JP2000232786A - Twelve-pulse power-converting device - Google Patents

Twelve-pulse power-converting device

Info

Publication number
JP2000232786A
JP2000232786A JP11033827A JP3382799A JP2000232786A JP 2000232786 A JP2000232786 A JP 2000232786A JP 11033827 A JP11033827 A JP 11033827A JP 3382799 A JP3382799 A JP 3382799A JP 2000232786 A JP2000232786 A JP 2000232786A
Authority
JP
Japan
Prior art keywords
connection
reactor
phase full
pulse
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11033827A
Other languages
Japanese (ja)
Other versions
JP3769963B2 (en
Inventor
Masato Mochizuki
昌人 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP03382799A priority Critical patent/JP3769963B2/en
Publication of JP2000232786A publication Critical patent/JP2000232786A/en
Application granted granted Critical
Publication of JP3769963B2 publication Critical patent/JP3769963B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To simply balance the output current of two three-phase full-wave rectifying circuits for composing a 12-pulse power converting device, without using a 12-pulse connection transformer which is specially manufactured and a two-coil winding reactor for balancing. SOLUTION: The DC output side of a first three-phase full-wave rectifying circuit 2 connected to star connection secondary coil winding 1B of a 12-pulse connection transformer 1 is connected to that of a second three-phase full-wave rectifying circuit 3 which is connected to dalta connection secondary coil winding 1C in parallel by two parallel connection lines 32, and a DC reactor for balancing and a parallel connection line are inserted between the parallel connection point and a load. Also, the DC output side of the first three-phase full-wave rectifying circuit 2 is connected to a first DC reactor 4 and a first smoothing capacitor 6, the second three-phase full-wave rectifying circuit 3 is connected to a second DC reactor 5 and a second smoothing capacitor 7, the power supply side of both the DC reactors 4 and 5 are connected each other by the connection line of a power supply side, and both the ends of the smoothing capacitors 6 and 7 are connected by the connection lines 16 and 17 of positive and negative electrode sides.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、30度の位相差
を有する2組の三相交流電源を別個に全波整流する2組
の電力変換装置の出力を平衡させる12パルス電力変換
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a 12-pulse power converter for balancing the outputs of two sets of power converters for separately performing full-wave rectification of two sets of three-phase AC power supplies having a phase difference of 30 degrees.

【0002】[0002]

【従来の技術】図3は12パルス電力変換装置の第1従
来例を示した主回路接続図である。図3に図示の第1従
来例回路において、三相交流電源15に12パルス接続
用変圧器1を接続する。この12パルス接続用変圧器1
は一次巻線1Aと2組の二次巻線,すなわちスター接続
二次巻線1Bとデルタ接続二次巻線1Cとで構成してお
り、2組の二次巻線のうちの一方がスター接続であるな
らば他方はデルタ接続にする。
2. Description of the Related Art FIG. 3 is a main circuit connection diagram showing a first conventional example of a 12-pulse power converter. In the first conventional circuit shown in FIG. 3, a 12-pulse connection transformer 1 is connected to a three-phase AC power supply 15. This 12-pulse connection transformer 1
Is composed of a primary winding 1A and two sets of secondary windings, that is, a star connection secondary winding 1B and a delta connection secondary winding 1C. One of the two sets of secondary windings is a star connection. If it is a connection, the other is a delta connection.

【0003】第1インバータ装置12は、第1電力変換
装置としての第1三相全波整流回路2と第1インバータ
回路8と、これら両者の直流側同士を接続している直流
中間回路に挿入されている第1直流リアクトル4と第1
平滑コンデンサ6とで構成されており、この第1インバ
ータ装置12を12パルス接続用変圧器1のスター接続
二次巻線1Bに接続しており、この第1インバータ装置
12が所望の電圧と周波数の交流電力を第1交流負荷1
0へ供給する。同様に第2インバータ装置13も、第2
電力変換装置としての第2三相全波整流回路3と第2イ
ンバータ回路9と、これら両者の直流側同士を接続して
いる直流中間回路に挿入されている第2直流リアクトル
5と第2平滑コンデンサ7とで構成されており、この第
2インバータ装置13を12パルス接続用変圧器1のデ
ルタ接続二次巻線1Cに接続して第2交流負荷11へ所
望の電圧と周波数の交流電力を供給する。
[0003] The first inverter device 12 is inserted into a first three-phase full-wave rectifier circuit 2 and a first inverter circuit 8 as a first power converter, and a DC intermediate circuit connecting the DC sides of these two. The first DC reactor 4 and the first
The first inverter device 12 is connected to the star-connected secondary winding 1B of the 12-pulse connection transformer 1, and the first inverter device 12 has a desired voltage and frequency. AC power to the first AC load 1
0. Similarly, the second inverter device 13 also
A second three-phase full-wave rectifier circuit 3 and a second inverter circuit 9 as power converters, a second DC reactor 5 inserted in a DC intermediate circuit connecting the DC sides of both, and a second smoothing circuit The second inverter device 13 is connected to the delta connection secondary winding 1C of the 12-pulse connection transformer 1 to supply AC power of a desired voltage and frequency to the second AC load 11. Supply.

【0004】スター接続二次巻線1Bの三相交流出力と
デルタ接続二次巻線1Cの三相交流出力との間には30
度の位相差があるから、それぞれの二次巻線1Bと1C
に別個の三相全波整流回路2,3を接続することによ
り、所謂12パルス電力変換装置が形成され、三相交流
電源15へ流れる高調波電流が低減される効果を得るこ
とができる。しかし、第1三相全波整流回路2と第2三
相全波整流回路3が別個にそれぞれの負荷へ直流電力を
供給する場合、通常は両三相全波整流回路2,3の出力
は同じにはならないから、前述した高調波電流低減効果
を期待することはできない。
[0004] Between the three-phase AC output of the star-connected secondary winding 1B and the three-phase AC output of the delta-connected secondary winding 1C is 30.
Each secondary winding 1B and 1C
By connecting the separate three-phase full-wave rectifier circuits 2 and 3 to each other, a so-called 12-pulse power converter is formed, and the effect of reducing the harmonic current flowing to the three-phase AC power supply 15 can be obtained. However, when the first three-phase full-wave rectifier circuit 2 and the second three-phase full-wave rectifier circuit 3 separately supply DC power to respective loads, the outputs of the two three-phase full-wave rectifier circuits 2 and 3 are usually Since they are not the same, the above-described effect of reducing the harmonic current cannot be expected.

【0005】第1三相全波整流回路2の直流出力側に第
1直流リアクトル4と第1平滑コンデンサ6とを接続し
てこの直流出力を平滑にしており、第2三相全波整流回
路3の直流出力側にも第2直流リアクトル5と第2平滑
コンデンサ7とを接続してその直流出力を平滑している
が、これら平滑された両直流出力を、正極側接続線16
と負極側接続線17とで並列に接続する。これにより、
第1三相全波整流回路2の出力電流と第2三相全波整流
回路3の出力電流は、第1交流負荷10と第2交流負荷
11とへ電力を供給する場合でも平衡状態にある。
[0005] A first DC reactor 4 and a first smoothing capacitor 6 are connected to the DC output side of the first three-phase full-wave rectifier circuit 2 to smooth this DC output. The second DC reactor 5 and the second smoothing capacitor 7 are also connected to the DC output side of the DC power supply 3 to smooth its DC output.
And the negative electrode side connection line 17 are connected in parallel. This allows
The output current of the first three-phase full-wave rectifier circuit 2 and the output current of the second three-phase full-wave rectifier circuit 3 are in a balanced state even when power is supplied to the first AC load 10 and the second AC load 11. .

【0006】[0006]

【発明が解決しようとする課題】しかし実際には、12
パルス接続用変圧器1のスター接続二次巻線1Bの無負
荷電圧とデルタ接続二次巻線1Cの無負荷電圧には僅か
ながら不平衡があるし、両二次巻線1B,1Cそれぞれ
の巻線インダクタンスも同じ値にはならないから、平滑
された両三相全波整流回路2,3の直流出力を正極側接
続線16と負極側接続線17で並列に接続しても、両者
の直流電流に不平衡を生じることがある。ここで両イン
バータ装置12,13の直流中間回路に挿入されている
第1直流リアクトル4と第2直流リアクトル5は、これ
ら両インバータ装置12,13が単独の6パルス電力変
換装置として(すなわち正極側接続線16と負極側接続
線17とを取り除いた状態で)運転する場合に、それぞ
れの入力力率を改善するためのものである。それ故、第
1直流リアクトル4は第1三相全波整流回路2の出力直
流電流のみを一定に保つように動作し、第2直流リアク
トル5は第2三相全波整流回路3の出力直流電流のみを
一定に保つように動作しており、両三相全波整流回路
2,3の出力直流電流を平衡させるバランサーとしての
動作を期待することはできない。
However, in practice, 12
There is a slight unbalance between the no-load voltage of the star connection secondary winding 1B of the pulse connection transformer 1 and the no-load voltage of the delta connection secondary winding 1C, and there is a slight unbalance between the two secondary windings 1B and 1C. Since the winding inductances do not have the same value, even if the smoothed DC outputs of the three-phase full-wave rectifier circuits 2 and 3 are connected in parallel by the positive connection line 16 and the negative connection line 17, the DC output of both Imbalance may occur in the current. Here, the first DC reactor 4 and the second DC reactor 5 inserted in the DC intermediate circuit of both inverter devices 12 and 13 are configured such that both inverter devices 12 and 13 function as a single 6-pulse power converter (that is, the positive electrode side). This is to improve the respective input power factors when operating (with the connection line 16 and the negative connection line 17 removed). Therefore, the first DC reactor 4 operates so as to keep only the output DC current of the first three-phase full-wave rectifier circuit 2 constant, and the second DC reactor 5 operates the output DC current of the second three-phase full-wave rectifier circuit 3. It operates so as to keep only the current constant, and cannot be expected to operate as a balancer for balancing the output DC currents of the three-phase full-wave rectifier circuits 2 and 3.

【0007】そこでスター接続二次巻線1Bとデルタ接
続二次巻線1Cの無負荷電圧のアンバランスや巻線イン
ダクタンスのアンバランスを低減させるべく特殊構造の
専用変圧器をわざわざ製作するのであるが、この製作に
長期間を要すると共に価格が上昇する欠点がある。更
に、前述のアンバランスを完全に零にすることは原理的
に困難である。
In order to reduce the unbalance of the no-load voltage and the unbalance of the winding inductance of the star-connected secondary winding 1B and the delta-connected secondary winding 1C, a special-purpose dedicated transformer is manufactured. However, there is a drawback that this production takes a long time and the price rises. Further, it is theoretically difficult to completely eliminate the above-mentioned imbalance.

【0008】図4は12パルス電力変換装置の第2従来
例を示した主回路接続図であって、単独負荷へ交流電力
を供給する場合を示している。図4に図示の第2従来例
回路において、12パルス電力変換装置20は、12パ
ルス接続用変圧器1のスター接続二次巻線1Bに接続し
た第1電力変換装置としての第1三相全波整流回路2,
12パルス接続用変圧器1のデルタ接続二次巻線1Cに
接続した第2電力変換装置としての第2三相全波整流回
路3,バランス用2巻線リアクトル21,平滑コンデン
サ22,およびインバータ回路23で構成していて、イ
ンバータ回路23が出力する所望の電圧と周波数の交流
電力で交流負荷24を運転する。バランス用2巻線リア
クトル21は第1三相全波整流回路2の出力直流電流を
流す一方のコイルと、第2三相全波整流回路3の出力直
流電流を流す他方のコイルとを備えており、これら2つ
のコイルを共通の鉄心に巻く構造にしているので、両三
相全波整流回路2と3の出力電流の不平衡を抑制するこ
とができる。しかしながら図4の従来例回路ではバラン
ス用2巻線リアクトル21を特別に製作しなければなら
ないので、やはり装置が高価になることや、装置の納期
が長くなるなどの不都合を有している。
FIG. 4 is a main circuit connection diagram showing a second conventional example of a 12-pulse power converter, showing a case where AC power is supplied to a single load. In the second prior art circuit shown in FIG. 4, a 12-pulse power converter 20 is a first three-phase full-power converter as a first power converter connected to a star-connected secondary winding 1B of a 12-pulse connection transformer 1. Wave rectifier circuit 2,
A second three-phase full-wave rectifier circuit 3 as a second power converter connected to the delta connection secondary winding 1C of the 12-pulse connection transformer 1, a balance two-winding reactor 21, a smoothing capacitor 22, and an inverter circuit The AC load 24 is operated with AC power of a desired voltage and frequency output from the inverter circuit 23. The balancing two-winding reactor 21 includes one coil through which the output DC current of the first three-phase full-wave rectifier circuit 2 flows and the other coil through which the output DC current of the second three-phase full-wave rectifier circuit 3 flows. Since these two coils are wound around a common iron core, the unbalance of the output currents of the three-phase full-wave rectifier circuits 2 and 3 can be suppressed. However, in the conventional circuit shown in FIG. 4, since the two-winding reactor 21 for balancing must be specially manufactured, there are disadvantages that the apparatus is expensive and the delivery time of the apparatus is long.

【0009】そこでこの発明の目的は、12パルス電力
変換装置を構成する2つの三相全波整流回路の出力電流
を、特別に製作する12パルス接続用変圧器やバランス
用2巻線リアクトルなどを使用せずに、簡単にバランス
させることにある。
Accordingly, an object of the present invention is to use a specially manufactured 12-pulse connecting transformer, a balancing 2-winding reactor, and the like to convert the output currents of the two three-phase full-wave rectifier circuits constituting the 12-pulse power converter. To balance easily without using.

【0010】[0010]

【課題を解決するための手段】前記の目的を達成するた
めに、この発明の12パルス電力変換装置は、三相交流
電源に接続して全波整流により直流を得る第1電力変換
装置の直流出力側と、この三相交流電源と30度の位相
差を有する別の三相交流電源に接続して全波整流により
直流を得る第2電力変換装置の直流出力側とを並列に接
続し、この並列接続点と負荷との間に直流リアクトルと
平滑コンデンサを挿入するものとする。
In order to achieve the above object, a 12-pulse power converter according to the present invention is connected to a three-phase AC power supply and obtains DC by full-wave rectification. An output side and a DC output side of a second power converter that obtains DC by full-wave rectification by connecting to another three-phase AC power supply having a phase difference of 30 degrees with this three-phase AC power supply, are connected in parallel, It is assumed that a DC reactor and a smoothing capacitor are inserted between the parallel connection point and the load.

【0011】または、前記第1電力変換装置の直流出力
側に第1直流リアクトルと第1平滑コンデンサを接続
し、前記第2電力変換装置の直流出力側に第2直流リア
クトルと第2平滑コンデンサを接続し、前記第1直流リ
アクトルの電源側と第2直流リアクトルの電源側とを共
通に接続し、前記第1平滑コンデンサと第2平滑コンデ
ンサとを並列接続したのちに負荷を接続するものとす
る。
Alternatively, a first DC reactor and a first smoothing capacitor are connected to a DC output side of the first power converter, and a second DC reactor and a second smoothing capacitor are connected to a DC output side of the second power converter. The power supply side of the first DC reactor and the power supply side of the second DC reactor are connected in common, and the first smoothing capacitor and the second smoothing capacitor are connected in parallel, and then the load is connected. .

【0012】[0012]

【発明の実施の形態】図1は本発明の第1実施例を表し
た主回路接続図であるが、この第1実施例回路に記載の
12パルス接続用変圧器1(一次巻線1Aとスター接続
二次巻線1Bとデルタ接続二次巻線1Cで構成),第1
電力変換装置としての第1三相全波整流回路2,第2電
力変換装置としての第2三相全波整流回路3,三相交流
電源15,平滑コンデンサ22,インバータ回路23,
および交流負荷24の名称・用途・機能は、図4で既述
の第2従来例回路の場合と同じであるから、これらの説
明は省略する。
FIG. 1 is a main circuit connection diagram showing a first embodiment of the present invention. The transformer for 12-pulse connection 1 (primary winding 1A and 1A) described in the circuit of the first embodiment is shown in FIG. Star connection secondary winding 1B and delta connection secondary winding 1C), the first
A first three-phase full-wave rectifier circuit 2 as a power converter, a second three-phase full-wave rectifier circuit 3 as a second power converter, a three-phase AC power supply 15, a smoothing capacitor 22, an inverter circuit 23,
The names, applications, and functions of the AC load 24 are the same as those in the case of the second conventional circuit described above with reference to FIG.

【0013】図1の第1実施例回路における12パルス
電力変換装置30は、スター接続二次巻線1Bに接続し
た第1三相全波整流回路2の直流出力側とデルタ接続二
次巻線1Cに接続した第2三相全波整流回路3の直流出
力側とを2本の並列接続線32で並列に接続し、この並
列接続点とインバータ回路23の直流側との間に,平滑
コンデンサ22とバランス用直流リアクトル31とが挿
入された構成になっている。2本の並列接続線32で両
三相全波整流回路2と3の直流出力側を並列接続するこ
とにより、バランス用直流リアクトル31は第1三相全
波整流回路2の出力直流電流と第2三相全波整流回路3
の出力直流電流とを一定に保つように動作する。すなわ
ち図4の従来例回路で既述のバランス用2巻線リアクト
ル21と同様の電流バランス作用が得られる。
The 12-pulse power converter 30 in the circuit of the first embodiment shown in FIG. 1 includes a DC output side of a first three-phase full-wave rectifier circuit 2 connected to a star connection secondary winding 1B and a delta connection secondary winding. 1C, the DC output side of the second three-phase full-wave rectifier circuit 3 is connected in parallel with two parallel connection lines 32, and a smoothing capacitor is connected between this parallel connection point and the DC side of the inverter circuit 23. 22 and a DC reactor 31 for balance are inserted. By connecting the DC output sides of the two three-phase full-wave rectifier circuits 2 and 3 in parallel with the two parallel connection lines 32, the DC reactor 31 for balancing is connected to the output DC current of the first three-phase full-wave rectifier circuit 2 and 2 Three-phase full-wave rectifier circuit 3
It operates to keep the output DC current constant. That is, in the conventional circuit of FIG. 4, the same current balance action as that of the two-winding reactor 21 for balance described above can be obtained.

【0014】図2は本発明の第2実施例を表した主回路
接続図であるが、この第2実施例回路は、図3で既述の
第1従来例回路に電源側接続線41を付加しているのみ
であって、これ以外の各機器の名称・用途・機能はすべ
て図3の第1従来例回路と同じであるから、これらの説
明は使用略する。
FIG. 2 is a main circuit connection diagram showing a second embodiment of the present invention. In the circuit of the second embodiment, a power supply side connection line 41 is added to the first conventional circuit shown in FIG. Only the components are added, and the names, applications, and functions of the other devices are all the same as those of the first conventional example circuit shown in FIG. 3, so that the description thereof will be omitted.

【0015】この第2実施例回路では、第1三相全波整
流回路2の直流出力側と第2三相全波整流回路3の直流
出力側とを共通にするために、両者を電源側接続線41
で接続する。これにより第1直流リアクトル4と第2直
流リアクトル5とは両三相全波整流回路2と3が出力す
る直流電流を一定に保つように動作するから、図4に図
示のバランス用2巻線リアクトル21と同じ作用を発揮
する。
In the circuit of the second embodiment, in order to make the DC output side of the first three-phase full-wave rectifier circuit 2 and the DC output side of the second three-phase full-wave rectifier circuit 3 common, they are connected to the power supply side. Connection line 41
Connect with. As a result, the first DC reactor 4 and the second DC reactor 5 operate so as to keep the DC current output from the three-phase full-wave rectifier circuits 2 and 3 constant. The same effect as the reactor 21 is exerted.

【0016】この図2の第2実施例回路に図示の回路構
成にすれば、第1三相全波整流回路2と第2三相全波整
流回路3とを並列運転することにより、不平衡を生じる
こと無しで両者に共通の負荷へ直流電力を供給すること
ができるし、正極側接続線16と負極側接続線17およ
び電源側接続線41を取り除けば、第1三相全波整流回
路2と第2三相全波整流回路3とを別個に運転して別々
の負荷へ電力を供給することも可能である。
With the circuit configuration shown in the circuit of the second embodiment shown in FIG. 2, the first three-phase full-wave rectifier circuit 2 and the second three-phase full-wave rectifier circuit 3 are operated in parallel to provide an unbalanced circuit. DC power can be supplied to a load common to both without the occurrence of the above-mentioned problem, and the first three-phase full-wave rectifier circuit can be provided by removing the positive connection line 16, the negative connection line 17 and the power supply connection line 41. It is also possible to separately operate the second and second three-phase full-wave rectifier circuits 3 to supply power to different loads.

【0017】図5は図3の第1従来例回路に図示の12
パルス接続用変圧器の出力電流をシミュレーション計算
により描いた電流波形図であるが、図3の第1従来例回
路における12パルス接続用変圧器1のスター接続二次
巻線1Bに現れる無負荷電圧とデルタ接続二次巻線1C
に現れる無負荷電圧とに3ボルトの差があり、且つ両二
次巻線のインダクタンスに10%の差がある場合をシミ
ュレーションの条件にして計算している。この電流波形
図の縦軸は電流,横軸は時間を表しており、破線がスタ
ー接続二次巻線1Bの出力電流IB を、実線がデルタ接
続二次巻線1Cの出力電流IC を、それぞれが示してい
る。
FIG. 5 is a circuit diagram of the first prior art circuit shown in FIG.
FIG. 4 is a current waveform diagram in which the output current of the pulse connection transformer is drawn by a simulation calculation. The no-load voltage appearing in the star connection secondary winding 1B of the 12-pulse connection transformer 1 in the first conventional circuit of FIG. And delta connection secondary winding 1C
Are calculated under the condition that there is a difference of 3 volts from the no-load voltage appearing in the above and a difference of 10% in the inductance of both secondary windings. The vertical axis of this current waveform diagram represents the current, and the horizontal axis represents the time. The broken line represents the output current I B of the star-connected secondary winding 1B, and the solid line represents the output current I C of the delta-connected secondary winding 1C. , Each shows.

【0018】図6は図2の第2実施例回路に図示の12
パルス接続用変圧器の出力電流をシミュレーション計算
により描いた電流波形図であるが、このときのシミュレ
ーション計算の条件は前述した図5の電流波形図の場合
と同じである。この図6の電流波形図では、破線で図示
したスター接続二次巻線1Bの出力電流IB と、実線で
図示したデルタ接続二次巻線1Cの出力電流IC とは殆
ど同じ(両電流のバランスの程度は実効値で90%)で
あり、図5に図示の従来例回路での電流アンバランスが
大きく改善されていることが分かる。
FIG. 6 is a circuit diagram of the second embodiment shown in FIG.
FIG. 6 is a current waveform diagram in which the output current of the pulse connection transformer is drawn by a simulation calculation. The conditions of the simulation calculation at this time are the same as those in the case of the above-described current waveform diagram of FIG. In the current waveform diagram of FIG. 6, the output current I B of the star-connected secondary winding 1B shown by the broken line and the output current I C of the delta-connected secondary winding 1C shown by the solid line are almost the same (both currents). (The degree of balance is 90% in effective value), and it can be seen that the current imbalance in the conventional circuit shown in FIG. 5 is greatly improved.

【0019】[0019]

【発明の効果】12パルス電力変換装置は相互に30度
の位相差を設けた2組の三相交流に別個の三相全波整流
器を接続した構成にするのであるが、30度の位相差を
有する2組の三相交流を得るために、スター接続二次巻
線とデルタ接続二次巻線とを備えた12パルス接続用変
圧器を使用する。しかし12パルス接続用変圧器が備え
る2つの二次巻線の無負荷電圧や2つの二次巻線のイン
ピーダンス値を同じ値に揃えるのは、原理的に困難であ
る。それ故従来は、この無負荷電圧のアンバランスや巻
線インピーダンスのアンバランスが低減できるように特
別に設計・製作した12パルス接続用変圧器を使用した
り、特別に設計・製作したバランス用2巻線リアクトル
を使用して、両者の電流が不平衡になるのを抑制しなけ
ればならなかったので、装置全体のコストが上昇し、装
置の製作に長時間を要する不具合があった。
The 12-pulse power converter has a configuration in which a separate three-phase full-wave rectifier is connected to two sets of three-phase alternating currents having a phase difference of 30 degrees. In order to obtain two sets of three-phase alternating currents, a 12-pulse connection transformer with a star connection secondary winding and a delta connection secondary winding is used. However, it is in principle difficult to equalize the no-load voltages of the two secondary windings and the impedance values of the two secondary windings of the 12-pulse connection transformer. Therefore, conventionally, a 12-pulse connection transformer specially designed and manufactured so as to reduce the unbalance of the no-load voltage and the unbalance of the winding impedance can be used, or a specially designed and manufactured balance 2 transformer can be used. Since it is necessary to suppress the unbalance between the two currents by using the winding reactor, the cost of the entire device increases, and there is a problem that it takes a long time to manufacture the device.

【0020】これに対して本発明では、2つの二次巻線
に別個に接続している三相全波整流器の直流出力側を並
列接続したのちに、両三相全波整流器に共通のバランス
用直流リアクトルと平滑コンデンサを接続する。または
別個のバランス用直流リアクトルと平滑コンデンサを備
えた2つの三相全波整流器の場合は、各三相全波整流器
の出力側を共通にする接続と、2つの平滑コンデンサを
並列にする接続とを施す。このようにすることにより、
ほぼ完全に両者の電流バランスが得られる。すなわち数
本の接続線を接続する作業を追加するのみで、特別な1
2パルス接続用変圧器やバランス用2巻線リアクトルは
不要であるから、装置のコスト上昇を抑制し、製作期間
の長期化を回避できる効果が得られるし、装置全体が大
形化するのを抑制できる効果も合わせて得られる。
On the other hand, in the present invention, after the DC output sides of the three-phase full-wave rectifiers separately connected to the two secondary windings are connected in parallel, the common balance for both three-phase full-wave rectifiers is set. Connect a DC reactor and a smoothing capacitor. Alternatively, in the case of two three-phase full-wave rectifiers having separate balancing DC reactors and smoothing capacitors, a connection in which the output side of each three-phase full-wave rectifier is common and a connection in which two smoothing capacitors are connected in parallel Is applied. By doing this,
The current balance between the two is almost completely obtained. In other words, only the work of connecting several connection lines is added,
Since a transformer for two-pulse connection and a two-winding reactor for balance are not required, the effect of suppressing an increase in the cost of the device and avoiding an increase in the manufacturing period can be obtained, and the overall size of the device can be reduced. The effect that can be suppressed is also obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を表した主回路接続図FIG. 1 is a main circuit connection diagram showing a first embodiment of the present invention.

【図2】本発明の第2実施例を表した主回路接続図FIG. 2 is a main circuit connection diagram showing a second embodiment of the present invention.

【図3】12パルス電力変換装置の第1従来例を示した
主回路接続図
FIG. 3 is a main circuit connection diagram showing a first conventional example of a 12-pulse power converter.

【図4】12パルス電力変換装置の第2従来例を示した
主回路接続図
FIG. 4 is a main circuit connection diagram showing a second conventional example of a 12-pulse power converter.

【図5】図3の第1従来例回路に図示の12パルス接続
用変圧器の出力電流をシミュレーション計算により描い
た電流波形図
FIG. 5 is a current waveform diagram in which the output current of the 12-pulse connection transformer shown in the first conventional circuit of FIG. 3 is drawn by simulation calculation.

【図6】図2の第2実施例回路に図示の12パルス接続
用変圧器の出力電流をシミュレーション計算により描い
た電流波形図
FIG. 6 is a current waveform diagram in which the output current of the 12-pulse connection transformer shown in the circuit of the second embodiment in FIG. 2 is drawn by simulation calculation.

【符号の説明】[Explanation of symbols]

1 12パルス接続用変圧器 1A 一次巻線 1B スター接続二次巻線 1C デルタ接続二次巻線 2 第1三相全波整流回路 3 第2三相全波整流回路 4 第1直流リアクトル 5 第2直流リアクトル 6 第1平滑コンデンサ 7 第2平滑コンデンサ 8 第1インバータ回路 9 第2インバータ回路 12 第1インバータ装置 13 第2インバータ装置 15 三相交流電源 16 正極側接続線 17 負極側接続線 20,30 12パルス電力変換装置 21 バランス用2巻線リアクトル 22 平滑コンデンサ 23 インバータ回路 31 バランス用直流リアクトル 32 並列接続線 41 電源側接続線 DESCRIPTION OF SYMBOLS 1 12 pulse connection transformer 1A primary winding 1B star connection secondary winding 1C delta connection secondary winding 2 first three-phase full-wave rectifier circuit 3 second three-phase full-wave rectifier circuit 4 first DC reactor 5th 2 DC reactor 6 First smoothing capacitor 7 Second smoothing capacitor 8 First inverter circuit 9 Second inverter circuit 12 First inverter device 13 Second inverter device 15 Three-phase AC power supply 16 Positive side connection line 17 Negative side connection line 20, Description of Reference Numerals 30 12 pulse power conversion device 21 balance 2-winding reactor 22 smoothing capacitor 23 inverter circuit 31 balance DC reactor 32 parallel connection line 41 power supply side connection line

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】第1三相交流電源に接続して全波整流によ
り直流を得る第1電力変換装置の直流出力側と、前記第
1三相交流電源と30度の位相差を有する第2三相交流
電源に接続して全波整流により直流を得る第2電力変換
装置の直流出力側とを並列に接続し、この並列接続点と
負荷との間に直流リアクトルと平滑コンデンサを挿入す
ることを特徴とする12パルス電力変換装置。
1. A DC output side of a first power converter which is connected to a first three-phase AC power supply and obtains DC by full-wave rectification, and a second power converter having a phase difference of 30 degrees with the first three-phase AC power supply. Connect the DC output side of the second power converter, which is connected to a three-phase AC power supply to obtain DC by full-wave rectification, in parallel with the DC output side, and insert a DC reactor and a smoothing capacitor between this parallel connection point and the load 12. A 12-pulse power converter.
【請求項2】第1三相交流電源に接続して全波整流によ
り直流を得る第1電力変換装置の直流出力側に第1直流
リアクトルと第1平滑コンデンサを接続し、前記第1三
相交流電源と30度の位相差を有する第2三相交流電源
に接続して全波整流により直流を得る第2電力変換装置
の直流出力側に第2直流リアクトルと第2平滑コンデン
サを接続し、前記第1直流リアクトルの電源側と第2直
流リアクトルの電源側とを共通に接続し、前記第1平滑
コンデンサと第2平滑コンデンサとを並列に接続するこ
とを特徴とする12パルス電力変換装置。
2. A first direct current reactor and a first smoothing capacitor are connected to a direct current output side of a first power converter for obtaining direct current by full-wave rectification by connecting to a first three-phase alternating current power supply. A second DC reactor and a second smoothing capacitor are connected to a DC output side of a second power converter that obtains DC by full-wave rectification by connecting to an AC power supply and a second three-phase AC power supply having a phase difference of 30 degrees, A 12-pulse power converter, wherein a power supply side of the first DC reactor and a power supply side of the second DC reactor are commonly connected, and the first smoothing capacitor and the second smoothing capacitor are connected in parallel.
JP03382799A 1999-02-12 1999-02-12 12 pulse power converter Expired - Fee Related JP3769963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03382799A JP3769963B2 (en) 1999-02-12 1999-02-12 12 pulse power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03382799A JP3769963B2 (en) 1999-02-12 1999-02-12 12 pulse power converter

Publications (2)

Publication Number Publication Date
JP2000232786A true JP2000232786A (en) 2000-08-22
JP3769963B2 JP3769963B2 (en) 2006-04-26

Family

ID=12397332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03382799A Expired - Fee Related JP3769963B2 (en) 1999-02-12 1999-02-12 12 pulse power converter

Country Status (1)

Country Link
JP (1) JP3769963B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003204677A (en) * 2002-01-08 2003-07-18 Toshiba Corp Power converter
JP2006174534A (en) * 2004-12-13 2006-06-29 Fuji Electric Holdings Co Ltd Power converter
WO2006092416A2 (en) * 2005-03-01 2006-09-08 Solvay (Société Anonyme) Electrical circuit for an electrolyser and method for reducing the electromagnetic fields near the electrolyser
WO2006094952A1 (en) * 2005-03-09 2006-09-14 Siemens Aktiengesellschaft Twelve-pulse high-voltage direct current transfer
CN102624248A (en) * 2012-04-01 2012-08-01 广东易事特电源股份有限公司 UPS (Uninterrupted Power Supply) based on self-coupling phase-shifting transformer and double six-pulse wave rectifiers
WO2013155819A1 (en) * 2012-04-20 2013-10-24 广东易事特电源股份有限公司 Symmetrical ups power system based on nine-phase self-coupling phase-shifting transformer
JP5642307B1 (en) * 2014-03-31 2014-12-17 株式会社トーメック Harmonic suppressor capable of independent operation
DE112015000404B4 (en) 2015-03-11 2020-01-02 Mitsubishi Electric Corporation Converter and energy conversion device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003204677A (en) * 2002-01-08 2003-07-18 Toshiba Corp Power converter
JP2006174534A (en) * 2004-12-13 2006-06-29 Fuji Electric Holdings Co Ltd Power converter
JP4639787B2 (en) * 2004-12-13 2011-02-23 富士電機ホールディングス株式会社 Power converter
WO2006092416A2 (en) * 2005-03-01 2006-09-08 Solvay (Société Anonyme) Electrical circuit for an electrolyser and method for reducing the electromagnetic fields near the electrolyser
WO2006092416A3 (en) * 2005-03-01 2006-11-30 Solvay Electrical circuit for an electrolyser and method for reducing the electromagnetic fields near the electrolyser
EA013978B1 (en) * 2005-03-01 2010-08-30 Солвей (Сосьете Аноним) Electrical circuit for an electrolyser and method for reducing the electromagnetic fields near the electrolyser
US7881078B2 (en) 2005-03-09 2011-02-01 Siemens Ag Twelve-pulse HVDC transmission
WO2006094952A1 (en) * 2005-03-09 2006-09-14 Siemens Aktiengesellschaft Twelve-pulse high-voltage direct current transfer
CN102624248A (en) * 2012-04-01 2012-08-01 广东易事特电源股份有限公司 UPS (Uninterrupted Power Supply) based on self-coupling phase-shifting transformer and double six-pulse wave rectifiers
WO2013149458A1 (en) * 2012-04-01 2013-10-10 广东易事特电源股份有限公司 Ups power source based on phase-shifting auto-transformer and dual 6-pulse rectifiers
WO2013155819A1 (en) * 2012-04-20 2013-10-24 广东易事特电源股份有限公司 Symmetrical ups power system based on nine-phase self-coupling phase-shifting transformer
JP5642307B1 (en) * 2014-03-31 2014-12-17 株式会社トーメック Harmonic suppressor capable of independent operation
DE112015000404B4 (en) 2015-03-11 2020-01-02 Mitsubishi Electric Corporation Converter and energy conversion device

Also Published As

Publication number Publication date
JP3769963B2 (en) 2006-04-26

Similar Documents

Publication Publication Date Title
US7609536B2 (en) Autotransformer AC/DC converter
JP4808221B2 (en) High frequency modulation / demodulation multiphase rectifier
US5781428A (en) Transformer for 12-pulse series connection of converters
JP2008178180A (en) Rectifier circuit
JP3769963B2 (en) 12 pulse power converter
JP3591548B2 (en) Multiple rectifier circuit
JP2017192297A (en) Multilevel power conversion device and method for controlling multilevel power conversion device
JP2008278714A (en) Rectifier circuit
JPH11127580A (en) Rectifying circuit
JP3696855B2 (en) Rectifier
JP6642014B2 (en) Power system
US11450477B2 (en) Phase-shift autotransformer, multi-pulse rectifier systems and fast charging
US20200373849A1 (en) Power converter
JPS5829374A (en) Reducing method for higher harmonic of six-phase rectifier
CN112820524A (en) Multi-phase transformer and rectifier system
US10720854B2 (en) 72-pulse AC-DC converter for power quality improvement
JP2017131022A (en) DC high voltage generator
JPH10337042A (en) Inverter device
JP7419147B2 (en) power converter
JPH0898527A (en) Transformer
RU2219647C2 (en) Ac-to-dc voltage converter
JP7394714B2 (en) Rectifier polyphase transformer
RU2709455C1 (en) 12-pulse converter
JP2023113461A (en) Power conversion device
JP3235705B2 (en) Switching power supply

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees