring and waste melting furnace using the same
JP2766624B2 (en) Alumina / Spinel amorphous refractories
JP3088096B2 (en) High corrosion resistant alumina-chromium refractory
JPH11130548A (en) Basic monolithic refractory material
JP2518559B2 (en) Refractory materials and their preparation method
JPH11199316A (en) Refractory for furnace wall and its use and melting furnace
JP3088095B2 (en) Alumina-chromium refractory
JP4677915B2 (en) Refractory and melting furnace made of this refractory
JPH10330152A (en) Refractory material and ash-melting furnace
JPH07223872A (en) Alumina-based spinel casting material
JP3983156B2 (en) Manufacturing method of recycled fired products

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees