JP3780336B2 - 耐圧性気球 - Google Patents

耐圧性気球 Download PDF

Info

Publication number
JP3780336B2
JP3780336B2 JP2001374650A JP2001374650A JP3780336B2 JP 3780336 B2 JP3780336 B2 JP 3780336B2 JP 2001374650 A JP2001374650 A JP 2001374650A JP 2001374650 A JP2001374650 A JP 2001374650A JP 3780336 B2 JP3780336 B2 JP 3780336B2
Authority
JP
Japan
Prior art keywords
gas bag
gore
changing means
tension
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001374650A
Other languages
English (en)
Other versions
JP2003170897A (ja
Inventor
信之 矢島
直樹 井筒
秀之 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2001374650A priority Critical patent/JP3780336B2/ja
Priority to US10/288,544 priority patent/US6685136B2/en
Priority to CN02155723.3A priority patent/CN1199817C/zh
Priority to FR0215412A priority patent/FR2833239B1/fr
Priority to RU2002132958A priority patent/RU2238218C2/ru
Publication of JP2003170897A publication Critical patent/JP2003170897A/ja
Application granted granted Critical
Publication of JP3780336B2 publication Critical patent/JP3780336B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64BLIGHTER-THAN AIR AIRCRAFT
    • B64B1/00Lighter-than-air aircraft
    • B64B1/58Arrangements or construction of gas-bags; Filling arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Toys (AREA)
  • Air Bags (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐圧性気球に関する。より詳細には、高層大気観測や宇宙観測に用いられる科学観測気球、スポーツ用熱気球及びガス気球などの耐圧性気球に関する。
【0002】
【従来の技術】
高空を飛翔する気球として、例えば高度30〜40Kmの成層圏を飛翔する科学観測気球がある。このような高空用の気球は、飛翔高度を調節するために、浮力ガスの排気による浮力減少とバラスト投下による飛翔高度回復との組み合わせを利用している。しかしながら、バラストを全て消費するとそれ以降は飛翔高度の調節を続けられない。
【0003】
一方、飛翔高度を一定に保つためのものとして、内圧に耐える耐圧性のガス袋を備えたスーパプレッシャー気球が知られている。このスーパプレッシャー気球は、ガス袋が最大容積となった後にも上昇浮力分のガスを排出せず、ガス袋の最大容積および内部のガスの圧力を維持したまま上昇を続け、大気密度の低下により浮力が減少して一定の高度で水平飛翔する。このようなスーパプレッシャー気球は日没後にガスの温度が低下してもガス袋内のガス圧が低下するだけでこのガス袋の最大容積は変化せず、バラストを投下することなく最大高度を維持したまま水平飛翔を維持することができる。これによって、上記の気球のように大量のバラストを消費することがなく、より長時間の飛翔が可能となる。
【0004】
【発明が解決しようとする課題】
しかしながら、このようなスーパプレッシャー気球では高度を一定に保つことができるが飛翔高度を変更することが容易でない。
【0005】
飛翔高度を調節する気球として、気球内部の空気袋に外気をポンプで注入して膨張させて気球の有効体積を変化させるものがある。しかしながら、大気が希薄な成層圏では短時間に空気袋を膨らませるには強力な送風器又はポンプが必要となり、特に大型気球では実現が困難である。
【0006】
本発明は以上の事情に基づいてなされたものであり、本発明の目的は、バラストのような有限な搭載物やポンプを用いることなく、簡単な構成でガス袋の体積を制御し、飛翔高度を変えることができる耐圧性気球を提供することである。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1に係わる耐圧性気球では、
気密性の被膜材料から形成された紡錘形の複数のゴアをその両側縁部を互いに接合するとともに、これらゴアの両側縁部の接合部に沿って張力に耐えるロードテープを取り付けた耐圧性のガス袋と、
満膨張状態の上記ガス袋を変形させてガス袋の体積を変化させる体積変化手段と、
を備えており、
上記ガス袋が膨張した後も上昇浮力分のガスを排出せずに内部のガスの圧力を維持し、体積変化手段によりガス袋の体積を変化させてガス袋の浮力を制御して飛翔高度を調節する耐圧性の気球であって、
上記ゴアの寸法は、
上記ガス袋が満膨張状態のときに隣接する上記ロードテープの間で外側に被膜材料の伸びによらずに膨出し、
上記膨出したゴアの、上記ロードテープと交差する方向の曲率半径が、上記ガス袋の径よりも小さく、
上記膨出したゴアに働く張力の方向が、上記ロードテープと交差する方向に向く、
よう設定されており、
上記体積変化手段は、上記ロードテープを上記ガス袋の内側に引っ張ることにより、満膨張状態の上記ガス袋の形状を変形させ、
上記体積変化手段は、上記紡錘形のゴアの長手方向の両端に位置している上記ロードテープの部分の少なくとも一方を上記ガス袋の内側に引っ張り、
上記体積変化手段は、上記紡錘形のゴアの長手方向の上側の端に位置している上記ロードテープの部分に取り付けられておりゴアの長手方向の両端間で延びている引張りロープと、上記紡錘形のゴアの長手方向の下側の端に位置している上記ロードテープの部分に取り付けられていて引張りロープの下側の端が取り付けられており引張りロープの長さを変える引張りロープ長変化手段と、を有している、
ことを特徴としている。
【0014】
【発明の実施の形態】
図1〜図12を参照して、本発明の実施の形態に係わる耐圧性気球を説明する。先ず、本発明の第1の実施の形態の耐圧性気球を説明する。図1は、耐圧性気球の斜視図である。図中の1はガス袋であり、このガス袋1の内部には例えばヘリウム等が充填され、浮力を発生する。ガス袋1は膨張した後も上昇浮力分のガスを排出せずに内部のガスの圧力を維持する。このガス袋1には、観測機器等のペイロードが搭載されるが、図中では省略する。
【0015】
ガス袋1は、概略的に球形をなしており、ガス袋1を縦にN等分した紡錘形のゴア2を多数接合して構成されている。これらのゴア2は、軽量で高強度の織布、又はプラスチックフイルム等の気密性の被膜材料で形成され、互いにその両側縁部を縫合又は接着等により接合され、ガス袋1を構成している。これらのゴア2の接合線に沿って、高張力に耐えるロードテープ3が縫い込まれ、または接着される。これらのロードテープ3は、これらゴア2相互の接合強度を高める他、ペイロードの荷重を分散して各ゴア2に伝達し、またこのガス袋1の形状を所定の形状に維持する。各ゴア2の被膜材料はガス袋1が満膨張状態のときに隣接するロードテープ3の間で外側に被膜材料の伸びによらずに膨出する。ここで、満膨張状態とは、ガス袋1の内外圧力差dP(内部圧力−外部圧力に等しい)が正であり、内部圧力をさらに増加させてもガス袋1の体積が皮膜材料の伸びによる以外には変化しない状態である。耐圧性気球は、満膨張状態のガス袋1を変形させてガス袋1の体積を変化させる体積変化手段(後に詳述する)を備えている。
【0016】
ガス袋1は内外圧力差dP(>0)に対応した自然型と呼ばれる形状をとることができる。説明の便宜のために、ロードテープが設けられていない場合の自然型のガス袋の形状について説明する。自然型は、ガス袋の上下方向の中心軸を地軸として、条件1:経線(子午線)の長さ一定、条件2:緯線(周)の長さは必要なだけ自由に付加するとする2つの前提条件のもとで最大の浮力が得られる形状である。この形状は地軸に対して回転対称である。条件2は、ガス袋の皮膜には経線方向に皺が発生していると仮定することができるので、周方向には張力が発生しない状態にあることを意味する。即ち、ガス袋の内外圧力差によって皮膜に発生する張力は経線方向のみとなる。内外圧力差dPが増大するとともにガス袋は扁平していき、いわゆるパンプキン形状に近づく。
【0017】
本実施の形態のようにガス袋の内外圧力差dPが十分大きい場合、通常皮膜自体の重量や浮力を無視して形状を考えてよい。その場合には、ガス袋の形状は、前記の条件1、条件2のもとで体積が最大となることが条件となり、球を北極側と南極側から押しつぶしたような上下対称の形状となる。これはEuler’selasticaと呼ばれる。この形状は以下のように求めることができる。
【0018】
図2はこの形状を求めるために用いる、ガス袋の概略的な断面図である。図2のように、x,y座標上で対称面である赤道面から上半分の形状を考える。赤道の半径をxとする。皮膜には経線方向の張力しか発生していないので、赤道上での張力の総和の力Fは赤道での断面積Sと圧力差dPの積となる。即ち、
=S・dP…(1)
である。形状曲線上の赤道での張力T、任意の点、(x,y)上での張力Tはそれぞれ、
=F/(2πx)…(2)
T=F/(2πx)=x ・dP/(2・x)…(3)
となるので、経線の長さをL、その微少長さをdL、その傾角をθとすれば、その点の皮膜の曲率半径は
dL/dθ=T/dP…(4)
である。この微分方程式を、初期条件は赤道上の皮膜張力の方向はy軸と並行でかつ大きさはTとして、数値解法により赤道上から順次形状を求めて解く。図3は数値解法により求められた形状の縦断面を示す曲線の例である。実際の気球には、下部にペイロードがつり下げられるので形状の上下対称性は若干損なわれるが、ほとんど無視できる。上記パンプキン形状はこのような上下対称性が損なわれた形状を含んでいる。また、パンプキン形状は地軸に対して対称である。
【0019】
このようなパンプキン形状をとるガス袋にロードテープを付加したときのガス袋の形状を説明する。従来の気球では、ゴアの形状は地軸に対して対称なパンプキン形状をN等分した紡錘形に設定されている。ロードテープはパンプキン形状のガス袋の外表面に沿って延びている。本実施の形態の耐圧性気球では、隣接するロードテープ3の間でゴア2が小さな曲率半径で膨出するようゴア2の形状が設定されている。かつこの場合、ゴア2は経線方向に十分大きな寸法を有しているものとする。後に示すように、膨出したゴア2の、ロードテープ3と交差する方向の曲率半径は、ガス袋1の径よりも1桁程度小さい。
【0020】
こうした形状を形成するために、ゴア2の形状寸法は従来の気球のゴアの形状に対して、その幅および長さが大きくされている。即ち、ゴア2の長手方向の中心線の長さは、隣接するロードテープ3の間で膨出する部分の経線方向の中心線の長さに等しく、ゴア2の幅はこの膨出した部分の緯線方向の長さに等しくされている。この結果、ゴア2の両側縁部の長さはロードテープ3よりも長くなるので、各ゴア2は、それらの両側縁部がロードテープ3の長さに対応した長さに均一に皺が形成されて短縮された状態でロードテープ3に接合されている。尚、ロードテープ3の長さは、ゴア2の自然型の形状の両側縁部の長さに対応した長さに設定されている。
【0021】
ガス袋1がこのように構成されていることにより、各ゴア2は内部圧力によって引き伸ばされずに膨出する。このように膨出するゴア2の形状を所定の形状に設定すると、ゴア2の長手方向の張力をほぼゼロにすることができる。即ち、膨出したゴア2に働く張力の方向は、ほぼロードテープ3と交差する方向に向く。
【0022】
このとき、ゴア2の短手方向の張力はロードテープ3に作用し、ロードテープ3が外側に引っ張られる。このゴア2の張力はロードテープ3の張力により支承される。一方、膨出をもたない従来の気球では、経験上その強度は、同じ体積を有する球の強度と同等である。成層圏大型気球では、球の半径は30〜50mとなる。一方、膨出したゴア2の曲率半径は概略1m程度を実現できる。従って、被膜に発生する張力はこの2つの半径の比率だけ減少し、その分気球は圧力に対し強度が増す。さらに、ゴアの形状は被膜材料の幅からきまるので、気球を大型にしてもその曲率半径は変わらない。即ち、気球の圧力に対する強度は、気球の容積に依存しない。従って、本実施の形態の耐圧性気球は気球の規模によらず破損しにくい。
【0023】
体積変化手段を詳細に説明する。図4はガス袋1の縦断面図である。上述したように、この形状は球を北極側と南極側から押しつぶしたような形状である。図4の断面は北極と南極を含んでいる。体積変化手段は、ロードテープ3をガス袋1の内側に引っ張ることにより、満膨張状態のガス袋1の形状を変形させる。より詳細には、体積変化手段は、紡錘形のゴア2の長手方向の両端に位置しているロードテープ3の部分をガス袋1の内側に引っ張る。即ち、体積変化手段は、ガス袋1の両極間の距離を変化させる。
【0024】
体積変化手段は、ゴア2の長手方向の両端間で延びている引張りロープ4と、引張りロープ4の長さを変える引張りロープ長変化手段5とを有している。引張りロープ4の一端は、ゴア2の上側の端、即ちガス袋1の北極に位置しているロードテープ3の部分に取り付けられている。ガス袋1の北極には全てのロードテープ3が集まっている。引張りロープ4は、これらのロードテープ3を均一に引っ張るようロードテープ3に取り付けられている。北極に位置しているロードテープ3の部分にはリング(図示せず)が取り付けられており、このリングに引張りロープ4の一端が結ばれている。引張りロープ4の他端は、ゴア2の南極側に配置されている引張りロープ長変化手段5に取り付けられている。ゴア2の南極側にはペイロード(図示せず)が吊されている。
【0025】
図5は引張りロープ長変化手段5の概略図である。引張りロープ長変化手段5は、引張りロープ4が巻かれる円筒形のドラム5aと、ドラム5aを回転させるモータ5bとを有している。モータ5bは取付部5cを介してガス袋1の南極に位置しているロードテープ3の部分に取り付けられている。
【0026】
引張りロープ長変化手段5には両極間にわたっている引張りロープ4の長さを検知するセンサが設けられている。引張りロープ4の全長は、ガス袋1にガスが注入される前の気球の長さ、即ちガス袋1の経線の長さである。ガスが注入されて気球が膨張するにつれて両極間の直線距離は短くなるので、その分の引張りロープ4は絶えずドラム5aに巻き取られる。同様に、耐圧性気球が放球された後、飛翔高度が上がるにつれて大気圧が下がり体積は膨張を続け、両極間の直線距離は短くなるので、その分のロープもドラム5aに巻き取られる。
【0027】
さらに膨張してガス袋1が満膨張状態になると、ガス袋1は膨出した部分をもつパンプキン形状になる。このときガス袋1は最大の体積、即ち最大の浮力をもつ。この状態で、両極間の引張りロープ4の長さを短くすると、ガス袋1はこれの両極が接近するように変形する。これにより、ガス袋1の体積が減少するので浮力が減少する。引張りロープ4の長さを調節することで浮力を制御することができるので、耐圧性気球の飛翔高度を調節することができる。
【0028】
両極間の引張りロープ4の長さを変えたときのガス袋1の変形形状は以下のようにして求められる。Euler’s elasticaを求めたときと同様にして、ロードテープは取り付けられていないものとする。変形形状は上記(4)式
dL/dθ=T’/dP…(4)
を満たす。但し、(4)式を解く際、皮膜の張力の方向はy軸と並行で大きさをEuler’s elasticaの場合より小さな値T’とする。即ち、
T’=T+dT (dT<0)…(5)
として、(4)式を解くと、両極間距離を変えたときの変形形状が得られる。dTを変えた場合に、経線の長さLが一定になるような赤道半径xを求めると、同一ガス袋で両極間距離を変えた形状とその体積を求めることができる。
【0029】
図6は変形形状の縦断面の計算例である。ガス袋1の形状はx=0を回転軸として図6の断面を回転させると得られる。8つの閉曲線の内、両極間距離(x=0上の2点間の距離)が最大でかつ囲む面積が最大である曲線がEuler’selasticaである。両極間距離が小さくなるにつれて囲む面積が小さくなる。図7に両極間距離とガス袋の体積の関係を示す。両座標軸ともEuler’s elasticaのときのものを1として正規化されている。図7で示されるように、両極間距離が減少すると体積が単調に減少する。従って、両極間距離を変えることにより比較的容易に浮力を制御することができる。ゴア2の膨出を考慮したときのガス袋1では、ロードテープ3が上記計算から得られた形状に沿って延び、ゴア2が隣接するロードテープ3の間で膨出する。
【0030】
本実施の形態には様々な修正と変形とが可能である。本実施の形態では引張りロープ4はガス袋1の両極間で延びているが、本発明はこれに限定されない。例えば、1以上の引張りロープの一端が引張りロープ長変化手段5を介して下側の南極に取り付けられ、引張りロープの他端が北極とは異なるロードテープの部分に取り付けられていても良い。
【0031】
次に、本発明の第2の実施の形態の耐圧性気球を説明する。本実施の形態の構成の大部分は、基本的に第1の実施の形態の構成と同じである。尚、本実施の形態において、第1の実施の形態の図1〜図3を参照して説明した構成部材と実質的に同一の構成部材は、第1の実施の形態の対応する構成部材を指示していた参照符号と同じ参照符号を付して詳細な説明を省略する。
【0032】
本実施の形態の構成が第1の実施の形態の構成と異なる点は、体積変化手段の構成である。図8はガス袋1の赤道で切断した断面を示す横断面図である。本実施の形態の体積変化手段は、複数のゴア2の長手方向の中央部にそれぞれ位置しているロードテープ3の部分をガス袋1の内側に引っ張る。即ち、ガス袋1の赤道に位置しているロードテープ3の部分の少なくとも2つをガス袋1の内側に引っ張る。
【0033】
体積変化手段は、ロードテープ3のこれらの部分の少なくとも2つに取り付けられている複数の引張りロープ4と、引張りロープ4の長さを変える引張りロープ長変化手段15とを有している。引張りロープ長変化手段15はガス袋1の内部に配置されている。引張りロープ4は、引張りロープ4が取り付けられたロードテープ3の部分のそれぞれと、引張りロープ長変化手段15との間で延びている。
【0034】
本実施の形態では全てのロードテープ3に1本づつ引張りロープ4が取り付けられている。ロードテープ3には引張りロープ4の一端がリング(図示せず)を介して取り付けられている。実線で示した複数の引張りロープ4aの一端と、2点差線で示した複数の引張りロープ4b一端とはガス袋1の赤道上に交互に並んでいる。引張りロープ4a,4bの他端は全て引張りロープ長変化手段15に取り付けられている。
【0035】
図9は引張りロープ長変化手段15の概略図である。引張りロープ長変化手段15は、複数の引張りロープ4aが巻かれる円筒形のドラム15aと、複数の引張りロープ4bが巻かれる円筒形のドラム15bと、これらを回転させるモータ15cとを有している。ドラム15a,15bはそれぞれ上下に配置されている。モータ15cは下側のドラム15bの内部に固定されている。ドラム15a,15b及びモータ15cの回転軸は一致してそれぞれ上下方向に向けられている。ドラム15a,15bはモータ15cの回転軸15dを介して接続されている。
【0036】
モータ15cが回転すると、ドラム15a,15bはそれぞれ反対方向に回転する。これにより、ロープ4a,4bの巻出し/巻き取りが行われる。引張りロープ長変化手段15が巻出し/巻き取りを行って引張りロープ4の長さを変えると、ゴア2の長手方向の中央部は引張りロープ長変化手段に接近する。満膨張状態のとき、ガス袋1の両極は上下に向き、引張りロープ長変化手段15は引張りロープ4a,4bに吊される。モータ15cは下側のドラム15bに固定されているので、吊されたときの姿勢が安定する。
【0037】
ロープ4a,4bはそれぞれガス袋1の赤道半径の長さを有している。ガスがガス袋1に注入される前は巻き取られており、ガスが注入されて体積が膨張し赤道半径が長くなるのに応じて巻き戻される。ガス袋1が満膨張状態になった後、第1の実施の形態と同様にして、引張りロープ4の長さを調節することで浮力を制御し、耐圧性気球の飛翔高度を調節することができる。
【0038】
赤道半径を変えたときのガス袋1の変形形状は以下のようにして求められる。Euler’s elasticaを求めたときと同様にして、ロードテープは取り付けられていないものとする。赤道半径を変えたときの変形形状は両極間距離を変えたときと同様にして
dL/dθ=T’/dP…(4)
T’=T+dT (dT<0)…(5)
を用いて求めることができる。
【0039】
変形形状を求めるとき、ガス袋の両極の形状は平坦となり、かつ経線の長さが同じになるような張力の方向および赤道半径を選ぶと、図10に示すような縦断面が得られる。ガス袋1の形状はx=0を回転軸として図10の断面を回転させると得られる。赤道半径を変えると縦断面が変形していくことが分かる。図11に赤道半径とガス袋の体積の関係を示す。両座標軸ともEuler’s elasticaのときのものを1として正規化されている。両極間距離を変えたときと同様に、赤道半径が減少すると体積が単調に減少するので、比較的容易に浮力を制御することができる。ゴア2の膨出を考慮したときのガス袋1では、両極間距離を変えたときと同様に、ロードテープ3が図10の形状に沿って延び、ゴア2が隣接するロードテープ3の間で膨出する。
【0040】
本実施の形態には様々な修正と変形とが可能である。本実施の形態では赤道上のロードテープ3全てに1本づつ引張りロープ4が取り付けられているが、ロードテープ3全てに取り付けられなくとも良い。例えば、複数の引張りロープ4の一端が赤道上にほぼ均一に並ぶように、複数のロードテープ3の内の一部に引張りロープ4を1本づつ取り付けても良い。
【0041】
また、本実施の形態では引張りロープ4の一端がロードテープ3に他端が引張りロープ長変化手段15に取り付けられているが、本発明はこれに限定されない。例えば、引張りロープ4の一端がロードテープ3に、他端が赤道とは異なるロードテープの部分にそれぞれ取り付けられていても良い。この場合、引張りロープ長変化手段15は引張りロープ4が延びる経路上に配置される。また、引張りロープ4の一端がロードテープ3に、他端が引張りロープ長変化手段15を介して赤道とは異なるロードテープの部分に取り付けられていても良い。この際、引張りロープ4は1本でも良い。
【0042】
次に、本発明の第3の実施の形態の耐圧性気球を説明する。本実施の形態の構成の大部分は、基本的に第2の実施の形態の構成の大部分と同じである。尚、本実施の形態において、第2の実施の形態の図8及び図9を参照して説明した構成部材と実質的に同一の構成部材は、第2の実施の形態の対応する構成部材を指示していた参照符号と同じ参照符号を付して詳細な説明を省略する。
【0043】
本実施の形態の構成が第2の実施の形態の構成と異なる点は、体積変化手段の構成である。図12はガス袋1の赤道で切断した断面を示す横断面図である。体積変化手段は、すくなくとも1本の引張りロープ4と、図9を用いて説明した引張りロープ長変化手段15とを有している。引張りロープ4はガス袋1の赤道にそれぞれ位置しているロードテープ3の部分の少なくとも2つに張り巡らされるよう取り付けられている。
【0044】
本実施の形態では1本の引張りロープ4が赤道上にあるロードテープ3の部分の全てに取り付けられている。ロードテープ3のこれらの部分の全てにはリング6がそれぞれ取り付けられている。リング6はガス袋1の内側に配置されている。引張りロープ4は、赤道に沿って周回するようリング6の全てに通されている。
【0045】
引張りロープ長変化手段15は隣り合う2つのリング6の間に配置されている。引張りロープ4の両端はドラム15a,15b(図9参照)にそれぞれ取り付けられている。モータ15cが回転して引張りロープ4の長さが変わると、ゴア2の長手方向の中央部が互いに接近する。これを利用して第2の実施の形態と同様に、ガス袋1の赤道半径を変化させることができるので、浮力を制御し、耐圧性気球の飛翔高度を調節することができる。
【0046】
本実施の形態には様々な修正と変形とが可能である。本実施の形態では1本の引張りロープ4をリング6に張り巡らせているが、複数本の引張りロープ4を張り巡らせても良い。例えば、2本の引張りロープ4を用い、一方の引張りロープ4を複数のリング6の内の一部に張り巡らせ、他方の引張りロープ4を残りのリング6に張り巡らせても良い。
【0047】
また、本実施の形態では全てのロードテープ3に引張りロープ4が取り付けられているが、複数のロードテープ3の内の一部に取り付けられても良い。
【0048】
また、両極間距離を変える第1の実施の形態の体積変化手段と、赤道半径を変える第2又は第3の実施の形態の体積変化手段とを組み合わせても良い。
【0049】
尚、本発明は上述した実施の形態に限定されるものではなく、発明の趣旨を逸脱しない範囲内において種々の変形や応用が可能であることは勿論である。
【0050】
【発明の効果】
以上詳述したことから明らかなように、本発明に従った耐圧性気球は、バラストのような有限な搭載物やポンプを用いることなく、簡単な構成でガス袋の体積を制御し、飛翔高度を変えることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態における耐圧性気球の斜視図。
【図2】Euler’s elasticaを求めるために用いる、ガス袋の概略的な断面図。
【図3】Euler’s elasticaのガス袋の縦断面を示す曲線のグラフ。
【図4】本発明の第1の実施の形態における耐圧性気球のガス袋の縦断面図。
【図5】本発明の第1の実施の形態における耐圧性気球の引張りロープ長変化手段の概略図。
【図6】両極間距離が変化したときのガス袋の縦断面を示す曲線のグラフ。
【図7】両極間距離とガス袋の体積の関係を示すグラフ。
【図8】本発明の第2の実施の形態における耐圧性気球のガス袋の赤道で切断した断面を示す横断面図。
【図9】本発明の第2及び第3の実施の形態における耐圧性気球の引張りロープ長変化手段の概略図。
【図10】赤道半径が変化したときのガス袋の縦断面を示す曲線のグラフ。
【図11】赤道半径とガス袋の体積の関係を示すグラフ。
【図12】本発明の第3の実施の形態における耐圧性気球のガス袋の赤道で切断した断面を示す横断面図。
【符号の説明】
1 ガス袋
2 ゴア
3 ロードテープ
4,4a,4b 引張りロープ
5,15 引張りロープ長変化手段

Claims (1)

  1. 気密性の被膜材料から形成された紡錘形の複数のゴアをその両側縁部を互いに接合するとともに、これらゴアの両側縁部の接合部に沿って張力に耐えるロードテープを取り付けた耐圧性のガス袋と、
    満膨張状態の上記ガス袋を変形させてガス袋の体積を変化させる体積変化手段と、
    を備えており、
    上記ガス袋が膨張した後も上昇浮力分のガスを排出せずに内部のガスの圧力を維持し、体積変化手段によりガス袋の体積を変化させてガス袋の浮力を制御して飛翔高度を調節する耐圧性の気球であって、
    上記ゴアの寸法は、
    上記ガス袋が満膨張状態のときに隣接する上記ロードテープの間で外側に被膜材料の伸びによらずに膨出し、
    上記膨出したゴアの、上記ロードテープと交差する方向の曲率半径が、上記ガス袋の径よりも小さく、
    上記膨出したゴアに働く張力の方向が、上記ロードテープと交差する方向に向く、
    よう設定されており、
    上記体積変化手段は、上記ロードテープを上記ガス袋の内側に引っ張ることにより、満膨張状態の上記ガス袋の形状を変形させ、
    上記体積変化手段は、上記紡錘形のゴアの長手方向の両端に位置している上記ロードテープの部分の少なくとも一方を上記ガス袋の内側に引っ張り、
    上記体積変化手段は、上記紡錘形のゴアの長手方向の上側の端に位置している上記ロードテープの部分に取り付けられておりゴアの長手方向の両端間で延びている引張りロープと、上記紡錘形のゴアの長手方向の下側の端に位置している上記ロードテープの部分に取り付けられていて引張りロープの下側の端が取り付けられており引張りロープの長さを変える引張りロープ長変化手段と、を有している、
    ことを特徴とする耐圧性気球。
JP2001374650A 2001-12-07 2001-12-07 耐圧性気球 Expired - Lifetime JP3780336B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001374650A JP3780336B2 (ja) 2001-12-07 2001-12-07 耐圧性気球
US10/288,544 US6685136B2 (en) 2001-12-07 2002-11-06 Pressure-resistant balloon
CN02155723.3A CN1199817C (zh) 2001-12-07 2002-12-06 耐压气球
FR0215412A FR2833239B1 (fr) 2001-12-07 2002-12-06 Ballon resistant a la pression
RU2002132958A RU2238218C2 (ru) 2001-12-07 2002-12-06 Баростойкий воздушный шар

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001374650A JP3780336B2 (ja) 2001-12-07 2001-12-07 耐圧性気球

Publications (2)

Publication Number Publication Date
JP2003170897A JP2003170897A (ja) 2003-06-17
JP3780336B2 true JP3780336B2 (ja) 2006-05-31

Family

ID=19183184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001374650A Expired - Lifetime JP3780336B2 (ja) 2001-12-07 2001-12-07 耐圧性気球

Country Status (5)

Country Link
US (1) US6685136B2 (ja)
JP (1) JP3780336B2 (ja)
CN (1) CN1199817C (ja)
FR (1) FR2833239B1 (ja)
RU (1) RU2238218C2 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7438261B2 (en) 2004-09-09 2008-10-21 David R. Porter Stratospheric balloon utilizing electrostatic inflation of walls
US20060192054A1 (en) * 2004-10-13 2006-08-31 Lachenmeier Timothy T Inflatable and deployable systems with three dimensionally reinforced membranes
US20070063099A1 (en) * 2005-09-20 2007-03-22 Mobodyne Corporation Buoyancy-assisted air vehicle and system and method thereof
US7871361B2 (en) * 2005-09-23 2011-01-18 Slyne William J Rotating roller to shape moving webs
US8186625B2 (en) * 2006-08-09 2012-05-29 The Thin Red Line Aerospace Ltd. Flexible vessel
US7487936B2 (en) * 2006-10-23 2009-02-10 Ltas Holdings, Llc Buoyancy control system for an airship
US20090002257A1 (en) * 2007-05-22 2009-01-01 Thin Red Line Aerospace Ltd. Precision flexible support structure
JP5528687B2 (ja) 2008-07-15 2014-06-25 独立行政法人 宇宙航空研究開発機構 耐圧大型膜構造物
GB2480804A (en) * 2010-05-25 2011-12-07 New Create Ltd Controllable buoyant system
JP2012040897A (ja) * 2010-08-15 2012-03-01 Jin Warashina 硬式排気気球
CN102205875A (zh) * 2010-12-29 2011-10-05 中国特种飞行器研究所 一种伞张式飞艇气囊
CN103661913A (zh) * 2012-09-07 2014-03-26 中国科学院光电研究院 超压型气球及其制造方法
US9193480B2 (en) 2012-12-07 2015-11-24 Raven Industries, Inc. High altitude balloon system
US9845141B2 (en) 2012-12-07 2017-12-19 Raven Industries, Inc. Atmospheric balloon system
US9114866B1 (en) 2013-04-11 2015-08-25 Google Inc. Tubular superpressure balloon
US9475567B1 (en) 2013-06-12 2016-10-25 Google Inc. Double-layered balloon envelope
US9067666B1 (en) * 2013-07-15 2015-06-30 Google Inc. Superpressure balloon envelope cage structure and rigging technique
US20160083068A1 (en) * 2013-11-17 2016-03-24 Austyn D. Crites High Altitude Balloon
CN103879540B (zh) * 2014-03-06 2016-04-13 山西铱格斯曼航空科技有限公司 一种中心辐射拉网式高空超压浮力囊体装置
US20160221661A1 (en) 2015-02-02 2016-08-04 Derek Lee Bohannon Tendon sleeve for high-altitude balloon and system for making the same
US10144496B2 (en) * 2015-08-19 2018-12-04 Raven Industries, Inc. Straight line gore, method for making the same and assemblies including the same
US10367447B2 (en) * 2015-12-16 2019-07-30 Skycom Corporation Lighter-than-air aircraft and method to reduce leakage within a flexible bladder
WO2017136568A1 (en) * 2016-02-03 2017-08-10 Raven Industries, Inc. Atmospheric balloon with ballonet wall and methods for same
CN107048848A (zh) * 2017-04-11 2017-08-18 深圳市宝康床垫有限公司 一种基于容器式流体弹簧的软硬度自动调控垫
CN108216551A (zh) * 2018-01-10 2018-06-29 孟波 一种空气漂浮装置
CN109024237B (zh) * 2018-09-29 2023-12-19 武汉速安达建筑橡塑制品有限公司 折叠箱、浮桥及架设方法、桩基加载装置及荷载提供方法
CN110001916A (zh) * 2019-04-03 2019-07-12 庆安集团有限公司 一种气动外形可变的飞艇
CN110341926A (zh) * 2019-07-03 2019-10-18 中国电子科技集团公司第三十八研究所 一种平流层浮空器及高度调节方法
CN110466731B (zh) * 2019-08-24 2023-03-17 哈尔滨工业大学 一种基于空气囊和氦气囊交互的飞艇浮重平衡控制方法
CN110873664B (zh) * 2019-11-29 2020-09-15 浙江工业职业技术学院 一种自重式三轴仪注水装置
CN112896483B (zh) * 2021-03-26 2023-06-30 中南大学 基于机械压缩式变体积控高的浮空器及其定高方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4032086A (en) * 1975-10-20 1977-06-28 William Douglas Cooke Aerostats and aquastats
FR2464898A1 (fr) * 1979-09-06 1981-03-20 Centre Nat Etd Spatiales Procede de realisation d'un conteneur a structure symetrique lobee et conteneur realise selon ledit procede
FR2472971A1 (fr) * 1980-01-04 1981-07-10 Centre Nat Etd Spatiales Procede de realisation d'une enveloppe en particulier pour ballons spatiaux, enveloppe realisee, et utilisation de celle-ci dans le domaine aerospatial
JPH0443194A (ja) * 1990-06-06 1992-02-13 Ishikawajima Harima Heavy Ind Co Ltd 拡縮式浮上体
US5104059A (en) * 1990-06-11 1992-04-14 Winzen International, Inc. Long endurance high altitude balloon
JPH11278392A (ja) * 1998-03-31 1999-10-12 Ishikawajima Harima Heavy Ind Co Ltd 飛行船の浮力調整方法および装置
JP2967196B1 (ja) * 1998-07-10 1999-10-25 宇宙科学研究所長 耐圧性気球およびその製造方法

Also Published As

Publication number Publication date
FR2833239B1 (fr) 2005-05-06
FR2833239A1 (fr) 2003-06-13
CN1424232A (zh) 2003-06-18
RU2238218C2 (ru) 2004-10-20
CN1199817C (zh) 2005-05-04
US20030106960A1 (en) 2003-06-12
US6685136B2 (en) 2004-02-03
JP2003170897A (ja) 2003-06-17

Similar Documents

Publication Publication Date Title
JP3780336B2 (ja) 耐圧性気球
US6290172B1 (en) Super-pressure balloon and method of manufacturing the same
JP5528687B2 (ja) 耐圧大型膜構造物
JPS62501407A (ja) 操縦可能の空気静力学的気球
US3412963A (en) Method and apparatus for supporting an object
US3510086A (en) Outrigger for space missiles
JP2003175895A (ja) 膜構造体
US11332253B2 (en) High-altitude payload retrieval (HAPR) apparatus and methods of use
CN110723270A (zh) 一种大尺度刚柔一体结构的平流层飞艇
US7172487B2 (en) Rigid helium balloons
US2681774A (en) Fast rising balloon
EP1447119A1 (en) Framed balloon
US11577813B2 (en) Outer membrane for aerial vehicles
CN111547225B (zh) 一种高空气球飞行中的旋转阻尼系统
US3270987A (en) Balloon structure with distributed excess material
US3113748A (en) Balloon
US4257568A (en) Preinflatable expansion device for low altitude escape or sporting parachute
US4385767A (en) Movable targets
Yajima et al. Structure variations of pumpkin balloon
US11084560B2 (en) Multi-layer bladder construct
Delurgio Evolution of the Ringsail parachute
JPH0345498A (ja) パラグライダー
GB2054109A (en) Movable targets
JPH0624389A (ja) 浮遊物体

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040802

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

R150 Certificate of patent or registration of utility model

Ref document number: 3780336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term