JP3774913B2 - Hot silicon pre-desiliconization method - Google Patents

Hot silicon pre-desiliconization method Download PDF

Info

Publication number
JP3774913B2
JP3774913B2 JP24329795A JP24329795A JP3774913B2 JP 3774913 B2 JP3774913 B2 JP 3774913B2 JP 24329795 A JP24329795 A JP 24329795A JP 24329795 A JP24329795 A JP 24329795A JP 3774913 B2 JP3774913 B2 JP 3774913B2
Authority
JP
Japan
Prior art keywords
hot metal
oxygen gas
oxygen
desiliconization
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24329795A
Other languages
Japanese (ja)
Other versions
JPH08176633A (en
Inventor
武 内山
幹治 武田
宏 板谷
徹也 藤井
滋明 後藤
義明 原
史朗 渡壁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP24329795A priority Critical patent/JP3774913B2/en
Publication of JPH08176633A publication Critical patent/JPH08176633A/en
Application granted granted Critical
Publication of JP3774913B2 publication Critical patent/JP3774913B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高炉から出銑される溶銑の予備処理方法に関し、とくに溶銑の脱珪処理方法に関する。
【0002】
【従来の技術】
高炉から出銑された溶銑は、その成分組成や生産鋼種に応じて、いろいろの予備処理が施されている。溶銑に含まれている元素の中には、次工程の製鋼工程における精錬効率や鋼の品質に大きな影響を及ぼすものがあり、溶銑段階で除去しておく必要があるものがある。特に、脱珪処理は、あとに続く脱燐処理の効率を高めるために、必須である。脱燐処理や脱硫処理では、溶銑に対し目的に応じたフラックスを吹込むので、処理により温度が低下する。処理開始前の溶銑温度が低いと、脱燐や脱硫処理が完了する前に温度の下限値に達してしまい、十分な処理ができない。したがって脱珪と同様に溶銑温度も重要である。脱珪処理は、通常、高炉鋳床で行われる。例えば、鉄と鋼,71(1985),S915.には、樋を流れる溶銑上に酸化鉄を投射する脱珪方法が示されている。また、鉄と鋼,68(1982),S949.には、樋を流れる溶銑上に酸化鉄を投入し、さらに、溶銑の自然落下エネルギーを利用して反応させる脱珪方法が示されている。
【0003】
しかしながら、これらの方法では、酸化鉄を用いているため、スラグフォーミングが激しく、必要量以上の酸化鉄を溶銑に供給できず、脱珪量が不十分になるという問題があった。また、酸化鉄の分解熱により溶銑温度の低下が大きくなるという問題も生じていた。
また、特公昭58−27322号公報には、高炉鋳床場を流下する溶銑に転炉滓を添加すると同時に気体酸素を吹き付け、脱珪する方法が示されている。さらに、特開昭55−154516号公報には、高炉鋳床に精錬槽を設置し、該精錬槽内で脱珪剤とともに空気または酸素を吹き込み脱珪する方法が開示されている。しかしながら、これらの方法では、出銑樋上あるいは鋳床上に設けた槽内で気体酸素を吹き付けるため、容器の底や樋へ酸素が到達することや、溶銑上で発生するCOガスと酸素が発熱反応を起こし、吹き付けた酸素量当たりの脱珪量が高くないという問題もあった。
【0004】
【発明が解決しようとする課題】
本発明は、耐火物に特に大きな損耗を与えることなく、かつ溶銑温度の低下の小さい効率的な溶銑の予備脱珪処理を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、高炉から出銑した溶銑を受銑容器に受けるまでの間に、溶銑落下流に酸素ガスを吹き付けることを特徴とする溶銑の予備脱珪処理方法であり、また本発明は、高炉から出銑した溶銑を受銑容器に受けるまでの間に、固体酸素源を溶銑中に添加したのちあるいは添加と同時に、溶銑落下流に酸素ガスを吹き付けることを特徴とする溶銑の予備脱珪処理方法であり、さらに、高炉から出銑した溶銑を受銑容器に受けるまでの間に、溶銑落下流に酸素ガスを吹き付けたのち、固体酸素源を溶銑中に添加することを特徴とする溶銑の予備脱珪処理方法である。また、本発明は、前記酸素ガスを、下記(1)式で定義されるFg 値が3000を超え30000以下の条件で、吹き付けることが好ましく、また、前記酸素ガスを、下記(1)式で定義されるFg 値が30000を超える条件で、吹き付けるとさらに好ましい。なお、Fg =ρg ・vg 2 ………(1) 、ここで、ρg :酸素ガス密度(kg/m3 )、vg :酸素ガスの速度(m/s)である。
【0006】
【発明の実施の形態】
本発明を実施するときに用いる溶銑の予備脱珪処理装置の一例を図1に示す。溶銑1は出銑樋2を通って傾注樋3からトピードカー4へ落下する。本発明では、出銑樋2から傾注樋3へ溶銑が落下するときの落下流5へ、および/または傾注樋3からトピードカー4へ溶銑が落下するときの落下流5へ、吹き付けノズル6から酸素ガス7を吹き付ける。吹き付けられた酸素ガスは、溶銑表面あるいは溶銑中でSi、Mn、C、Feと次のような反応を起こす。
Si + 1/2O2 → (SiO2 ) ………(2)
Mn + 1/2O2 → (MnO) ………(3)
+ 1/2O2 → CO ………(4)
Fe + 1/2O2 → (FeO) ………(5)
また、(5)式で発生したFeOは、トピードカー4内に落下したのち、攪拌流に巻き込まれ、さらに、つぎの(6)、(7)、(8)の反応が起こり、脱珪、または脱炭反応が進行する。
Si + FeO → (SiO2 )+2Fe ………(6)
Mn + FeO → (MnO) + Fe ………(7)
+ FeO → CO + Fe ………(8)
これらの反応により、溶銑中のSi、Mnは低下する。
【0007】
溶銑表面で反応しない酸素ガスの一部は、発生したCOガスと反応してCO2 を生じる。残りの酸素ガスは反応に寄与しない。このようにして、発生した高温のガスは、直接耐火物に接触することがないので、耐火物に大きな損耗を引き起こさない。
従来から行われている固体酸素源のみを用いた脱珪処理では、(6)〜(8)の反応が起こるが、酸化鉄の分解反応((FeO)→Fe+O)の反応が吸熱反応であるために、溶銑温度の低下が大きくなる。さらに固体酸素源の顕熱分の溶銑温度の低下が起こる。
【0008】
一方、酸素ガスを用いた場合の(2)〜(5)は発熱反応であり、顕熱も小さいことから、溶銑温度の低下は起こらず、むしろ処理の前後で溶銑温度が上昇する。
本発明では、落下流に吹き付けるので、溶銑単位体積当たりの比表面積が大きくなり、酸素との反応界面積が増加し、脱珪量も増し、酸素の利用効率が高くなる。さらに、落下流への酸素ガスの吹き付けの強さを強くするにつれ、落下流が乱れて反応界面積が大きくなり、脱珪量が増す。
【0009】
溶銑表面の乱れの程度は、酸素ガスが溶銑表面に当たる部分における『酸素ガスの慣性力』と『溶銑の慣性力』の比、すなわち、
P=(ρg ・vg 2 )/(ρM ・vM 2 ) ………(9)
で定義されるP値で表される。ここに、ρg :酸素ガスの密度(kg/m3 )、vg :酸素ガスの速度(m/s)、ρM :溶銑の密度(kg/m3 )、vM :溶銑の速度(m/s)である。溶銑流量が一定ならば、(9)式のP値、すなわち、酸素ガス吹き付けの程度による溶銑表面の乱れは、ρg ・vg 2 の変化に依存する。そこで、Fg =ρg ・vg 2 と定義した。
【0010】
次に、溶銑流量を一定にし、溶銑の落下流に吹き付ける酸素ガスにつき、酸素流量、吹き付けノズルの形状(スリットあるいは円形)、ノズル先端と溶銑表面間の距離を変化させ、Fg 値を変えて、溶銑の脱珪量を求めた。その結果を図2に示す。脱珪量は、次の(10)式で定義する、脱珪酸素効率で評価した。
ηSi 0 (%)=〔脱珪量(%)×1000(kg/t・p)×22.4(kmol/Nm3)/28(kg/kmol)〕/酸素ガス原単位(Nm3 /t・p)………(10)
なお、ρg は、ρg =1.43(kg/Nm3 )×〔ガス温度(K)/273〕、ガス温度は100℃を用いた。vg は、ノズル吐出後の広がりにより速度分布をもつが、ここでは、ノズルの中心軸上の速度で代表した。なお、ノズルの形状によるガス速度は、文献(石垣 博:日本機械学会論文集(B編),48,433,P1692)に記載された式、
スリットノズルでは、
g =√(λ/0.158×d/x)×vg0、 λ=0.9 ………(11)
円形ノズルでは、
g =√(λ)/0.153×d/x×vg0、 λ=0.9 ………(12)
を用いて計算した。ここに、d:スリットノズルの幅(m)、または、ノズル直径(m)、x:ノズル先端〜溶銑表面間距離(m)、vg0:酸素ガスのノズル吐出速度(m/s)。
【0011】
図2から、Fg 値が3000、および30000を超えると、ηSi 0 が飛躍的に向上することがわかる。
g 値が3000を超えると、溶銑表面が乱れて液滴を生成しはじめる。このため、反応界面積が一段と大きくなり、ηSi 0 が向上する。脱珪酸素効率を高めるためには、酸素ガスの吹き付けを強くすれば良い。すなわち、Fg 値が3000を超える酸素ガスの吹き付けを行うことにより、ηSi 0 を10%以上とすることができる。
【0012】
g 値が30000を超えると、溶銑落下流全体が液滴状になる。このため、反応界面積がさらに大きくなり、ηSi 0 がさらに向上する。脱珪酸素効率をさらに高めるためには、Fg 値が30000を超える酸素ガスの吹き付けを行うのがより望ましい。
酸素ガス吹き付け方法は、とくに限定しないが、図3に示したような単孔ノズル、多孔ノズル、スリットノズルや、図4に示した落下流を囲むようなノズルで吹き付けてもよい。ノズル孔は下向きの角度に開孔していることが望ましい。その角度は30〜70°が好ましい。
【0013】
ノズルと溶銑落下流間の距離は、酸素の流量、ノズルの形状により変化させる必要があり、(1)式で定義したFg 値の設定によっても変化させる必要があるが、溶銑に有効に吹き付けるためには、0.3 〜1.0 mが好ましい。
スリットノズル、円形ノズル(多孔又は単孔)では、(11)、(12)式に示したように、吹出した酸素の速度の減衰特性が異なるため、低Fg 域ではスリットノズルが、高Fg 域では円形ノズルが好ましい。
【0014】
スリットノズルのスリット幅、長さや円形ノズルの孔数、孔径も、Fg 値の設定により決定すれば良い。
ノズルの形状は上記に限定されない。また、落下流の高さ方向にノズルを複数個設置してもよい。
いままでは、傾注樋からトピードカーへの溶銑落下流へ酸素ガスを吹き付けた例を説明したが、酸素ガスの吹き付け位置はこれに限定されるものではない。例えば、傾注樋を用いないで、出銑樋から直接トピードカー等の受銑容器へ落下する場合でも、その溶銑落下流へ酸素ガスを吹き付けてもよい。さらに、溶銑出銑樋から傾注樋への落下流へ酸素を吹き付けても、同様の効果が得られる。
【0015】
更に、本発明では、溶銑落下流に酸素ガス(気体酸素)を吹き付けることに加えて、溶銑流に固体酸素源を添加してもよい。溶銑流に添加できる固体酸素源は、酸化鉄、砂鉄、鉄鉱石粉、ミルスケール、焼結粉、焼結工場や高炉で発生する集塵ダストが好ましい。添加する時期は、高炉から出銑した溶銑を受銑容器に受けるまでの間のどの時期でもよい。すなわち、固体酸素源を溶銑中に添加したのちあるいは添加と同時に、溶銑落下流に酸素ガスを吹き付けるか、あるいは溶銑落下流に酸素ガスを吹き付けたのち、固体酸素源を溶銑中に添加してもよい。固体酸素源は、出銑樋、傾注樋あるいは受銑容器などで、脱珪剤供給ノズル10から溶銑流にインジェクションするか、上置きするか、溶銑流に効果的に供給できればどちらでもよい。しかし、15kg/t〜20kg/tを超えて投入するとスラグフォーミングが激しくなるため、それ以下の投入が望ましい。
【0016】
【実施例】
(実施例1)
図1に示した溶銑1の予備脱珪処理設備を、出銑量8000t/dの高炉の1箇所(溶銑樋と傾注樋間又は傾注樋と受銑容器間)に設置し、出銑速度:約7t/min、溶銑落下流径:約60mmの条件で脱珪処理を実施した。傾注樋と受銑容器間で酸素ガスを吹き付けた結果を表1、表2に示す。このとき、使用した酸素ガス吹き付けノズル6は、内径250mmの環状ガス管を2分割したもの1対であり、円周方向に6個のノズル孔9を有している。このノズル孔は開口径15mmで下向き60°の角度であった。
【0017】
【表1】

Figure 0003774913
【0018】
【表2】
Figure 0003774913
【0019】
実施例1、2、3は酸化鉄を用いず、酸素ガスのみで脱珪処理した例である。それぞれ、酸化鉄のみを用いた比較例1、2、3と比較すると、脱珪量(Δ〔Si%〕)は実施例の方が若干小さいが、溶銑の温度低下量(ΔT(℃))は実施例の方が少ない。
実施例4、5、6は出銑樋で酸化鉄を投入するとともに、傾注樋からの溶銑落下流に酸素ガスを吹き付けたものである。この場合、比較例1、2、3に比べ温度低下量が小さく、かつ脱珪量、脱珪酸素効率が大きくなった。
【0020】
実施例7、8では酸素ガスの吹き付けノズルを落下流の上下2段に使用した場合であり、下段の吹き付けノズルからも酸素ガスを吹き付けることにより吹き付けノズル1個の場合よりも脱珪量が多い。
なお、酸化鉄を15kg/tを超えて投入した場合、トピードカー内でのスラグフォーミングが大きくなり、受銑量を下げざるを得なかった。また、出銑樋あるいは傾注樋において溶銑上に酸素ガスを吹き付けた場合、樋耐火物の損耗が激しく1タップ中、操業を続けることが困難であった。
【0021】
(実施例2)
ノズルを形状を変化させ、酸素ガスの流速を変えて、他の条件は実施例1と同じ条件で脱珪処理した。結果を表3、表4に示す。
【0022】
【表3】
Figure 0003774913
【0023】
【表4】
Figure 0003774913
【0024】
酸素ガス流量20Nm3 として、ノズル先端〜溶銑落下流間の距離を変化し、実施例9、10、11、13、20は、吹き付けノズルがスリット型でスリット幅の異なるものを使用し、実施例12、14〜19、21は、吹き付けノズルを円形孔とし、孔径を変化したノズルを使用した例であり、Fg 値が変化している。Fg 値が3000未満の酸素ガス吹き付けの脱珪酸素効率は、従来例に比べ高いが、3000以上の例に比べ低い。Fg 値が3000を超える範囲では、脱珪酸素効率も10%以上とたかく、溶銑温度低下量も少ない。さらに、Fg 値が30000を超えると、脱珪酸素効率も15%以上となり、脱珪酸素効率の向上が著しい。
【0025】
(実施例3)
酸素ガスを溶銑樋と傾注樋間で吹き付け、その上流の溶銑樋で酸化鉄を供給した場合(実施例22)、酸素ガス吹き付け条件は実施例22と同じで、酸化鉄を下流の傾注樋で供給した場合(実施例23)の結果を表4に示す。出銑速度は実施例1と同じである。いずれの場合にも、酸素ガス使用により、酸化鉄のみを使用した場合(比較例3参照)よりも脱珪量が増加し、温度低下も小さい。
【0026】
【発明の効果】
本発明では、溶銑落下流に酸素ガスを吹き付けて予備脱珪処理することにより、耐火物を異常に損耗させることなく、溶銑温度低下量を小さく抑え、脱珪酸素効率が向上し、効率的に脱珪処理することができるようになった。これにより、次工程の脱燐処理において、到達P濃度の低減、脱燐剤の節約が可能となる。
【図面の簡単な説明】
【図1】本発明を実施するときに用いる溶銑の予備脱珪装置の一例を示す概略説明図である。
【図2】酸素ガスを溶銑落下流に吹き付けたときの脱珪酸素効率におよぼすFg 値の影響を示す図である。
【図3】本発明に用いる酸素ガスの吹き付けノズルで、(a)は単孔ノズル、(b)は多孔ノズル、(c)スリットノズルの1例を示す模式図である。
【図4】(a)は、酸素ガスの吹き付けノズル(円形孔ノズル)の平面図であり、(b)は、その酸素ガス吹き付けノズルの断面図である。
【符号の説明】
1 溶銑
2 出銑樋
3 傾注樋
4 トピードカー
5 落下流
6 吹き付けノズル
7 酸素ガス
8 スラグ
9 ノズル孔
10 脱珪剤(固体酸素源)供給ノズル[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pretreatment method for hot metal discharged from a blast furnace, and more particularly, to a desiliconization method for hot metal.
[0002]
[Prior art]
The hot metal discharged from the blast furnace is subjected to various preliminary treatments according to the composition of the components and the type of steel produced. Among the elements contained in the hot metal, there are elements that greatly affect the refining efficiency and steel quality in the next steelmaking process, and there are elements that need to be removed in the hot metal stage. In particular, the desiliconization treatment is essential in order to increase the efficiency of the subsequent dephosphorization treatment. In the dephosphorization process and the desulfurization process, a flux corresponding to the purpose is blown into the hot metal, so that the temperature is lowered by the process. If the hot metal temperature before the start of treatment is low, the temperature reaches the lower limit before the dephosphorization or desulfurization treatment is completed, and sufficient treatment cannot be performed. Therefore, the hot metal temperature is important as well as desiliconization. The desiliconization treatment is usually performed in a blast furnace cast floor. For example, iron and steel, 71 (1985), S915. Shows a desiliconization method in which iron oxide is projected onto hot metal flowing through the iron. Furthermore, iron and steel, 68 (1982), S949. Describes a desiliconization method in which iron oxide is introduced onto the hot metal flowing through the hot metal and further reacted using the natural fall energy of the hot metal.
[0003]
However, in these methods, since iron oxide is used, there is a problem that slag forming is intense, iron oxide exceeding a necessary amount cannot be supplied to the hot metal, and the amount of desiliconization becomes insufficient. Further, there has been a problem that the hot metal temperature is greatly lowered by the heat of decomposition of iron oxide.
Japanese Examined Patent Publication No. 58-27322 discloses a method of adding silicon to the hot metal flowing down the blast furnace foundry and simultaneously blowing gaseous oxygen to desiliconize. Further, Japanese Patent Laid-Open No. 55-154516 discloses a method of installing a smelting tank on a blast furnace casting floor, and desiliconizing by blowing air or oxygen together with a desiliconizing agent in the smelting tank. However, in these methods, gaseous oxygen is blown in a tank provided on the brewery or on the casting floor, so that oxygen reaches the bottom of the vessel and the slag, and the CO gas and oxygen generated on the hot metal exothermally react. There was also a problem that the amount of desiliconization per sprayed oxygen amount was not high.
[0004]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to provide an efficient hot metal pre-desiliconization process that does not give particularly large wear to the refractory and has a small decrease in hot metal temperature.
[0005]
[Means for Solving the Problems]
The present invention is a preliminary desiliconization method for hot metal, characterized in that oxygen gas is blown into the hot metal falling flow until the hot metal discharged from the blast furnace is received in the receiving vessel. The hot metal pre-desiliconization process, in which oxygen gas is blown into the hot metal falling flow after the solid oxygen source is added to the hot metal before or after the hot metal discharged from the hot metal is received in the receiving vessel In addition, after the hot metal discharged from the blast furnace is received in the receiving vessel, oxygen gas is blown into the hot metal falling flow, and then a solid oxygen source is added to the hot metal. This is a preliminary desiliconization method. Further, the present invention, the oxygen gas, by the following (1) 30000 following conditions exceed F g value 3000 defined by the equation, it is preferable to blow, also the oxygen gas, the following equation (1) More preferably, spraying is performed under the condition that the F g value defined by the above exceeds 30000. Note that F g = ρ g · v g 2 (1), where ρ g : oxygen gas density (kg / m 3 ) and v g : oxygen gas velocity (m / s).
[0006]
DETAILED DESCRIPTION OF THE INVENTION
An example of the hot metal preliminary desiliconization processing apparatus used when practicing the present invention is shown in FIG. The hot metal 1 falls from the tilting iron 3 to the topped car 4 through the tap 2. In the present invention, oxygen is applied from the spray nozzle 6 to the falling flow 5 when the hot metal falls from the feed 2 to the tilting iron 3 and / or to the falling flow 5 when the hot metal falls from the tilting iron 3 to the topped car 4. Gas 7 is sprayed. The sprayed oxygen gas causes the following reaction with Si, Mn, C, and Fe in the hot metal surface or hot metal.
Si + 1 / 2O 2 → (SiO 2 ) (2)
Mn + 1 / 2O 2 → (MnO) ……… (3)
C + 1 / 2O 2 → CO ……… (4)
Fe + 1 / 2O 2 → (FeO) ……… (5)
Further, the FeO generated in the formula (5) falls into the topped car 4 and is then caught in the stirring flow, and further, the following reactions (6), (7) and (8) occur, and desiliconization, or Decarburization reaction proceeds.
Si + FeO → (SiO 2 ) + 2Fe (6)
Mn + FeO → (MnO) + Fe ……… (7)
C + FeO → CO + Fe ......... (8)
By these reactions, Si and Mn in the hot metal are lowered.
[0007]
Part of the oxygen gas that does not react on the hot metal surface reacts with the generated CO gas to produce CO 2 . The remaining oxygen gas does not contribute to the reaction. In this way, the generated high-temperature gas does not directly contact the refractory, and thus does not cause great wear on the refractory.
In the conventional desiliconization process using only a solid oxygen source, the reactions (6) to (8) occur, but the decomposition reaction of iron oxide ((FeO) → Fe + O) is an endothermic reaction. For this reason, the decrease in the hot metal temperature is increased. Further, the hot metal temperature of the sensible heat of the solid oxygen source is lowered.
[0008]
On the other hand, when oxygen gas is used, (2) to (5) are exothermic reactions and sensible heat is small, so the hot metal temperature does not decrease, but rather the hot metal temperature rises before and after the treatment.
In the present invention, since the spray is applied to the falling flow, the specific surface area per unit volume of hot metal is increased, the reaction interface area with oxygen is increased, the amount of silicon removal is increased, and the utilization efficiency of oxygen is increased. Further, as the strength of blowing oxygen gas to the falling flow is increased, the falling flow is disturbed, the reaction interface area is increased, and the amount of desiliconization is increased.
[0009]
The degree of turbulence of the hot metal surface is the ratio of the “inertial force of oxygen gas” and the “inertial force of hot metal” at the portion where the oxygen gas hits the hot metal surface, that is,
P = (ρ g · v g 2 ) / (ρ M · v M 2 ) (9)
It is represented by a P value defined by Where ρ g : oxygen gas density (kg / m 3 ), v g : oxygen gas velocity (m / s), ρ M : hot metal density (kg / m 3 ), v M : hot metal velocity ( m / s). If the hot metal flow rate is constant, the P value of the equation (9), that is, the disturbance of the hot metal surface due to the degree of oxygen gas spraying, depends on the change in ρ g · v g 2 . Therefore, it was defined as F g = ρ g · v g 2 .
[0010]
Next, with the hot metal flow rate kept constant, for the oxygen gas blown to the hot metal falling flow, the oxygen flow rate, the shape of the spray nozzle (slit or circular), the distance between the nozzle tip and the hot metal surface were changed, and the F g value was changed. The amount of silicon removal from the hot metal was determined. The result is shown in FIG. The amount of silicon removal was evaluated by the silicon removal oxygen efficiency defined by the following equation (10).
η Si 0 (%) = [Desiliconization amount (%) × 1000 (kg / t · p) × 22.4 (kmol / Nm 3 ) / 28 (kg / kmol)] / oxygen gas basic unit (Nm 3 / (t ・ p) ……… (10)
Note that ρ g was ρ g = 1.43 (kg / Nm 3 ) × [gas temperature (K) / 273], and the gas temperature was 100 ° C. v g is with velocity distribution by spreading after the nozzle discharge, here, was represented by the rate on the central axis of the nozzle. The gas velocity depending on the shape of the nozzle is expressed by the equation described in the literature (Hiroshi Ishigaki: Transactions of the Japan Society of Mechanical Engineers (B), 48, 433, P1692),
For slit nozzles,
v g = √ (λ / 0.158 × d / x) × v g0 , λ = 0.9 (11)
For circular nozzles,
v g = √ (λ) /0.153×d/x×v g0 , λ = 0.9 (12)
Calculated using Here, d: width (m) of slit nozzle or nozzle diameter (m), x: distance between nozzle tip and hot metal surface (m), v g0 : nozzle discharge speed (m / s) of oxygen gas.
[0011]
From FIG. 2, it can be seen that when the F g value exceeds 3000 and 30000, η Si 0 is dramatically improved.
When the F g value exceeds 3000, the hot metal surface is disturbed and droplets start to be generated. For this reason, the reaction interface area is further increased, and η Si 0 is improved. In order to increase the desiliconization oxygen efficiency, the oxygen gas should be blown stronger. That is, η Si 0 can be made 10% or more by spraying oxygen gas having an F g value exceeding 3000.
[0012]
When the F g value exceeds 30000, the entire hot metal falling flow becomes droplets. For this reason, the reaction interface area is further increased, and η Si 0 is further improved. To further enhance the removal silicate oxygen efficiency is, F g value is more desirable to carry out the blowing of the oxygen gas in excess of 30,000.
The oxygen gas spraying method is not particularly limited, but it may be sprayed with a single-hole nozzle, a multi-hole nozzle, a slit nozzle as shown in FIG. 3, or a nozzle surrounding the falling flow as shown in FIG. The nozzle hole is preferably opened at a downward angle. The angle is preferably 30 to 70 °.
[0013]
The distance between the nozzle and hot metal falling flow needs to be changed according to the flow rate of oxygen and the shape of the nozzle, and also needs to be changed by setting the Fg value defined by equation (1), but it is effectively sprayed onto the hot metal. For this purpose, 0.3 to 1.0 m is preferable.
In the slit nozzle, circular nozzle (porous or single-hole), (11), (12) as indicated formula, because the attenuation characteristics of the blowing oxygen speeds are different, the slit nozzle in a low F g gamut, high F A circular nozzle is preferred in the g region.
[0014]
The slit width and length of the slit nozzle, the number of holes of the circular nozzle, and the hole diameter may be determined by setting the Fg value.
The shape of the nozzle is not limited to the above. A plurality of nozzles may be installed in the height direction of the falling flow.
Although the example which sprayed oxygen gas to the hot metal falling flow from a tilting iron to a topped car was demonstrated as it is, the spraying position of oxygen gas is not limited to this. For example, oxygen gas may be sprayed onto the molten iron falling flow even when the steel is dropped directly from a tap into a receiving container such as a topped car without using an inclined pouring rod. Furthermore, the same effect can be obtained even when oxygen is blown to the falling flow from the molten iron outflow to the tilting iron.
[0015]
Furthermore, in the present invention, in addition to blowing oxygen gas (gaseous oxygen) to the hot metal falling flow, a solid oxygen source may be added to the hot metal flow. The solid oxygen source that can be added to the hot metal flow is preferably iron oxide, sand iron, iron ore powder, mill scale, sintered powder, or dust collection dust generated in a sintering factory or blast furnace. The timing of addition may be any timing until the hot metal discharged from the blast furnace is received in the receiving vessel. That is, after the solid oxygen source is added to the hot metal or simultaneously with the addition, the oxygen gas is blown into the hot metal falling flow, or the oxygen gas is blown into the hot metal falling flow and then the solid oxygen source is added to the hot metal. Good. The solid oxygen source may be any one as long as it can be injected into the molten iron flow from the desiliconizing agent supply nozzle 10, placed on top, or effectively supplied to the molten iron flow in a discharge, decanting or receiving vessel. However, if the amount exceeds 15 kg / t to 20 kg / t, the slag forming becomes intense, so it is desirable that the amount be less than that.
[0016]
【Example】
Example 1
The pre-silicon removal treatment equipment for hot metal 1 shown in FIG. 1 is installed at one location (between hot metal and tilting iron or between tilting iron and receiving vessel) of the blast furnace with an output amount of 8000 t / d. The desiliconization treatment was performed under conditions of about 7 t / min and hot metal falling flow diameter: about 60 mm. Tables 1 and 2 show the results of blowing oxygen gas between the decanting rod and the receiving vessel. At this time, the used oxygen gas spray nozzle 6 is a pair of two annular gas pipes having an inner diameter of 250 mm and has six nozzle holes 9 in the circumferential direction. This nozzle hole had an opening diameter of 15 mm and a downward angle of 60 °.
[0017]
[Table 1]
Figure 0003774913
[0018]
[Table 2]
Figure 0003774913
[0019]
Examples 1, 2, and 3 are examples of desiliconization treatment using only oxygen gas without using iron oxide. Compared with Comparative Examples 1, 2, and 3 using only iron oxide, the amount of silicon removal (Δ [Si%]) was slightly smaller in the Examples, but the temperature drop of molten iron (ΔT (° C.)) There are fewer examples.
In Examples 4, 5, and 6, iron oxide was introduced at the output, and oxygen gas was sprayed onto the hot metal falling flow from the tilting iron. In this case, the amount of temperature decrease was smaller than that of Comparative Examples 1, 2, and 3, and the amount of silicon removal and the efficiency of silicon removal oxygen were increased.
[0020]
In Examples 7 and 8, the oxygen gas spray nozzles are used in the upper and lower two stages of the falling flow, and the amount of desiliconization is larger than in the case of one spray nozzle by spraying oxygen gas from the lower spray nozzle. .
When iron oxide was added at a rate exceeding 15 kg / t, slag forming in the topped car was increased, and the amount of received metal had to be reduced. In addition, when oxygen gas was sprayed onto the hot metal in the outflow or decanting operation, the refractory material was so worn that it was difficult to continue the operation during one tap.
[0021]
(Example 2)
The shape of the nozzle was changed and the flow rate of oxygen gas was changed, and the other conditions were desiliconized under the same conditions as in Example 1. The results are shown in Tables 3 and 4.
[0022]
[Table 3]
Figure 0003774913
[0023]
[Table 4]
Figure 0003774913
[0024]
As the oxygen gas flow rate of 20 Nm 3 , the distance between the nozzle tip and the hot metal falling flow was changed. In Examples 9, 10, 11, 13, and 20, the spray nozzle was a slit type and a slit having a different slit width was used. Nos. 12, 14 to 19, and 21 are examples in which the spray nozzle is a circular hole and a nozzle having a changed hole diameter is used, and the F g value is changed. The desiliconization oxygen efficiency of blowing oxygen gas with an F g value of less than 3000 is higher than that of the conventional example, but is lower than that of the example of 3000 or more. In the range where the Fg value exceeds 3000, the desiliconization oxygen efficiency is as high as 10% or more, and the hot metal temperature decrease is small. Further, when the F g value exceeds 30000, the desiliconization oxygen efficiency becomes 15% or more, and the desiliconization oxygen efficiency is remarkably improved.
[0025]
Example 3
When oxygen gas is sprayed between the hot metal and the tilting iron and iron oxide is supplied with the hot metal upstream of it (Example 22), the oxygen gas spraying conditions are the same as in Example 22, and the iron oxide is added at the downstream tilting iron. The results when supplied (Example 23) are shown in Table 4. The output speed is the same as in Example 1. In any case, the use of oxygen gas increases the amount of silicon removal and the temperature decrease less than when only iron oxide is used (see Comparative Example 3).
[0026]
【The invention's effect】
In the present invention, by performing preliminary desiliconization treatment by blowing oxygen gas to the hot metal falling flow, the amount of decrease in hot metal temperature is suppressed and the desiliconization oxygen efficiency is improved efficiently without causing the refractory to wear abnormally. It became possible to desiliconize. This makes it possible to reduce the ultimate P concentration and save the dephosphorizing agent in the dephosphorization process in the next step.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing an example of a hot metal preliminary desiliconization apparatus used when practicing the present invention.
FIG. 2 is a graph showing the influence of F g value on the desiliconization oxygen efficiency when oxygen gas is blown onto the hot metal falling flow.
FIG. 3 is a schematic view showing an example of an oxygen gas spray nozzle used in the present invention, in which (a) is a single-hole nozzle, (b) is a multi-hole nozzle, and (c) a slit nozzle.
4A is a plan view of an oxygen gas spray nozzle (circular hole nozzle), and FIG. 4B is a cross-sectional view of the oxygen gas spray nozzle.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Hot metal 2 Outlet 3 Tilting iron 4 Topped car 5 Falling flow 6 Spray nozzle 7 Oxygen gas 8 Slag 9 Nozzle hole
10 Desiliconizer (solid oxygen source) supply nozzle

Claims (5)

高炉から出銑した溶銑を受銑容器に受けるまでの間に、溶銑落下流に酸素ガスを吹き付けることを特徴とする溶銑の予備脱珪処理方法。A pre-desiliconization method for hot metal, characterized in that oxygen gas is blown into the hot metal falling stream before the hot metal discharged from the blast furnace is received in the receiving vessel. 高炉から出銑した溶銑を受銑容器に受けるまでの間に、固体酸素源を溶銑中に添加したのちあるいは添加と同時に、溶銑落下流に酸素ガスを吹き付けることを特徴とする溶銑の予備脱珪処理方法。Pre-desiliconization of hot metal, characterized in that oxygen gas is blown into the hot metal falling flow after the solid oxygen source is added to the hot metal before or after the hot metal discharged from the blast furnace is received in the receiving vessel. Processing method. 高炉から出銑した溶銑を受銑容器に受けるまでの間に、溶銑落下流に酸素ガスを吹き付けたのち、固体酸素源を溶銑中に添加することを特徴とする溶銑の予備脱珪処理方法。A method for pre-desiliconization treatment of hot metal, which comprises adding a solid oxygen source into the hot metal after spraying oxygen gas into the hot metal falling flow before the hot metal discharged from the blast furnace is received in the receiving vessel. 前記酸素ガスを、下記(1)式で定義されるFg 値が3000を超え30000以下の条件で、吹き付けることを特徴とする請求項1または請求項2または請求項3記載の溶銑の予備脱珪処理方法。

g =ρg ・vg 2 ……………(1)
ここで、ρg :酸素ガス密度(kg/m3
g :酸素ガスの速度(m/s)
4. The hot metal preliminary desorption according to claim 1, wherein the oxygen gas is sprayed under a condition that the F g value defined by the following formula (1) is more than 3000 and 30000 or less. Silica treatment method.
Note F g = ρ g · v g 2 …………… (1)
Where ρ g : oxygen gas density (kg / m 3 )
v g : velocity of oxygen gas (m / s)
前記酸素ガスを、下記(1)式で定義されるFg 値が30000を超える条件で、吹き付けることを特徴とする請求項1または請求項2または請求項3記載の溶銑の予備脱珪処理方法。

g =ρg ・vg 2 ……………(1)
ここで、ρg :酸素ガス密度(kg/m3
g :酸素ガスの速度(m/s)
4. The hot metal pre-desiliconization method according to claim 1, wherein the oxygen gas is sprayed under a condition that an F g value defined by the following formula (1) exceeds 30000: 5. .
Note F g = ρ g · v g 2 …………… (1)
Where ρ g : oxygen gas density (kg / m 3 )
v g : velocity of oxygen gas (m / s)
JP24329795A 1994-10-27 1995-09-21 Hot silicon pre-desiliconization method Expired - Fee Related JP3774913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24329795A JP3774913B2 (en) 1994-10-27 1995-09-21 Hot silicon pre-desiliconization method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26412994 1994-10-27
JP6-264129 1994-10-27
JP24329795A JP3774913B2 (en) 1994-10-27 1995-09-21 Hot silicon pre-desiliconization method

Publications (2)

Publication Number Publication Date
JPH08176633A JPH08176633A (en) 1996-07-09
JP3774913B2 true JP3774913B2 (en) 2006-05-17

Family

ID=26536192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24329795A Expired - Fee Related JP3774913B2 (en) 1994-10-27 1995-09-21 Hot silicon pre-desiliconization method

Country Status (1)

Country Link
JP (1) JP3774913B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5691198B2 (en) * 2010-03-05 2015-04-01 Jfeスチール株式会社 Hot metal desiliconization method

Also Published As

Publication number Publication date
JPH08176633A (en) 1996-07-09

Similar Documents

Publication Publication Date Title
KR101529843B1 (en) Converter steelmaking method
HU215723B (en) Process for producing metal and/or metal alloys in melt reducing ladle and ladle for this process
AU695201B2 (en) Process for vacuum refining of molten steel
KR101018535B1 (en) Refining ferroalloys
JP2006348331A (en) Top-blowing lance for refining molten metal, and blowing method for molten metal
EP0012537B1 (en) A water-cooled lance and the use thereof in the top blowing of metal melts
JP2020125541A (en) Converter refining method
JP4388482B2 (en) Slag processing method
JP3774913B2 (en) Hot silicon pre-desiliconization method
JP2006249569A (en) Method for producing molten iron having low phosphorus
JP6806288B2 (en) Steel manufacturing method
JP3794048B2 (en) Hot metal desiliconization method
JP3333339B2 (en) Converter steelmaking method for recycling decarburized slag
JP4419594B2 (en) Hot metal refining method
JP4686880B2 (en) Hot phosphorus dephosphorization method
US3800630A (en) Procedure and installation for continuous steel making
JP3733013B2 (en) Hot metal dephosphorization method
JP3668172B2 (en) Hot metal refining method
JPH10265817A (en) Method for desiliconizing molten iron
JP3680626B2 (en) Hot metal desiliconization method
JP4333343B2 (en) Hot metal desiliconization sludge casting method and hot metal desiliconization method using the same
JP3225747B2 (en) Vacuum degassing of molten steel
JPS62196314A (en) Operating method for converter
JPH07310108A (en) Pretreatment of molten iron
JPH11269525A (en) Desiliconization of molten iron by addition of desiliconizing agent

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees