JP3772530B2 - Austenitic stainless steel with good surface properties and excellent corrosion resistance - Google Patents

Austenitic stainless steel with good surface properties and excellent corrosion resistance Download PDF

Info

Publication number
JP3772530B2
JP3772530B2 JP17188198A JP17188198A JP3772530B2 JP 3772530 B2 JP3772530 B2 JP 3772530B2 JP 17188198 A JP17188198 A JP 17188198A JP 17188198 A JP17188198 A JP 17188198A JP 3772530 B2 JP3772530 B2 JP 3772530B2
Authority
JP
Japan
Prior art keywords
mass
corrosion resistance
less
oxide
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17188198A
Other languages
Japanese (ja)
Other versions
JP2000001759A (en
Inventor
康 加藤
工 宇城
佐藤  進
康夫 岸本
祐司 三木
健一 反町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP17188198A priority Critical patent/JP3772530B2/en
Publication of JP2000001759A publication Critical patent/JP2000001759A/en
Application granted granted Critical
Publication of JP3772530B2 publication Critical patent/JP3772530B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、表面性状が良好で耐食性に優れたオーステナイト系ステンレス鋼に関し、とくに鋼中に含まれる酸化物系介在物の組成を改質することによって諸特性の有利な改善を図ったものである。
【0002】
【従来の技術】
オーステナイト系ステンレス鋼は、高温強度が高く、熱間での延性が乏しいこと、さらに耐酸化性がフェライト系ステンレス鋼に比べると劣っていることから、熱延工程のスラブ加熱時に粒界酸化が生じ易く、その部分で熱間加工時に割れが発生し易いというところに問題があった。
【0003】
上記の問題に対しては、AlやTi等、酸素との化学的親和力の大きい元素の積極的な添加が有効であることが知られている。なお、一般に、溶鋼へのTi添加は、その歩留り向上を目的として、予めAlで脱酸して実施される。
しかしながら、AlやTiを積極的に添加すると、溶製後の連続鋳造時にこれら元素の酸化物が浸漬ノズルの内壁に付着して詰まりが発生するという、製造上、大きな問題があった。
【0004】
従って、浸漬ノズルの閉塞防止策については、従来から種々の提案がなされていて、例えば特開平8−144021号公報や特開平8−260106号公報には、酸化物系介在物を Al2O3−TiO2−CaO系とし、低融点化することによって、ノズル詰まりを防止する技術が開示されている。
しかしながら、この技術では、介在物としてCaSが生成し易く、このCaSが起点となって錆が発生し易いため、耐食性が劣化するという問題があり、低S化が必要となる。
しかも、基本的にAl脱酸技術であるため、冷延板においてヘゲ状の表面欠陥が免れ得ないという根本的な問題を残していた。
【0005】
また、脱酸生成物である Al2O3は、溶製段階で凝集・クラスター化するため、これが溶鋼中に含まれていると、上記したようなノズル閉塞を招くだけでなく、製品板表面に圧延方向に沿ったへげ状欠陥が発生するという問題があった。
この問題に対して、特開平4−99151 号公報では、Tiを添加したフェライト系ステンレス鋼において、Al量の厳しい制限(≦0.002 mass%)と酸素量の制限(≦0.005 mass%)によって、冷延板の表面品質を向上させる技術を提案している。
この技術によれば、酸素量を規制し Al2O3の生成を抑制しているため、Al2O3 が凝集・クラスター化して発生するヘゲ状の表面欠陥は著しく低減するものの、TiO2起因のヘゲ状欠陥が発生するという問題があった。
【0006】
【発明が解決しようとする課題】
この発明は、上記の実情に鑑み開発されたもので、上述したような従来の問題を全て解決した、表面性状が良好で耐食性に優れたオーステナイト系ステンレス鋼を提案することを目的とする。
すなわち、この発明における課題は次のとおりである。
(1) 製造時の連続鋳造時にノズル詰まりが無く、製造性がよいこと。
(2) ヘゲ状表面欠陥がなく表面性状に優れること。
(3) 熱延時の割れに伴うへげ状欠陥がないこと。
(4) 耐食性に優れること。
【0007】
【課題を解決するための手段】
さて、発明者らは、上記の目的を達成すべく、鋭意研究を重ねた結果、鋼材の成分組成を適切に調整すると共に、鋼中に含まれる酸化物系介在物の組成を適正に改質することが、所期した目的の達成に関し極めて有効であること、また酸化物系介在物を所望組成に安定して改質するには、鋼成分のうち脱酸剤として作用する成分の添加順序が極めて重要であることの知見を得た。
この発明は、上記の知見に立脚するものである。
【0008】
すなわち、この発明の要旨構成は次のとおりである。
1.C:0.15wt%以下、 Si:1.0 wt%以下、 Mn:2.0 wt%以下、
Cr:15〜30wt%、 Ni:5〜30wt%、 P:0.05wt%以下、
S:0.015 wt%以下、 N:0.15wt%以下、 Al:0.005 wt%以下、
O:0.01wt%以下、 Ti:0.015 〜0.4 wt%、Ca:0.0005〜0.0050wt%
を含有し、残部はFe および不可避的不純物の組成になり、鋼中の脱酸生成物に起因した酸化物系介在物の組成が、Ti酸化物:20〜90wt%、 Al2O3:50wt%以下およびCaO:5〜50wt%の範囲を満足することを特徴とする表面性状が良好で耐食性に優れたオーステナイト系ステンレス鋼。
【0009】
2.上記1において、鋼組成が、さらに
Mo:0.05〜6.0 mass
含有する組成になることを特徴とする表面性状が良好で耐食性に優れたオーステナイト系ステンレス鋼。
【0010】
3.上記1または2において、鋼組成が、さらに
Nb:0.01〜0.08mass%、 V:0.01〜0.1 mass%、 B:0.0002〜0.0030mass%
のうちから選んだ1種または2種以上を含有する組成になることを特徴とする表面性状が良好で耐食性に優れたオーステナイト系ステンレス鋼。
【0011】
【発明の実施の形態】
以下、この発明の基礎となった実験結果について説明する。
実験1
C:0.022 〜0.091 mass%、Si:0.45〜0.86mass%、Mn:0.66〜1.22mass%、Cr:18.2〜18.6mass%、Ni:8.3 〜8.8 mass%、P:0.021 〜0.037 mass%、S:0.003 〜0.011 mass%、N:0.025 〜0.041 mass%、O:0.0037〜0.0076mass%、Ti:0.021 〜0.041 mass%、Ca:0.0006〜0.0022mass%の成分範囲で、Al量を0.0007mass%から 0.021mass%まで変化させた鋼を溶製し、連続鋳造後(鋳片サイズ:200 mm厚×1240mm幅)、鋳片を手入れすることなく熱間圧延した。熱間圧延は、スラブ加熱条件:1230℃−50分、粗圧延7パス、粗圧延仕上げ温度:1060〜1120℃、粗圧延仕上げ厚:28mm、仕上げ(7スタンド)圧延機出側温度:900 〜1060℃、仕上げ厚:3mm、コイル巻き取り温度:590 〜1000℃、で行った。
【0012】
ついで、熱延コイルを1100℃で連続焼鈍したのち、酸洗を施してから、コイル全長にわたって表面観察を行い、へげ状欠陥の単位面積当たりの平均個数を求めた。
得られた結果を、鋼中Al量との関係で、図1に示す。なお、観察されたへげ状欠陥はいずれも幅が 0.4〜3.0 mm程度、長さは30〜500mm 程度であった。
図1から明らかなように、Al量が 0.005mass%を超えるとへげ状欠陥が発生し始めることが判る。
これらのヘゲ状欠陥部を分析したところ Al2O3が検出された。従って、かようなヘゲ状欠陥は、鋳込み時に生成した脱酸生成物である Al2O3が凝集し、熱延時に圧延方向に分断されてできたものと考えられる。
【0013】
実験2
C:0.022 〜0.091 mass%、Si:0.45〜0.86mass%、Mn:0.66〜1.22mass%、Cr:18.2〜18.6mass%、Ni:8.3 〜8.7 mass%、P:0.021 〜0.037 mass%、S:0.003 〜0.011 mass%、N:0.025 〜0.041 mass%、O:0.0037〜0.0076mass%、Ti:0.021 〜0.041 mass%、Ca:0.0006〜0.0022mass%の成分範囲で、Al量を0.0007mass%から0.021 mass%まで変化させた鋼を溶製し、連続鋳造後(鋳片サイズ:200mm 厚×1240mm幅)、鋳片を手入れすることなく熱間圧延した。熱間圧延は、スラブ加熱条件:1260℃−50分、粗圧延7パス、粗圧延仕上げ温度:1060〜1120℃、粗圧延仕上げ厚:28mm、仕上げ(7スタンド)圧延機出側温度:900 〜1060℃、仕上げ厚:3mm 、コイル巻き取り温度:590 〜1000℃、で行った。
得られた熱延コイルを、1100℃で連続焼鈍し、酸洗後、冷間圧延により板厚:0.8 mmに仕上げたのち、1080〜1130℃で連続焼鈍後、酸洗して、冷延焼鈍板とした。
【0014】
かくして得られた冷延焼鈍板の全長にわたって表面観察を行い、へげ状欠陥の単位面積当たりの平均個数を求めた。
また、得られた冷延焼鈍板に存在する酸化物系介在物の定量をブローム法によって行った。
得られた結果を、介在物中の Al2O3量で整理して図2に示す。
同図に示したとおり、酸化物系介在物中の Al2O3量が50mass%を超えるとヘゲ状欠陥が急激に発生し始めることが判る。
これに対し、 Al2O3量が50mass%以下ではヘゲ状欠陥の発生は少なく、特に Al2O3量が20mass%以下の場合には、ヘゲ状欠陥の発生はほとんど認められなかった。なお、観察されたへげ状欠陥はいずれも、幅が0.2 〜2.0 mm程度、長さは80〜1000mm程度であった。
【0015】
実験3
C:0.022 〜0.091 mass%、Si:0.45〜0.86mass%、Mn:0.66〜1.22mass%、Cr:18.2〜18.6mass%、Ni:8.3 〜8.8 mass%、P:0.021 〜0.037 mass%、S:0.003 〜0.011 mass%、N:0.025 〜0.041 mass%、O:0.0037〜0.0083mass%、Ti:0.015 〜0.27mass%、Ca:0.0006〜0.0022mass%の成分範囲で、Al量を0.0007mass%から0.0044mass%まで変化させた鋼を溶製し、連続鋳造後(鋳片サイズ:200mm 厚×1240mm幅)、鋳片を手入れすることなく熱間圧延した。熱間圧延は、スラブ加熱条件:1260℃−50分、粗圧延7パス、粗圧延仕上げ温度:1060〜1120℃、粗圧延仕上げ厚:28mm、仕上げ(7スタンド)圧延機出側温度:900 〜1060℃、仕上げ厚:3mm、コイル巻き取り温度:700 〜1000℃、で行った。
ついで、得られた熱延コイルを1100℃で連続焼鈍し、酸洗後、冷間圧延によって板厚:0.8 mmに仕上げたのち、1080〜1130℃で連続焼鈍後、酸洗して、冷延焼鈍板とした。
【0016】
かくして得られた冷延焼鈍板の試験片表面をエメリー#600 研磨し、塩水噴霧試験(JIS-Z-2371準拠)を50℃で4時間行い、錆の個数をカウントした。また、連続鋳造後の浸漬ノズルを回収し、ノズル閉塞率を測定した。さらに、冷延焼鈍板に存在する酸化物系介在物の定量をブローム法により行った。
得られた結果を、酸化物系介在物中のTi酸化物量で整理して図3に示す。
同図から明らかなように、介在物中のTi酸化物量が20〜90mass%の範囲にあれば、連鋳時のノズル閉塞がなく、また耐食性も良好であることが判る。
【0017】
実験4
C:0.022 〜0.091 mass%、Si:0.45〜0.86mass%、Mn:0.66〜1.22mass%、Cr:18.2〜18.6mass%、Ni:8.3 〜9.5 mass%、P:0.021 〜0.037 mass%、S:0.003 〜0.011 mass%、N:0.025 〜0.041 mass%、O:0.0037〜0.0083mass%、Ti:0.026 〜0.033 mass%、Al:0.0002〜0.0033mass%の成分範囲で、Ca量を0.0002mass%から0.0059mass%まで変化させた鋼を溶製し、連続鋳造後(鋳片サイズ:200mm 厚×1240mm幅)、鋳片を手入れすることなく熱間圧延した。熱間圧延は、スラブ加熱条件:1260℃−50分、粗圧延7パス、粗圧延仕上げ温度:1060〜1120℃、粗圧延仕上げ厚:28mm、仕上げ(7スタンド)圧延機出側温度:900 〜1060℃、仕上げ厚:3mm、コイル巻き取り温度:700 〜1000℃、で行った。
ついで、得られた熱延コイルを1100℃で連続焼鈍し、酸洗後、冷間圧延によって板厚:0.8 mmに仕上げたのち、1080〜1130℃で連続焼鈍後、酸洗して、冷延焼鈍板とした。
【0018】
かくして得られた冷延焼鈍板の試験片表面をエメリー#600 研磨し、塩水噴霧試験(JIS-Z-2371準拠)を50℃で4時間行い、錆の個数をカウントした。また、連続鋳造後の浸漬ノズルを回収し、ノズル閉塞率を測定した。さらに、冷延焼鈍板に存在する酸化物系介在物の定量をブローム法により行った。
得られた結果を、酸化物系介在物中のCaO量で整理して図4に示す。
同図から明らかなように、介在物中のCaO量が5〜50mass%の範囲にあれば、連鋳時のノズル閉塞がなく、また耐食性も良好であることが判る。
【0019】
実験5
C:0.022 〜0.091 mass%、Si:0.45〜0.86mass%、Mn:0.66〜1.22mass%、Cr:18.2〜18.6mass%、Ni:8.3 〜9.5 mass%、P:0.021 〜0.037 mass%、S:0.001 〜0.021 mass%、N:0.025 〜0.041 mass%、O:0.0037〜0.0083mass%、Ti:0.026 〜0.038 mass%、Al:0.0018〜0.0033mass%の組成範囲で、しかも酸化物系介在物中のAl2O3 量が5〜20mass%の水準と55〜65mass%の水準の2水準について、Ca量を0.0002〜0.0058mass%の範囲で変化させた鋼を溶製し、連続鋳造後(鋳片サイズ:200mm 厚×1240mm幅)、鋳片を手入れすることなく熱間圧延した。熱間圧延は、スラブ加熱条件:1260℃−50分、粗圧延7パス、粗圧延仕上げ温度:1060〜1120℃、粗圧延仕上げ厚:28mm、仕上げ(7スタンド)圧延機出側温度:900 〜1060℃、仕上げ厚:3mm 、コイル巻き取り温度:700 〜1000℃、で行った。
ついで、得られた熱延コイルを1100℃で連続焼鈍し、酸洗後、冷間圧延によって板厚:0.8 mmに仕上げたのち、1080〜1130℃で連続焼鈍後、酸洗して、冷延焼鈍板とした。
【0020】
かくして得られた冷延焼鈍板の試験片表面をエメリー#600 研磨し、塩水噴霧試験(JIS-Z-2371準拠)を50℃で4時間行い、錆の個数をカウントした。ここで、発錆個数が dm2当たり5個以下の場合をOK、20個以上の場合をNGとした。
図5に、それぞれの Al2O3水準に関して行った耐食性評価結果を、S量とCa量で整理して示す。
同図に示したとおり、酸化物系介在物中の Al2O3量が50mass%以下の水準では、耐食性が良好なS、Ca範囲は広範囲であるのに対し、 Al2O3量が55〜65mass%の水準ではその範囲は非常に狭く、耐食性の面から低S化が必要不可欠であることが判る。
【0021】
以上、述べたとおり、この発明で所期した目的を達成するためには、鋼中Al量を0.005 mass%以下に抑制すると共に、酸化物系介在物の組成を Al2O3:50mass%以下、Ti酸化物:20〜90mass%およびCaO:5〜50mass%の範囲に制限することが重要である。
しかしながら、酸化物系介在物の組成を上記の範囲に制御するのは容易ではなく、介在物組成が上記の範囲になるように鋼組成を成分調整したつもりでも、介在物組成がばらつきが大きく、必ずしも所望の組成範囲におさまるわけではないことが判明した。
【0022】
そこで、発明者らは、この点について、さらに研究を重ねた結果、酸化物系介在物の組成を上記の範囲に安定して制御するためには、脱酸剤成分であるAl、TiおよびCaの添加量もさることながら、これらの成分を添加する順序が極めて重要であることが判明した。
すなわち、まず、少量のAl添加またはSi添加によって予備的脱酸を行った後、比較的多量のTiを添加してTi脱酸を行うと、Al脱酸により生成した Al2O3またはSi脱酸により生成したSiO2をTi酸化物が包むような形態のTi酸化物となり、このような形態のTi酸化物とした上で適量のCaを添加してやると、所望組成の酸化物系介在物が安定して得られることが究明されたのである。
ここに、上記のようにして得られた酸化物系介在物は、低融点であるので連続鋳造時にノズル詰まりを生じることがなく、また、その大きさは5〜20μm 程度にすぎないので製品板においてクラスター状介在物に起因した表面欠陥が発生することもない。しかも、この酸化物系介在物の周りにはCaSが生成することがないので発錆のおそれもない。
【0023】
この点、鋼の溶製に際し、脱酸剤成分の添加順序を特に考慮せずに、合金成分を同時に添加した場合、特に従来のようにAlを比較的多量に添加した場合には、Al2O3 が主体の酸化物が生成し易いため、この発明で所期したような組成の介在物とはならず、その結果、所望の効果が得られなかったものと考えられる。
また、この発明では、鋼の溶製段階で、VOD炉等を用いた強撹拌を利用するのに対し、従来は、かような溶製手段を適切に講じていなかったことも、所望の効果が得られなかった一因と考えられる。
【0024】
C:0.15mass%以下
Cは、オーステナイト安定化元素であり、安定してオーステナイト相を形成するのに必要な元素である。しかしながら、あまりに多量に含有されると延性が低下したり、耐食性の劣化を招くので、0.15mass%以下に限定した。
【0025】
Si:1.0 mass%以下
Siは、脱酸のために有用な元素であるが、強力なフェライト安定化元素でもある。従って、過剰の添加はオーステナイト相を不安定化させ、また延性の低下も招く。従って、この発明では、1.0 mass%以下で含有させるものとした。
【0026】
Mn:2.0 mass%以下
Mnは、脱酸のために有効な元素であり、またオーステナイト安定化元素でもある。しかしながら、過剰の添加は耐酸化性や耐食性の低下を招くので、2.0 mass%以下に限定した。
【0027】
Cr:15〜30mass%
Crは、耐食性を確保する上で必要不可欠な元素であり、オーステナイト系ステンレス鋼の主要合金元素である。種々な環境下での耐食性を考慮すると、15mass%以上で十分な耐食性が得られるので、下限は15mass%に限定した。一方、30mass%を超えると熱間加工性の著しい低下を招くので、上限は30mass%に定めた。
【0028】
P:0.05mass%以下
Pは、耐食性とくに耐粒界腐食性に有害な元素であり、含有量が0.05mass%を超えるとその弊害が顕著となるので、0.05mass%に制限した。
【0029】
S:0.015 mass%以下
前述したように、Sは耐食性を低下させる元素である。とりわけ、この発明のようにCa添加を行う場合には水溶性であるCaSを生じ易い。
添加するCa量にも依存するが、この発明の主眼である酸化物系介在物組成をコントロールしても、S量が 0.015mass%を超えると耐食性の劣化が生じ易くなるので、S量は 0.015mass%以下に制限した。
【0030】
N:0.15mass%以下
Nも、Cと同様、オーステナイト安定化元素であり、安定的にオーステナイト相を得るには必要な元素である。しかしながら、多量に含有すると延性の低下や耐食性の劣化を招くので、上限を0.15mass%に定めた。
【0031】
Al:0.005 mass%以下
実験1の結果からも明らかなように、冷延板表面品質の点から0.005 mass%以下にする必要がある。すなわち、含有量が 0.005mass%を超えると表面に Al2O3の凝集に起因したへげ状欠陥が生じる。
【0032】
O:0.01mass%以下
酸素は鋼中には全く固溶せず、酸化物として存在する。かかる介在物は錆や破壊の起点となり易く、特に酸素量が0.01mass%を超えるとその影響が顕著となるので、O量は0.01mass%以下に制限した。
【0033】
Ti:0.015 〜0.4 mass%
Tiは、脱酸に有用なだけでなく、熱延工程のスラブ加熱時における粒界酸化を防止して、熱延割れ起因の欠陥発生を抑制するのに有効な元素である。しかしながら、含有量が0.015 mass%に満たないとその添加効果に乏しく、一方 0.4mass%を超えると延性が低下しはじめるので、Tiは 0.015〜0.4 mass%の範囲で含有させるものとした。
【0034】
Ca:0.0005〜0.0050mass%
Caは、この発明に係る酸化物系介在物の融点を効果的に低下して、連続鋳造時におけるノズル閉塞を防止するのに極めて有効な元素であり、その効果は0.0005mass%以上で顕著であるので、下限は0.0005mass%とした。一方、多量に添加すると脱酸生成物組成をコントロールしても耐食性の劣化を招き、含有量が0.0050mass%を超えるとそのおそれが顕著になるので、上限は0.0050mass%とした。
【0035】
以上、基本成分について説明したが、この発明では、必要応じて次の元素をそれぞれ適宜添加することができる。
Mo:0.05〜6.0 mass%
Moは、耐食性の向上に非常に有効な元素であり、その効果は0.05mass%以上で顕著になるので、下限は0.05mass%とした。一方、Moは添加すればするほど耐食性は向上するが、強力なフェライト安定化元素であるだけでなく、6.0 mass%を超えると高温で脆弱な金属間化合物を生成し、靱性を劣化させるので、上限は 6.0mass%とした。
【0036】
Nb:0.01〜0.08mass%、V:0.01〜0.1 mass%、B:0.0002〜0.0030mass%
Nb、VおよびBはいずれも、結晶粒径の不均一性に起因して冷延焼鈍板表面に生成し易い縞状の模様発生を防止するのに極めて有用な元素である。その効果は、Nb:0.01mass%以上、V:0.01mass%以上、B:0.0002%以上の単独または複合添加で認められるので、下限はそれぞれ0.01mass%, 0.01mass%, 0.0002mass%に限定した。しかしながら、Nbについては0.08mass%を超えると伸びが低下しはじめ、またVについては 0.1mass%を超えると延性が低下しはじめ、さらにBについては0.0030mass%を超えると耐粒界腐食性が低下しはじめるので、それぞれ上限は0.08mass%、0.1 mass%、0.0030mass%に限定した。
【0037】
次に、この発明において、酸化物系介在物組成を前記の範囲を限定した理由について説明する。
Ti酸化物量:20〜90mass%、 Al2O3:50mass%以下、CaO:5〜50mass%
酸化物系介在物の組成を上記の範囲にしたところが、この発明の主眼技術である。
先に実験2,3,4,5で示したように、 Al2O3量を50mass%以下、より好ましくは20mass%以下とすることによって、冷延板で生成するヘゲ状表面欠陥を防止でき、さらにTi酸化物量を20〜90mass%、CaO量を5〜50mass%とすることによって、連続鋳造時におけるノズル詰まりを防止でき、しかも耐食性の劣化もない。従って、この発明では、脱酸生成物に起因した酸化物系介在物の組成について、Ti酸化物:20〜90mass%、 Al2O3:50mass%以下、CaO:5〜50mass%の範囲に限定したのである。
【0038】
なお、この発明では、鋼中の全ての介在物を、上記の組成の複合酸化物とする必要はなく、少なくとも50%、好ましくは70%以上がかような Al2O3−Ti酸化物−CaO系複合酸化物になっていれば良い。
ここに、その他に生成される酸化物としては、SiO2, MnO, FeOX およびMgO などが考えられる。
【0039】
次に、この発明の好適製造方法について説明する。
この発明では、前述したとおり、溶製段階における脱酸剤成分の添加順序が重要である。
すなわち、まず、少量のAlまたはSiを添加して予備的脱酸を行ったのち、比較的多量のTiを添加してTi脱酸を行う。このようにすると、AlまたはSi脱酸により生成した Al2O3やSiO2がTi酸化物で包まれたような形態のTi酸化物となるが、かような形態のTi酸化物の大きさは5〜20μm 程度であるので、製品板において巨大のクラスター状介在物に起因した表面欠陥を有利に防止することができる。
しかしながら、かかるTi酸化物は、溶鋼中では固相であるため、このままでは連続鋳造時に地鉄を取り込んだ形でタンディッシュのノズル内面に付着・堆積して、ノズルの閉塞を生じるおそれがある。
しかしながら、その後にCaを適量添加してやると、低融点の酸化物となり、それ故連続鋳造時におけるノズル詰まりが有利に回避されるのである。
しかも、かかる酸化物系介在物の周りにはCaSが生成することがないので発錆も併せて防止できることは前述したとおりである。
【0040】
上記のようにして、所望の鋼組成および介在物組成に調整した溶鋼は、常法に従って、鋳造、熱間圧延、冷間圧延および焼鈍処理を施して製品とされる。
ここに、好適な熱延条件、冷延条件および焼鈍条件は次のとおりである。
熱延条件
スラブ加熱温度:1050〜1260℃、粗圧延温度:900 〜1180℃、粗圧延トータル圧下率:80〜93%、仕上げ圧延温度:750 〜1000℃、仕上げ圧延出側厚さ:1.5 〜7mm、巻取り温度:400 〜850 ℃。
冷延条件
冷間圧延は、タンデムミル、クラスターミルまたはゼンジミィアーミルにより圧延できる。総圧下率は45〜95%程度が好ましい。冷間圧延−焼鈍−冷間圧延を繰り返しても良い。
焼鈍条件
仕上げ焼鈍温度:1000〜1180℃の範囲で、目的とする材質に応じて選択する。目標温度保持時間:0〜1800sの範囲で、目的とする材質に応じて選択する。
また、表面仕上げについては、2D、2B、BAおよび研磨などがある。
【0041】
【実施例】
表1に示す成分組成の溶鋼を次のようにして溶製した。
すなわち、脱炭処理後の含クロム溶鋼に対し、VOD炉にて、溶鋼撹拌下に、まず所定量のAlを添加して予備脱酸を行い、ついでTiを添加してTi脱酸を行ったのち、成分調整を行い、溶鋼を大気中に移してからCa添加を行った。
ついで、連続鋳造法にて、厚み:200 mm、幅:1000mmサイズに鋳造した。得られたスラブは手入れすることなく、次の条件で熱間圧延を行った。
スラブ加熱温度:1170〜1260℃、加熱時間:30〜90分、粗7パス、粗仕上げ厚み:25mm、粗圧延終了温度:990 〜1120℃、仕上げ(7段ミル)、仕上げ厚:3mm、FDT:800 〜1080℃、CT:700 〜1030℃。
【0042】
得られた熱延コイルを、1090〜1140℃で連続焼鈍し、酸洗後、冷間圧延により板厚:0.6 mmに仕上げたのち、1070〜1140℃で連続焼鈍後、酸洗して冷延焼鈍板とした。
かくして得られた冷延焼鈍板について、酸化物系介在物の組成、連鋳後のノズル閉塞率ならびに冷延焼鈍板表面のヘゲ欠陥個数および縞状模様発生状況について調べた結果を、表2に示す。
また、同表には、冷延焼鈍板表面をエメリー#600 研磨し、塩水噴霧試験(SST)および塩乾湿複合サイクル腐食試験(CCT)を行った後の発錆個数と発錆面積率について調査した結果も併せて示す。
表面性状については、冷延板における表面欠陥発生個数および縞状模様発生の有無で、また耐食性については、塩水噴霧試験および塩乾湿複合サイクル腐食試験における発錆個数および発錆面積率で、それぞれ評価した。
【0043】
なお、それぞれの特性評価方法は次のとおりである。
・冷延焼鈍板中の酸化物系介在物の分析
冷延焼鈍板から試験片を採取し、臭素メタノール系の溶液中で電解することによって酸化物系介在物を残査として採取したのち、酸に溶解して化学分析を行った。
・ノズル閉塞率測定法
160 トン連続鋳造後の初期径:60mmのノズルを回収し、断面を切断して最小径を測定し、((初期径−鋳込み後の最小径)/初期径)× 100(%)を閉塞率とした。
【0044】
・塩水噴霧試験(SST)
冷延焼鈍板表面をエメリー#600 研磨仕上げ後、脱脂し、JIS Z 2371に準拠した条件(50℃)で塩水噴霧試験を4h行い、発錆個数をカウントした。
・塩乾湿複合サイクル腐食試験(CCT)
冷延焼鈍板表面をエメリー#600 研磨仕上げ後、脱脂し、35℃で 3.5%NaClを0.5 時間噴霧後、1hの乾燥(60℃)および1h湿潤(40℃、相対湿度:95%以上)を1サイクルとした複合腐食試験を30サイクル実施し、発錆面積率を測定した。
【0045】
【表1】

Figure 0003772530
【0046】
【表2】
Figure 0003772530
【0047】
表2に示したとおり、この発明に従うオーステナイト系ステンレス鋼は、その溶製後の連続鋳造時においてノズル閉塞が全く生じず、また製品板においても、表面欠陥が全くなく、しかも優れた耐食性を有していた。
【0048】
【発明の効果】
かくして、この発明によれば、酸化物系介在物に起因した表面欠陥がなく、また耐食性にも優れたオーステナイト系ステンレス鋼を安定して得ることができる。
さらに、この発明のオーステナイト系ステンレス鋼は、その製造過程の連続鋳造時においてノズル閉塞が生じることもない。
【図面の簡単な説明】
【図1】 鋼中のAl量と熱延焼鈍板の表面欠陥個数との関係を示したグラフである。
【図2】 酸化物系介在物中の Al2O3濃度とヘゲ状表面欠陥個数との関係を示したグラフである。
【図3】 酸化物系介在物中のTi酸化物濃度とノズル閉塞率および発錆個数との関係を示したグラフである。
【図4】 酸化物系介在物中のCaO濃度とノズル閉塞率および発錆個数との関係を示したグラフである。
【図5】 耐食性に及ぼすS量とCa量の影響を、2つの Al2O3水準で比較して示したグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an austenitic stainless steel having good surface properties and excellent corrosion resistance, and is intended to advantageously improve various properties by modifying the composition of oxide inclusions contained in the steel. .
[0002]
[Prior art]
Austenitic stainless steel has high strength at high temperatures, poor hot ductility, and inferior oxidation resistance compared to ferritic stainless steel, so grain boundary oxidation occurs during slab heating in the hot rolling process. There was a problem in that it was easy to crack at the time of hot working.
[0003]
It is known that positive addition of an element having a large chemical affinity with oxygen such as Al and Ti is effective for the above problem. In general, Ti addition to molten steel is performed by deoxidizing with Al in advance for the purpose of improving the yield.
However, when Al or Ti is positively added, there has been a serious problem in production in which clogging occurs because oxides of these elements adhere to the inner wall of the immersion nozzle during continuous casting after melting.
[0004]
Accordingly, various proposals have been made for measures for preventing the clogging of the immersion nozzle. For example, Japanese Patent Application Laid-Open Nos. 8-144021 and 8-260106 disclose oxide inclusions as Al 2 O 3. A technique for preventing nozzle clogging by using a —TiO 2 —CaO system and lowering the melting point is disclosed.
However, in this technique, CaS is easily generated as inclusions, and since this CaS is the starting point and rust is likely to be generated, there is a problem that the corrosion resistance is deteriorated, and low S is required.
Moreover, since it is basically an Al deoxidation technique, there remains a fundamental problem that cold-rolled plates cannot avoid the shaved surface defects.
[0005]
In addition, Al 2 O 3 which is a deoxidation product is agglomerated and clustered in the melting stage, so if it is contained in the molten steel, it not only causes nozzle clogging as described above, but also the surface of the product plate. However, there is a problem that dent defects along the rolling direction occur.
In response to this problem, Japanese Patent Application Laid-Open No. 4-99151 discloses that in ferritic stainless steel to which Ti is added, cooling is caused by severe restrictions on Al content (≦ 0.002 mass%) and oxygen contents (≦ 0.005 mass%). We are proposing a technique to improve the surface quality of the sheet.
According to this technology, the amount of oxygen is restricted and the formation of Al 2 O 3 is suppressed, so that the surface defects caused by aggregation and clustering of Al 2 O 3 are remarkably reduced, but TiO 2 There was a problem that the resulting bald defects occurred.
[0006]
[Problems to be solved by the invention]
The present invention has been developed in view of the above circumstances, and an object thereof is to propose an austenitic stainless steel having excellent surface properties and excellent corrosion resistance, which has solved all the conventional problems as described above.
That is, the problems in the present invention are as follows.
(1) No clogging of nozzles during continuous casting during production, and good manufacturability.
(2) Excellent surface properties with no shaved surface defects.
(3) There should be no bald defects associated with cracking during hot rolling.
(4) Excellent corrosion resistance.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the inventors have appropriately adjusted the composition of steel components and appropriately modified the composition of oxide inclusions contained in the steel. In order to stably improve the oxide inclusions to the desired composition, the order of addition of the components acting as a deoxidizer among the steel components is very effective in achieving the intended purpose. The knowledge that is very important.
The present invention is based on the above findings.
[0008]
That is, the gist configuration of the present invention is as follows.
1. C: 0.15 wt% or less, Si: 1.0 wt% or less, Mn: 2.0 wt% or less,
Cr: 15-30 wt%, Ni: 5-30 wt%, P: 0.05 wt% or less,
S: 0.015 wt% or less, N: 0.15 wt% or less, Al: 0.005 wt% or less,
O: 0.01 wt% or less, Ti: 0.015-0.4 wt%, Ca: 0.0005-0.0050 wt%
The balance is Fe and inevitable impurities , and the composition of oxide inclusions due to deoxidation products in the steel is Ti oxide: 20 to 90 wt%, Al 2 O 3 : 50 wt % Austenitic stainless steel with good surface properties and excellent corrosion resistance, characterized by satisfying the following range:
[0009]
2. In the above 1, the steel composition is further
Mo: 0.05-6.0 mass %
Good corrosion resistance surface properties characterized by comprising a composition containing an excellent austenitic stainless steel.
[0010]
3. In the above 1 or 2, the steel composition is further
Nb: 0.01 to 0.08 mass%, V: 0.01 to 0.1 mass%, B: 0.0002 to 0.0030 mass%
An austenitic stainless steel with excellent surface properties and excellent corrosion resistance, characterized in that it has a composition containing one or more selected from among them.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the experimental results that are the basis of the present invention will be described.
Experiment 1
C: 0.022 to 0.091 mass%, Si: 0.45 to 0.86 mass%, Mn: 0.66 to 1.22 mass%, Cr: 18.2 to 18.6 mass%, Ni: 8.3 to 8.8 mass%, P: 0.021 to 0.037 mass%, S: 0.003 to 0.011 mass%, N: 0.025 to 0.041 mass%, O: 0.0037 to 0.0076 mass%, Ti: 0.021 to 0.041 mass%, Ca: 0.0006 to 0.0022 mass%, Al content from 0.0007 mass% to 0.021 Steel changed to mass% was melted, and after continuous casting (slab size: 200 mm thickness x 1240 mm width), it was hot rolled without taking care of the slab. In hot rolling, slab heating conditions: 1230 ° C-50 minutes, rough rolling 7 passes, rough rolling finishing temperature: 1060-1120 ° C, rough rolling finish thickness: 28mm, finishing (7 stands) rolling mill delivery temperature: 900- 1060 ° C., finishing thickness: 3 mm, coil winding temperature: 590 to 1000 ° C.
[0012]
Next, the hot-rolled coil was continuously annealed at 1100 ° C. and then pickled, and then the surface was observed over the entire length of the coil to determine the average number of barbed defects per unit area.
The obtained results are shown in FIG. 1 in relation to the amount of Al in steel. In addition, all of the observed bald defects had a width of about 0.4 to 3.0 mm and a length of about 30 to 500 mm.
As can be seen from FIG. 1, when the Al content exceeds 0.005 mass%, a barbed defect starts to appear.
Analysis of these shaved defects revealed Al 2 O 3 . Therefore, it is considered that such a stub-like defect was formed by agglomeration of Al 2 O 3 which is a deoxidation product generated at the time of casting and division in the rolling direction at the time of hot rolling.
[0013]
Experiment 2
C: 0.022 to 0.091 mass%, Si: 0.45 to 0.86 mass%, Mn: 0.66 to 1.22 mass%, Cr: 18.2 to 18.6 mass%, Ni: 8.3 to 8.7 mass%, P: 0.021 to 0.037 mass%, S: 0.003 to 0.011 mass%, N: 0.025 to 0.041 mass%, O: 0.0037 to 0.0076 mass%, Ti: 0.021 to 0.041 mass%, Ca: 0.0006 to 0.0022 mass%, Al content from 0.0007 mass% to 0.021 Steel changed to mass% was melted, and after continuous casting (slab size: 200 mm thickness x 1240 mm width), it was hot-rolled without taking care of the slab. For hot rolling, slab heating conditions: 1260 ° C-50 minutes, rough rolling 7 passes, rough rolling finishing temperature: 1060-1120 ° C, rough rolling finish thickness: 28mm, finishing (7 stands) rolling mill delivery temperature: 900- 1060 ° C., finishing thickness: 3 mm, coil winding temperature: 590 to 1000 ° C.
The obtained hot-rolled coil is continuously annealed at 1100 ° C, pickled, and finished to a thickness of 0.8 mm by cold rolling, then continuously annealed at 1080-1130 ° C, pickled, and then cold-rolled annealed. A board was used.
[0014]
The surface of the cold-rolled annealed plate thus obtained was observed over the entire length, and the average number of barbed defects per unit area was determined.
In addition, the oxide inclusions present in the obtained cold-rolled annealed sheet were quantified by the brom method.
The obtained results are shown in FIG. 2 organized by the amount of Al 2 O 3 in the inclusions.
As shown in the figure, it can be seen that when the amount of Al 2 O 3 in the oxide inclusion exceeds 50 mass%, the bald defects begin to occur rapidly.
On the other hand, when the Al 2 O 3 content is 50 mass% or less, the occurrence of scab-like defects is small. Especially when the Al 2 O 3 content is 20 mass% or less, almost no scab-like defects are observed. . In addition, all the observed bald defects had a width of about 0.2 to 2.0 mm and a length of about 80 to 1000 mm.
[0015]
Experiment 3
C: 0.022 to 0.091 mass%, Si: 0.45 to 0.86 mass%, Mn: 0.66 to 1.22 mass%, Cr: 18.2 to 18.6 mass%, Ni: 8.3 to 8.8 mass%, P: 0.021 to 0.037 mass%, S: 0.003 to 0.011 mass%, N: 0.025 to 0.041 mass%, O: 0.0037 to 0.0083 mass%, Ti: 0.015 to 0.27 mass%, Ca: 0.0006 to 0.0022 mass%, Al content from 0.0007 mass% to 0.0044 Steel changed to mass% was melted, and after continuous casting (slab size: 200 mm thickness x 1240 mm width), it was hot-rolled without taking care of the slab. For hot rolling, slab heating conditions: 1260 ° C-50 minutes, rough rolling 7 passes, rough rolling finishing temperature: 1060-1120 ° C, rough rolling finish thickness: 28mm, finishing (7 stands) rolling mill delivery temperature: 900- 1060 ° C., finishing thickness: 3 mm, coil winding temperature: 700 to 1000 ° C.
Next, the obtained hot-rolled coil was continuously annealed at 1100 ° C, pickled, finished to a thickness of 0.8 mm by cold rolling, then continuously annealed at 1080-1130 ° C, pickled, and cold-rolled. An annealing plate was used.
[0016]
The surface of the test piece of the cold-rolled annealed plate thus obtained was emery # 600 polished, a salt spray test (based on JIS-Z-2371) was performed at 50 ° C. for 4 hours, and the number of rusts was counted. Moreover, the immersion nozzle after continuous casting was collect | recovered and the nozzle obstruction | occlusion rate was measured. Furthermore, the oxide inclusions present in the cold-rolled annealed plate were quantified by the brom method.
The obtained results are shown in FIG. 3 organized by the amount of Ti oxide in the oxide inclusions.
As can be seen from the figure, when the amount of Ti oxide in the inclusion is in the range of 20 to 90 mass%, it can be seen that there is no nozzle blockage during continuous casting and that the corrosion resistance is also good.
[0017]
Experiment 4
C: 0.022 to 0.091 mass%, Si: 0.45 to 0.86 mass%, Mn: 0.66 to 1.22 mass%, Cr: 18.2 to 18.6 mass%, Ni: 8.3 to 9.5 mass%, P: 0.021 to 0.037 mass%, S: 0.003 to 0.011 mass%, N: 0.025 to 0.041 mass%, O: 0.0037 to 0.0083 mass%, Ti: 0.026 to 0.033 mass%, Al: 0.0002 to 0.0033 mass%, Ca content from 0.0002 mass% to 0.0059 Steel changed to mass% was melted, and after continuous casting (slab size: 200 mm thickness x 1240 mm width), it was hot-rolled without taking care of the slab. For hot rolling, slab heating conditions: 1260 ° C-50 minutes, rough rolling 7 passes, rough rolling finishing temperature: 1060-1120 ° C, rough rolling finish thickness: 28mm, finishing (7 stands) rolling mill delivery temperature: 900- 1060 ° C., finishing thickness: 3 mm, coil winding temperature: 700 to 1000 ° C.
Next, the obtained hot-rolled coil was continuously annealed at 1100 ° C, pickled, finished to a thickness of 0.8 mm by cold rolling, then continuously annealed at 1080-1130 ° C, pickled, and cold-rolled. An annealing plate was used.
[0018]
The surface of the test piece of the cold-rolled annealed plate thus obtained was emery # 600 polished, a salt spray test (based on JIS-Z-2371) was performed at 50 ° C. for 4 hours, and the number of rusts was counted. Moreover, the immersion nozzle after continuous casting was collect | recovered and the nozzle obstruction | occlusion rate was measured. Furthermore, the oxide inclusions present in the cold-rolled annealed plate were quantified by the brom method.
The obtained results are shown in FIG. 4 organized by the amount of CaO in the oxide inclusions.
As can be seen from the figure, when the CaO content in the inclusions is in the range of 5 to 50 mass%, the nozzle is not blocked during continuous casting, and the corrosion resistance is good.
[0019]
Experiment 5
C: 0.022 to 0.091 mass%, Si: 0.45 to 0.86 mass%, Mn: 0.66 to 1.22 mass%, Cr: 18.2 to 18.6 mass%, Ni: 8.3 to 9.5 mass%, P: 0.021 to 0.037 mass%, S: 0.001 to 0.021 mass%, N: 0.025 to 0.041 mass%, O: 0.0037 to 0.0083 mass%, Ti: 0.026 to 0.038 mass%, Al: 0.0018 to 0.0033 mass%, and in oxide inclusions For two levels of Al 2 O 3 content of 5-20 mass% and 55-65 mass%, steel with varying Ca content in the range of 0.0002-0.0058 mass% was melted and continuously cast (slab (Size: 200mm thickness x 1240mm width) and hot rolled without slab care. For hot rolling, slab heating conditions: 1260 ° C-50 minutes, rough rolling 7 passes, rough rolling finishing temperature: 1060-1120 ° C, rough rolling finish thickness: 28mm, finishing (7 stands) rolling mill delivery temperature: 900- 1060 ° C., finishing thickness: 3 mm, coil winding temperature: 700 to 1000 ° C.
Next, the obtained hot-rolled coil was continuously annealed at 1100 ° C, pickled, finished to a thickness of 0.8 mm by cold rolling, then continuously annealed at 1080-1130 ° C, pickled, and cold-rolled. An annealing plate was used.
[0020]
The surface of the test piece of the cold-rolled annealed plate thus obtained was emery # 600 polished, a salt spray test (based on JIS-Z-2371) was performed at 50 ° C. for 4 hours, and the number of rusts was counted. Here, the case where the number of rusting is 5 or less per dm 2 is OK, and the case where it is 20 or more is NG.
FIG. 5 shows the corrosion resistance evaluation results performed for each of the Al 2 O 3 levels, organized by S content and Ca content.
As shown in the figure, when the amount of Al 2 O 3 in the oxide inclusions is 50 mass% or less, the S and Ca ranges with good corrosion resistance are wide, whereas the amount of Al 2 O 3 is 55 It can be seen that at a level of ˜65 mass%, the range is very narrow, and low S is indispensable in terms of corrosion resistance.
[0021]
As described above, in order to achieve the intended purpose of the present invention, the amount of Al in the steel is suppressed to 0.005 mass% or less, and the composition of oxide inclusions is Al 2 O 3 : 50 mass% or less. It is important to limit the range to Ti oxide: 20 to 90 mass% and CaO: 5 to 50 mass%.
However, it is not easy to control the composition of the oxide inclusions in the above range, and even if the steel composition is adjusted so that the inclusion composition is in the above range, the inclusion composition varies greatly. It has been found that it does not necessarily fall within the desired composition range.
[0022]
Therefore, as a result of further research on this point, the inventors have studied the deoxidizer components Al, Ti, and Ca in order to stably control the composition of oxide inclusions within the above range. It was found that the order in which these components are added is extremely important.
That is, first, after preliminary deoxidation by adding a small amount of Al or Si, if Ti is deoxidized by adding a relatively large amount of Ti, Al 2 O 3 or Si generated by Al deoxidation is removed. The SiO 2 produced by the acid becomes a Ti oxide in such a form that the Ti oxide wraps, and when an appropriate amount of Ca is added after making such a form of Ti oxide, an oxide inclusion of the desired composition is formed. It was determined that it could be obtained stably.
Here, since the oxide inclusions obtained as described above have a low melting point, nozzle clogging does not occur during continuous casting, and the size is only about 5 to 20 μm. In this case, surface defects due to cluster inclusions are not generated. Moreover, since no CaS is generated around the oxide inclusions, there is no risk of rusting.
[0023]
In this regard, when steel is melted, the addition order of the deoxidizer components is not particularly considered, and when the alloy components are added simultaneously, particularly when a relatively large amount of Al is added as in the conventional case, Al 2 Since oxides mainly composed of O 3 are likely to be formed, it is not an inclusion having a composition as expected in the present invention, and as a result, it is considered that a desired effect was not obtained.
In addition, in the present invention, the strong agitation using a VOD furnace or the like is used in the steel melting stage, but conventionally, such a melting means has not been properly taken. It is thought that this was one of the reasons why
[0024]
C: 0.15 mass% or less C is an austenite stabilizing element and an element necessary for stably forming an austenite phase. However, when the content is too large, the ductility is lowered or the corrosion resistance is deteriorated, so the content is limited to 0.15 mass% or less.
[0025]
Si: 1.0 mass% or less
Si is a useful element for deoxidation, but is also a strong ferrite stabilizing element. Therefore, excessive addition destabilizes the austenite phase and also causes a decrease in ductility. Therefore, in this invention, it was made to contain at 1.0 mass% or less.
[0026]
Mn: 2.0 mass% or less
Mn is an element effective for deoxidation and is also an austenite stabilizing element. However, excessive addition causes a decrease in oxidation resistance and corrosion resistance, so it was limited to 2.0 mass% or less.
[0027]
Cr: 15-30mass%
Cr is an indispensable element for ensuring corrosion resistance, and is a main alloy element of austenitic stainless steel. Considering the corrosion resistance under various environments, sufficient corrosion resistance can be obtained at 15 mass% or more, so the lower limit was limited to 15 mass%. On the other hand, if it exceeds 30 mass%, the hot workability is significantly lowered, so the upper limit is set to 30 mass%.
[0028]
P: 0.05 mass% or less P is an element that is harmful to corrosion resistance, particularly intergranular corrosion resistance. When the content exceeds 0.05 mass%, the adverse effect becomes significant, so it is limited to 0.05 mass%.
[0029]
S: 0.015 mass% or less As described above, S is an element that lowers the corrosion resistance. In particular, when Ca is added as in the present invention, water-soluble CaS is likely to occur.
Although depending on the amount of Ca to be added, even if the oxide inclusion composition which is the main object of the present invention is controlled, if the S amount exceeds 0.015 mass%, the corrosion resistance tends to deteriorate, so the S amount is 0.015. Restricted to less than mass%.
[0030]
N: 0.15 mass% or less N, like C, is an austenite stabilizing element, and is an element necessary for stably obtaining an austenite phase. However, if contained in a large amount, the ductility is lowered and the corrosion resistance is deteriorated, so the upper limit was set to 0.15 mass%.
[0031]
Al: 0.005 mass% or less As is clear from the results of Experiment 1, it is necessary to make the content 0.005 mass% or less from the viewpoint of the surface quality of the cold rolled sheet. That is, when the content exceeds 0.005 mass%, a barbed defect caused by aggregation of Al 2 O 3 occurs on the surface.
[0032]
O: 0.01 mass% or less Oxygen does not dissolve at all in steel but exists as an oxide. Such inclusions tend to be the starting point of rust and breakage, and particularly when the oxygen content exceeds 0.01 mass%, the influence becomes significant. Therefore, the O content is limited to 0.01 mass% or less.
[0033]
Ti: 0.015-0.4 mass%
Ti is an element that is not only useful for deoxidation, but also effective for preventing grain boundary oxidation during slab heating in the hot rolling process and suppressing defects caused by hot rolling cracks. However, if the content is less than 0.015 mass%, the effect of addition is poor. On the other hand, if it exceeds 0.4 mass%, the ductility starts to decrease, so Ti is contained in the range of 0.015 to 0.4 mass%.
[0034]
Ca: 0.0005 to 0.0050 mass%
Ca is an extremely effective element for effectively reducing the melting point of the oxide inclusions according to the present invention and preventing nozzle clogging during continuous casting, and the effect is significant at 0.0005 mass% or more. Therefore, the lower limit was set to 0.0005 mass%. On the other hand, addition of a large amount causes deterioration of corrosion resistance even if the deoxidation product composition is controlled. If the content exceeds 0.0050 mass%, the risk becomes significant, so the upper limit was set to 0.0050 mass%.
[0035]
The basic components have been described above. In the present invention, the following elements can be appropriately added as necessary.
Mo: 0.05-6.0 mass%
Mo is a very effective element for improving the corrosion resistance, and the effect becomes remarkable at 0.05 mass% or more, so the lower limit was set to 0.05 mass%. On the other hand, the corrosion resistance improves as Mo is added, but it is not only a strong ferrite stabilizing element, but if it exceeds 6.0 mass%, it generates a brittle intermetallic compound at high temperature and deteriorates toughness. The upper limit was 6.0 mass%.
[0036]
Nb: 0.01 to 0.08 mass%, V: 0.01 to 0.1 mass%, B: 0.0002 to 0.0030 mass%
Nb, V, and B are all extremely useful elements for preventing the occurrence of striped patterns that are likely to be generated on the surface of a cold-rolled annealed plate due to the nonuniformity of the crystal grain size. The effect is observed when Nb: 0.01 mass% or more, V: 0.01 mass% or more, and B: 0.0002% or more alone or in combination, so the lower limits were limited to 0.01 mass%, 0.01 mass%, and 0.0002 mass%, respectively. . However, when Nb exceeds 0.08 mass%, the elongation begins to decrease, and when V exceeds 0.1 mass%, the ductility begins to decrease, and when B exceeds 0.0030 mass%, intergranular corrosion resistance decreases. Therefore, the upper limit was limited to 0.08 mass%, 0.1 mass%, and 0.0030 mass%, respectively.
[0037]
Next, the reason why the range of the oxide inclusion composition is limited in the present invention will be described.
Ti oxide amount: 20 to 90 mass%, Al 2 O 3 : 50 mass% or less, CaO: 5 to 50 mass%
The main technique of the present invention is to make the composition of the oxide inclusions in the above range.
As previously shown in Experiments 2, 3, 4, and 5, the amount of Al 2 O 3 is set to 50 mass% or less, more preferably 20 mass% or less, thereby preventing the bald surface defects generated in the cold-rolled sheet Further, by setting the amount of Ti oxide to 20 to 90 mass% and the amount of CaO to 5 to 50 mass%, nozzle clogging during continuous casting can be prevented, and corrosion resistance does not deteriorate. Therefore, in the present invention, the composition of oxide inclusions resulting from the deoxidation product is limited to the range of Ti oxide: 20 to 90 mass%, Al 2 O 3 : 50 mass% or less, CaO: 5 to 50 mass%. It was.
[0038]
In the present invention, it is not necessary that all the inclusions in the steel be a composite oxide having the above composition, but at least 50%, preferably 70% or more of Al 2 O 3 —Ti oxide— Any CaO-based complex oxide may be used.
Other oxides produced here include SiO 2 , MnO, FeO X and MgO.
[0039]
Next, the preferred manufacturing method of the present invention will be described.
In the present invention, as described above, the order of adding the deoxidizer components in the melting stage is important.
That is, first, a small amount of Al or Si is added to perform preliminary deoxidation, and then a relatively large amount of Ti is added to perform Ti deoxidation. In this way, Al 2 O 3 or SiO 2 produced by deoxidation of Al or Si becomes a Ti oxide in the form of being wrapped with Ti oxide, but the size of such a form of Ti oxide Is about 5 to 20 μm, it is possible to advantageously prevent surface defects caused by huge cluster-like inclusions in the product plate.
However, since such Ti oxide is a solid phase in the molten steel, if it remains as it is, it may adhere to and deposit on the inner surface of the nozzle of the tundish in a form in which the steel is taken in during continuous casting, and the nozzle may be clogged.
However, if an appropriate amount of Ca is added thereafter, a low melting point oxide is formed, and therefore nozzle clogging during continuous casting is advantageously avoided.
Moreover, since CaS is not generated around the oxide inclusions, rusting can be prevented as described above.
[0040]
The molten steel adjusted to the desired steel composition and inclusion composition as described above is subjected to casting, hot rolling, cold rolling and annealing treatments to obtain a product according to a conventional method.
Here, suitable hot rolling conditions, cold rolling conditions and annealing conditions are as follows.
Hot rolling conditions Slab heating temperature: 1050 to 1260 ° C, rough rolling temperature: 900 to 1180 ° C, rough rolling total rolling reduction: 80 to 93%, finishing rolling temperature: 750 to 1000 ° C, finishing rolling exit thickness: 1.5 to 7 mm, winding temperature: 400-850 ° C.
Cold rolling conditions Cold rolling can be performed by a tandem mill, a cluster mill or a Sendzimir mill. The total rolling reduction is preferably about 45 to 95%. Cold rolling-annealing-cold rolling may be repeated.
Annealing conditions Finish annealing temperature: Select within the range of 1000-1180 ° C according to the target material. Target temperature holding time: Select from the range of 0 to 1800 s according to the target material.
Further, surface finish includes 2D, 2B, BA, and polishing.
[0041]
【Example】
Molten steel having the composition shown in Table 1 was produced as follows.
That is, for the chromium-containing molten steel after the decarburization treatment, a predetermined amount of Al was first added to the chromium-containing molten steel while stirring the molten steel, followed by preliminary deoxidation, and then Ti was added to perform Ti deoxidation. After that, the components were adjusted and Ca was added after the molten steel was transferred to the atmosphere.
Subsequently, it was cast to a thickness of 200 mm and a width of 1000 mm by a continuous casting method. The obtained slab was hot rolled under the following conditions without care.
Slab heating temperature: 1170-1260 ° C, heating time: 30-90 minutes, rough 7 passes, rough finish thickness: 25mm, rough rolling finish temperature: 990-1120 ° C, finish (7-step mill), finish thickness: 3mm, FDT : 800-1080 ° C, CT: 700-1030 ° C.
[0042]
The obtained hot-rolled coil is continuously annealed at 1090 to 1140 ° C, pickled and finished to a thickness of 0.6 mm by cold rolling, then continuously annealed at 1070 to 1140 ° C, then pickled and cold rolled. An annealing plate was used.
With respect to the cold-rolled annealed sheet thus obtained, Table 2 shows the results of examining the composition of oxide inclusions, the nozzle clogging rate after continuous casting, the number of bald defects on the surface of the cold-rolled annealed sheet, and the occurrence of striped patterns. Shown in
In addition, the table shows the number of rusting and the rusting area ratio after emery # 600 polishing of the surface of cold-rolled annealed plate and conducting salt spray test (SST) and salt dry and wet combined cycle corrosion test (CCT). The results are also shown.
The surface properties were evaluated by the number of surface defects and striped patterns on the cold-rolled sheet, and the corrosion resistance was evaluated by the number of rusting and the rusting area ratio in the salt spray test and the salt dry / wet combined cycle corrosion test, respectively. did.
[0043]
In addition, each characteristic evaluation method is as follows.
・ Analysis of oxide inclusions in cold-rolled annealed plates Samples were taken from the cold-rolled annealed plates and electrolyzed in a bromine-methanol solution. Chemical analysis was conducted after dissolving in
・ Measurement method of nozzle clogging rate
Initial diameter after 160-ton continuous casting: Collect 60mm nozzle, cut the cross section and measure the minimum diameter, ((initial diameter-minimum diameter after casting) / initial diameter) x 100 (%) It was.
[0044]
・ Salt spray test (SST)
The surface of the cold-rolled annealed sheet was emery # 600 polished, degreased, and subjected to a salt spray test for 4 hours under conditions (50 ° C.) in accordance with JIS Z 2371, and the number of rusting was counted.
・ Salt dry and wet combined cycle corrosion test (CCT)
After emery # 600 polishing finish on cold-rolled annealed sheet surface, degrease, spray 3.5% NaCl at 35 ° C for 0.5 hour, dry for 1 h (60 ° C) and wet for 1 h (40 ° C, relative humidity: 95% or more) A composite corrosion test with one cycle was performed for 30 cycles, and the rust area ratio was measured.
[0045]
[Table 1]
Figure 0003772530
[0046]
[Table 2]
Figure 0003772530
[0047]
As shown in Table 2, the austenitic stainless steel according to the present invention has no nozzle clogging at the time of continuous casting after melting, and there is no surface defect on the product plate, and it has excellent corrosion resistance. Was.
[0048]
【The invention's effect】
Thus, according to the present invention, it is possible to stably obtain an austenitic stainless steel free from surface defects due to oxide inclusions and having excellent corrosion resistance.
Further, the austenitic stainless steel of the present invention does not cause nozzle clogging during continuous casting during the production process.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the amount of Al in steel and the number of surface defects on a hot-rolled annealed plate.
FIG. 2 is a graph showing the relationship between the Al 2 O 3 concentration in oxide inclusions and the number of bald surface defects.
FIG. 3 is a graph showing the relationship between the Ti oxide concentration in oxide inclusions, the nozzle clogging rate, and the number of rusting.
FIG. 4 is a graph showing the relationship between the CaO concentration in oxide inclusions, the nozzle clogging rate, and the number of rusting.
FIG. 5 is a graph showing the effects of the amount of S and Ca on corrosion resistance in comparison with two Al 2 O 3 levels.

Claims (3)

C:0.15mass%以下、 Si:1.0 mass%以下、 Mn:2.0 mass%以下、
Cr:15〜30mass%、 Ni:5〜30mass%、 P:0.05mass%以下、
S:0.015 mass%以下、 N:0.15mass%以下、 Al:0.005 mass%以下、
O:0.01mass%以下、 Ti:0.015 〜0.4 mass%、Ca:0.0005〜0.0050mass%
を含有し、残部はFe および不可避的不純物の組成になり、鋼中の脱酸生成物に起因した酸化物系介在物の組成が、Ti酸化物:20〜90mass%、 Al2O3:50mass%以下およびCaO:5〜50mass%の範囲を満足することを特徴とする表面性状が良好で耐食性に優れたオーステナイト系ステンレス鋼。
C: 0.15 mass% or less, Si: 1.0 mass% or less, Mn: 2.0 mass% or less,
Cr: 15-30 mass%, Ni: 5-30 mass%, P: 0.05 mass% or less,
S: 0.015 mass% or less, N: 0.15 mass% or less, Al: 0.005 mass% or less,
O: 0.01 mass% or less, Ti: 0.015-0.4 mass%, Ca: 0.0005-0.0050 mass%
The balance is Fe and inevitable impurities , and the composition of oxide inclusions due to deoxidation products in the steel is Ti oxide: 20 to 90 mass%, Al 2 O 3 : 50 mass % Austenitic stainless steel with good surface properties and excellent corrosion resistance, characterized by satisfying a range of not more than% and a range of CaO: 5 to 50 mass%.
請求項1において、鋼組成が、さらに
Mo:0.05〜6.0 mass
含有する組成になることを特徴とする表面性状が良好で耐食性に優れたオーステナイト系ステンレス鋼。
The steel composition according to claim 1, further comprising:
Mo: 0.05-6.0 mass %
Good corrosion resistance surface properties characterized by comprising a composition containing an excellent austenitic stainless steel.
請求項1または2において、鋼組成が、さらに
Nb:0.01〜0.08mass%、 V:0.01〜0.1 mass%、 B:0.0002〜0.0030mass%
のうちから選んだ1種または2種以上を含有する組成になることを特徴とする表面性状が良好で耐食性に優れたオーステナイト系ステンレス鋼。
The steel composition according to claim 1 or 2, further comprising:
Nb: 0.01 to 0.08 mass%, V: 0.01 to 0.1 mass%, B: 0.0002 to 0.0030 mass%
An austenitic stainless steel with excellent surface properties and excellent corrosion resistance, characterized in that it has a composition containing one or more selected from among them.
JP17188198A 1998-06-18 1998-06-18 Austenitic stainless steel with good surface properties and excellent corrosion resistance Expired - Fee Related JP3772530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17188198A JP3772530B2 (en) 1998-06-18 1998-06-18 Austenitic stainless steel with good surface properties and excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17188198A JP3772530B2 (en) 1998-06-18 1998-06-18 Austenitic stainless steel with good surface properties and excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JP2000001759A JP2000001759A (en) 2000-01-07
JP3772530B2 true JP3772530B2 (en) 2006-05-10

Family

ID=15931535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17188198A Expired - Fee Related JP3772530B2 (en) 1998-06-18 1998-06-18 Austenitic stainless steel with good surface properties and excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JP3772530B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110527924A (en) * 2019-09-26 2019-12-03 江苏兴洋管业股份有限公司 A kind of hydrogen environment 2D stainless steel bend and preparation method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2818290A1 (en) * 2000-12-15 2002-06-21 Ugine Savoie Imphy Stainless steel for shaping by severe working and notably by cold striking or drawing into small diameter wires, with a controlled composition for selection of the type and dimensions of its inclusions
FR2818289B1 (en) * 2000-12-15 2003-08-08 Usinor STAINLESS STEEL FOR SEVERE SHAPING AND IN PARTICULAR DEEP DRAWING OF A SHEET
KR100532877B1 (en) 2002-04-17 2005-12-01 스미토모 긴조쿠 고교 가부시키가이샤 Austenitic stainless steel excellent in high temperature strength and corrosion resistance, heat resistant pressurized parts, and the manufacturing method thereof
KR101022115B1 (en) 2003-12-09 2011-03-17 주식회사 포스코 METHOD FOR PRODUCTING AUSTENITIC STAINLESS STEEL HAVING Ti
KR100729123B1 (en) 2005-12-01 2007-06-14 주식회사 포스코 Method of manufacturing for low-carbon austenite stainless steel
CN110016618B (en) * 2019-05-23 2020-09-25 攀钢集团攀枝花钢铁研究院有限公司 High-silicon-content welding steel and preparation method thereof
CN116043134A (en) * 2023-02-28 2023-05-02 宝钢德盛不锈钢有限公司 Austenitic stainless steel with excellent performance and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110527924A (en) * 2019-09-26 2019-12-03 江苏兴洋管业股份有限公司 A kind of hydrogen environment 2D stainless steel bend and preparation method

Also Published As

Publication number Publication date
JP2000001759A (en) 2000-01-07

Similar Documents

Publication Publication Date Title
JP7244720B2 (en) Galvanized steel sheet with excellent spot weldability and its manufacturing method
CN101578385B (en) Ferritic stainless steel sheet for water heater excellent in corrosion resistance at welded part and steel sheet toughness
EP2826878B1 (en) Ferritic stainless steel
JP5713118B2 (en) Ferritic stainless steel
JP6728455B1 (en) Highly corrosion resistant Ni-Cr-Mo steel excellent in weldability and surface properties and method for producing the same
JP5846445B2 (en) Cold rolled steel sheet and method for producing the same
JP6760425B2 (en) Hot-rolled steel sheet with excellent scale adhesion and its manufacturing method
EP3587610B1 (en) Hot-rolled and annealed ferritic stainless steel sheet, and method for manufacturing same
JP3772530B2 (en) Austenitic stainless steel with good surface properties and excellent corrosion resistance
JP3661420B2 (en) Ferritic stainless steel with good surface properties and excellent corrosion resistance and moldability
JP3322157B2 (en) Method for producing ferritic stainless steel strip containing Cu
JP3806186B2 (en) Method for producing ferritic stainless steel with excellent anti-roping properties
JP4306879B2 (en) Ferritic stainless steel with excellent workability and corrosion resistance and method for producing the same
JP2001089828A (en) Steel sheet for can, good in surface property and suitable for three piece can
JP3661419B2 (en) Ferritic stainless steel with good surface properties and excellent corrosion resistance, molding processability and ridging resistance
JP2000212704A (en) Ferritic stainless steel excellent in workability and corrosion resistance and production of thin steel sheet thereof
JP3661418B2 (en) Ferritic stainless steel with good surface properties and excellent corrosion resistance and moldability
JP4998365B2 (en) Ultra-low carbon steel sheet and manufacturing method thereof
JP4273457B2 (en) Structural stainless steel plate with excellent hole expansion workability
KR100825632B1 (en) Ferritic stainless steel having excellent formability of welded zone and corrosion resistance, and method for manufacturing the same
JP3466298B2 (en) Manufacturing method of cold rolled steel sheet with excellent workability
JPH07126758A (en) Manufacture of ferritic stainless steel sheet excellent in bendability
JP4190617B2 (en) Method for producing hot rolled sheet of stainless steel
TWI785942B (en) Matian loose iron series stainless steel material and manufacturing method thereof
JP7269470B2 (en) Duplex stainless steel and manufacturing method thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees