JP3770825B2 - Aluminum hard foil for electrolytic capacitors - Google Patents
Aluminum hard foil for electrolytic capacitors Download PDFInfo
- Publication number
- JP3770825B2 JP3770825B2 JP2001353569A JP2001353569A JP3770825B2 JP 3770825 B2 JP3770825 B2 JP 3770825B2 JP 2001353569 A JP2001353569 A JP 2001353569A JP 2001353569 A JP2001353569 A JP 2001353569A JP 3770825 B2 JP3770825 B2 JP 3770825B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- aluminum
- foil
- etching
- intermetallic compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Metal Rolling (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、交流電解エッチング後の静電容量の高い電解コンデンサ用アルミニウム硬質箔に関する。
【0002】
【従来の技術】
アルミニウムは、化学的あるいは電気化学的なエッチングにより多数の微小孔を穿孔して容易に表面積を拡大でき、この表面積を拡大されたアルミニウムに化成処理と呼称される陽極酸化処理を施すと、誘電体として利用できる皮膜を形成できる。
【0003】
前記電気化学的なエッチングには大別して直流エッチングと交流エッチングがあって、通常は低圧用または中低圧用のアルミニウム電解コンデンサ陽極用のアルミニウム箔には、交流エッチング法を採用して微小孔を海綿状に穿孔し、静電容量の高いコンデンサ箔とする。
【0004】
ところで、近年の小型化志向から更に高い静電容量の得られる箔が求められている。
【0005】
特開平第5−5145号公報にはZn,Mn,Cu,Fe,Si,Ga,Pb,Mg,B,V,Ti,Zr,Ni,Cr,Pという15種類もの元素を管理して高い静電容量を得ようとする技術が提案されている。
【0006】
【発明が解決しようとする課題】
しかしながら、前記公報に開示された電解コンデンサ用アルミニウム合金箔は管理元素数が過大に過ぎ、生産性を阻害する。
【0007】
即ち、本発明は管理元素数少なく、しかも高い静電容量の得られる電解コンデンサ用アルミニウム硬質箔を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、前記目的を達成するために種々検討した結果、少数の微量元素を特定量とし、またFeを含む金属間化合物の最大径を規定し、さらに単体SiまたはSiを含む金属間化合物の実質的に存在しない硬質箔は、交流電解エッチングで高い静電容量の得られることを見出した。
【0009】
また、冷間圧延によりこの硬質箔とするための薄板は、特定組成のスラブを特定条件で均質化処理すると共に熱間圧延の過程でAl−Fe系化合物および単体SiもしくはSiを含む金属間化合物の析出を制限すると、その後の冷間圧延で静電容量の高い硬質箔の得られることを見出した。
【0010】
本発明は、これらの新規な知見に基づいて完成したものである。
【0011】
即ち、本発明による電解コンデンサ用アルミニウム硬質箔は、質量で、Cu含有量が5〜20ppm 、V+Cr+Ni+Zr含有量が1〜6ppm 、かつそのうちNi+Zr含有量が0.05〜1.5ppm 、残部はAlおよび不可避的不純物であって、かつAl含有量が箔質量の99.98%以上であり、Feを含む金属間化合物の最大径が20nm(ナノメートル)以下であり、単体SiおよびSiを含む金属間化合物が23万倍で観測して実質的に検出されないことを特徴とする。
【0012】
本発明においては、交流エッチングに影響の強い小数の微量元素としてV、Cr、Ni、Zrの総量を特定範囲内に規定した上で、そのうち特に影響の強いNi、Zrについては更に両者の総量を特定範囲内に規定し、Feを含む金属間化合物のサイズを規制し、さらに単体SiおよびSiを含む金属間化合物を実質的に観察されない硬質箔は、交流エッチングで自己腐食を抑制してエッチングピットの崩れが少なく、静電容量の高い箔が得られる。
【0013】
冷間圧延により本発明の硬質箔とするための冷間圧延用素材としての薄板を製造する好ましい方法は、本発明において箔について規定した組成を有するスラブを温度530〜570℃に3時間以上加熱保持して均質化処理した後、複数パスの熱間圧延により火延板とする際に、この熱間圧延の最終パスF1およびその1パス前の最終直前パスF2において、温度385℃以上の火延板を最終直前パスF2により温度275〜320℃の火延板とし、次いで最終パスF1により温度230℃以下の火延板とした後、冷間圧延して所望厚さの薄板とする。
【0014】
上記の方法においては、スラブ組成、スラブの均質化処理条件および熱間圧延における火延板の温度条件を前記の如く規定することにより、金属間化合物の析出状態を適切化した薄板が得られる。この薄板を更に冷間圧延して硬質箔とすることにより、交流エッチングで静電容量の高い硬質箔が得られる。
【0015】
【発明の実施の形態】
従来、一般的に用いられている電解コンデンサ用アルミニウム箔には、アルミニウムの製錬、精製、溶製過程でSi,Fe,Cu,Zn,Ga,W,Co,Ni,Ti,V等の元素が不純物として混入もしくは有意元素として添加されるが、種々の品位のアルミニウムを組み合わせ配合することによって、それらの元素の含有量を調整できる。最終的に得られるアルミニウム合金箔は、不純物を調整した後に、有意元素として特定元素を添加配合して諸特性を付与している。
【0016】
本発明における電解コンデンサ用アルミニウム硬質箔の特徴の一つは、上述の如き不純物元素を調整し、有意元素を添加配合した合金組成にある。特に本発明における硬質箔のアルミニウム含有量すなわちアルミニウム純度は、交流エッチング時の箔の溶解性を考慮して99.98%以上とする。ただしCu含有量は5〜20ppm と規定する。
【0017】
以下に、本発明の硬質箔の構成について限定理由を説明する。
<Al:99.98%以上>
アルミニウム含有量すなわちアルミニウム純度が下限値未満であると、スラブの均質化処理および/または熱間圧延においてAl−Fe系および/またはAl−Fe−Si系の金属間化合物が過剰に生成する。これら金属間化合物はアルミニウム合金マトリックスとの間に電位差があるため、交流エッチング時に金属間化合物周辺でマトリクスの優先溶解が過剰に進行し、エッチングピットが崩れ静電容量が低下する。
【0018】
<Cu:5〜20ppm >
Cuは、マトリックス表面電位を貴にして前記金属間化合物とマトリックスとの間の電位差小さくし、化合物周辺の優先溶解を抑制する効果がある。Cu含有量が下限値未満では前記効果が少なく静電容量が低い。またCu含有量が上限値を超えると箔の過剰溶解が生じて静電容量が低下する。この容量低下は、Al−Cu系金属間化合物が過剰に生成し、金属間化合物周辺の優先溶解が過剰に進行し、エッチングピットの脱落が生じることに起因するものと思われる。
【0019】
<V+Cr+Ni+Zr:1〜6ppm かつNi+Zr:0.05〜1.5ppm >
高純度のアルミニウム地金は、電解一次地金を精製して製造される。この精製は三層式電解法と結晶分別法が広く採用されているが、結晶分別法はアルミニウム溶湯を冷却すると純度の高いアルミニウム初晶から晶出し始めるという現象を利用する方法で、低コストであるため主流となっている。
【0020】
ここで、この結晶分別法ではV,Cr,Zr等の包晶系元素は前記現象とは逆に精製アルミニウムに濃縮される。本発明においてはV、Cr、Zr等の包晶系元素およびNiを不純物としてではなく微量合金成分として意図的に利用するので、結晶分別法によるアルミニウム地金を原料として使用することにより、コスト的にさらに有利になる。組成の微調整には、必要に応じて各々の元素の母合金を用いる。
【0021】
V,Cr,Ni,Zrの含有量については、4成分の総量V+Cr+Ni+Zrを1〜6ppmの範囲内とした上で、更にそのうちNi、Zrの総量Ni+Zrを0.05〜1.5ppmの範囲内とする。
【0022】
交流エッチング時のエッチングピット形成に対して、これら4元素を単独に含有させるよりも、元素群として並存させる方が良好な結果が得られる。これは、均質化処理において、Al−Fe系および/またはAl−Fe−Si系の金属間化合物の析出に加えて、Al−Fe−(V,Cr,Ni,Zr)−Xの如き複雑な金属間化合物が同時に析出し、このような複雑な化合物とマトリックスとの間に種々の電位差が存在する結果、交流エッチングで良好なエッチングピットを形成し高い静電容量が得られる効果をもたらすものと思われる。
【0023】
即ち、V,Cr,NiおよびZrの含有は、高い静電容量を得るためのもので、下限値未満では上記効果が少なく、また上限値を超えるとマトリックスの自己腐食量が増加しエッチングピットが崩れて静電容量が低下する。またNiおよびZrは前記4元素の内で特にエッチングピット形成力が強いので、Ni+Zr含有量を0.05〜1.5ppm に規制する。下限値未満では前記した複雑な化合物の生成量が少なく高い静電容量が得られず、上限値を超えるとマトリックスの自己腐食量が増加しエッチングピットが崩れて静電容量が低下する。
【0024】
V,Cr,Zr以外の包晶系元素としてMo,Nb,Sc,Ta,Ti,W等の元素が存在するが、これらは元来含有量が少なく、しかもエッチングピットの形成には大きな影響を及ぼさないので特に制限する必要はないが、その他の不可避的不純物と共に、何れの元素も各0.5ppm未満とすることが好ましい。
【0025】
<Feを含む金属間化合物の最大径:20nm以下>
Feを含む金属間化合物の電位はマトリックスより貴である。このような化合物の存在する硬質箔を交流エッチングするとこの化合物の周囲がエッチングピットの起点となる。従って微細に多数存在させることが好ましく、Feを含む金属間化合物のサイズは、最大径で20nm以下とする。20nmを超えたものが存在すると微細化合物の析出個数が減少し、形成するエッチングピットの個数も減少するため、高い静電容量が得られない。
【0026】
<単体SiおよびSiを含む金属間化合物が実質的に検出されないこと>
本発明においてSiを含む金属間化合物とは、Al−Si系化合物を指し、Al−Fe−Si系化合物は含まない。Al−Si系化合物とAl−Fe−Si系化合物とでは交流エッチングにおいてエッチングピット形成に対する影響力が異なる。この影響力の相違はマトリックスに対する電位差の違いが原因と思われる。単体SiおよびSiを含む金属間化合物は、本発明者らの実験結果によれば、僅かに存在しても交流エッチングでそれらの周囲にピット崩れが生じて静電容量を低下する知見を得たので、実質的に検出されないこととした。検出に当たっては透過型顕微鏡により倍率23万倍で観察した際に、観察されないことを実質的に検出されないこととした。
【0027】
本発明の電解コンデンサ用アルミニウム硬質箔は、例えば以下のようにして製箔することができる。
【0028】
結晶分別法あるいは三層式電解法等の精製法で精製された高純度アルミニウム地金を用い、必要により返り材、母合金等を用い、合金元素を調整して溶製する。溶製に際しては脱ガス脱滓し、溶湯濾過後に半連続鋳造でスラブを鋳造する。
【0029】
得られたスラブは面削した後、温度530〜570℃に3時間以上加熱保持して均質化処理を施すことにより、鋳造歪を除去し、鋳造偏析を解消すると共に、スラブ中に存在する最大30nm程度の晶出物を固溶させる。必要に応じて、均質化処理の一部として、更に冷間圧延を行い上記晶出物を粉砕して最大サイズを20nm以下とする。
【0030】
均質化処理においては、Al−Fe系およびAl−Fe−(V,Cr,Ni,Zr)−X系(Xは他の金属)の金属間化合物として適量析出させる。これにより、交流エッチング時に晶出物および析出物の周囲にも積極的にエッチングピットを形成させて静電容量を向上させる。
【0031】
均質化処理温度での保持時間を3時間以上とすることにより、上記の諸効果が得られる。20時間以上の保持は経済的に不利となる。
【0032】
均質化処理温度が下限値未満であると、Al−Fe系およびAl−Fe−(V,Cr,Ni,Zr)−X系の金属間化合物が急激に析出する温度領域に入り、過剰の化合物が析出するため、交流エッチングにおいて化合物周囲が過剰溶解しピット崩れを生じて静電容量が低下する。
【0033】
均質化処理温度が上限値を超えると、金属間化合物が過剰に固溶して析出化合物量が少なくなると共に、次工程の熱間圧延の各圧延パスで再析出し、エッチングピット形成に関与する化合物の分布が不規則になり、静電容量が低くなる。またスラブ表面の酸化膜も厚く生成し、アルカリ洗浄による酸化膜除去が必要となって生産性が低下する。
【0034】
均質化処理後のスラブを熱間圧延する。スラブは均質化処理温度から冷却後に熱間圧延開始温度に再加熱してもよいし、冷却せずに適温であればそのまま熱間圧延に供しあるいは必要に応じて熱間圧延開始温度への加熱を行ってもよい。
【0035】
熱間圧延においては、複数パスにより3〜10mm厚さの火延板とする。熱間圧延初期にはスラブ温度が高く、特に450℃以上であれば、塑性変形の影響が少ないため析出はほとんど進行しない。
【0036】
熱間圧延パスの進行に伴い、スラブは単位長さ当たりの体積が小さくなって圧延ロールによる冷却効果が大きくなる。火延板の温度低下に伴い析出が開始するので、特に熱間圧延終期において火延板の温度を管理し、Al−Fe系およびAl−Fe−(V,Cr,Ni,Zr)−X系の金属間化合物の過剰析出を制限する。
【0037】
即ち、最終パスF1の1パス前の最終直前パスF2の入側の火延板温度を385℃以上として圧延し、この最終直前パスF2の圧延ロールで急冷して火延板を温度275〜320℃とする。385℃以上の高温域では、歪開放と相俟って上記金属間化合物の過剰析出を抑制でき、また、320℃以下の温度域では、温度が低いために前記金属間化合物が析出し難く、やはり析出を制限できる。換言すれば、前記金属間化合物の析出しやすい385〜320℃の温度範囲をF2パスの圧延ロールで急冷し析出を抑制する。
【0038】
最終直前パスF2後の火延板温度の下限を275℃としたのは以下の理由による。すなわち、温度275℃以上では、単体SiおよびSiを含む金属間化合物の析出の抑制ができる。即ち最終直前パスF2の出側温度を275〜320℃とするのは、Al−Fe系およびAl−Fe−(V,Cr,Ni,Zr)−X系の金属間化合物の過剰析出を制限すると共に単体SiおよびSiを含む金属間化合物の析出を抑制するためである。
【0039】
最終直前パスF2後の最終パスF1の入側温度は、最終直前パスF2の出側温度で規定される。最終パスF1においては、圧延ロールで急冷してF1出側温度230℃以下とする。230℃以下の低温域では、温度が低いため単体SiおよびSiを含む金属間化合物が析出し難くなり、これらの析出を制限できる。最終直前パスF2および最終パスF1の圧下率は特に限定するものではないが、一般に30〜80%が好ましい。
【0040】
以上の条件での熱間圧延により火延板の厚さは3〜9mmとされ、更に次工程において冷間圧延により所望厚さの本発明の薄板とされる。この薄板の厚さは任意にハンドリング等を考慮して定めればよく、一般に0.2〜0.6mmである。
【0041】
この薄板はさらに冷間圧延されて電解コンデンサ用アルミニウム硬質箔とされる。この硬質箔の厚さは概略80〜120μmである。硬質箔への冷間圧延に際しては、圧延パス間で再結晶させない。圧延パス間において再結晶温度未満の低温で加熱することは、歪の一部が開放されて軟化するため、後続の圧延パスで圧下率を大きく取れるので好ましい。製品厚さまで圧延された硬質箔は、必要により最後に圧延歪を均一化するために再結晶温度未満の低温に加熱保持してもよい。
【0042】
【実施例】
結晶分別法で精製された精製アルミニウム地金と三層式電解法で精製された精製アルミニウム地金および返り材と母合金を用い、常法に従って溶製した。
【0043】
得られた溶湯を半連続鋳造法で厚さ530mmのスラブを鋳造した。スラブの組成を表1に示す。表1中、下線を付した数値は本発明の範囲外である。なお、表1では省略してあるが、全スラブについて、Si:40〜50ppm 、Fe:35〜50ppm 、Cu:7〜15ppm 、Al純度:99.98%以上であり、他の不純物元素は各0.5ppm 以下であった。
【0044】
このスラブを15mm面削した後、均質化処理として温度560℃に10時間加熱保持し、この温度から熱間圧延して厚さ100mmの火延板とした。この時点で火延板の温度は470℃であった。
【0045】
更に熱間圧延を継続し、最終直前パス(F2パス)および最終パス(F1パス)の入側温度および出側温度をそれぞれ種々に変えて圧延した。なお、F2パス入側の板厚25mm、F2パス出側の板厚15mm、F1パス出側の板厚6mmとした。
【0046】
得られた熱間圧延板を室温まで冷却した後、冷間圧延を行って厚さ90μmの薄板試料とした。
【0047】
得られた各試料について、Feを含む金属間化合物の最大径、単体SiおよびSiを含む金属間化合物の有無、静電容量を測定した。結果を表2に示す。表2中、下線を付した事項は本発明の範囲外である。
【0048】
なお、上記の各測定は下記の方法によって行った。
<Feを含む金属間化合物の最大径、単体SiおよびSiを含む金属間化合物の有無>
フィールドエミッション透過型電子顕微鏡を用いた。観察個所は各試料20視野をランダムに選択し、倍率は23万倍とした。また、化合物の同定はEDX(エネルギー分散型X線分光)で行い選別した。
【0049】
【0050】
【0051】
【0052】
〔化成処理および静電容量の測定〕
アジピン酸アンモニウム水溶液中で20Vの直流を印可して化成処理を施し、硼酸アンモニウム水溶液中で静電容量を測定した。
【0053】
結果を表2に示す。表2中の静電容量の値は、試料番号13の静電容量を100として相対値(%)で表示した。
【0054】
【表1】
【0055】
【表2】
【0056】
表2の結果から、組成並びにFeを含む金属間化合物の最大径が本発明範囲でしかも単体SiおよびSiを含む金属間化合物の観察されない本発明に係る硬質箔(試料番号1〜6)は、静電容量の高いことが判る。一方、均質化処理条件および熱間圧延条件は本発明範囲であるが、組成が本発明範囲を外れる硬質箔(試料番号7〜10)は、静電容量が低いことが判る。また、組成は本発明範囲でも熱間圧延条件が本発明範囲を外れる硬質箔(試料番号11〜13)は、Feを含む金属間化合物の最大径が本発明範囲を外れるかもしくは単体SiおよびSiを含む金属間化合物の存在が観察されて静電容量が低いことが判る。
【0057】
【発明の効果】
以上説明したように、本発明の電解コンデンサ用アルミニウム硬質箔は、数種の包晶系元素およびNiの含有量を特定範囲とし、Feを含む金属間化合物の最大径を規制し、単体SiおよびSiを含む金属間化合物が実質的に存在しないようにするだけで高い静電容量の箔が得られ、経済的でしかもコンデンサを小型化できる効果を有する。
【0058】
また、本発明の硬質箔を冷間圧延にて製造するための圧延素材としての薄板の製造方法は、数種の包晶系元素の含有量を特定範囲とし、均質化処理の温度条件と熱間圧延の最終直前パス(F2パス)および最終パス(F1パス)の温度条件を管理するだけであるから、生産工程を簡略化できる効果と静電容量の高い電解コンデンサ用アルミニウム硬質箔が得られる効果を有する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum hard foil for high capacitance after AC electrolytic etching electrolytic capacitor.
[0002]
[Prior art]
Aluminum can be easily expanded by piercing a large number of micropores by chemical or electrochemical etching, and when the anodized process called chemical conversion treatment is applied to the aluminum whose surface area has been expanded, Can be used.
[0003]
The electrochemical etching is roughly classified into direct current etching and alternating current etching. Usually, an aluminum foil for an aluminum electrolytic capacitor anode for low pressure or medium and low pressure is formed by using an alternating current etching method to form a micropore. Perforated into a capacitor foil with a high capacitance.
[0004]
By the way, the foil which can obtain a still higher electrostatic capacity is calculated | required from recent miniaturization inclination.
[0005]
In JP-A-5-5145, 15 elements such as Zn, Mn, Cu, Fe, Si, Ga, Pb, Mg, B, V, Ti, Zr, Ni, Cr, and P are controlled and high static. Techniques for obtaining electric capacity have been proposed.
[0006]
[Problems to be solved by the invention]
However, the aluminum alloy foil for electrolytic capacitors disclosed in the above publication has an excessive number of control elements, which hinders productivity.
[0007]
That is, an object of the present invention is to provide an aluminum hard foil for an electrolytic capacitor that has a small number of control elements and can provide a high capacitance.
[0008]
[Means for Solving the Problems]
As a result of various studies to achieve the above-mentioned object, the present inventors have specified a small amount of a trace element as a specific amount, specified the maximum diameter of an intermetallic compound containing Fe, and further, between a single Si or Si-containing metal It has been found that a hard foil substantially free of a compound can obtain a high capacitance by alternating current electrolytic etching.
[0009]
In addition, a thin plate for making this hard foil by cold rolling is a homogenizing treatment of a slab having a specific composition under specific conditions, and an intermetallic compound containing an Al-Fe compound and elemental Si or Si in the process of hot rolling. It was found that a hard foil having a high electrostatic capacity can be obtained by subsequent cold rolling when the precipitation of is restricted.
[0010]
The present invention has been completed based on these novel findings.
[0011]
That is, the aluminum hard foil for electrolytic capacitors according to the present invention has a Cu content of 5 to 20 ppm, a V + Cr + Ni + Zr content of 1 to 6 ppm, and a Ni + Zr content of 0.05 to 1.5 ppm, with the balance being Al and It is an inevitable impurity, the Al content is 99.98% or more of the foil mass, the maximum diameter of the intermetallic compound containing Fe is 20 nm (nanometer) or less, and between the Si containing Si and the Si containing Si The compound is observed substantially at 230,000 times and is not substantially detected.
[0012]
In the present invention, the total amount of V, Cr, Ni, and Zr is defined within a specific range as a small number of trace elements that have a strong influence on AC etching, and for both Ni and Zr that have particularly strong effects, the total amount of both is further determined. Hard foils that are defined within a specific range, regulate the size of intermetallic compounds containing Fe, and that do not substantially observe the intermetallic compounds containing simple Si and Si are etched pits by suppressing self-corrosion by AC etching. A foil having a high electrostatic capacity can be obtained.
[0013]
A preferable method for producing a thin plate as a material for cold rolling for forming the hard foil of the present invention by cold rolling is to heat a slab having the composition defined for the foil in the present invention to a temperature of 530 to 570 ° C. for 3 hours or more. After holding and homogenizing, when a hot-rolled sheet is obtained by hot rolling of a plurality of passes, a fire having a temperature of 385 ° C. or higher in the final pass F1 of this hot rolling and the pass F2 immediately before the final pass. the rolled sheet and fire-rolled sheet temperature two hundred and seventy-five to three hundred twenty ° C. final immediately preceding path F2, then after the temperature of 230 ° C. or less of the fire-rolled sheet by final path F1, shall be the thin cold rolled to a desired thickness.
[0014]
In the above method , a slab composition, slab homogenization treatment conditions, and hot-rolled sheet temperature conditions in hot rolling are defined as described above, thereby obtaining a thin sheet with an appropriate intermetallic compound precipitation state. By further cold rolling this thin plate to obtain a hard foil, a hard foil having a high electrostatic capacity can be obtained by AC etching.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Conventionally, aluminum foils for electrolytic capacitors that are generally used include elements such as Si, Fe, Cu, Zn, Ga, W, Co, Ni, Ti, and V in the process of smelting, refining, and melting aluminum. Is mixed as an impurity or added as a significant element, but the content of these elements can be adjusted by combining various grades of aluminum. The aluminum alloy foil finally obtained has various characteristics by adding and blending a specific element as a significant element after adjusting impurities.
[0016]
One of the characteristics of the aluminum hard foil for an electrolytic capacitor in the present invention is an alloy composition prepared by adjusting the impurity elements as described above and adding a significant element. In particular, the aluminum content of the hard foil in the present invention, that is, the aluminum purity, is 99.98% or more in consideration of the solubility of the foil during AC etching. However, the Cu content is specified as 5 to 20 ppm .
[0017]
Below, the reason for limitation is demonstrated about the structure of the hard foil of this invention.
<Al: 99.98% or more>
When the aluminum content, that is, the aluminum purity is less than the lower limit value, an excessive amount of Al—Fe-based and / or Al—Fe—Si-based intermetallic compounds is generated in the slab homogenization treatment and / or hot rolling. Since these intermetallic compounds have a potential difference with the aluminum alloy matrix, preferential dissolution of the matrix proceeds excessively around the intermetallic compounds during AC etching, and the etching pits collapse and the capacitance decreases.
[0018]
<Cu: 5 to 20 ppm>
Cu has the effect of suppressing the preferential dissolution around the compound by making the matrix surface potential noble and reducing the potential difference between the intermetallic compound and the matrix. When the Cu content is less than the lower limit, the above effects are small and the capacitance is low. Moreover, when Cu content exceeds an upper limit, excessive melt | dissolution of foil will arise and an electrostatic capacitance will fall. This decrease in capacity seems to be caused by the fact that the Al—Cu-based intermetallic compound is generated excessively, the preferential dissolution around the intermetallic compound proceeds excessively, and the etching pits drop off.
[0019]
<V + Cr + Ni + Zr: 1-6 ppm and Ni + Zr: 0.05-1.5 ppm>
High-purity aluminum ingots are produced by refining electrolytic primary ingots. For this purification, the three-layer electrolytic method and the crystal fractionation method are widely adopted, but the crystal fractionation method is a method that utilizes the phenomenon that when a molten aluminum is cooled, it begins to crystallize from a high purity aluminum primary crystal, and at low cost. It has become mainstream.
[0020]
Here, in this crystal fractionation method, peritectic elements such as V, Cr, Zr and the like are concentrated to purified aluminum contrary to the above phenomenon. In the present invention, peritectic elements such as V, Cr, and Zr and Ni are intentionally used as a trace alloy component rather than as impurities, so that the use of aluminum metal as a raw material by the crystal fractionation method is cost effective. Even more advantageous. For fine adjustment of the composition, a master alloy of each element is used as necessary.
[0021]
Regarding the contents of V, Cr, Ni, and Zr, the total amount of the four components V + Cr + Ni + Zr is set within the range of 1 to 6 ppm, and the total amount of Ni and Zr Ni + Zr is set within the range of 0.05 to 1.5 ppm. To do.
[0022]
For the formation of etching pits during AC etching, a better result can be obtained when these four elements are included together than when they are contained alone. This is because, in the homogenization treatment, in addition to precipitation of Al—Fe and / or Al—Fe—Si intermetallic compounds, it is complicated such as Al—Fe— (V, Cr, Ni, Zr) -X. Intermetallic compounds are deposited at the same time, and various potential differences exist between such a complex compound and the matrix. As a result, good etching pits can be formed by alternating current etching and high capacitance can be obtained. Seem.
[0023]
That is, the content of V, Cr, Ni and Zr is for obtaining a high capacitance, and if the amount is less than the lower limit, the above effect is small. If the upper limit is exceeded, the amount of self-corrosion of the matrix increases and etching pits are generated. It collapses and the capacitance decreases. Further, since Ni and Zr have particularly strong etching pit forming ability among the above four elements, the content of Ni + Zr is regulated to 0.05 to 1.5 ppm. If the amount is less than the lower limit, the amount of complex compounds produced is small and a high capacitance cannot be obtained. If the amount exceeds the upper limit, the amount of self-corrosion of the matrix increases, etching pits collapse, and the capacitance decreases.
[0024]
Elements such as Mo, Nb, Sc, Ta, Ti, and W exist as peritectic elements other than V, Cr, and Zr. However, these elements originally have a small content and have a great influence on the formation of etching pits. However, it is preferable to make each element less than 0.5 ppm each together with other inevitable impurities.
[0025]
<Maximum diameter of intermetallic compound containing Fe: 20 nm or less>
The potential of the intermetallic compound containing Fe is more noble than the matrix. When a hard foil containing such a compound is AC-etched, the periphery of this compound becomes the starting point of the etching pit. Therefore, it is preferable to make many exist finely, and the size of the intermetallic compound containing Fe is 20 nm or less at the maximum diameter. If there are those exceeding 20 nm, the number of fine compounds deposited decreases and the number of etching pits to be formed also decreases, so that a high capacitance cannot be obtained.
[0026]
<Substance Si and Si-containing intermetallic compounds are not substantially detected>
In the present invention, an intermetallic compound containing Si refers to an Al—Si based compound, and does not include an Al—Fe—Si based compound. Al-Si-based compounds and Al-Fe-Si-based compounds have different influences on etching pit formation in AC etching. This difference in influence seems to be caused by the difference in potential difference with respect to the matrix. According to the results of experiments conducted by the present inventors, simple intermetallic compounds containing Si and Si have obtained knowledge that pit collapses occur around them due to alternating current etching, even if they are slightly present, and the capacitance is reduced. Therefore, it was decided not to be detected substantially. In the detection, it was decided that when observed with a transmission microscope at a magnification of 230,000, it was not substantially detected that it was not observed.
[0027]
The aluminum hard foil for electrolytic capacitors of the present invention can be made, for example, as follows.
[0028]
A high-purity aluminum ingot purified by a purification method such as a crystal fractionation method or a three-layer electrolysis method is used, and if necessary, a return material, a mother alloy, etc. are used to adjust the alloy elements and melt. When melting, degassing is performed, and the slab is cast by semi-continuous casting after filtering the molten metal.
[0029]
After the obtained slab is chamfered, it is heated and held at a temperature of 530 to 570 ° C. for 3 hours or more to perform a homogenization treatment, thereby removing casting distortion, eliminating casting segregation, and presenting the maximum in the slab. Crystallized material of about 30 nm is dissolved. If necessary, as part of the homogenization treatment, further cold rolling is performed to pulverize the crystallized product so that the maximum size is 20 nm or less.
[0030]
In the homogenization treatment, an appropriate amount is deposited as an intermetallic compound of Al-Fe system and Al-Fe- (V, Cr, Ni, Zr) -X system (X is another metal). Thereby, an etching pit is positively formed also around the crystallized substance and the precipitate at the time of AC etching, and the electrostatic capacity is improved.
[0031]
The above-mentioned effects can be obtained by setting the holding time at the homogenization temperature to 3 hours or more. Holding for more than 20 hours is economically disadvantageous.
[0032]
If the homogenization treatment temperature is lower than the lower limit, an excess of compounds enters the temperature region where Al—Fe and Al—Fe— (V, Cr, Ni, Zr) —X intermetallic compounds are rapidly precipitated. Therefore, the periphery of the compound is excessively dissolved in AC etching, causing pit collapse and lowering the capacitance.
[0033]
When the homogenization temperature exceeds the upper limit value, the intermetallic compound is excessively dissolved to reduce the amount of the precipitated compound, and it is reprecipitated in each rolling pass of the next hot rolling, and participates in the formation of etching pits. The distribution of the compound becomes irregular and the capacitance is lowered. Also, the oxide film on the surface of the slab is formed thick, and the oxide film needs to be removed by alkali cleaning, resulting in a decrease in productivity.
[0034]
The slab after the homogenization treatment is hot-rolled. The slab may be reheated from the homogenization temperature to the hot rolling start temperature after cooling, or if it is not cooled, it is subjected to hot rolling as it is or heated to the hot rolling start temperature as necessary. May be performed.
[0035]
In hot rolling, a hot rolled sheet having a thickness of 3 to 10 mm is formed by a plurality of passes. Precipitation hardly proceeds because the slab temperature is high at the initial stage of hot rolling.
[0036]
As the hot rolling pass progresses, the volume per unit length of the slab decreases and the cooling effect of the rolling roll increases. Since precipitation starts with the temperature drop of the hot rolled sheet, the temperature of the hot rolled sheet is controlled particularly at the end of hot rolling, and the Al-Fe and Al-Fe- (V, Cr, Ni, Zr) -X series are controlled. This limits the excessive precipitation of intermetallic compounds.
[0037]
That is, the hot-rolled sheet temperature on the entrance side of the last pass F2 immediately before the final pass F1 is rolled at 385 ° C. or higher, and the hot-rolled sheet is rapidly cooled with the rolling roll of the last pass F2 and the temperature is 275 to 320. ℃. In the high temperature range of 385 ° C. or higher, excessive precipitation of the intermetallic compound can be suppressed in combination with strain release, and in the temperature range of 320 ° C. or lower, the intermetallic compound is difficult to precipitate because the temperature is low. Again, precipitation can be limited. In other words, the temperature range of 385 to 320 ° C. at which the intermetallic compound is likely to precipitate is rapidly cooled by the F2 pass rolling roll to suppress the precipitation.
[0038]
The reason why the lower limit of the hot-rolled plate temperature after the last pass F2 is 275 ° C. is as follows. That is, at a temperature of 275 ° C. or higher, it is possible to suppress the precipitation of intermetallic compounds containing simple Si and Si. That is, setting the outlet temperature of the last pass F2 immediately before to 275 to 320 ° C. limits the excessive precipitation of Al—Fe and Al—Fe— (V, Cr, Ni, Zr) —X intermetallic compounds. Moreover, it is for suppressing precipitation of the intermetallic compound containing simple substance Si and Si.
[0039]
The entrance temperature of the final pass F1 after the last pass F2 is defined by the exit temperature of the last pass F2. In the final pass F1, the F1 outlet temperature is set to 230 ° C. or lower by quenching with a rolling roll. In a low temperature range of 230 ° C. or lower, since the temperature is low, it becomes difficult for the intermetallic compound containing simple Si and Si to precipitate, and the precipitation can be limited. The rolling reduction of the last pass F2 and the final pass F1 is not particularly limited, but generally 30 to 80% is preferable.
[0040]
By hot rolling under the above conditions, the thickness of the hot-rolled sheet is set to 3 to 9 mm, and in the next step, it is formed into a thin sheet of the present invention having a desired thickness by cold rolling. The thickness of the thin plate may be arbitrarily determined in consideration of handling and the like, and is generally 0.2 to 0.6 mm.
[0041]
This thin plate is further cold-rolled to form an aluminum hard foil for electrolytic capacitors. The thickness of this hard foil is approximately 80 to 120 μm. In cold rolling to a hard foil, recrystallization is not performed between rolling passes. Heating at a low temperature lower than the recrystallization temperature between rolling passes is preferable because part of the strain is released and softens, so that the rolling reduction can be increased in the subsequent rolling pass. The hard foil rolled to the product thickness may be heated and held at a low temperature below the recrystallization temperature in order to make the rolling strain uniform last if necessary.
[0042]
【Example】
A refined aluminum ingot purified by the crystal fractionation method, a refined aluminum ingot purified by the three-layer electrolytic method, a return material and a mother alloy were used for melting.
[0043]
A 530 mm thick slab was cast from the resulting molten metal by a semi-continuous casting method. The composition of the slab is shown in Table 1. In Table 1, the underlined numerical values are outside the scope of the present invention. Although omitted in Table 1, for all slabs, Si: 40 to 50 ppm, Fe: 35 to 50 ppm, Cu: 7 to 15 ppm, Al purity: 99.98% or more, and other impurity elements are each It was 0.5 ppm or less.
[0044]
The slab was cut by 15 mm and then heated and held at a temperature of 560 ° C. for 10 hours as a homogenization treatment, and hot rolled from this temperature to obtain a hot rolled sheet having a thickness of 100 mm. At this time, the temperature of the hot rolled sheet was 470 ° C.
[0045]
Further, the hot rolling was continued, and rolling was performed while variously changing the inlet side temperature and the outlet side temperature of the last pass (F2 pass) and the final pass (F1 pass). The plate thickness on the F2 pass entry side was 25 mm, the plate thickness on the F2 pass exit side was 15 mm, and the plate thickness on the F1 pass exit side was 6 mm.
[0046]
The obtained hot-rolled plate was cooled to room temperature and then cold-rolled to obtain a thin plate sample having a thickness of 90 μm.
[0047]
About each obtained sample, the maximum diameter of the intermetallic compound containing Fe, the presence or absence of the intermetallic compound containing simple substance Si and Si, and the electrostatic capacitance were measured. The results are shown in Table 2. In Table 2, the underlined matters are outside the scope of the present invention.
[0048]
In addition, each said measurement was performed with the following method.
<Maximum diameter of intermetallic compound containing Fe, presence or absence of intermetallic compound containing simple Si and Si>
A field emission transmission electron microscope was used. As the observation location, 20 visual fields of each sample were randomly selected, and the magnification was 230,000 times. The compounds were identified by EDX (energy dispersive X-ray spectroscopy).
[0049]
[0050]
[0051]
[0052]
[Chemical conversion treatment and capacitance measurement]
Chemical conversion treatment was performed by applying a direct current of 20 V in an aqueous solution of ammonium adipate, and the capacitance was measured in an aqueous solution of ammonium borate.
[0053]
The results are shown in Table 2. The capacitance values in Table 2 were expressed as relative values (%), with the capacitance of sample number 13 being 100.
[0054]
[Table 1]
[0055]
[Table 2]
[0056]
From the results of Table 2, the hard foils (sample numbers 1 to 6) according to the present invention in which the composition and the maximum diameter of the intermetallic compound containing Fe are within the scope of the present invention and the intermetallic compound containing simple Si and Si are not observed, It can be seen that the capacitance is high. On the other hand, the homogenization treatment conditions and the hot rolling conditions are within the scope of the present invention, but it can be seen that hard foils (sample numbers 7 to 10) whose composition is outside the scope of the present invention have a low capacitance. In addition, the hard foils (sample numbers 11 to 13) whose composition is within the scope of the present invention and the hot rolling conditions deviate from the scope of the present invention are those in which the maximum diameter of the intermetallic compound containing Fe deviates from the scope of the present invention. It can be seen that the presence of an intermetallic compound containing is low and the capacitance is low.
[0057]
【The invention's effect】
As described above, the aluminum hard foil for an electrolytic capacitor of the present invention has a specific range of content of several peritectic elements and Ni, regulates the maximum diameter of an intermetallic compound containing Fe, and contains simple Si and A foil having a high capacitance can be obtained simply by making the intermetallic compound containing Si substantially absent, and it is economical and has the effect of miniaturizing the capacitor.
[0058]
In addition, the method for producing a thin plate as a rolling material for producing the hard foil of the present invention by cold rolling has a specific range of contents of several peritectic elements, temperature conditions and heat of homogenization treatment Since only the temperature conditions of the last pass (F2 pass) and the final pass (F1 pass) of the intermediate rolling are managed, the effect of simplifying the production process and an aluminum hard foil for electrolytic capacitors with high capacitance can be obtained. Has an effect.
Claims (1)
Cu:5〜20ppm、
V+Cr+Ni+Zr:1〜6ppm、ただしNi+Zr:0.05〜1.5ppm 、および
残部:Alおよび不可避的不純物、ただしAl:箔質量の99.98%以上
から成り、Feを含む金属間化合物の最大径が20nm以下であり、単体SiおよびSiを含む金属間化合物が23万倍で観測して実質的に検出されないことを特徴とする電解コンデンサ用アルミニウム硬質箔。By weight, the following composition:
Cu: 5 to 20 ppm,
V + Cr + Ni + Zr: 1 to 6 ppm, where Ni + Zr: 0.05 to 1.5 ppm, and the balance: Al and unavoidable impurities, where Al: 99.98% or more of the foil mass, and the maximum diameter of the intermetallic compound containing Fe is An aluminum hard foil for an electrolytic capacitor, characterized in that it is 20 nm or less, and simple substance Si and an intermetallic compound containing Si are not substantially detected by observation at 230,000 times.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001353569A JP3770825B2 (en) | 2001-11-19 | 2001-11-19 | Aluminum hard foil for electrolytic capacitors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001353569A JP3770825B2 (en) | 2001-11-19 | 2001-11-19 | Aluminum hard foil for electrolytic capacitors |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005282170A Division JP4215039B2 (en) | 2005-09-28 | 2005-09-28 | Manufacturing method of thin plate for aluminum hard foil for electrolytic capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003155534A JP2003155534A (en) | 2003-05-30 |
JP3770825B2 true JP3770825B2 (en) | 2006-04-26 |
Family
ID=19165565
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001353569A Expired - Fee Related JP3770825B2 (en) | 2001-11-19 | 2001-11-19 | Aluminum hard foil for electrolytic capacitors |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3770825B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106345813A (en) * | 2016-11-17 | 2017-01-25 | 洛阳万基铝加工有限公司 | Rolling technology of 3104/3004 lamp holder material |
CN106391702A (en) * | 2016-11-17 | 2017-02-15 | 洛阳万基铝加工有限公司 | 1100 coating aluminum plate strip rolling technology |
CN109759474A (en) * | 2018-12-25 | 2019-05-17 | 杭州五星铝业有限公司 | A kind of preparation method of double-face optical aluminum foil |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4910615B2 (en) * | 2006-09-30 | 2012-04-04 | 日本ケミコン株式会社 | Electrode capacitor electrode material |
CN101797584A (en) * | 2010-02-11 | 2010-08-11 | 山东南山铝业股份有限公司 | Four-pass aluminum foil rolling process |
-
2001
- 2001-11-19 JP JP2001353569A patent/JP3770825B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106345813A (en) * | 2016-11-17 | 2017-01-25 | 洛阳万基铝加工有限公司 | Rolling technology of 3104/3004 lamp holder material |
CN106391702A (en) * | 2016-11-17 | 2017-02-15 | 洛阳万基铝加工有限公司 | 1100 coating aluminum plate strip rolling technology |
CN106345813B (en) * | 2016-11-17 | 2018-05-01 | 洛阳万基铝加工有限公司 | A kind of 3104/3004 lamp cap material rolling mill practice |
CN106391702B (en) * | 2016-11-17 | 2018-05-01 | 洛阳万基铝加工有限公司 | A kind of 1100 coating layer aluminium plates band rolling mill practice |
CN109759474A (en) * | 2018-12-25 | 2019-05-17 | 杭州五星铝业有限公司 | A kind of preparation method of double-face optical aluminum foil |
Also Published As
Publication number | Publication date |
---|---|
JP2003155534A (en) | 2003-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002241910A (en) | Method for producing aluminum alloy fin material for brazing | |
JP2008308703A (en) | Magnesium alloy for continuously casting and rolling, and method for producing magnesium alloy material | |
JPH07252573A (en) | Al-zn-mg-cu alloy excellent in toughness and its production | |
CN105586516A (en) | Aluminum Alloy Sheet Having Excellent Press Formability And Shape Fixability, And Method For Manufacturing Same | |
US4483719A (en) | Process for preparing fine-grained rolled aluminum products | |
WO2015155911A1 (en) | High-strength aluminum alloy plate having exceptional bendability and shape fixability, and method for manufacturing same | |
JP4099395B2 (en) | Method for producing high-strength aluminum alloy foil | |
JP3767492B2 (en) | Method for producing aluminum flexible foil | |
EP0093178B1 (en) | Production of superplastic aluminum alloy strips | |
JPH07252571A (en) | Automobile aluminum alloy sheet and its production | |
JP3770825B2 (en) | Aluminum hard foil for electrolytic capacitors | |
JP2798842B2 (en) | Manufacturing method of high strength rolled aluminum alloy sheet | |
JP2002348625A (en) | Aluminum alloy sheet with superior warm formability, and manufacturing method therefor | |
JPH07252574A (en) | Al-cu-mg alloy excellent in toughness and its production | |
JP4429877B2 (en) | Method for producing magnesium alloy sheet having fine crystal grains | |
JP2007126717A (en) | Aluminum alloy foil having excellent strength and surface roughening resistance and method for producing the same | |
JP2945298B2 (en) | Manufacturing method of aluminum alloy foil for electrolytic capacitor cathode | |
JP3685973B2 (en) | Al-Mg-based Al alloy plate with excellent formability | |
JP4215039B2 (en) | Manufacturing method of thin plate for aluminum hard foil for electrolytic capacitor | |
JP3145904B2 (en) | Aluminum alloy sheet excellent in high speed superplastic forming and its forming method | |
JP2001032031A (en) | Aluminum alloy sheet for structural material, excellent in stress corrosion cracking resistance | |
JP3161141B2 (en) | Manufacturing method of aluminum alloy sheet | |
JPH11217656A (en) | Production of aluminum alloy foil excellent in foil rollability | |
JPH07278716A (en) | Aluminum alloy sheet for forming excellent in mechanical property and its production | |
JP2814877B2 (en) | Aluminum alloy foil with excellent foil rolling and baking properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040615 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050711 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050816 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050928 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050928 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051122 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051208 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060110 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060207 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120217 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120217 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130217 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130217 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140217 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |