JP3777284B2 - Manufacturing method of chip-type fuse resistor - Google Patents

Manufacturing method of chip-type fuse resistor Download PDF

Info

Publication number
JP3777284B2
JP3777284B2 JP2000088900A JP2000088900A JP3777284B2 JP 3777284 B2 JP3777284 B2 JP 3777284B2 JP 2000088900 A JP2000088900 A JP 2000088900A JP 2000088900 A JP2000088900 A JP 2000088900A JP 3777284 B2 JP3777284 B2 JP 3777284B2
Authority
JP
Japan
Prior art keywords
fuse
film
chip
resistance
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000088900A
Other languages
Japanese (ja)
Other versions
JP2001273847A (en
Inventor
立樹 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kamaya Electric Co Ltd
Original Assignee
Kamaya Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kamaya Electric Co Ltd filed Critical Kamaya Electric Co Ltd
Priority to JP2000088900A priority Critical patent/JP3777284B2/en
Publication of JP2001273847A publication Critical patent/JP2001273847A/en
Application granted granted Critical
Publication of JP3777284B2 publication Critical patent/JP3777284B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/041Fuses, i.e. expendable parts of the protective device, e.g. cartridges characterised by the type
    • H01H85/046Fuses formed as printed circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/041Fuses, i.e. expendable parts of the protective device, e.g. cartridges characterised by the type
    • H01H85/0411Miniature fuses
    • H01H2085/0414Surface mounted fuses

Landscapes

  • Fuses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子機器回路の正常時には一般の抵抗器としての特性を有し、過負荷異常時には回路を遮断するヒューズ機能を備えたチップ型ヒューズ抵抗器の製造方法に関する。
【0002】
【従来の技術】
近年、電子機器の軽薄短小化に呼応して、電子回路の過負荷異常に対する安全性確保のための電子部品も小型で面実装可能なものが要求され、開発されている。この中で、電子機器回路の正常時には一般の抵抗器としての特性を有し、過負荷異常時には回路を遮断するヒューズ機能を備えたチップ型ヒューズ抵抗器が知られている。
従来のチップ型ヒューズ抵抗器に使用されるヒューズ抵抗膜の材料としては、貴金属を含む金属有機物ペーストが知られている。この金属有機物ペーストは、印刷、乾燥及び焼成により形成され、通常、ヒューズ機能を付与するために、トリミングによる狭小部が設けられている。
ヒューズ抵抗膜を形成するための金属有機物ペーストの代表的なものとしては、貴金属としてAu単独を含む金属有機物ペーストが知られている。また、ヒューズ抵抗膜材料として、Ru2O系の厚膜グレーズペーストも知られている。
前記Au貴金属単独の金属有機物ペーストにより形成されたヒューズ抵抗膜を有するチップ型ヒューズ抵抗器においては、ヒューズ抵抗膜の抵抗温度係数が、Au貴金属材料の持つ大きな値の正特性の抵抗温度係数に支配されるために、溶断特性において長い溶断時間を要したり、またその用途がパワーの大きな定電圧源の電子回路に限定される。更に、このようなヒューズ抵抗膜の抵抗値も、Au貴金属単独において出現する固有抵抗値に制約されるために、広い抵抗値範囲内で抵抗値定数の選択自由度を大きくしようとすれば、金属有機物ペースト中におけるAu貴金属の含有量を低く調整したり、またヒューズ抵抗膜のトリミング溝形成において、高倍率のトリミングによる抵抗値調整が必要である。
しかし、前者の金属有機物ペースト中におけるAu貴金属の含有量を低く調整する場合、ヒューズ抵抗膜の膜厚が薄くなり製造過程での抵抗値分布のバラツキが増大する。他方、後者における高倍率のトリミングによるトリミング溝の形成は、溶断特性のバラツキの増大や長期的な電気的信頼性に悪影響を及ぼす要因となる。
一方、RuO2の厚膜グレーズペーストにより形成されたヒューズ抵抗膜は、抵抗温度係数値として一般の抵抗器並の値と、前記Auの金属有機物ペーストにより形成されたものよりも広い抵抗値範囲が得られる。
しかし、RuO2の厚膜グレーズペーストにより形成されたヒューズ抵抗膜は、膜厚が厚く、膜厚にバラツキが生じる。また、このヒューズ抵抗膜は、ガラスと主にRuO2の混合焼結構造で形成されているために、過負荷異常時には高倍率の溶断負荷を必要とし、溶断時間のバラツキ及び溶断後の残留抵抗値[溶断試験において、規定倍率の溶断負荷を接続して溶断したことを確認(時間を測定)した後も、その溶断負荷状態を規定の時間維持した後に負荷を取り除いて抵抗値を測定したときの値]に安定した値が得られず、バラツキが生じるという問題が生じる。
【0003】
【発明が解決しようとする課題】
そこで、上記Au単独を含む金属有機物ペーストにより形成されたヒューズ抵抗膜の利点と、RuO2の厚膜グレーズペーストにより形成されたヒューズ抵抗膜の利点とを有し、それぞれの問題点を抑制したヒューズ抵抗膜を備えるチップ型ヒューズ抵抗器が望まれている。
しかし、このような、ガラスを含まない金属有機物ペーストとガラスを含む厚膜グレーズペーストとを、混合し得たとしても、ガラス分の存在とガラス分の存在による膜厚に因って前記残留抵抗値の安定性が得られない。従って、Au及びRuの貴金属の特性をバランス良く有するヒューズ抵抗膜を備えるチップ型ヒューズ抵抗器については知られていない。
【0004】
本発明の目的は、定電圧源形及び定電流源形のいずれの電子回路においても、過負荷異常時には、安定したヒューズ機能を有するヒューズ抵抗膜を備え、長期的な電気的信頼性の確保が期待できると共に、高密度実装に適合するチップ型ヒューズ抵抗器を、抵抗値定数の広い選択自由度と、広い抵抗値範囲において得ることができる製造方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意検討した。まず、Au単独を含む金属有機物ペーストによる利点と、RuO2の厚膜グレーズペーストによる利点とを有し、それぞれの問題点を抑制するために、貴金属としてAu及びRuを必須に含む金属有機物ペーストにより形成されたヒューズ抵抗膜の特性を検討した。しかし、これらの利点を確保しつつ逆にそれぞれの欠点を抑制することは困難であったため、第3の貴金属の導入を試み研究を重ねた。その結果、驚くべきことに、Au及びRuに加えて、Rhを導入することにより、上記それぞれの利点がバランス良く得られること、更には、これらの利点を十分引出すために、ヒューズ抵抗膜をトリミングすることにより、広い抵抗値範囲から所望の抵抗値定数を得ることができることを見出し本発明を完成した。
【0006】
すなわち、本発明によれば、絶縁基板、グレーズ層、ヒューズ抵抗膜、一対の表電極、一対の裏電極、端面電極、ガラス保護コート及びメッキ層を備えるチップ型ヒューズ抵抗器の製造方法であって、ヒューズ抵抗膜を、Au77〜87質量%、Ru9〜16質量%及びRh4〜7質量%からなる貴金属組成の金属有機物ペーストを用いてグレーズ層上に薄膜として印刷形成し、該薄膜の少なくとも一部にヒューズ機能を付与する狭小部を設けることを特徴とするチップ型ヒューズ抵抗器の製造方法が提供される。
【0007】
【発明の実施の形態】
以下に、本発明により得られるチップ型ヒューズ抵抗器を、図1を参照して説明するが本発明はこれに限定されない。
図1は、本発明に係る一態様を示すチップ型ヒューズ抵抗器の断面図である。図1のチップ型ヒューズ抵抗器は、絶縁基板1と、絶縁基板1上に形成されたグレーズ層2と、グレーズ層2上に形成されたヒューズ抵抗膜3と、ヒューズ抵抗膜3に通電するための一対の表電極(4a,4b)、一対の裏電極5及び端面電極6と、ヒューズ抵抗膜3を保護するガラス保護コート7と、メッキ層8とから主に構成される。
【0008】
絶縁基板1を構成する材料としては、例えば、純度約96%等のアルミナセラミック基板、MgO・SiO2を主成分とするステアタイトセラミック基板、2MgO・SiO2を主成分とするフォルステライトセラミック基板、BeOを主成分とするベリリアセラミック基板等を用いることができる。
グレーズ層2は、通常のヒューズ抵抗器に使用されるガラスを主成分とする層であれば特に限定されず、例えば、平滑性、平坦性及び過負荷異常時におけるヒューズ抵抗膜3の溶断が円滑に進行するように蓄熱作用を有するように適宜材料、膜厚等を選択することができる。更には、基板製造時に設ける分割溝を形成されるために、レーザー光照射適性を有する黒色無機顔料等を含んでいても良い。
【0009】
ヒューズ抵抗膜3は、貴金属としてAu、Ru及びRhを含む金属有機物ペーストを用いて形成した薄膜であり、かつ、一部にヒューズ機能を付与する狭小部3aが設けられている。この狭小部3aは、トリミング等により形成することができる。トリミング形状は特に限定されず、ダブル型、サーペンタイン型、L字型等が挙げられる。
Au、Ru及びRhを含む金属有機物ペーストを用いて形成したヒューズ抵抗膜がRhを含まない場合は、グレーズ層との密着力が低下し、且つRuを含まないAu及びRhの2元合金のヒューズ抵抗膜では緻密な膜が得られないので、抵抗値が高くなり、更には、抵抗値のバラツキも大きくなる。
本発明においては、貴金属としてAu、Ru及びRhを含む金属有機物ペーストを用いてヒューズ抵抗膜を形成する場合にAuとRuの貴金属の割合を適宜選択して調整することにより、複数のシート抵抗が得られ、抵抗値定数の選択の自由度が大きく、広い抵抗値範囲が得られると共に、汎用抵抗器並みの抵抗温度係数が実現する。従って、定電圧源形のみならず定電流源形の電子回路での使用も可能となり、ヒューズ抵抗膜が薄膜であってもヒューズ機能が安定し、しかも長期的な電気的信頼性も確保できる。
上記所望の作用効果を得るためのAu、Ru及びRhの配合割合は、Au77〜87質量%、Ru9〜16質量%及びRh4〜7質量%(合計100質量%)である。ヒューズ抵抗膜3の膜厚は、目的とする抵抗値やヒューズ機能等に応じて適宜選択できるが、平均膜厚で通常、0.1〜0.8μm程度である。このような膜厚は、得られたヒューズ膜の断面を走査型電子顕微鏡(SEM)等により測定することができる。ヒューズ抵抗膜3は、上述のとおり、抵抗値定数の広い選択自由度と、広い抵抗値範囲が得られるので、前記ヒューズ機能を付与する狭小部3aの他に、所望の抵抗値調整のためのトリミング溝を適宜設けることができる。
【0010】
ヒューズ抵抗膜3を形成するための金属有機物ペーストは、必須の貴金属Au、Ru及びRhを含む金属有機物、それぞれの貴金属を含む金属有機物の混合物と、有機バインダーとしてのビヒクル、溶剤としてのターピオネール等を含み、厚膜グレーズペーストのようなガラスは含まない。
【0011】
ヒューズ抵抗膜3を形成するには、通常のAu金属有機物ペーストを用いる際の方法と同様に、印刷、乾燥及び焼成等により行なうことができる。各製造条件は、所望の抵抗値等や材料の配合割合等に応じて適宜選択し決定することができる。形成されるヒューズ抵抗膜の膜厚は、上述の範囲等から適宜選択でき、単層であっても複層であっても良い。通常、単層で形成されるヒューズ抵抗膜に平均膜厚は0.1〜0.3μm程度である。
【0012】
図1における一対の表電極は、上層の表電極4a及び下層の表電極4bにより構成されるがこれに限定されるものではなく、表電極は1層であっても良い。この表電極は、ヒューズ抵抗膜3と一部が重なるので、実用上に耐え得る程度の拡散を抑制する構成により形成されることが好ましい。このような構成とするための方法としては、例えば、下層の表電極4bを、ヒューズ抵抗膜3に含まれる貴金属の1種を共通化させるために、Auを含む金属有機物ペーストを用いて印刷し、次いで、表電極の低抵抗化と、製造過程における抵抗値測定時におけるプローブ接触の安定性を考慮して、上層の表電極4bを形成するために、Ag系厚膜グレーズペースト等を重ねて印刷し、乾燥、焼成(約600℃)する方法等が挙げられる。また、1層で表電極を得る場合には、材料として使用する厚膜グレーズペースト等に含まれる貴金属を、ヒューズ抵抗膜3に含まれる貴金属の1種と共通させるか、若しくは、表電極及びヒューズ抵抗膜の焼成温度等を適宜選択して決定すれば良い。
【0013】
一対の裏電極5、端面電極6、ガラス保護コート7及びメッキ層8は、何れも公知の方法等に準じて適宜材料及び形成方法を選択して設けることができる。
本発明のチップ型ヒューズ抵抗器は、上記構成を備えておれば良く、本発明の所望の効果を更に向上されるためや他の目的のためにその他の構成を追加することができる。
【0014】
【実施例】
以下、実施例により本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。
実施例1〜3
上述した図1に示すチップ型ヒューズ抵抗器において、表電極(4a、4b)において下層の表電極4aをAuを含む金属有機物ペーストで形成し、上層の表電極4bを、Ag系厚膜グレーズで形成し、かつ、ヒューズ抵抗膜中の貴金属の組成を表1に示すものとし、図1と同様な構成の1層のヒューズ抵抗膜を備える、チップ型ヒューズ抵抗器を各々10個作製した。また、作製したチップ型ヒューズ抵抗器の公称外形寸法は、長さ2.0mm、幅1.25mm、厚さ0.55mmとし、また抵抗器における定格電力は0.1Wとした。
【0015】
得られた各チップ型ヒューズ抵抗器について、シート抵抗値、完成抵抗値、TCR、70℃での耐久性及び残留抵抗値を測定した。それぞれの結果を表1に示す。なお、TCR、70℃での耐久性は、各10個のチップ型ヒューズ抵抗器の平均値で、残留抵抗値は10個の最小値でそれぞれ表1に示す。TCRは室温とこれより100℃高い温度での試験結果である。70℃での耐久性はJIS C 5201−1の4.25.1に基づいて1000時間試験し、初期抵抗値に対する抵抗値変化率を算出した値である。
【0016】
【表1】

Figure 0003777284
【0017】
【発明の効果】
本発明においては、絶縁基板、グレーズ層、ヒューズ抵抗膜、一対の表電極、一対の裏電極、端面電極、ガラス保護コート及びメッキ層を備え、ヒューズ抵抗膜が、貴金属としてAu、Ru及びRhを含む金属有機物ペーストを用いて形成され、かつ、少なくとも一部にヒューズ機能を付与する狭小部が設けられるで、定電圧源形及び定電流源形のいずれの電子回路においても、過負荷異常時には、安定したヒューズ機能を有するチップ型ヒューズ抵抗器を、抵抗値定数の広い選択自由度と、広い抵抗値範囲において容易に得ることができる。
【図面の簡単な説明】
【図1】本発明のチップ型ヒューズ抵抗器の一形態の構造を示す断面図である。
【符号の説明】
1 絶縁基板
2 グレーズ層
3 ヒューズ抵抗膜
3a 狭小部(トリミング溝)
4a,4b 表電極
5 裏電極
6 端面電極
7 保護ガラスコート
8 メッキ膜[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a chip-type fuse resistor having a characteristic as a general resistor when an electronic device circuit is normal and having a fuse function for cutting off the circuit when an overload is abnormal.
[0002]
[Prior art]
In recent years, electronic components for ensuring safety against overload abnormalities in electronic circuits have been demanded and developed in response to miniaturization of electronic devices. Among these, a chip-type fuse resistor having a characteristic as a general resistor when an electronic device circuit is normal and having a fuse function for interrupting the circuit when an overload is abnormal is known.
As a material for a fuse resistance film used in a conventional chip-type fuse resistor, a metal organic paste containing a noble metal is known. This metal organic paste is formed by printing, drying and firing, and usually has a narrowed portion by trimming to give a fuse function.
As a typical metal organic paste for forming a fuse resistance film, a metal organic paste containing Au alone as a noble metal is known. A Ru 2 O-based thick film glaze paste is also known as a fuse resistance film material.
In a chip-type fuse resistor having a fuse resistance film formed of a metal organic paste made of Au noble metal alone, the resistance temperature coefficient of the fuse resistance film is governed by a large positive resistance temperature coefficient of the Au noble metal material. Therefore, a long fusing time is required in the fusing characteristics, and the application is limited to an electronic circuit of a constant voltage source having a large power. Furthermore, since the resistance value of such a fuse resistance film is also restricted by the specific resistance value that appears in the Au noble metal alone, if the degree of freedom in selecting a resistance value constant is increased within a wide resistance value range, the resistance value It is necessary to adjust the resistance value by trimming at a high magnification in adjusting the content of the Au noble metal in the organic paste to be low or in forming a trimming groove in the fuse resistance film.
However, when the content of the Au noble metal in the former metal organic paste is adjusted to be low, the thickness of the fuse resistance film becomes thin, and the variation in the resistance value distribution during the manufacturing process increases. On the other hand, the formation of a trimming groove by high-magnification trimming in the latter is a factor that adversely affects the increase in fusing characteristics variation and long-term electrical reliability.
On the other hand, the fuse resistance film formed with the thick film glaze paste of RuO2 has a resistance temperature coefficient value equal to that of a general resistor and a wider resistance value range than that formed with the Au metal organic paste. It is done.
However, the fuse resistance film formed by the thick film glaze paste of RuO2 has a large film thickness, and the film thickness varies. In addition, since this fuse resistance film is formed of a mixed sintered structure of glass and mainly RuO2, a high-magnification fusing load is required when an overload is abnormal, fusing time variation and residual resistance value after fusing [In the fusing test, even after confirming that the fusing load of the specified magnification was connected (melting time) and maintaining the fusing load state for the specified time, removing the load and measuring the resistance value A stable value cannot be obtained in [Value], and there arises a problem that variation occurs.
[0003]
[Problems to be solved by the invention]
Therefore, the fuse resistance having the advantages of the fuse resistance film formed of the metal organic paste containing Au alone and the advantage of the fuse resistance film formed of the thick film glaze paste of RuO2 and suppressing each problem. A chip fuse resistor with a film is desired.
However, even if such a metal organic paste containing no glass and a thick film glaze paste containing glass can be mixed, the residual resistance depends on the presence of glass and the film thickness due to the presence of glass. The stability of the value cannot be obtained. Therefore, there is no known chip-type fuse resistor including a fuse resistance film having a good balance between the characteristics of Au and Ru noble metals.
[0004]
An object of the present invention is to provide a long-term electrical reliability in a constant voltage source type and a constant current source type electronic circuit with a fuse resistance film having a stable fuse function when an overload is abnormal. An object of the present invention is to provide a manufacturing method capable of obtaining a chip-type fuse resistor that can be expected and is suitable for high-density mounting in a wide range of resistance value and a wide resistance value range .
[0005]
[Means for Solving the Problems]
The present inventors diligently studied to solve the above problems. First, it has the advantages of a metal organic paste containing Au alone and the advantages of a thick film glaze paste of RuO2, and is formed of a metal organic paste that essentially contains Au and Ru as noble metals in order to suppress each problem. The characteristics of the fuse resistance film were investigated. However, it has been difficult to suppress these disadvantages while securing these advantages, and therefore the third precious metal was introduced and research was repeated. As a result, surprisingly, by introducing Rh in addition to Au and Ru, each of the above advantages can be obtained in a well-balanced manner, and further, in order to sufficiently bring out these advantages, the fuse resistance film is trimmed. As a result, it has been found that a desired resistance value constant can be obtained from a wide resistance value range, and the present invention has been completed.
[0006]
That is, according to the present invention, there is provided a method for manufacturing a chip-type fuse resistor comprising an insulating substrate, a glaze layer, a fuse resistance film, a pair of front electrodes, a pair of back electrodes, end face electrodes, a glass protective coat, and a plating layer. The fuse resistance film is printed and formed as a thin film on the glaze layer using a noble metal composition metal paste composed of Au 77 to 87 mass%, Ru 9 to 16 mass% and Rh 4 to 7 mass%, and at least a part of the thin film A chip-type fuse resistor manufacturing method is provided, in which a narrow portion for providing a fuse function is provided.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a chip-type fuse resistor obtained by the present invention will be described with reference to FIG. 1, but the present invention is not limited to this.
Figure 1 is a cross-sectional view of a chip-type fuse resistors illustrating one embodiment according to the present invention. The chip-type fuse resistor shown in FIG. 1 is for energizing the insulating substrate 1, the glaze layer 2 formed on the insulating substrate 1, the fuse resistance film 3 formed on the glaze layer 2, and the fuse resistance film 3. A pair of front electrodes (4a, 4b), a pair of back electrodes 5 and end face electrodes 6, a glass protective coat 7 for protecting the fuse resistance film 3, and a plating layer 8 are mainly constituted.
[0008]
As a material for forming the insulating substrate 1, for example, forsterite ceramic substrate for an alumina ceramic substrate of about 96%, etc. purity, steatite ceramic substrate composed mainly of MgO · SiO 2, the 2MgO · SiO 2 as a main component, A beryllia ceramic substrate or the like containing BeO as a main component can be used.
The glaze layer 2 is not particularly limited as long as it is a layer mainly composed of glass used for a normal fuse resistor. For example, the fuse resistance film 3 is smoothly blown when the smoothness, flatness, and overload are abnormal. The material, film thickness, and the like can be selected as appropriate so as to have a heat storage effect so as to proceed to the above. Furthermore, in order to form the division | segmentation groove | channel provided at the time of board | substrate manufacture, the black inorganic pigment etc. which have laser beam irradiation suitability may be included.
[0009]
The fuse resistance film 3 is a thin film formed using a metal organic paste containing Au, Ru, and Rh as noble metals, and a narrow portion 3a that provides a fuse function is provided in part. The narrow portion 3a can be formed by trimming or the like. The trimming shape is not particularly limited, and examples thereof include a double type, a serpentine type, and an L shape.
When the fuse resistance film formed using the metal organic paste containing Au, Ru and Rh does not contain Rh, the adhesive strength with the glaze layer is reduced, and the fuse of Au and Rh binary alloy containing no Ru Since a dense film cannot be obtained with a resistive film, the resistance value increases, and further, the resistance value varies greatly.
In the present invention, when a fuse resistance film is formed using a metal organic paste containing Au, Ru and Rh as noble metals, the ratio of the noble metals of Au and Ru is appropriately selected and adjusted so that a plurality of sheet resistances can be obtained. Thus, the resistance value constant can be selected with a large degree of freedom, a wide resistance value range can be obtained, and a temperature coefficient of resistance similar to that of a general-purpose resistor can be realized. Therefore, it can be used not only in a constant voltage source type but also in a constant current source type electronic circuit. Even if the fuse resistance film is a thin film, the fuse function is stable and long-term electrical reliability can be secured.
Blend proportion of Au, Ru and Rh to obtain the desired advantages are, Au77~87 mass%, a Ru9~16% by weight and Rh4~7 wt% (total 100 wt%). The film thickness of the fuse resistance film 3 can be appropriately selected according to the target resistance value, the fuse function, etc., but the average film thickness is usually about 0.1 to 0.8 μm. Such a film thickness can be measured by a scanning electron microscope (SEM) or the like for the cross section of the obtained fuse film. As described above, since the fuse resistance film 3 can obtain a wide selection of resistance value constants and a wide resistance value range, in addition to the narrow portion 3a for providing the fuse function, a desired resistance value adjustment can be performed. Trimming grooves can be provided as appropriate.
[0010]
The metal organic paste for forming the fuse resistance film 3 includes a metal organic material containing essential noble metals Au, Ru and Rh, a mixture of metal organic materials containing the respective noble metals, a vehicle as an organic binder, and tarpione as a solvent. only contains, does not include glass, such as thick film glaze paste.
[0011]
The fuse resistance film 3 can be formed by printing, drying, firing, and the like in the same manner as when using a normal Au metal organic paste. Each manufacturing condition can be appropriately selected and determined according to a desired resistance value, a blending ratio of materials, and the like. The film thickness of the formed fuse resistance film can be appropriately selected from the above-mentioned range and the like, and may be a single layer or multiple layers. Usually, the average film thickness of a single-layer fuse resistor film is about 0.1 to 0.3 μm.
[0012]
The pair of front electrodes in FIG. 1 is composed of an upper surface electrode 4a and a lower surface electrode 4b, but is not limited to this, and the surface electrode may be a single layer. Since the surface electrode partially overlaps with the fuse resistance film 3, it is preferable that the surface electrode be formed with a configuration that suppresses diffusion to a degree that can be practically used. As a method for achieving such a configuration, for example, the lower surface electrode 4b is printed using a metal organic paste containing Au in order to share one kind of noble metal contained in the fuse resistance film 3. Next, in consideration of the lower resistance of the surface electrode and the stability of the probe contact at the time of measuring the resistance value in the manufacturing process, an Ag-based thick film glaze paste or the like is overlaid to form the upper surface electrode 4b. Examples of the method include printing, drying, and firing (about 600 ° C.). When the surface electrode is obtained with one layer, the noble metal contained in the thick film glaze paste or the like used as the material is shared with one of the noble metals contained in the fuse resistance film 3, or the surface electrode and the fuse What is necessary is just to select and determine suitably the baking temperature etc. of a resistance film.
[0013]
The pair of back electrode 5, end face electrode 6, glass protective coat 7 and plating layer 8 can be provided by appropriately selecting materials and forming methods according to known methods.
The chip-type fuse resistor of the present invention only needs to have the above-described configuration, and other configurations can be added for further improving the desired effect of the present invention and for other purposes.
[0014]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these.
Examples 1-3
In the chip-type fuse resistor shown in FIG. 1 described above, the lower surface electrode 4a of the surface electrodes (4a, 4b) is formed of a metal-organic paste containing Au, and the upper surface electrode 4b is formed of an Ag-based thick film glaze. 10 chip fuse resistors each having a single-layer fuse resistor film having the same structure as that shown in FIG. 1 were prepared, and the composition of the noble metal in the fuse resistor film was shown in Table 1. Moreover, the nominal external dimensions of the manufactured chip-type fuse resistor were 2.0 mm in length, 1.25 mm in width, 0.55 mm in thickness, and the rated power in the resistor was 0.1 W.
[0015]
For each of the obtained chip fuse resistor, the sheet resistance value, the finished resistance, it was measured durability及 beauty residual resistance at TCR, 70 ° C.. The results are shown in Table 1. Incidentally, durability in TCR, 70 ° C. is the average value of the 10 chips fuse resistor, the residual resistance value shown in Table 1, respectively at 10 minimum. TCR is a test result at room temperature and a temperature higher by 100 ° C. The durability at 70 ° C. is a value obtained by performing a test for 1000 hours in accordance with 4.25.1 of JIS C 5201-1, and calculating a resistance value change rate with respect to an initial resistance value .
[0016]
[Table 1]
Figure 0003777284
[0017]
【The invention's effect】
In the present invention , an insulating substrate, a glaze layer, a fuse resistance film, a pair of front electrodes, a pair of back electrodes, an end face electrode, a glass protective coat, and a plating layer are provided, and the fuse resistance film includes Au, Ru, and Rh as noble metals. is formed using a metal organic paste containing, and, in the narrow portion for applying at least partially fuse function is al provided, even in the constant voltage source form and any electronic circuit of the constant current source form, abnormal overload Sometimes, a chip-type fuse resistor having a stable fuse function can be easily obtained with a wide selection of resistance value constants and a wide resistance value range.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the structure of an embodiment of a chip-type fuse resistor of the present invention.
[Explanation of symbols]
1 Insulating substrate 2 Glaze layer 3 Fuse resistance film 3a Narrow part (trimming groove)
4a, 4b Front electrode 5 Back electrode 6 End face electrode 7 Protective glass coat 8 Plating film

Claims (1)

絶縁基板、グレーズ層、ヒューズ抵抗膜、一対の表電極、一対の裏電極、端面電極、ガラス保護コート及びメッキ層を備えるチップ型ヒューズ抵抗器の製造方法であって、
ヒューズ抵抗膜を、Au77〜87質量%、Ru9〜16質量%及びRh4〜7質量%からなる貴金属組成の金属有機物ペーストを用いてグレーズ層上に薄膜として印刷形成し、該薄膜の少なくとも一部にヒューズ機能を付与する狭小部を設けることを特徴とするチップ型ヒューズ抵抗器の製造方法
A method for manufacturing a chip-type fuse resistor comprising an insulating substrate, a glaze layer, a fuse resistance film, a pair of front electrodes, a pair of back electrodes, an end face electrode, a glass protective coating, and a plating layer,
A fuse resistance film is printed and formed as a thin film on a glaze layer using a metal organic paste having a noble metal composition composed of Au 77 to 87 mass%, Ru 9 to 16 mass% and Rh 4 to 7 mass%, and is formed on at least a part of the thin film A method for manufacturing a chip-type fuse resistor , characterized in that a narrow portion for providing a fuse function is provided .
JP2000088900A 2000-03-28 2000-03-28 Manufacturing method of chip-type fuse resistor Expired - Lifetime JP3777284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000088900A JP3777284B2 (en) 2000-03-28 2000-03-28 Manufacturing method of chip-type fuse resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000088900A JP3777284B2 (en) 2000-03-28 2000-03-28 Manufacturing method of chip-type fuse resistor

Publications (2)

Publication Number Publication Date
JP2001273847A JP2001273847A (en) 2001-10-05
JP3777284B2 true JP3777284B2 (en) 2006-05-24

Family

ID=18604716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000088900A Expired - Lifetime JP3777284B2 (en) 2000-03-28 2000-03-28 Manufacturing method of chip-type fuse resistor

Country Status (1)

Country Link
JP (1) JP3777284B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005002091A1 (en) * 2005-01-14 2006-07-20 Vishay Israel Ltd. Fuse for an electronic circuit and method of making the fuse
CN103972002B (en) * 2012-05-10 2016-02-10 苏州晶讯科技股份有限公司 Anti-arcing pasting type fuse

Also Published As

Publication number Publication date
JP2001273847A (en) 2001-10-05

Similar Documents

Publication Publication Date Title
US7267713B2 (en) Conductive paste and glass circuit structure
EP0829886A2 (en) Chip resistor and a method of producing the same
JPH11195505A (en) Thick-film resistor and manufacture thereof
JP4623921B2 (en) Resistive composition and resistor
JP4431052B2 (en) Resistor manufacturing method
JP3777284B2 (en) Manufacturing method of chip-type fuse resistor
JP5503132B2 (en) Resistor paste and resistor
JP4397279B2 (en) Resistive composition and resistor using the same
JPS5814042B2 (en) thick film resistor
JP2006339105A (en) Chip type fuse element and manufacturing method thereof
JP6331936B2 (en) Copper-nickel thick film resistor and manufacturing method thereof
JP3642100B2 (en) Chip resistor and manufacturing method thereof
JP3915188B2 (en) Chip resistor and manufacturing method thereof
JP3791085B2 (en) Resistor paste, resistor using the same, and manufacturing method thereof
JPH11135303A (en) Thick-film thermistor composition
JP2777206B2 (en) Manufacturing method of thick film resistor
JPS6310104B2 (en)
JPS6232562B2 (en)
JP2001322831A (en) Over-coat glass and thick film printed circuit board
JP2004214643A (en) Laminated chip varistor and manufacturing method therefor
JP2699716B2 (en) Positive thermistor element
JPH10340621A (en) Conductive paste
JP2644017B2 (en) Resistance paste
JP4257134B2 (en) Resistor composition and resistor using the same
JP2004119561A (en) Resistive paste and resistor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060227

R150 Certificate of patent or registration of utility model

Ref document number: 3777284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term