JP3769963B2 - 12 pulse power converter - Google Patents

12 pulse power converter Download PDF

Info

Publication number
JP3769963B2
JP3769963B2 JP03382799A JP3382799A JP3769963B2 JP 3769963 B2 JP3769963 B2 JP 3769963B2 JP 03382799 A JP03382799 A JP 03382799A JP 3382799 A JP3382799 A JP 3382799A JP 3769963 B2 JP3769963 B2 JP 3769963B2
Authority
JP
Japan
Prior art keywords
reactor
phase
power converter
circuit
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03382799A
Other languages
Japanese (ja)
Other versions
JP2000232786A (en
Inventor
昌人 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP03382799A priority Critical patent/JP3769963B2/en
Publication of JP2000232786A publication Critical patent/JP2000232786A/en
Application granted granted Critical
Publication of JP3769963B2 publication Critical patent/JP3769963B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Rectifiers (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、30度の位相差を有する2組の三相交流電源を別個に全波整流する2組の電力変換装置の出力を平衡させる12パルス電力変換装置に関する。
【0002】
【従来の技術】
図3は12パルス電力変換装置の第1従来例を示した主回路接続図である。図3に図示の第1従来例回路において、三相交流電源15に12パルス接続用変圧器1を接続する。この12パルス接続用変圧器1は一次巻線1Aと2組の二次巻線,すなわちスター接続二次巻線1Bとデルタ接続二次巻線1Cとで構成しており、2組の二次巻線のうちの一方がスター接続であるならば他方はデルタ接続にする。
【0003】
第1インバータ装置12は、第1電力変換装置としての第1三相全波整流回路2と第1インバータ回路8と、これら両者の直流側同士を接続している直流中間回路に挿入されている第1直流リアクトル4と第1平滑コンデンサ6とで構成されており、この第1インバータ装置12を12パルス接続用変圧器1のスター接続二次巻線1Bに接続しており、この第1インバータ装置12が所望の電圧と周波数の交流電力を第1交流負荷10へ供給する。同様に第2インバータ装置13も、第2電力変換装置としての第2三相全波整流回路3と第2インバータ回路9と、これら両者の直流側同士を接続している直流中間回路に挿入されている第2直流リアクトル5と第2平滑コンデンサ7とで構成されており、この第2インバータ装置13を12パルス接続用変圧器1のデルタ接続二次巻線1Cに接続して第2交流負荷11へ所望の電圧と周波数の交流電力を供給する。
【0004】
スター接続二次巻線1Bの三相交流出力とデルタ接続二次巻線1Cの三相交流出力との間には30度の位相差があるから、それぞれの二次巻線1Bと1Cに別個の三相全波整流回路2,3を接続することにより、所謂12パルス電力変換装置が形成され、三相交流電源15へ流れる高調波電流が低減される効果を得ることができる。しかし、第1三相全波整流回路2と第2三相全波整流回路3が別個にそれぞれの負荷へ直流電力を供給する場合、通常は両三相全波整流回路2,3の出力は同じにはならないから、前述した高調波電流低減効果を期待することはできない。
【0005】
第1三相全波整流回路2の直流出力側に第1直流リアクトル4と第1平滑コンデンサ6とを接続してこの直流出力を平滑にしており、第2三相全波整流回路3の直流出力側にも第2直流リアクトル5と第2平滑コンデンサ7とを接続してその直流出力を平滑しているが、これら平滑された両直流出力を、正極側接続線16と負極側接続線17とで並列に接続する。これにより、第1三相全波整流回路2の出力電流と第2三相全波整流回路3の出力電流は、第1交流負荷10と第2交流負荷11とへ電力を供給する場合でも平衡状態にある。
【0006】
【発明が解決しようとする課題】
しかし実際には、12パルス接続用変圧器1のスター接続二次巻線1Bの無負荷電圧とデルタ接続二次巻線1Cの無負荷電圧には僅かながら不平衡があるし、両二次巻線1B,1Cそれぞれの巻線インダクタンスも同じ値にはならないから、平滑された両三相全波整流回路2,3の直流出力を正極側接続線16と負極側接続線17で並列に接続しても、両者の直流電流に不平衡を生じることがある。ここで両インバータ装置12,13の直流中間回路に挿入されている第1直流リアクトル4と第2直流リアクトル5は、これら両インバータ装置12,13が単独の6パルス電力変換装置として(すなわち正極側接続線16と負極側接続線17とを取り除いた状態で)運転する場合に、それぞれの入力力率を改善するためのものである。それ故、第1直流リアクトル4は第1三相全波整流回路2の出力直流電流のみを一定に保つように動作し、第2直流リアクトル5は第2三相全波整流回路3の出力直流電流のみを一定に保つように動作しており、両三相全波整流回路2,3の出力直流電流を平衡させるバランサーとしての動作を期待することはできない。
【0007】
そこでスター接続二次巻線1Bとデルタ接続二次巻線1Cの無負荷電圧のアンバランスや巻線インダクタンスのアンバランスを低減させるべく特殊構造の専用変圧器をわざわざ製作するのであるが、この製作に長期間を要すると共に価格が上昇する欠点がある。更に、前述のアンバランスを完全に零にすることは原理的に困難である。
【0008】
図4は12パルス電力変換装置の第2従来例を示した主回路接続図であって、単独負荷へ交流電力を供給する場合を示している。図4に図示の第2従来例回路において、12パルス電力変換装置20は、12パルス接続用変圧器1のスター接続二次巻線1Bに接続した第1電力変換装置としての第1三相全波整流回路2,12パルス接続用変圧器1のデルタ接続二次巻線1Cに接続した第2電力変換装置としての第2三相全波整流回路3,バランス用2巻線リアクトル21,平滑コンデンサ22,およびインバータ回路23で構成していて、インバータ回路23が出力する所望の電圧と周波数の交流電力で交流負荷24を運転する。バランス用2巻線リアクトル21は第1三相全波整流回路2の出力直流電流を流す一方のコイルと、第2三相全波整流回路3の出力直流電流を流す他方のコイルとを備えており、これら2つのコイルを共通の鉄心に巻く構造にしているので、両三相全波整流回路2と3の出力電流の不平衡を抑制することができる。しかしながら図4の従来例回路ではバランス用2巻線リアクトル21を特別に製作しなければならないので、やはり装置が高価になることや、装置の納期が長くなるなどの不都合を有している。
【0009】
そこでこの発明の目的は、12パルス電力変換装置を構成する2つの三相全波整流回路の出力電流を、特別に製作する12パルス接続用変圧器やバランス用2巻線リアクトルなどを使用せずに、簡単にバランスさせることにある。
【0010】
【課題を解決するための手段】
前記の目的を達成するために、この発明の12パルス電力変換装置は、
三相交流電源に接続して全波整流により直流を得る第1電力変換装置の直流出力側と、この三相交流電源と30度の位相差を有する別の三相交流電源に接続して全波整流により直流を得る第2電力変換装置の直流出力側とを並列に接続し、この並列接続点と負荷との間に直流リアクトルと平滑コンデンサを挿入するものとする。
【0011】
または、前記第1電力変換装置の直流出力側に第1直流リアクトルと第1平滑コンデンサを接続し、前記第2電力変換装置の直流出力側に第2直流リアクトルと第2平滑コンデンサを接続し、前記第1直流リアクトルの電源側と第2直流リアクトルの電源側とを共通に接続し、前記第1平滑コンデンサと第2平滑コンデンサとを並列接続したのちに負荷を接続するものとする。
【0012】
【発明の実施の形態】
図1は本発明の第1実施例を表した主回路接続図であるが、この第1実施例回路に記載の12パルス接続用変圧器1(一次巻線1Aとスター接続二次巻線1Bとデルタ接続二次巻線1Cで構成),第1電力変換装置としての第1三相全波整流回路2,第2電力変換装置としての第2三相全波整流回路3,三相交流電源15,平滑コンデンサ22,インバータ回路23,および交流負荷24の名称・用途・機能は、図4で既述の第2従来例回路の場合と同じであるから、これらの説明は省略する。
【0013】
図1の第1実施例回路における12パルス電力変換装置30は、スター接続二次巻線1Bに接続した第1三相全波整流回路2の直流出力側とデルタ接続二次巻線1Cに接続した第2三相全波整流回路3の直流出力側とを2本の並列接続線32で並列に接続し、この並列接続点とインバータ回路23の直流側との間に,平滑コンデンサ22とバランス用直流リアクトル31とが挿入された構成になっている。2本の並列接続線32で両三相全波整流回路2と3の直流出力側を並列接続することにより、バランス用直流リアクトル31は第1三相全波整流回路2の出力直流電流と第2三相全波整流回路3の出力直流電流とを一定に保つように動作する。すなわち図4の従来例回路で既述のバランス用2巻線リアクトル21と同様の電流バランス作用が得られる。
【0014】
図2は本発明の第2実施例を表した主回路接続図であるが、この第2実施例回路は、図3で既述の第1従来例回路に電源側接続線41を付加しているのみであって、これ以外の各機器の名称・用途・機能はすべて図3の第1従来例回路と同じであるから、これらの説明は使用略する。
【0015】
この第2実施例回路では、第1三相全波整流回路2の直流出力側と第2三相全波整流回路3の直流出力側とを共通にするために、両者を電源側接続線41で接続する。これにより第1直流リアクトル4と第2直流リアクトル5とは両三相全波整流回路2と3が出力する直流電流を一定に保つように動作するから、図4に図示のバランス用2巻線リアクトル21と同じ作用を発揮する。
【0016】
この図2の第2実施例回路に図示の回路構成にすれば、第1三相全波整流回路2と第2三相全波整流回路3とを並列運転することにより、不平衡を生じること無しで両者に共通の負荷へ直流電力を供給することができるし、正極側接続線16と負極側接続線17および電源側接続線41を取り除けば、第1三相全波整流回路2と第2三相全波整流回路3とを別個に運転して別々の負荷へ電力を供給することも可能である。
【0017】
図5は図3の第1従来例回路に図示の12パルス接続用変圧器の出力電流をシミュレーション計算により描いた電流波形図であるが、図3の第1従来例回路における12パルス接続用変圧器1のスター接続二次巻線1Bに現れる無負荷電圧とデルタ接続二次巻線1Cに現れる無負荷電圧とに3ボルトの差があり、且つ両二次巻線のインダクタンスに10%の差がある場合をシミュレーションの条件にして計算している。この電流波形図の縦軸は電流,横軸は時間を表しており、破線がスター接続二次巻線1Bの出力電流IB を、実線がデルタ接続二次巻線1Cの出力電流IC を、それぞれが示している。
【0018】
図6は図2の第2実施例回路に図示の12パルス接続用変圧器の出力電流をシミュレーション計算により描いた電流波形図であるが、このときのシミュレーション計算の条件は前述した図5の電流波形図の場合と同じである。この図6の電流波形図では、破線で図示したスター接続二次巻線1Bの出力電流IB と、実線で図示したデルタ接続二次巻線1Cの出力電流IC とは殆ど同じ(両電流のバランスの程度は実効値で90%)であり、図5に図示の従来例回路での電流アンバランスが大きく改善されていることが分かる。
【0019】
【発明の効果】
12パルス電力変換装置は相互に30度の位相差を設けた2組の三相交流に別個の三相全波整流器を接続した構成にするのであるが、30度の位相差を有する2組の三相交流を得るために、スター接続二次巻線とデルタ接続二次巻線とを備えた12パルス接続用変圧器を使用する。しかし12パルス接続用変圧器が備える2つの二次巻線の無負荷電圧や2つの二次巻線のインピーダンス値を同じ値に揃えるのは、原理的に困難である。それ故従来は、この無負荷電圧のアンバランスや巻線インピーダンスのアンバランスが低減できるように特別に設計・製作した12パルス接続用変圧器を使用したり、特別に設計・製作したバランス用2巻線リアクトルを使用して、両者の電流が不平衡になるのを抑制しなければならなかったので、装置全体のコストが上昇し、装置の製作に長時間を要する不具合があった。
【0020】
これに対して本発明では、2つの二次巻線に別個に接続している三相全波整流器の直流出力側を並列接続したのちに、両三相全波整流器に共通のバランス用直流リアクトルと平滑コンデンサを接続する。または別個のバランス用直流リアクトルと平滑コンデンサを備えた2つの三相全波整流器の場合は、各三相全波整流器の出力側を共通にする接続と、2つの平滑コンデンサを並列にする接続とを施す。このようにすることにより、ほぼ完全に両者の電流バランスが得られる。すなわち数本の接続線を接続する作業を追加するのみで、特別な12パルス接続用変圧器やバランス用2巻線リアクトルは不要であるから、装置のコスト上昇を抑制し、製作期間の長期化を回避できる効果が得られるし、装置全体が大形化するのを抑制できる効果も合わせて得られる。
【図面の簡単な説明】
【図1】本発明の第1実施例を表した主回路接続図
【図2】本発明の第2実施例を表した主回路接続図
【図3】12パルス電力変換装置の第1従来例を示した主回路接続図
【図4】12パルス電力変換装置の第2従来例を示した主回路接続図
【図5】図3の第1従来例回路に図示の12パルス接続用変圧器の出力電流をシミュレーション計算により描いた電流波形図
【図6】図2の第2実施例回路に図示の12パルス接続用変圧器の出力電流をシミュレーション計算により描いた電流波形図
【符号の説明】
1 12パルス接続用変圧器
1A 一次巻線
1B スター接続二次巻線
1C デルタ接続二次巻線
2 第1三相全波整流回路
3 第2三相全波整流回路
4 第1直流リアクトル
5 第2直流リアクトル
6 第1平滑コンデンサ
7 第2平滑コンデンサ
8 第1インバータ回路
9 第2インバータ回路
12 第1インバータ装置
13 第2インバータ装置
15 三相交流電源
16 正極側接続線
17 負極側接続線
20,30 12パルス電力変換装置
21 バランス用2巻線リアクトル
22 平滑コンデンサ
23 インバータ回路
31 バランス用直流リアクトル
32 並列接続線
41 電源側接続線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a 12-pulse power converter that balances the outputs of two power converters that separately perform full-wave rectification on two sets of three-phase AC power supplies having a phase difference of 30 degrees.
[0002]
[Prior art]
FIG. 3 is a main circuit connection diagram showing a first conventional example of a 12-pulse power converter. In the first conventional circuit shown in FIG. 3, a 12-pulse connection transformer 1 is connected to a three-phase AC power supply 15. This 12-pulse connection transformer 1 is composed of a primary winding 1A and two sets of secondary windings, that is, a star connection secondary winding 1B and a delta connection secondary winding 1C. If one of the windings is a star connection, the other is a delta connection.
[0003]
The first inverter device 12 is inserted into the first three-phase full-wave rectifier circuit 2 and the first inverter circuit 8 as the first power converter, and a direct current intermediate circuit connecting the direct current sides of both. The first inverter 4 is composed of a first DC reactor 4 and a first smoothing capacitor 6. The first inverter device 12 is connected to the star-connected secondary winding 1B of the 12-pulse connecting transformer 1, and the first inverter The device 12 supplies AC power having a desired voltage and frequency to the first AC load 10. Similarly, the second inverter device 13 is also inserted into the second three-phase full-wave rectifier circuit 3 and the second inverter circuit 9 as the second power converter, and a DC intermediate circuit that connects the DC sides of the two. The second DC reactor 5 and the second smoothing capacitor 7 are connected to each other, and the second inverter device 13 is connected to the delta connection secondary winding 1C of the 12-pulse connection transformer 1 to provide a second AC load. 11 is supplied with AC power having a desired voltage and frequency.
[0004]
Since there is a phase difference of 30 degrees between the three-phase AC output of the star-connected secondary winding 1B and the three-phase AC output of the delta-connected secondary winding 1C, each secondary winding 1B and 1C is separately provided. By connecting the three-phase full-wave rectifier circuits 2 and 3, a so-called 12-pulse power converter is formed, and the effect of reducing the harmonic current flowing to the three-phase AC power supply 15 can be obtained. However, when the first three-phase full-wave rectifier circuit 2 and the second three-phase full-wave rectifier circuit 3 separately supply DC power to the respective loads, the outputs of both the three-phase full-wave rectifier circuits 2 and 3 are usually Since they are not the same, the above-described harmonic current reduction effect cannot be expected.
[0005]
The first DC reactor 4 and the first smoothing capacitor 6 are connected to the DC output side of the first three-phase full-wave rectifier circuit 2 to smooth the DC output. The second DC reactor 5 and the second smoothing capacitor 7 are also connected to the output side to smooth the DC output. These smoothed DC outputs are connected to the positive side connection line 16 and the negative side connection line 17. Connect in parallel. Thus, the output current of the first three-phase full-wave rectifier circuit 2 and the output current of the second three-phase full-wave rectifier circuit 3 are balanced even when power is supplied to the first AC load 10 and the second AC load 11. Is in a state.
[0006]
[Problems to be solved by the invention]
However, in practice, there is a slight imbalance between the no-load voltage of the star-connected secondary winding 1B of the 12-pulse connecting transformer 1 and the no-load voltage of the delta-connected secondary winding 1C. Since the winding inductance of each of the lines 1B and 1C does not have the same value, the DC outputs of the smoothed three-phase full-wave rectifier circuits 2 and 3 are connected in parallel by the positive side connection line 16 and the negative side connection line 17. However, the DC current of both may be unbalanced. Here, the first DC reactor 4 and the second DC reactor 5 inserted in the DC intermediate circuit of both the inverter devices 12 and 13 are configured so that both the inverter devices 12 and 13 are independent six-pulse power converters (that is, the positive electrode side). When driving (with the connection line 16 and the negative side connection line 17 removed), the input power factor is improved. Therefore, the first DC reactor 4 operates so as to keep only the output DC current of the first three-phase full-wave rectifier circuit 2 constant, and the second DC reactor 5 is the output DC of the second three-phase full-wave rectifier circuit 3. It operates so as to keep only the current constant, and it cannot be expected to operate as a balancer that balances the output DC currents of the three-phase full-wave rectifier circuits 2 and 3.
[0007]
Therefore, a special transformer with a special structure is specially made to reduce the unbalance of the no-load voltage and the unbalance of the winding inductance of the star connection secondary winding 1B and the delta connection secondary winding 1C. However, it takes a long time to increase the price. Furthermore, it is theoretically difficult to make the aforementioned unbalance completely zero.
[0008]
FIG. 4 is a main circuit connection diagram showing a second conventional example of a 12-pulse power converter, and shows a case where AC power is supplied to a single load. In the second conventional circuit shown in FIG. 4, the 12-pulse power converter 20 includes a first three-phase all-power as a first power converter connected to the star-connected secondary winding 1 </ b> B of the 12-pulse connecting transformer 1. Wave rectifier circuit 2, 12-pulse connection transformer 1 delta connection secondary winding 1C connected as a second power converter as a second three-phase full-wave rectifier circuit 3, balancing two-winding reactor 21, smoothing capacitor 22 and an inverter circuit 23, and the AC load 24 is operated with AC power having a desired voltage and frequency output from the inverter circuit 23. The balancing two-winding reactor 21 includes one coil for flowing the output DC current of the first three-phase full-wave rectifier circuit 2 and the other coil for flowing the output DC current of the second three-phase full-wave rectifier circuit 3. In addition, since these two coils are wound around a common iron core, the unbalance of the output currents of both three-phase full-wave rectifier circuits 2 and 3 can be suppressed. However, in the conventional circuit of FIG. 4, the balancing two-winding reactor 21 must be specially manufactured, so that the apparatus is also expensive and the delivery time of the apparatus is long.
[0009]
Therefore, an object of the present invention is to use the output current of the two three-phase full-wave rectifier circuits constituting the 12-pulse power converter without using a 12-pulse connection transformer or a balancing 2-winding reactor that is specially manufactured. It is to balance easily.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a 12-pulse power converter according to the present invention provides:
Connect to the three-phase AC power supply and the DC output side of the first power converter to obtain DC by full-wave rectification, and connect to this three-phase AC power supply and another three-phase AC power supply having a phase difference of 30 degrees It is assumed that a DC output side of a second power converter that obtains DC by wave rectification is connected in parallel, and a DC reactor and a smoothing capacitor are inserted between the parallel connection point and a load.
[0011]
Alternatively, the first DC reactor and the first smoothing capacitor are connected to the DC output side of the first power converter, the second DC reactor and the second smoothing capacitor are connected to the DC output side of the second power converter, The power supply side of the first DC reactor and the power supply side of the second DC reactor are connected in common, and the load is connected after the first smoothing capacitor and the second smoothing capacitor are connected in parallel.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a main circuit connection diagram showing a first embodiment of the present invention. A 12-pulse connection transformer 1 (a primary winding 1A and a star connection secondary winding 1B described in the circuit of the first embodiment. And a delta-connected secondary winding 1C), a first three-phase full-wave rectifier circuit 2 as a first power converter, a second three-phase full-wave rectifier circuit 3 as a second power converter 3, and a three-phase AC power source 15, the names, uses, and functions of the smoothing capacitor 22, the inverter circuit 23, and the AC load 24 are the same as those of the second conventional circuit described above with reference to FIG.
[0013]
The 12-pulse power converter 30 in the first embodiment circuit of FIG. 1 is connected to the DC output side of the first three-phase full-wave rectifier circuit 2 connected to the star-connected secondary winding 1B and the delta-connected secondary winding 1C. The DC output side of the second three-phase full-wave rectifier circuit 3 is connected in parallel by two parallel connection lines 32, and the smoothing capacitor 22 and the balance are connected between the parallel connection point and the DC side of the inverter circuit 23. It has the structure where the direct current reactor 31 for insertion was inserted. By connecting the DC output sides of both three-phase full-wave rectifier circuits 2 and 3 in parallel by two parallel connection lines 32, the balancing DC reactor 31 is connected to the output DC current of the first three-phase full-wave rectifier circuit 2 and 2. Operates so as to keep the output DC current of the three-phase full-wave rectifier circuit 3 constant. In other words, the current balance action similar to that of the above-described balancing two-winding reactor 21 can be obtained in the conventional circuit of FIG.
[0014]
FIG. 2 is a main circuit connection diagram showing a second embodiment of the present invention. This second embodiment circuit is obtained by adding a power supply side connection line 41 to the first conventional circuit described in FIG. However, the names, applications, and functions of the other devices are the same as those of the first conventional circuit shown in FIG.
[0015]
In the circuit of the second embodiment, in order to make the DC output side of the first three-phase full-wave rectifier circuit 2 and the DC output side of the second three-phase full-wave rectifier circuit 3 common, both are connected to the power supply side connection line 41. Connect with. Accordingly, the first DC reactor 4 and the second DC reactor 5 operate so as to keep the DC current output from the three-phase full-wave rectifier circuits 2 and 3 constant. The same effect as the reactor 21 is exhibited.
[0016]
If the circuit configuration shown in the circuit of the second embodiment of FIG. 2 is used, the first three-phase full-wave rectifier circuit 2 and the second three-phase full-wave rectifier circuit 3 are operated in parallel, thereby causing an unbalance. DC power can be supplied to the load common to both of them, and if the positive side connecting line 16, the negative side connecting line 17 and the power source side connecting line 41 are removed, the first three-phase full-wave rectifier circuit 2 and the first It is also possible to operate the two-phase full-wave rectifier circuit 3 separately and supply power to different loads.
[0017]
FIG. 5 is a current waveform diagram depicting the output current of the 12-pulse connection transformer illustrated in the first conventional circuit of FIG. 3 by simulation calculation. The 12-pulse connection transformer in the first conventional circuit of FIG. There is a difference of 3 volts between the no-load voltage appearing in the star connected secondary winding 1B and the no-load voltage appearing in the delta connected secondary winding 1C, and the inductance of both the secondary windings is 10%. The calculation is performed under the condition of simulation. In this current waveform diagram, the vertical axis represents current, the horizontal axis represents time, the broken line represents the output current I B of the star connection secondary winding 1B, and the solid line represents the output current I C of the delta connection secondary winding 1C. Each shows.
[0018]
FIG. 6 is a current waveform diagram in which the output current of the 12-pulse connecting transformer shown in the circuit of the second embodiment of FIG. 2 is drawn by simulation calculation. The conditions for the simulation calculation at this time are the currents of FIG. This is the same as the waveform diagram. In the current waveform diagram of FIG. 6, the output current I B of the star-connected secondary winding 1B shown by the broken line is almost the same as the output current I C of the delta-connected secondary winding 1C shown by the solid line (both currents). The balance is 90% as an effective value), and it can be seen that the current imbalance in the conventional circuit shown in FIG. 5 is greatly improved.
[0019]
【The invention's effect】
The 12-pulse power converter has a configuration in which separate three-phase full-wave rectifiers are connected to two sets of three-phase alternating currents each having a phase difference of 30 degrees. In order to obtain a three-phase alternating current, a 12-pulse connection transformer having a star connection secondary winding and a delta connection secondary winding is used. However, in principle, it is difficult to make the no-load voltage of the two secondary windings and the impedance value of the two secondary windings provided in the 12-pulse connection transformer equal to the same value. Therefore, in the past, a 12-pulse connection transformer specially designed and manufactured to reduce this unload voltage imbalance and winding impedance imbalance, or a specially designed and manufactured balance 2 Since it was necessary to suppress the unbalanced current between the two using a winding reactor, the cost of the entire device increased, and there was a problem that it took a long time to manufacture the device.
[0020]
On the other hand, in the present invention, the DC output side of the three-phase full-wave rectifier separately connected to the two secondary windings is connected in parallel, and then the balancing DC reactor common to both three-phase full-wave rectifiers is used. And connect a smoothing capacitor. Or, in the case of two three-phase full-wave rectifiers with separate balancing DC reactors and smoothing capacitors, a connection that shares the output side of each three-phase full-wave rectifier and a connection that connects two smoothing capacitors in parallel Apply. By doing so, the current balance between the two can be obtained almost completely. In other words, only the work of connecting several connecting lines is added, and no special 12-pulse connection transformer or balance 2-winding reactor is required. Can be obtained, and the effect of suppressing the overall size of the apparatus from being increased can also be obtained.
[Brief description of the drawings]
FIG. 1 is a main circuit connection diagram illustrating a first embodiment of the present invention. FIG. 2 is a main circuit connection diagram illustrating a second embodiment of the present invention. FIG. 4 is a main circuit connection diagram showing a second conventional example of a 12-pulse power converter. FIG. 5 is a circuit diagram of a 12-pulse connection transformer shown in the first conventional circuit of FIG. FIG. 6 is a current waveform diagram showing the output current of the 12-pulse connecting transformer shown in the circuit of the second embodiment of FIG. 2 by simulation calculation.
1 12 Pulse connection transformer 1A Primary winding 1B Star connection secondary winding 1C Delta connection secondary winding 2 First three-phase full-wave rectifier circuit 3 Second three-phase full-wave rectifier circuit 4 First DC reactor 5 First 2 DC reactor 6 1st smoothing capacitor 7 2nd smoothing capacitor 8 1st inverter circuit 9 2nd inverter circuit 12 1st inverter apparatus 13 2nd inverter apparatus 15 Three-phase alternating current power supply 16 Positive electrode side connection line 17 Negative electrode side connection line 20, 30 12-pulse power converter 21 Balance 2-winding reactor 22 Smoothing capacitor 23 Inverter circuit 31 Balancing DC reactor 32 Parallel connection line 41 Power supply side connection line

Claims (2)

第1三相交流電源に接続して全波整流により直流を得る第1電力変換装置の直流出力側と、前記第1三相交流電源と30度の位相差を有する第2三相交流電源に接続して全波整流により直流を得る第2電力変換装置の直流出力側とを並列に接続し、この並列接続点と負荷との間に、前記第1電力変換装置の出力電流と前記第2電力変換装置の出力電流とを平衡させるバランス用直流リアクトルと平滑コンデンサを挿入することを特徴とする12パルス電力変換装置。Connected to the first three-phase AC power source to obtain a direct current by full-wave rectification, the DC output side of the first power converter, and the second three-phase AC power source having a phase difference of 30 degrees from the first three-phase AC power source A DC output side of a second power converter that is connected to obtain DC by full-wave rectification is connected in parallel, and the output current of the first power converter and the second are connected between the parallel connection point and a load . A 12-pulse power converter characterized by inserting a balancing DC reactor and a smoothing capacitor for balancing the output current of the power converter. 第1三相交流電源に接続して全波整流により直流を得る第1電力変換装置の直流出力側に第1直流リアクトルと第1平滑コンデンサを接続し、前記第1三相交流電源と30度の位相差を有する第2三相交流電源に接続して全波整流により直流を得る第2電力変換装置の直流出力側に第2直流リアクトルと第2平滑コンデンサを接続し、前記第1直流リアクトルの電源側と第2直流リアクトルの電源側とを共通に接続し、前記第1平滑コンデンサと第2平滑コンデンサとを並列に接続することを特徴とする12パルス電力変換装置。A first DC reactor and a first smoothing capacitor are connected to the DC output side of the first power converter that is connected to the first three-phase AC power source to obtain DC by full-wave rectification, and 30 degrees from the first three-phase AC power source. A second DC reactor and a second smoothing capacitor are connected to a DC output side of a second power converter that is connected to a second three-phase AC power source having a phase difference of A 12-pulse power converter characterized in that the power source side of the second DC reactor and the power source side of the second DC reactor are connected in common, and the first smoothing capacitor and the second smoothing capacitor are connected in parallel.
JP03382799A 1999-02-12 1999-02-12 12 pulse power converter Expired - Fee Related JP3769963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03382799A JP3769963B2 (en) 1999-02-12 1999-02-12 12 pulse power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03382799A JP3769963B2 (en) 1999-02-12 1999-02-12 12 pulse power converter

Publications (2)

Publication Number Publication Date
JP2000232786A JP2000232786A (en) 2000-08-22
JP3769963B2 true JP3769963B2 (en) 2006-04-26

Family

ID=12397332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03382799A Expired - Fee Related JP3769963B2 (en) 1999-02-12 1999-02-12 12 pulse power converter

Country Status (1)

Country Link
JP (1) JP3769963B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106165281A (en) * 2015-03-11 2016-11-23 三菱电机株式会社 Transducer and power-converting device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003204677A (en) * 2002-01-08 2003-07-18 Toshiba Corp Power converter
JP4639787B2 (en) * 2004-12-13 2011-02-23 富士電機ホールディングス株式会社 Power converter
FR2882887B1 (en) * 2005-03-01 2007-04-27 Solvay ELECTRIC CIRCUIT OF ELECTROLYSER AND METHOD FOR REDUCING ELECTROMAGNETIC FIELDS IN THE VICINITY OF THE ELECTROLYSER
DE102005012371A1 (en) 2005-03-09 2006-09-14 Siemens Ag Twelve-pulse high-voltage direct-current meeting
CN102624248B (en) * 2012-04-01 2014-07-23 广东易事特电源股份有限公司 UPS (Uninterrupted Power Supply) based on self-coupling phase-shifting transformer and double six-pulse wave rectifiers
CN102624070B (en) * 2012-04-20 2014-05-07 广东易事特电源股份有限公司 Symmetric-type uninterruptible power supply (UPS) power system based on nine-phase phase-shifting autotransformer
JP5642307B1 (en) * 2014-03-31 2014-12-17 株式会社トーメック Harmonic suppressor capable of independent operation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106165281A (en) * 2015-03-11 2016-11-23 三菱电机株式会社 Transducer and power-converting device
CN106165281B (en) * 2015-03-11 2018-03-23 三菱电机株式会社 Converter and power-converting device

Also Published As

Publication number Publication date
JP2000232786A (en) 2000-08-22

Similar Documents

Publication Publication Date Title
US6498736B1 (en) Harmonic filter with low cost magnetics
US5148357A (en) Auto-connected hexagon transformer for a 12-pulse converter
US5124904A (en) Optimized 18-pulse type AC/DC, or DC/AC, converter system
US7095636B2 (en) Electromagnetic interference filter for an autotransformer
US7609536B2 (en) Autotransformer AC/DC converter
US7233506B1 (en) Low kVA/kW transformers for AC to DC multipulse converters
JP4808221B2 (en) High frequency modulation / demodulation multiphase rectifier
JP4973306B2 (en) Parallel 24 pulse rectifier circuit
US5781428A (en) Transformer for 12-pulse series connection of converters
JP3769963B2 (en) 12 pulse power converter
JP2008178180A (en) Rectifier circuit
US6424552B1 (en) Multiphase transformer having main and auxiliary transformers
JP3591548B2 (en) Multiple rectifier circuit
JP7419147B2 (en) power converter
EP0472267A2 (en) Optimized, 18-pulse type AC/DC, or DC/AC, converter system
JP2008278714A (en) Rectifier circuit
US10720854B2 (en) 72-pulse AC-DC converter for power quality improvement
US20200373849A1 (en) Power converter
JPS5829374A (en) Reducing method for higher harmonic of six-phase rectifier
JP3696855B2 (en) Rectifier
JPH0898527A (en) Transformer
RU2219647C2 (en) Ac-to-dc voltage converter
JP2901739B2 (en) Transformer
JP7515824B2 (en) Power Conversion Equipment
JP2023113461A (en) Power conversion device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees