JP3779705B2 - 光ヘッド、ldモジュール、光記録再生装置及び光記録再生装置に用いる回折素子 - Google Patents

光ヘッド、ldモジュール、光記録再生装置及び光記録再生装置に用いる回折素子 Download PDF

Info

Publication number
JP3779705B2
JP3779705B2 JP2003292952A JP2003292952A JP3779705B2 JP 3779705 B2 JP3779705 B2 JP 3779705B2 JP 2003292952 A JP2003292952 A JP 2003292952A JP 2003292952 A JP2003292952 A JP 2003292952A JP 3779705 B2 JP3779705 B2 JP 3779705B2
Authority
JP
Japan
Prior art keywords
sub
detector
divided
optical
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003292952A
Other languages
English (en)
Other versions
JP2005063568A (ja
Inventor
義一 渋谷
禎一郎 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2003292952A priority Critical patent/JP3779705B2/ja
Priority to KR1020040063056A priority patent/KR100659791B1/ko
Priority to US10/916,475 priority patent/US20050078575A1/en
Priority to CNB2004100566646A priority patent/CN1286100C/zh
Priority to TW093124367A priority patent/TWI277081B/zh
Publication of JP2005063568A publication Critical patent/JP2005063568A/ja
Application granted granted Critical
Publication of JP3779705B2 publication Critical patent/JP3779705B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/094Methods and circuits for servo offset compensation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/13Optical detectors therefor
    • G11B7/131Arrangement of detectors in a multiple array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1381Non-lens elements for altering the properties of the beam, e.g. knife edges, slits, filters or stops
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0901Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following only
    • G11B7/0903Multi-beam tracking systems
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0943Methods and circuits for performing mathematical operations on individual detector segment outputs

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

本発明は、光ヘッド、LDモジュール、光記録再生装置及びそれらに用いる回折素子に関する。
光ディスクの種類が多様化している現在、複数種の仕様の光ディスクに対して安定したトラッキングを達成する光記録再生装置及び光ヘッドが望まれる。つまり、光記録再生装置において、光ディスク上の所定のトラックに情報データを記録するためには、光ディスクの目標トラック上へ光ヘッドを移動させて、目標トラック上にビームを照射させなければならない。この場合に用いられるトラッキング誤差の検出方法は、(1)位相差検出法及びヘテロダイン法のように、トラッキング誤差信号(以下、TE信号と称する)の生成にRF信号を用いる方法、(2)3ビーム法及び差動プッシュプル(DPP:Differential Push Pull)法のように、光ディスク上でTE信号に副ビーム(±1次光)を分割して用いる方法、(3)プッシュプル法のように、主ビーム(0次光)のみでかつRF信号を用いない方法に大別される。
これらのうち、(1)の方法は、CD−R、DVD−Rのように、未登録部分のトラッキングサーボが必要となる媒体には適用できない。(2)の方法は、分割された副ビームを光ディスクのトラック方向に対してμm単位の精度で傾ける必要がある上、その間隔の最適値は光ディスクのトラックピッチに依存するため、トラックピッチが異なる複数の光ディスクに対して同時に対応できないという欠点がある。これに対して、(3)のプッシュプル方式は、第1に、RF信号の有無に依存せず、第2に、精度の高い角度調整及びディスク回転中心との高い位置精度を必要とせず、第3に、ディスクのトラックピッチの差異に対して制約がないという利点がある。そのため、光ディスクの実用化された当初から広く用いられてきた。
(3)のプッシュプル法は、図3(c)に示すように、主ビームの光ディスクからの反射光を受ける受光素子からなるディテクタ51を、光ディスクのトラック方向に平行な分割線52とラジアル方向に平行な分割線53により分割された4つの素子に分割し、図3(d)に示す演算回路54により、各受光素子の出力からTE=(A+D)−(B+C)なるトラッキング誤差信号を得る方法である。主ビームのスポット50が光ディスクのトラックの中央にあるときにはTE=0であるが、スポットがどちらかに偏るとTE>0又はTE<0となるので、このTEをトラッキング制御に利用するものである。尚、ラジアル方向は光ディスクの半径方向に相当する方向であり、トラック方向はそれに直交する方向であり、トラックの長さ方向である。
しかし、トラッキング制御のために対物レンズが駆動され、他の光学系に対して光ディスクがラジアル方向に相対的に移動する場合や(以下、レンズシフトと称する)、光ディスクが対物レンズに対して傾く場合がある。そのような場合、プッシュプル方式においては、受光素子からなるディテクタ51に照射されるスポット50の位置や強度が変化するため、生成されたTE信号に直流変動が生じる(この直流変動はDCオフセットと称される)。
このDCオフセット成分を含んだままサーボをかけると、特に偏心の大きい光ディスクを用いる場合には、トラッキング性能が著しく劣化し、トラック外れを起こしやすくなる。このため、プッシュプル方式は通常このDCオフセットを除くための手段と併用して用いられることが多い。
このDCオフセットを除く方法として、光ディスクの偏心に伴うDCオフセットの発生量を予め見積もり、学習させてからトラッキングサーボの際にそのDCオフセットを補正する方式が知られている。また、別の従来方式として、光ヘッドのスレッド方向の追従性能を向上させてレンズシフトを最小限に抑える方式が知られている。更に、別の従来方式として、光ディスク上にミラー領域を設けて、このミラー部分でDCオフセットを補正しながらトラッキングサーボをかける方式が知られている。
しかしながら、これらはいずれも複雑な信号処理や、応答特性の良い機構部分や、特殊なフォーマットの光ディスク等を必要とするため、現実にはより構成等が簡易となり、DCオフセットにも強い前記(1)及び(2)の方法の方が、実用例が多いといった状況にある。
また、DCオフセットを除去する方式として、複数ビームを用いた方法(差動プッシュプル法)が用いられている(特許文献1)。この方法は、トラック方向に対して平行な方向に分割線を持つディテクタを用いている。そして、主ビームと副ビームのプッシュプル信号を検出し、各信号を差動検出することによりDCオフセット成分を除去する方法である。
しかしながら、この方法は、光ディスク上の主ビームに対して、副ビームの位置(トラック方向線に対する角度)が厳しく規定されている。DPP方式においては、副ビームは主ビームのトラック位置に対してトラックピッチの1/2だけずれた位置に配置する必要がある。従って、例えばトラックピッチの整数倍ずれた位置に副ビームを配置すると、トラッキング信号が全く検出されないという欠点がある。このため、一旦これらのビームの位置を決めてしまうと、例えば光ディスクのトラックピッチが変化した場合などは、十分な品質のトラッキング信号が検出されないという欠点があった。
これに対して、DCオフセットの発生が小さく、検出感度のトラック間隔に対する依存性が小さいトラッキング誤差検出方法が知られている(特許文献2)。この方法に用いられる回折格子の溝部は、トラック方向の分割線によって分割された2つの領域において、周期構造の位相差が180度異なっている。これにより、溝部によって回折された副ビームにおいて、トラック方向の分割線で分割された2つの半円領域で180度の位相差が発生する。この副ビームのプッシュプル信号は位相差を加えない場合の主ビームのプッシュプル信号に比べて位相差が180度異なる。従って、副ビームを主ビームと同じトラック上に配置しても、主ビームのプッシュプル信号に対して、副ビームのプッシュプル信号の位相差は180度ずれた信号となる。従って、副ビームを主ビームに対して1/2ピッチずらして配置しなくても、DPP信号を検出することができる。
この方法により、ディスクのトラックピッチが変化しても問題なく十分なトラッキング信号が得られるようになった。しかしながら、副ビームの位置を高い精度で調節する必要があったため、特許文献1と同じ問題を有していた。
更に、回折素子の溝部をビームの有効径の中央部のみに形成して、DCオフセット成分を削除する方法が知られている(特許文献3)。回折素子の溝部は、基板の中央部にのみ形成されているため、溝部による+1次及び−1次回折光のビーム径は有効径に比べて小さくなる。すなわち、回折された光に対する対物レンズの開口数が実質小さくなったことになる。そのことにより、副ビームのビーム径のみを大きくすることができ、光スポットがトラックを横切るときに発生する信号(以下、トラッククロス信号と称する。)を低減することができる。そして、DCオフセット成分のみを差動演算により削除することができる。この方法を用いれば、主ビームに対して副ビームがどの位置に調整されていても良好なトラッキング誤差信号が得られるので、高精度のビーム位置調整が不要となる。しかしながら、主ビームの中心付近の光のみを回折させるので、光強度分布が本来の設計に対して不自然な分布となってしまう。また、中心部の光のみが回折素子を通過するので、この部分の光の(周辺部分の光に対する)位相差も発生してしまう。従って、主ビームのスポット結像に悪影響を及ぼすおそれがあるため、仮に部分的に実用可能な記録再生特性を達成できたとしても、設計のマージンが著しく低下するので、製造コストの上昇につながるという問題があった。
更に、他の部分と位相差が発生する部分を設けた回折素子を使用してDCオフセット成分を除去する方法が知られている(特許文献4)。この位相反転領域を適正に設計することで、主ビームの光強度分布に影響を与えることなく、副ビームの空間周波数特性のみを変化させて、そのトラッククロス成分のみを除去し、良好なトラッキング誤差信号を得ることができる。この方法によれば、副ビームの光ディスク上の調整位置も制約を受けずにトラッキング制御が可能となる。
一方、従来の光ヘッドにおけるフォーカス誤差信号を得る方式として、ナイフエッジ方式、フーコー方式、ビームサイズ方式、非点収差方式等がある。光源と受光素子が個別に搭載された光ヘッドでは、ナイフエッジ方式や非点収差方式が普及し、両者が同一パッケージ内に搭載されたLDモジュールでは、ホログラムフーコー方式やビームサイズ方式が一般的に普及している。
従来技術におけるフォーカス誤差信号には、光ディスクの偏芯に伴って、トラッククロス信号が重畳し、これが外乱となってフォーカスサーボに支障を与えるという問題があった。このトラッククロス信号の重畳は、特に非点収差方式において顕著であるが、他の方式においても完全に回避できない性質のものである。
従来、このトラッククロス信号の重畳を低減するために、副ビームの一部の位相をシフトさせる特殊な回折素子を用いていた(特許文献5)。また、ディテクタの分割数を増やした受光素子と特殊な演算処理を用いて、フォーカス誤差信号における外乱を除去していた(特許文献6)。
特告平4−34212号公報(第1図) 特開平9−81942号公報(段落[0018]−[0030]、第1図) 特開平10−162383号公報(段落[0033]−[0105]、第1図) 特開2001−250250号公報(段落[0056]−[0092]、第1図) 特開平11−296875号公報(段落[0038]−[0113]、第1図) 特開2000−82226号公報(段落[0016]−[0039]、第1図)
しかしながら、上記の特許文献に開示されている方法はすべて、結像に寄与する光ビーム光束の断面を複数の領域に分割しなければならないという問題があった。すなわち、光束の一部を回折させて副ビームの結像に用いたり、副ビームの一部に位相差を与える等の手段はすべて、光束の断面を複数の領域に分割することにより行われていた。このような方法は、結像に寄与するビームの中心軸すなわち光軸の位置が、光束の断面に対して変化しない場合にのみ有効に作動することができる。
しかし、実際のシステムにおいては、この結像に寄与する光の光軸位置は、対物レンズの光ディスクに対するラジアル方向への変位(レンズシフト)や、入射光の光軸に対するディスクの傾き(チルト)によって、容易に変化してしまう性質のものである。
この光軸のずれに対して分割された領域が変化しないようにするために、ホログラム素子を含む回折素子を対物レンズと同様にアクチュエータに搭載してしまう方法が知られている。しかしながら、可動部分への搭載部品が増加するので重くなる点や、再生信号の干渉を防ぐために往路と復路において回折光の比率を変化させるといった特殊な設計を行わなければならない等、新たな問題を誘発してしまう。
本発明は、上記の問題を解決するものであり、光束の断面を複数の領域に分割する必要がなく、簡易な構成により容易にトラッキング誤差信号におけるDCオフセット成分や、フォーカス誤差信号におけるトラッククロス成分を除くことができる光記録再生装置に備える光ヘッド、光ヘッド用のLDモジュール、光記録再生装置及びそれらに用いる回折素子を提供するものである。
請求項1記載の発明は、光源と、前記光源から出射した光を主ビームと副ビームに分割する回折素子と、前記主ビーム及び前記副ビームを光ディスク上に集光する集光手段と、前記主ビームの前記光ディスクからの反射光を検出する主ビーム検出部と、前記副ビームの前記光ディスクからの反射光を検出する副ビーム検出部とからなる光検出手段と、を有し、光記録再生装置に用いられる光ヘッドであって、前記回折素子は、周期的に波型に蛇行した格子パターンを有し、その素子による回折光の結像スポットは、その強度のピークが略左右対称に分割されていることを特徴とするものである。
請求項2に記載の発明は、請求項1に記載の光ヘッドであって、前記周期的に波型に蛇行した格子パターンは、その格子パターンの振幅と周期がほぼ一定であることを特徴とするものである。
請求項3に記載の発明は、請求項1に記載の光ヘッドであって、前記周期的に波型に蛇行した格子パターンは、sin曲線の形状であることを特徴とするものである。
請求項4に記載の発明は、請求項1乃至請求項3のいずれかに記載の光ヘッドは、前記光源と、前記回折素子と、前記光検出手段とがモジュール化されたことを特徴とするLDモジュールであることを特徴とするものである
請求項5に記載の発明は、請求項1乃至請求項3のいずれかに記載の光ヘッド又は請求項4に記載のLDモジュールを備え、前記主ビーム検出部及び前記副ビーム検出部は、それぞれ、前記光ディスクのトラック方向と平行する方向に2分割された2分割検出器であり、前記主ビーム及び前記副ビームの2分割検出器からの出力信号に基づいてトラッキング誤差信号を算出する演算手段を有することを特徴とする光記録再生装置である。
請求項6に記載の発明は、請求項5に記載の光記録再生装置であって、前記演算手段は、前記主ビームの2分割検出器からプッシュプルにより得られた主ビームの信号から、前記副ビームの2分割検出器からプッシュプルにより得られた副ビームの信号を減算することにより、DCオフセット成分が除去されたトラッキング誤差信号を算出することと特徴とするである。
請求項7に記載の発明は、請求項1乃至請求項3のいずれかに記載の光ヘッドを備え、
前記副ビーム検出部は4分割以上に分割されており、前記4分割以上に分割された前記副ビーム検出部からの信号に基づいてフォーカス誤差信号を算出する演算手段を有することを特徴とする光記録再生装置である。
請求項8に記載の発明は、請求項4に記載のLDモジュールを備え、前記副ビーム検出部は2分割以上に分割されており、前記2分割以上に分割された前記副ビーム検出部からの信号に基づいてフォーカス誤差信号を算出する演算手段を有することを特徴とする光記録再生装置である。
請求項9に記載の発明は、光記録再生装置に用いられ、周期的に波型に蛇行した格子パターンを有し、光を複数本の光に分割する回折素子である。
請求項10に記載の発明は、請求項9に記載の回折素子であって、前記周期的に波型に蛇行した格子パターンは、その格子パターンの振幅と周期がほぼ一定であることを特徴とするものである。
請求項11に記載の発明は、請求項9に記載の回折素子であって、前記周期的に波型に蛇行した格子パターンは、sin曲線の形状であることを特徴とするものである。
請求項1に記載の発明によれば、波型に蛇行した格子パターンを有する回折素子を利用することにより、簡単な構成で容易にDCオフセット成分を除去することが可能となる。
また、請求項2に記載の発明によれば、波の形状の振幅と周期がほぼ一定の格子パターンを有するか回折素子を利用することにより、容易にDCオフセット成分を除去することができるとともに、格子パターンが周期的に形成されているため、レンズシフトの有無にかかわらずビームを分割することが可能となる。
更に、請求項3に記載の発明によれば、格子パターンがsin曲線の形状である回折素子を利用することにより、容易にDCオフセット成分を除去することができるとともに、回折素子の設計及び作製が容易となる効果を奏する。
また、請求項5及び請求項6に記載の発明によれば、主ビーム及び副ビームの光ディスクによる反射光を受光するディテクタがトラック方向に分割され、主ビームと副ビームの信号を演算処理することによりトラッキング誤差信号を算出するため、演算方式としては従来の差動プッシュプル方式と同様の構成の演算回路を使用することができ、容易に実施することが可能となる。
また、請求項7及び請求項8に記載の発明によれば、スポットサイズが拡大された副ビームを用いてフォーカス誤差信号を得るようにしたので、トラッククロス成分の少ないフォーカス誤差信号を得ることができる。このため、トラッククロス成分による外乱のない良好なフォーカス制御を行うことが可能となる。
更に、請求項9乃至請求項11に記載の発明によれば、スポット径が大きい副ビームを得ることができるため、光ヘッドや光記録再生装置に使用することにより、容易にDCオフセット成分を除去することができる。
以下、本発明の実施の形態について、図1乃至図15を参照しながら詳しく説明する。
(構成)
本発明の実施形態に係る光ヘッドの構成について図1を参照しつつ説明する。図1は、本発明の実施形態に係る光ヘッドの構成を示す概略図である。同図に示すように、本実施形態に係る光ヘッドは、レーザユニットからなる光源1と、光源1から出射したレーザビームを複数のビームに分割する回折素子2と、分割されたビームをビームスプリッタ4へ導くコリメータレンズ3と、コリメータレンズ3からのビームを透過し、光ディスク5からの反射光をディテクタ6側に反射させるビームスプリッタ4と、ビームスプリッタ4からのビームを光ディスク5の表面で焦点が合うように集光させる対物レンズ7と、ビームスプリッタ4により反射された反射光をディテクタ6に収束させるアナモフィックレンズ8と、フォトダイオード等からなり反射光を受光するディテクタ6と、を備えている。
尚、コリメータレンズ3、ビームスプリッタ4及び対物レンズ7が本発明の「集光手段」に相当し、ディテクタ6が本発明の「光検出手段」に相当する。
次に、本実施形態の光ヘッドに用いられる回折素子2の格子パターンについて、図2を参照しつつ説明する。図2は、格子パターンの一部を示す回折素子の上面図である。同図に示すように、回折素子2は溝2aを有し、この溝2aによりホログラム素子として機能する。尚、同図には回折素子2の一部のみが示されており、実際は、複数の溝2aが周期的に形成されている。尚、溝2aは本発明における「格子パターン」に相当する。本実施形態においては、同図に示すように、溝2aはsin曲線の形状をなしている。ここで、このsin曲線の振幅の幅をAとし、1周期の長さをTとする。また、このような周期的なsin曲線の形状を有することにより、溝2aの幅は一定となる。
尚、本発明の格子パターンの形状はsin曲線に限られず、波型に蛇行した形状であればよく、副ビームのスポット径を大きくする目的が達成されれば特にその形状は制限されない。但し、格子パターンの波の振幅と周期は回折素子2の全域において、ほぼ一定であることが望ましい。レンズシフトが発生したときに、回折素子2のどの部分にビームが入射しても同じようにビームが分割されるようにするためである。また、格子パターンの形状をsin曲線にすることにより、格子形状のパラメータを管理しやすく、複雑な設計によらなくても本発明の効果を奏する回折素子を製造することが可能となる。
次に、ディテクタ6の構成について図3を参照しつつ説明する。図3(a)は、ディテクタ6の構成を示す平面図である。ディテクタ6aは、主ビーム(0次光)の反射光を受光するための素子であり、ディテクタ6a上における像のトラック方向の分割線25とラジアル方向の分割線26により分割された4つの受光素子からなる。ディテクタ6b、6cは、副ビーム(±1次光)の反射光を受光するための素子であり、ラジアル方向の分割線27、28により分割された2つの受光素子からなる。尚、ディテクタ6aが本発明の「主ビーム検出部」に相当し、ディテクタ6b、6cが本発明の「副ビーム検出部」に相当する。
図3(b)は、ディテクタ6a〜6cの出力信号からTE信号を得る演算回路を示す図である。この演算回路は、光ヘッドに搭載されるか又は光ヘッド以外の領域に設置される。同図において、演算回路30は、主ビームの反射光を受光するディテクタ6aの出力から(A+D)−(B+C)の演算を行うものである。演算回路31及び32は、それぞれ副ビームの反射光を受光するディテクタ6b及び6cの出力から、それそれ(E−F)及び(G−H)の演算を行うものである。
演算回路33は、演算回路31及び32の出力の加算(E−F)+(G−H)とその加算値に係数αを乗じて、DCオフセットの除去に適切な値を算出する回路である。係数αは、DCオフセット成分が生じた場合に、演算回路30の出力に含まれるDCオフセット成分の信号レベルと演算回路33の出力である実質的にDCオフセットの信号レベルとが等しくなるように設定される。
演算回路34は、演算回路30からの出力から演算回路33の出力を減じてTE信号を算出する回路である。従って、演算回路34の出力であるTE信号は、TE=(A+D)−(B+C)−α[(E−F)+(G−H)]となる。尚、これらの演算回路が本発明の「演算手段」に相当する。
(作用)
以上のような構成を有する光ヘッドの作用について、図4乃至図15を参照しつつ説明する。
光源1から出射されたビームは回折素子2により複数のビームに分割される。そして、コリメータレンズ3、ビームスプリッタ4を透過し、対物レンズ7により光ディスク5上に結像される。この光ディスク5の上に結像されるスポットのパターンについて、図4を参照しつつ説明する。
図4(a)は、本発明の実施形態における回折素子2により分割されたビームの光ディスク5上におけるスポットを示す図である。同図において、光ディスク5には、トラック11とランド12がある。尚、本実施形態の光ディスク5には、トラック11とランド12のピッチが約1.5μmのDVD−RAMを使用した。スポット20は0次光による主ビームのスポットを示しており、スポット21は±1次光による副ビームのスポットを示している。一方、図4(b)は、従来技術に係る回折素子により分割されたビームのスポットを示す図である。同図において、スポット13は主ビームのスポットを示しており、スポット14は副ビームのスポットを示している
本実施形態における主ビームのスポット20の径の大きさは、従来技術のスポット13の径とほぼ同じ大きさとなる。しかし、本実施形態における副ビームの径は、±1次光同士を結ぶ線に対して略直交方向に長く伸びた光強度分布を示し、長軸方向のスポットの径D3は約4μmになる。本実施形態においては、D3>D1となる。
一方、従来技術における副ビームのスポット14の径はD1となり、主ビームのスポット13の径と等しくなる(D1=D2)。
本実施形態における副ビームのスポットは光ディスク5上のラジアル方向に、数トラック分の広い範囲にわたって照射される。従って、副ビームによる反射光中には、ビームスポットがトラックを横切ることによって生じるトラッククロス成分(トラック11とランド12との反射光の強度差による成分)はほとんど含まれなくなる。換言すれば、副ビームのスポット径の増大のため、副ビームにおける光学的伝達関数(OTF:Optical Transfer Function)の遮断周波数が低域側にシフトするので、空間周波数(トラックピッチの逆数)の高いトラッククロス成分が除去され、レンズシフト等によって生じるDCオフセット成分のみを含む信号が得られる。尚、図4(a)では、副ビームは主ビームと同じトラック上に照射されていないが、同じトラック上に照射されていてもよく、更に、光ディスク5上のどこに照射されていてもよい。
この副ビームの反射光を、トラック方向の分割線25によって分割された受光素子からなるディテクタ6b、6cによって受光し、各受光信号からの出力信号の差を算出すると、その差にはトラッククロス成分による信号はほとんど含まれないことになる。しかし、対物レンズ7が光源1やディテクタ6等の他の光学系に対して、ラジアル方向に相対的に移動すると、分割された受光素子にはその移動分の強度さが生じ、これがDCオフセットの量に相当する。
一方、主ビームのスポット径は、トラック(ピット)幅から一義的に決定されているため、主ビームによる反射光には、トラッククロス成分が含まれるとともにDCオフセット成分も含まれる。
従って、主ビームの反射光を受光したディテクタ6aから得られるDCオフセット成分を含むトラッククロス信号から、副ビームの反射光を受光するディテクタ6b、6cから得られるDCオフセット成分を除算すれば、DCオフセット成分が除去されたTE信号が得られる。
尚、この副ビームの強度分布は単調に変化するプロファイルではない。このプロファイルについて、図5を参照しつつ説明する。図5(a)は、副ビームのスポット21を拡大した上面図である。同図に示すように、副ビームは光ディスク5のラジアル方向に複数のビーム21a、21b、21c、21dに分割されている。図5(b)は、副ビームの強度分布を示すグラフであり、横軸は、副ビームのスポット21の中心から光ディスク5のラジアル方向への距離を示しており、縦軸は、副ビームの強度を示している。同図に示すように、副ビームは複数のビームが集合した形のプロファイルとなる。すなわち、sin曲線の形状を有する回折素子2による副ビームは、更に複数の回折光に分離する。同図において、ピーク22aはスポット21の中心に位置するビーム21aのピークであり、ピーク22b、22c、22dは、さらに分離したビーム21b、ビーム21c、ビーム21dのピークである。尚、副ビームのスポット21は、ピーク22aの回折光であるビーム22aを中心として対称となっているが、同図においては、一方の側のピークのみを示している。
この分離の間隔と溝2aの波長Tとの関係を調べると、図6に示すように、sin曲線の1周期の長さTに反比例の関係になる(sinθ=mλ/T:θ=回折角、m=回折の次数、λ=光源の波長、T=sin曲線の1周期の長さ:の条件を満たす)ことが判明した。また、図7に、格子パターンのsin曲線の振幅Aに対する、副ビームの中心ピーク22a(副ビームの0次光)と隣接ピーク22b(副ビームの±1次光)の比を示す。同図から、両者は略2次曲線的な関係を示すことが明らかになった。
これらの結果から、sin曲線の振幅A及び副ビームにおける0次元と副ビームにおける高次回折光の強度比を適切な値に設計することにより、所望のビーム強度分布(プロファイル)を得ることが可能となる。
図8に、レンズシフトがない場合における、ディテクタ6から得られた主ビームのプッシュプル信号の波形41aと、副ビームのプッシュプル信号の波形41bを示す。副ビームは、主ビームと比較してディスク径方向のビームスポットサイズが大きいので、副プッシュプル信号は、主プッシュプル信号と比較してトラッククロス成分の波形の振幅が小さい。尚、光ディスクにはDVD−RAMを用いた。
図9に、対物レンズ7を中立位置から光ディスクの半径方向に3mmシフトさせた場合における、主ビームのプッシュプル信号の波形42aと、副ビームのプッシュプル信号42bを示す。この場合、主プッシュプル信号と副プッシュプル信号は、ほぼ同量のDCオフセットが発生している。また、レンズシフトがない場合と同様に、副プッシュプル信号は、主プッシュプル信号と比較してトラッククロス成分の波形の振幅が小さい。
尚、図10及び図11に従来技術のプッシュプル信号の波形を示す。図10に、レンズシフトがない場合の主ビームのプッシュプル信号の波形43aと、副ビームのプッシュプル信号の波形43bを示す。この場合、両者のトラッククロス成分の波形の位相差はほぼ180度となっているため、これらの信号を差動増幅させると、トラッキング誤差信号を得ることができる。図11に、レンズシフトがある場合の主ビームのプッシュプル信号の波形44aと、副ビームのプッシュプル信号の波形44bを示す。両者とも、負方向にオフセットが発生している状況が確認できる。本発明の実施形態と比較すると、副プッシュプル信号のトラッククロス成分の波形の振幅が大きく、主プッシュプル信号のトラッククロス成分の振幅とほぼ同じ大きさになる。
そして、ディテクタ6の出力信号に基づいて演算回路によりトラッキング誤差信号を算出する。ここで、主ビームに関する演算回路30の出力(A+D)−(B+C)は、図8、図9に示すように、トラッククロス信号にDCオフセット成分を含むものである。
一方、副ビームに関する演算回路31、32の出力は、それぞれ分割線27、28により分割された受光素子からの出力信号の差をとるものであり、その差にはトラッククロス成分による信号はほとんど含まれていない。このことは、図9の副プッシュプル信号の波形から明らかである。しかし、レンズシフトにより、DCオフセットが発生しているため、その差は、実質的にDCオフセット成分を示すことになる。
この演算回路の演算により、主プッシュプル信号から副プッシュプル信号を除算すると、主プッシュプル信号のトラッククロス成分(AC成分)はそのまま保持され、オフセット信号成分(DC成分)は除去される。その結果、光ディスクのトラックに対する副ビームの調整位置いかんにかかわらず、常にDCオフセット成分が除去されたトラッキング誤差信号を得ることが可能となる。
以上の方法により、得られたトラッキング誤差信号に基づいて、トラッキング制御を行い、光ヘッドを移動させて、目標のトラックの上にビームを照射し、光ディスク上の所定のトラックに情報データを記録したり、所定のトラックから情報データを再生する。
尚、図12に、主プッシュプル信号と副プッシュプル信号の各波形におけるDCオフセット成分の値を、対物レンズ5のシフト量に対してプロットしたグラフを示す。同図において、曲線45aが主プッシュプル信号のDCオフセット成分を表しており、曲線45bが副プッシュプル信号のDCオフセット成分を表している。両者のオフセット量はレンズシフトに対してほぼ同一の傾向をもって変化しており、本実施形態の演算処理によりDCオフセット成分が良好に除去されることがわかる。
副ビームはトラックやピットのコントラストを検出する必要がないため、副ビームは情報が刻まれた光ディスク上であればどこに照射してもよいことになる。従って、副ビームの位置を高い精度(μm単位)で調整する必要がなく、更に、光ディスクのトラックピッチの差異を考慮する必要がなくなるという効果を奏する。従って、光ディスク上の位置調整も制約を受けずにトラッキング制御を行うことが可能となる。
以上、トラッキング誤差信号の検出について説明した。次に、フォーカス誤差信号の検出について、図13を参照しつつ説明する。図13は、フォーカス誤差信号を得るためのディテクタの構成を示す平面図であるが、図13(a)には本発明に係るディテクタの構成が示されており、図13(b)には従来技術に係るディテクタの構成が示されている。
フォーカス信号の検出においても、ビームのスポット径の大きい副ビームを利用して、一般にS信号と呼ばれるフォーカスサーボに必要な信号成分を残したまま、トラッククロス信号のみを除去することができる。
まず、従来のディテクタの構成及び非点収差法によりフォーカス誤差信号を検出する演算方法を説明する。図13(b)に示すように、主ビームの反射光を受光するディテクタ6aは4分割されており、副ビームの反射光を受光するディテクタ6b、6cは2分割されている。従来の非点収差法においては、フォーカス誤差信号FEは、ディテクタ6aの各領域の出力A〜Dに基づいて、FE=(A+C)−(B+D)により算出されている。この方法では、トラッククロス成分が重畳し、これが外乱となりフォーカスサーボに支障を与えてしまう。
次に、本実施形態のディテクタの構造及び非点収差法よりフォーカス誤差信号を検出する演算方法を説明する。本実施形態においては、図13(a)に示すように、副ビームを受光するディテクタ6b、6cのうち一方のディテクタ、例えばディテクタ6bは4分割されている。そして、各分割領域の出力A〜Dに基づいて、FE=(A+C)−(B+D)により算出される。
このように、スポットサイズを拡大した副ビームの反射光からフォーカス誤差信号を算出すれば、トラッククロス成分の少ないフォーカス誤差信号を得ることができる。また、ディテクタ6a、6cを4分割し、演算処理により適宜必要な信号を生成してフォーカス誤差信号を算出してもよい。
また、本発明に係る別の実施形態として、光源1とディテクタ6との双方を備えたLDモジュールを有する光ヘッドを用いてもよい。図14を参照しつつ、LDモジュールを備えた光ヘッドについて説明する。同図に示すように、LDモジュール61は、光源1と、回折素子2と、ディテクタ6と、ホログラム素子60を備えている。ホログラム素子60は、光ディスク5からの反射光をディテクタ6に向かうように曲げる素子である。
図15に、ホログラム素子60と、LDモジュール61に備えられているディテクタ6の構成を示す。図15(a)、(b)は本発明の実施形態におけるホログラム素子60とディテクタ6の構成を示す概略図であり、図15(c)は従来技術におけるホログラム素子60とディテクタ6の構成を示す概略図である。
まず、従来のディテクタの構成及び演算方法について、図15(c)を参照しつつ説明する。同図に示すように、ホログラム素子60は、3つの領域α、β、γに分割されている。また、ディテクタ6は、ディテクタ6d〜6jからなり、ディテクタ6dは2つの領域に分割されている。ディテクタ6d、6e、6hはそれぞれ主ビームの反射光を受光する受光素子であり、ディテクタ6dはホログラム素子60の領域αからの主ビーム(0次光)を受光し、ディテクタ6eは領域βからのビームを受光し、ディテクタ6hは領域γからのビームを受光する。また、ディテクタ6f、6g、6i、6jはそれぞれ副ビームを受光する受光素子であり、ディテクタ6f、6gは領域βからの副ビーム(1次又は−1次光)を受光し、ディテクタ6i、6jは領域γからの副ビーム(1次又は−1次光)を受光する。従来は、主ビームのスポット径と等サイズのスポット径を有する副ビームを用い、ディテクタ6dにおいて分割線で分割された2つの領域の出力A、Bの差(FE=A−B)を演算することにより、フォーカス誤差信号FEを検出していた。
次に、本実施形態のディテクタの構成及び演算方法について、図15(a)を参照しつつ説明する。同図に示すように、ディテクタ6はディテクタ6d〜6hの他、2分割に分割されたディテクタ6kを含んでいる。このディテクタ6kは、領域αからの副ビームを受光する。そして、分割された2つの領域の出力A、Bの差(FE=A−B)を演算することにより、フォーカス誤差信号を検出する。本実施形態においては、副ビームのスポット径は拡大されているため、この副ビームの反射光からフォーカス誤差信号を演算すれば、従来技術と比較して、トラッククロス成分の少ないフォーカス誤差信号を得ることができる。
更に、本実施形態に係る別のディテクタの構成及び演算方法について、図15(b)を参照しつつ説明する。同図に示すように、ディテクタ6にはディテクタ6d〜6hに加えて、2分割に分割されたディテクタ6k、6mが含まれている。ディテクタ6k、6mは、領域αからの副ビーム(±1次光)を受光する。この場合、フォーカス誤差信号FEは、ディテクタ6kにおいて分割された2つの領域の出力A、Bの差(FE=A−B)又はディテクタ6mにおいて分割された2つの領域の出力a、bの差(FE=a−b)を演算することにより、フォーカス誤差信号を検出する。また、これらの和を演算することによりフォーカス誤差信号を検出してもよい。
本発明におけるディテクタ及び演算方法を採用することにより、トラッククロス成分の少ないフォーカス誤差信号を得ることが可能となる。
以上の方法により得られたトラッキング誤差信号又はフォーカス誤差信号に基づいて、トラッキング制御又はフォーカス制御を行う。以下、トラッキング制御及びフォーカス制御を行う光記録再生装置について図16を参照しつつ説明する。
図16は、光再生装置を表したブロック図である。光再生装置は、図示しないチャッキング手段により、スピンドルモータ73にチャッキングされた光ディスク5に記録された情報を再生する。光ヘッド10は、スライダ機構を備えたシャーシ98に設けられており、スライドモータ97で光ディスク5の径方向に移動可能となっている。
光ヘッド10から出力された電気信号は、データ再生信号であるRF信号、フォーカス誤差信号、トラッキング誤差信号を求めるRFアンプ74に入力される。RFアンプ74内では、電気信号は演算器75に入力され、RF信号が生成される。RF信号は、図示しないデジタル信号処理回路により、波形等化、波形成形が行われ、その後、図示しないD/Aコンバータでアナログ信号とされて出力される。
また、RFアンプ74内では、データ出力される信号とは別に光ヘッド10からの電気信号が、それぞれフォーカス検出回路78、トラッキング誤差検出回路79に入力される。上述したように、これらの回路で、トラッククロス成分の少ないフォーカス誤差信号、DCオフセット成分が除去されたトラッキング誤差信号の算出がそれぞれ行われ、サーボ処理回路86に入力される。
サーボ処理回路86では、フォーカス制御回路87、トラッキング制御回路88、スライド制御回路90を有しており、RFアンプ74からのフォーカス誤差信号、トラッキング誤差信号に基づいて光ヘッド10のフォーカス、トラッキング、光ヘッド10の位置のスライド調整を行うための各サーボ信号をフォーカス補正ドライバ92、トラッキング補正ドライバ93、スライドドライバ95に送る。また、サーボ処理回路86は、スピンドル制御回路91も有し、スピンドルサーボ信号をスピンドルドライバ96に送る。
トラッキング補正ドライバ93では、サーボ信号に応じて、光ヘッド10内のトラッキング手段を駆動するトラッキングドライブ電流を発し、トラッキングの補正を行う。また、フォーカス補正ドライバ92は、サーボ信号に応じて、光ヘッド10のフォーカスレンズをフォーカス方向に動かすフォーカスドライブ電流を発する。更に、スライドドライバ95は、スライドサーボ信号に応じて、スライドモータ97を介して光ヘッド10をスライドする電流を発生する。また、スピンドルドライバ96は、スピンドルサーボ信号に応じてスピンドルモータ73の回転を制御する電流を発生する。
上記の光再生装置において、本発明の実施形態において得られる、DCオフセット成分が除去されたトラッキング誤差信号に基づいてトラッキングを行うことにより、光ビームを正確にトラッキングさせることが可能となる。また、トラッククロス成分の少ないフォーカス誤差信号に基づくことにより、正確にフォーカスレンズを動かすことが可能となる。
尚、光再生装置として説明したが、これに加えて光信号の記録が可能な記録・再生タイプであっても、これに加えて一定の回路等を有することにより対応は可能であり、また、光再生装置として、その他の構成となってもよい。
本発明の実施形態に係る光ヘッドの構成を示す概略図である。 本発明の実施形態の光ヘッドに用いられる回折素子の構造を示す上面図である。 本発明の実施形態の光ヘッドに用いられるディテクタの構成を示す平面図である。 本発明の実施形態に係る、主ビーム及び副ビームの配置とサイズを示す光ディスクの上面図である。 本発明の実施形態に係る回折素子により分割された副ビームの強度分布を示すグラフである。 本発明の実施形態に係る回折素子の格子パターンのsin曲線の波長に対する副ビームの分離間隔を示すグラフである。 本発明の実施形態に係る回折素子の格子パターンのsin曲線の振幅に対する副ビームの中心ピーク(0次光)と隣接ピーク(±1次光)の比を示すグラフである。 本発明の実施形態において、レンズシフトがない場合の主プッシュプル信号と副プッシュプル信号の波形を示すグラフである。 本発明の実施形態において、レンズシフトがある場合の主プッシュプル信号と副プッシュプル信号の波形を示すグラフである。 従来技術において、レンズシフトがない場合の主プッシュプル信号と副プッシュプル信号の波形を示すグラフである。 従来技術において、レンズシフトがある場合の主プッシュプル信号と副プッシュプル信号の波形を示すグラフである。 本発明の実施形態における、主プッシュプル信号と副プッシュプル信号のDCオフセット成分の値を、レンズシフト量に対してプロットしたグラフである。 本発明の実施形態の光ヘッドに用いられるディテクタの構成を示す平面図である。 本発明の実施形態に係るLDモジュールを備えた光ヘッドの構成を示す概略図である。 本発明の実施形態に係るLDモジュールに搭載されるホログラム素子とディテクタの構成を示す平面図である。 本発明の実施形態に係る光再生装置の概略構成を示すブロック図である。
符号の説明
1 光源
2 回折素子
2a 溝
3 コリメータレンズ
4 ビームスプリッタ
5 光ディスク
6 ディテクタ
7 対物レンズ
8 アナモフィックレンズ
60 ホログラム素子
61 LDモジュール

Claims (11)

  1. 光源と、前記光源から出射した光を主ビームと副ビームに分割する回折素子と、前記主ビーム及び前記副ビームを光ディスク上に集光する集光手段と、前記主ビームの前記光ディスクからの反射光を検出する主ビーム検出部と、前記副ビームの前記光ディスクからの反射光を検出する副ビーム検出部とからなる光検出手段と、を有し、光記録再生装置に用いられる光ヘッドであって、
    前記回折素子は、周期的に波型に蛇行した格子パターンを有し、その素子による回折光の結像スポットは、その強度のピークが略左右対称に分割されていることを特徴とする光ヘッド。
  2. 前記周期的に波型に蛇行した格子パターンは、その格子パターンの振幅と周期がほぼ一定であることを特徴とする請求項1に記載の光ヘッド。
  3. 前記周期的に波型に蛇行した格子パターンは、sin曲線の形状であることを特徴とする請求項1に記載の光ヘッド。
  4. 請求項1乃至請求項3のいずれかに記載の光ヘッドは、前記光源と、前記回折素子と、前記光検出手段とがモジュール化されたLDモジュールであることを特徴とするものである。
  5. 請求項1乃至請求項3のいずれかに記載の光ヘッド又は請求項4に記載のLDモジュールを備え、
    前記主ビーム検出部及び前記副ビーム検出部は、それぞれ、前記光ディスクのトラック方向と平行する方向に2分割された2分割検出器であり、
    前記主ビーム及び前記副ビームの2分割検出器からの出力信号に基づいてトラッキング誤差信号を算出する演算手段を有することを特徴とする光記録再生装置。
  6. 前記演算手段は、前記主ビームの2分割検出器から差動検出により得られた主ビームの信号から、前記副ビームの2分割検出器から差動検出により得られた副ビームの信号を減算することにより、DCオフセット成分が除去されたトラッキング誤差信号を算出することを特徴とする請求項5に記載の光記録再生装置。
  7. 請求項1乃至請求項3のいずれかに記載の光ヘッドを備え、
    前記副ビーム検出部は4分割以上に分割されており、
    前記4分割以上に分割された前記副ビーム検出部からの信号に基づいてフォーカス誤差信号を算出する演算手段を有することを特徴とする光記録再生装置。
  8. 請求項4に記載のLDモジュールを備え、
    前記副ビーム検出部は2分割以上に分割されており、
    前記2分割以上に分割された前記副ビーム検出部からの信号に基づいてフォーカス誤差信号を算出する演算手段を有することを特徴とする光記録再生装置。
  9. 光記録再生装置に用いられ、周期的に波型に蛇行した格子パターンを有し、光を複数本の光に分割する回折素子。
  10. 前記周期的に波型に蛇行した格子パターンは、その格子パターンの振幅と周期がほぼ一定であることを特徴とする請求項9に記載の回折素子。
  11. 前記周期的に波型に蛇行した格子パターンは、sin曲線の形状であることを特徴とする請求項9に記載の回折素子。
JP2003292952A 2003-08-13 2003-08-13 光ヘッド、ldモジュール、光記録再生装置及び光記録再生装置に用いる回折素子 Expired - Fee Related JP3779705B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003292952A JP3779705B2 (ja) 2003-08-13 2003-08-13 光ヘッド、ldモジュール、光記録再生装置及び光記録再生装置に用いる回折素子
KR1020040063056A KR100659791B1 (ko) 2003-08-13 2004-08-11 광헤드, 엘디 모듈, 광기록 재생장치 및 광기록재생장치에 이용하는 회절소자
US10/916,475 US20050078575A1 (en) 2003-08-13 2004-08-12 Optical head, LD module, optical recording-and-reproducing apparatus and diffraction element used in the optical recording-and-reproducing apparatus
CNB2004100566646A CN1286100C (zh) 2003-08-13 2004-08-13 光头、ld模组、光学记录和再现设备以及该光学记录和再现设备中使用的衍射元件
TW093124367A TWI277081B (en) 2003-08-13 2004-08-13 Optical head, LD module, optical recording-and-reproducing apparatus and diffraction element used in the optical recording-and-reproducing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003292952A JP3779705B2 (ja) 2003-08-13 2003-08-13 光ヘッド、ldモジュール、光記録再生装置及び光記録再生装置に用いる回折素子

Publications (2)

Publication Number Publication Date
JP2005063568A JP2005063568A (ja) 2005-03-10
JP3779705B2 true JP3779705B2 (ja) 2006-05-31

Family

ID=34370097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003292952A Expired - Fee Related JP3779705B2 (ja) 2003-08-13 2003-08-13 光ヘッド、ldモジュール、光記録再生装置及び光記録再生装置に用いる回折素子

Country Status (5)

Country Link
US (1) US20050078575A1 (ja)
JP (1) JP3779705B2 (ja)
KR (1) KR100659791B1 (ja)
CN (1) CN1286100C (ja)
TW (1) TWI277081B (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228260A (ja) * 2005-02-15 2006-08-31 Matsushita Electric Ind Co Ltd 光ピックアップ
KR100694097B1 (ko) * 2005-04-01 2007-03-12 삼성전자주식회사 광픽업 및 이를 사용하는 광 기록 및/또는 재생기기 및트랙킹 에러신호 검출방법
WO2006137296A1 (ja) * 2005-06-23 2006-12-28 Pioneer Corporation 光ピックアップ装置及び情報記録再生装置
JP4396596B2 (ja) * 2005-08-05 2010-01-13 パナソニック株式会社 光ピックアップ
JP2011192369A (ja) * 2010-03-17 2011-09-29 Hitachi Media Electoronics Co Ltd 光ディスク装置
JP2012119047A (ja) * 2010-11-09 2012-06-21 Panasonic Corp 光ピックアップおよび当該光ピックアップを備える光ディスク装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995014299A1 (fr) * 1993-11-19 1995-05-26 Sony Corporation Appareil de lecture optique
EP1124227B1 (en) * 2000-02-10 2007-07-04 Sony Corporation Optical pickup, tilt detection apparatus, tilt detection method and optical disk apparatus
TW583656B (en) * 2000-03-07 2004-04-11 Tdk Corp Optical head, laser diode module and optical recording-reproducing apparatus
JP3755731B2 (ja) * 2000-06-14 2006-03-15 Tdk株式会社 光記録再生装置
JP2002008258A (ja) * 2000-06-21 2002-01-11 Pioneer Electronic Corp 光ピックアップ装置
US6937554B2 (en) * 2000-08-09 2005-08-30 Ricoh Company, Ltd. Optical pickup apparatus having an improved holographic unit, and optical disk drive including the same
JP4151313B2 (ja) * 2002-06-03 2008-09-17 株式会社日立製作所 光再生装置
KR100936021B1 (ko) * 2002-06-14 2010-01-11 삼성전자주식회사 광픽업 장치 및 레이저의 장축과 피트의 사잇각 조절 방법

Also Published As

Publication number Publication date
KR20050016223A (ko) 2005-02-21
TWI277081B (en) 2007-03-21
JP2005063568A (ja) 2005-03-10
US20050078575A1 (en) 2005-04-14
CN1286100C (zh) 2006-11-22
CN1581319A (zh) 2005-02-16
TW200512752A (en) 2005-04-01
KR100659791B1 (ko) 2006-12-19

Similar Documents

Publication Publication Date Title
US20080068944A1 (en) Optical pick-up head, optical information apparatus, and optical information reproducing method
JP5002445B2 (ja) 光ピックアップ装置および光ディスク装置
US8054731B2 (en) Photodetector and optical pickup apparatus
KR100723116B1 (ko) 광 헤드의 초점 어긋남 오차 신호 검출 방법 및 그것을이용한 광 기록 재생 장치
KR100756042B1 (ko) 회절소자 및 이를 포함하는 광픽업장치
US7940631B2 (en) Optical pickup device
JP3779705B2 (ja) 光ヘッド、ldモジュール、光記録再生装置及び光記録再生装置に用いる回折素子
US7751297B2 (en) Optical pickup device
JP4396596B2 (ja) 光ピックアップ
US7639591B2 (en) Photodetector and optical pickup apparatus
JP4729418B2 (ja) 回折格子、光ピックアップ装置、光ディスク装置
JP2005135539A (ja) 光ヘッドおよびそれを用いた光学的情報記録再生装置
WO2007010737A1 (ja) 光ピックアップ装置
JP2008004250A (ja) 光ディスク装置及び光ピックアップ
JP2001325738A (ja) 光ヘッドとldモジュールと光記録再生装置
JP4268971B2 (ja) 光ピックアップ
JP4444947B2 (ja) 光ピックアップ装置
KR20060054108A (ko) 광 픽업, 광디스크 장치, 광검출 장치 및 광 픽업의 신호생성 방법
JP4765570B2 (ja) 光学ピックアップ、光記録再生装置及びトラッキングエラー信号検出方法
JP4719660B2 (ja) 光ピックアップ装置および光ディスク装置
JPH11102526A (ja) 光学ヘッドおよび光学的情報再生装置
JP2006268974A (ja) 光半導体装置
JP2004071126A (ja) 光ピックアップ装置
JP2005100550A (ja) 光ピックアップ及び光ディスク記録再生装置
JP2007164966A (ja) 光学ピックアップ、光記録再生装置及びトラッキングエラー信号検出方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060302

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees