JP3769498B2 - Vacuum microwave thawing machine and vacuum microwave thawing method - Google Patents

Vacuum microwave thawing machine and vacuum microwave thawing method Download PDF

Info

Publication number
JP3769498B2
JP3769498B2 JP2001372928A JP2001372928A JP3769498B2 JP 3769498 B2 JP3769498 B2 JP 3769498B2 JP 2001372928 A JP2001372928 A JP 2001372928A JP 2001372928 A JP2001372928 A JP 2001372928A JP 3769498 B2 JP3769498 B2 JP 3769498B2
Authority
JP
Japan
Prior art keywords
temperature
thawed
microwave
thawing
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001372928A
Other languages
Japanese (ja)
Other versions
JP2003169646A (en
Inventor
信雄 伊藤
芳喜 杉山
崇 浅原
Original Assignee
東芝コンシューママーケティング株式会社
東芝家電製造株式会社
東静電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝コンシューママーケティング株式会社, 東芝家電製造株式会社, 東静電気株式会社 filed Critical 東芝コンシューママーケティング株式会社
Priority to JP2001372928A priority Critical patent/JP3769498B2/en
Publication of JP2003169646A publication Critical patent/JP2003169646A/en
Application granted granted Critical
Publication of JP3769498B2 publication Critical patent/JP3769498B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of High-Frequency Heating Circuits (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、減圧状態でマイクロ波を照射して被解凍物の加熱解凍を行う真空マイクロ波解凍機、及び該解凍機により実施する真空マイクロ波解凍方法に関する。
【0002】
【従来の技術】
従来の真空マイクロ波解凍機は、減圧工程と復圧工程とを繰り返し行いながら、減圧工程においてマイクロ波を照射して被解凍物を加熱し解凍を行う装置であり、この種の真空マイクロ波解凍機には、被解凍物を収容するチャンバーと、該チャンバー内を減圧する真空ポンプと、該真空ポンプにより減圧したチャンバー内を復圧する復圧手段と、上記減圧工程においてチャンバー内へマイクロ波を照射するマイクロ波発生器とが備えられている。
【0003】
この種の真空マイクロ波解凍機では、真空ポンプにより一定の吸引力を与えて、この時の単位時間当たりの減圧変化を真空センサーにより検出し、減圧変化が少なくなって平衡状態になったとみなせるときの圧力から被解凍物の温度を推測し、この推測温度が解凍終了温度に到達すると解凍作業を終了していた。
【0004】
【発明が解決しようとする課題】
しかし、従来の真空マイクロ波解凍機では、被解凍物の温度を直接検出していないので、加熱むらにより被解凍物が局部的に加熱されていても、被解凍物の平均温度として推測しているため、解凍作業の終了時には、例えば被解凍物の一部分が0℃以上となり、ドリップの発生する状態の悪い解凍仕上がりとなる可能性があった。
【0005】
この様に、従来の真空マイクロ波解凍機では、被解凍物の部位による温度のばらつきに対して対処することができなかった。
【0006】
そこで、本発明は、被解凍物の複数箇所の表面温度を検出して、被解凍物の局部加熱が生じないように加熱操作することができ、ドリップの発生しない良好な状態の解凍仕上がりを実現することができる真空マイクロ波解凍機、及びこれを使用して行う真空マイクロ波解凍方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、上記に鑑み提案されたもので、請求項1に記載のものは、被解凍物を収容するチャンバーと、該チャンバー内を減圧する真空ポンプと、上記チャンバー内を復圧する調圧弁と、上記チャンバー内へマイクロ波を照射するマイクロ波発生器と、上記真空ポンプ、調圧弁、及びマイクロ波発生器を制御する制御装置とを有し、該制御装置の制御の下で減圧工程と復圧工程とを繰り返し行いながらマイクロ波を照射して被解凍物を加熱し解凍を行う真空マイクロ波解凍機において、
上記チャンバー内に、被解凍物の複数箇所の表面温度を検出し、各検出箇所の温度検出値をそれぞれ出力する非接触型温度センサーを設け、
前記制御装置は、温度検出値の平均が基準値に到達するとマイクロ波発生器の出力を停止するとともに、減圧を停止してチャンバー内を大気開放する構成とし、
該制御装置に、前記非接触型温度センサーからの温度信号を入力して被解凍物の温度を複数箇所で管理することを特徴とする真空マイクロ波解凍機である。
【0009】
請求項2に記載のものは、前記制御装置が、温度検出値の平均が前記基準値よりも低い温度であって、かつ検出箇所間の温度差が、予め設定した所定温度以上であるときは、マイクロ波発生器の出力を低下および/または照射時間を短縮して解凍サイクルを継続し、前記温度検出値の平均が基準値に到達するとマイクロ波発生器の出力を停止するとともに、減圧を停止してチャンバー内を大気開放する構成であることを特徴とする請求項1に記載の真空マイクロ波解凍機である。
【0010】
請求項3に記載のものは、前記制御装置が、温度検出値の平均が前記基準値よりも低い温度であって、かつ検出箇所間の温度差が、予め設定した所定温度を超えると、マイクロ波の出力を停止して解凍作業を中断する構成であることを特徴とする請求項1に記載の真空マイクロ波解凍機である。
【0011】
請求項4に記載のものは、減圧工程と復圧工程とを繰り返し行いながらマイクロ波を照射して被解凍物を加熱し解凍を行う真空マイクロ波解凍方法において、
被解凍物の複数箇所の表面温度を検出し、該温度検出値の平均が基準値に到達するとマイクロ波の出力を停止すると共に、減圧を停止して被解凍物を収容するチャンバー内を大気開放し、解凍作業を終了することを特徴とする真空マイクロ波解凍方法である。
【0012】
請求項5に記載のものは、前記温度検出値の平均が基準値よりも低い温度であり、かつ検出箇所間の温度差が所定温度以上であるときは、マイクロ波の出力を低下および/または照射時間を短縮して解凍サイクルを継続し、前記温度検出値の平均が基準値に到達すると解凍作業を終了することを特徴とする請求項4に記載の真空マイクロ波解凍方法である。
【0013】
請求項6に記載のものは、減圧工程と復圧工程とを繰り返し行いながらマイクロ波を照射して被解凍物を加熱し解凍を行う真空マイクロ波解凍方法において、
被解凍物の複数箇所の表面温度を検出し、該温度検出値の検出箇所間の温度差が予め設定した所定温度を超えるときは、マイクロ波の出力を停止して解凍作業を中断することを特徴とする真空マイクロ波解凍方法である。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。図1は、本実施形態の真空マイクロ波解凍機の外観を示す正面図である。図2は、本実施形態の真空マイクロ波解凍機の右側面における内部構造を示す概略図である。
【0015】
図1に示すように、本実施形態の真空マイクロ波解凍機1は、筐体2上部に、冷凍食品等の被解凍物を収容する食品収容部3が配設され、下部には後述する駆動モータや真空ポンプ等を収納する機械収納部4が配設され、最上部には制御装置を収納する制御部5が備えられており、この制御部5の前面パネルには、被解凍物の重量や解凍時間等を表示する表示部6と、電源のオン/オフや各種の設定値等を入力する操作部7とが設けられている。また、真空マイクロ波解凍機1の筐体2の下面には、本解凍機1の移動を容易にするためのキャスター8が設けられている。
【0016】
図1及び図2に示すように、本実施形態の真空マイクロ波解凍機1における食品収容部3の本体は前面に開口部を有する中空箱体状のチャンバー10によって構成され、該チャンバー10は電磁波を遮断しうる内壁構造を有する金属製耐圧気密容器として形成されている。このチャンバー10の前面開口部には、チャンバー10内を密閉状態で閉成しうるドア11が正面右側端部のヒンジ部を介して開閉自在に取り付けられており、該ドア11の開放側となる前面左側にはその開閉操作の際に把持する把手12が取り付けられ、該ドア11とチャンバー10との間には電磁波が外部へ洩れるのを防止するための金属網紐製の電磁波シール材とチャンバー10内の気密性を維持する気密シール材とが装着されている。
【0017】
チャンバー10内の底部には、回転軸13が軸受14に支承されて起立した状態で回転自在に設けられており、この回転軸13の上端部には上記チャンバー10内で被解凍物を載置して回転するターンテーブル15が着脱自在に取り付けられ、この回転軸13の基端部には減速機構を介してテーブル駆動モータ16が接続されている。
【0018】
チャンバー10の背面中央部には、該チャンバー10内に連通した直状導波管20及びレジューサ導波管21を介して、該チャンバー10内へマイクロ波を照射して上記ターンテーブル15上に載置された被解凍物を加熱するためのマイクロ波発生器22が接続されている。本実施形態では、マイクロ波発生器22としてマグネトロンが採用されており、直状導波管20とレジューサ導波管21とのフランジ接続部23にはマイクロ波を透過し易いガラス板製の圧力隔壁が介設されている。
【0019】
チャンバー10の背面上部には、マイクロ波の照射によりチャンバー10内で放電が生じた場合に、これを検出する放電検出センサー30が設けられており、この放電検出センサー30としては放電現象の有無を紫外線(UV)の検出により判定するUVセンサーが採用されている。また、チャンバー10の上部前方には、チャンバー10内の圧力を検出する真空圧力センサー31が設けられている。
【0020】
チャンバー10の上部には、チャンバー10内の圧力を大気開放する大気開放弁40、及びチャンバー10内の圧力を調整する調圧弁41が備えられている。また、チャンバー10の背面には、チャンバー10内を減圧する減圧系43が接続され、この減圧系43には逆止弁44を介してポンプ駆動モータ45により駆動される真空ポンプ46が接続されている。上記大気開放弁40及び調圧弁41は、上記制御部5に収納された制御装置による開閉制御を可能とするため、例えば電磁弁によって構成されている。
【0021】
また、チャンバー10内の天井面部には、ターンテーブル15上に載置された被解凍物の複数箇所の表面温度を検出する非接触型温度センサー70が設けられており、この温度センサー70には、例えば温度検出素子71として赤外線素子を備えた赤外線式温度センサー等が好適である。本実施形態では、非接触型温度センサー70として、図2及び図3に示すように、複数の温度検出素子71を内包してワンユニット化した非接触型温度センサーを採用しているが、これに限るものではない。例えば、単一の温度検出素子を備えた非接触型温度センサーを個別に複数配設してもよい。なお、各温度検出素子71が検出する箇所の温度検出値(温度信号)を後述する制御装置50により演算処理して解凍操作の制御を行うため、例えば、図3においてa、b、c、d…に示すように、温度検出値をそれぞれ出力することが望ましい。
【0022】
なお、図2及び図3では、便宜上から、単一の非接触型温度センサー70に4個の温度検出素子71を配したように図示しているが、その数は温度検出素子71の指向性や検出能力等に応じて適宜設定されるものであり、また非接触型温度センサー70を取り付ける位置も本実施形態のようにチャンバー10内の天井面部に限るものではなく、被解凍物の温度を検出し得る位置であればよい。例えば、チャンバー10内の背面部、側面部などでもよい。
【0023】
図4は、本実施形態の真空マイクロ波解凍機1における制御系を示すブロック図である。
この制御装置50は前記した制御部5に収納され、例えばROM51に記録した制御プログラムを実行するマイクロコンピュータ等により構成されている。そして、この制御装置50には、ターンテーブル15を回転駆動するテーブル駆動モータ16の電源制御系52と、上記真空ポンプ46を駆動するポンプ駆動モータ45の電源制御系53と、上記大気開放弁40の開閉制御系54と、上記調圧弁41の開閉制御系55と、上記マイクロ波発生器22の電源制御系56と、上記放電検出センサー30の検出値入力系57と、上記真空圧力センサー31の検出値入力系58と、上記非接触型温度センサー70の検出値入力系72と、上記操作部7の設定値等の入力系59と、上記表示部6の表示出力系60とが接続されており、前記した操作部7の設定値や、上記放電検出センサー30、真空圧力センサー31、及び非接触型温度センサー70の各検出値等に基づいて、ROMに記録された制御プログラムに従って上記ポンプ駆動モータ45やマイクロ波発生器22等の各機器を駆動制御する。
【0024】
次に、以上のような真空マイクロ波解凍機1を用いて実施する本実施形態の真空マイクロ波解凍方法について説明する。図5は、本実施形態の真空マイクロ波解凍機1における解凍サイクルを示す説明図である。
【0025】
図5に示すように、本実施形態の真空マイクロ波解凍機1は、制御装置50の制御の下で減圧工程G、G′、G″…と復圧工程F、F′…とを繰り返し行いながらマイクロ波を照射M、M′…して被解凍物を加熱し解凍を行う装置である。なお、真空ポンプ46は減圧工程は勿論のこと復圧工程中も作動し続ける。
【0026】
解凍の準備段階として、まず、正面のドア11を開放してターンテーブル15上に冷凍食品等の被解凍物を載置し、再びドア11を閉成して密閉状態とし、チャンバー10内に被解凍物を収容する。なお、大気開放弁40及び調圧弁41は閉成状態とする。
【0027】
次に、ポンプ駆動モータ45を駆動して真空ポンプ46を作動させ、減圧系43を介してチャンバー10内の減圧を開始する。すると、大気圧の101.3kPa(760Torr)からA点を経て徐々に減圧度が減少し、減圧平衡域Bまで減圧工程Gが行われ、この減圧工程Gにおいて被解凍物の予備乾燥がなされる。
【0028】
ここで、減圧平衡域とは、一定時間に対する減圧度が極めて低下する領域であり、例えば30秒間(Δt)における減圧度(ΔP)がΔP/Δt<13.3Pa(0.1Torr)となったときに減圧平衡域に達したと把握するが、該減圧平衡域における平衡圧力はチャンバー10内の飽和蒸気圧により上下する。なお、この減圧平衡域に到達したか否かは、真空圧力センサー31からの圧力信号に基づいて制御装置50が演算して判断する。
【0029】
上記減圧平衡域Bまで減圧工程Gを行った後、上記調圧弁41を後述する所定の開度で開放して復圧工程Fへと移行し、復圧工程Fの減圧度が真空放電を起こさない下限値P1〔本実施形態では多少余裕を見て1.33kPa(10Torr)に設定〕を超えた後のC点のときに、上記マグネトロン22によるマイクロ波の照射Mを開始し、予め設定した復圧上限値Dまで復圧したときに真空圧力センサー31からの圧力信号に基づいて制御装置50が上記調圧弁41を閉成し、その後再度減圧工程G′へ移行する。そして、その減圧度が真空放電を起こさない下限値P1に達する手前のA′点まで上記マグネトロン22によるマイクロ波の照射Mを継続して被解凍物を加熱し、このA′点においてマイクロ波の照射を停止する。
【0030】
また本実施形態では、上記真空放電を起こさない減圧度の下限値P1は、上述したように、1.33kPa(10Torr)に設定されている。即ち、復圧工程Fにおける減圧度が1.33kPa(10Torr)を超えた後のC点のときに、上記マグネトロン22によるマイクロ波の照射Mを開始し、予め設定した復圧上限値Dまで復圧した後に再度減圧工程G′へ移行すると共に、その減圧度が1.33kPa(10Torr)に達する手前のA′点まで上記マグネトロンによるマイクロ波の照射Mを継続して被解凍物を加熱する。このように復圧工程Fの途中から減圧工程G′にわたってマイクロ波の照射Mを行っているため、減圧工程でのみ照射する従来に比較して、復圧工程と減圧工程とからなる1解凍サイクルにおける照射時間を充分に確保することができる。
【0031】
上記復圧上限値Dは、マイクロ波を照射するマグネトロン22の出力と真空ポンプ46の減圧能力とチャンバー10の容積によって設定される可変な圧力値であり、本実施形態では、調圧弁41の絞り弁41´の絞りを調整することにより、6.66kPa(50Torr)に設定されている。したがって、6.66kPa(50Torr)まで復圧すると、調圧弁41からのリークと真空ポンプ46の吸引能力がバランスして、調圧弁41を閉じない限り6.66kPa(50Torr)を維持して圧力上昇はしない。
【0032】
本実施形態では、このように復圧上限値Dの圧力値が、マイクロ波を照射するマグネトロン22の出力と真空ポンプ46の減圧能力とチャンバー10の容積に応じて適宜設定されるので、真空放電発生域に入るまでに過不足のないマイクロ波の照射時間を採ることができ、しかも効率良く減圧できる。
【0033】
なお、復圧上限値Dに到達したことを検知する手段として、本実施形態では真空圧力センサー31からの信号により検知し、これにより制御装置50が調圧弁43を閉じて減圧工程に移行するように構成したが、本発明はこれに限らず、タイマー制御により停止してもよい。
【0034】
マイクロ波照射の停止後、A′点から減圧平衡域B′までの減圧過程において、被解凍物を昇華冷却する。このように減圧工程G′におけるA′点までマイクロ波を照射して被解凍物を加熱した後、A′点から減圧平衡域B′までの減圧過程において被解凍物を昇華冷却するのは、マイクロ波を照射して被解凍物を加熱すると、被解凍物の表面部分の温度が中心部分の温度よりも高くなり、そのまま加熱を継続すると表面部分にドリップが発生するなどの不都合が生じるからであり、昇華により表面部分を冷却して内外の温度差を縮めるためである。
【0035】
すなわち、昇華が始まると気化潜熱が奪われて表面部分の温度が低下していくとともに、表面部分の熱が中心部分に移動(熱伝導)して中心部分を昇温する。これにより被解凍物の温度が均一化されて、全体として被解凍物の温度が上昇し解凍が促進されることになる。また、被解凍物の温度が均一化されながら、全体として被解凍物の解凍が促進されるので、部分的に解凍が進行してドリップが発生したり、このドリップにマイクロ波が集中する不都合を防止することができる。
【0036】
本実施形態は、復圧工程Fへ移行し、復圧工程Fの減圧度が真空放電を起こさない下限値P1である1.33kPa(10Torr)を超えた後のC点のときにマイクロ波の照射Mを開始し、予め設定した復圧上限値Dである6.66kPa(50Torr)まで復圧した後に再度減圧工程G′へ移行すると共に、その減圧度が真空放電を起こさない下限値P1であるA′の1.33kPa(10Torr)に達する手前までマイクロ波の照射Mを継続して加熱し、マイクロ波の照射Mの停止後に、減圧平衡域B′までの減圧過程において昇華冷却する解凍サイクルを1サイクルとして、この解凍サイクルを繰り返し行う。
【0037】
即ち、図5において、減圧平衡域B′まで減圧工程G′を行った後復圧工程F′へ移行し、復圧工程F′の減圧度が真空放電を起こさない下限値P1である1.33kPa(10Torr)を超えた後のC′点のときにマイクロ波の照射M′を再び開始し、予め設定した復圧上限値D′である6.66kPa(50Torr)まで復圧した後に再度減圧工程G″へ移行すると共に、その減圧度が真空放電を起こさない下限値P1であるA″の1.33kPa(10Torr)に達する手前までマイクロ波の照射M′を継続して加熱し、マイクロ波照射を再度停止した後、減圧平衡域B″までの減圧過程において昇華冷却する解凍サイクルを2サイクル目として行う。各復圧工程F、F′…における復圧特性は、復圧弁41の絞り弁41′の設定に依存しているので、各解凍サイクルにおいて一定、即ち、復圧曲線のカーブが各解凍サイクルにおいて一定であり、これにより安定した解凍を行うことができる。
【0038】
このような解凍サイクルを繰り返して解凍操作を行うが、図3に示したように、上記チャンバー10内の天井面部に配設された非接触型温度センサー70が、常時、被解凍物73の複数箇所の表面温度を検出している。この温度センサー70の各温度検出素子71の各検出箇所における温度検出値の出力a、b、c、d…は、それぞれ検出値入力系72を介して制御装置50へと入力され、演算処理される。そして、温度検出値の平均が基準値(例えば、約−3℃)に到達すると、解凍作業の終了を決定する。
【0039】
一方、温度検出値の平均が基準値(例えば、約−3℃)よりも低い温度であり、かつ検出箇所間の温度差(例えば、図3におけるa、b、c、d間の温度差)が所定温度以上(例えば、1℃以上)であるときは、制御装置50がマグネトロン22のマイクロ波出力を低下し、および/またはマイクロ波の照射時間を短縮して解凍サイクルをそのまま継続し、その後、温度検出値の平均が基準値(例えば、約−3℃)に到達すると、上述したように解凍作業の終了を決定する。
【0040】
この様に、被解凍物の部位によって所定温度以上の温度差があった場合にマイクロ波の出力を低下したり、照射時間を短縮すると、緩やかな加熱に移行できるので、その間に被解凍物内においては、高温部分から低温部分に熱伝導が行われて温度の均一化が図られる。したがって、被解凍物に局部的な温度上昇を回避でき、これにより全体が均等に解凍されることとなり、ドリップの発生も防止できる。
【0041】
また、温度検出値の検出箇所間の温度差(例えば、図3におけるa、b、c、d間の温度差)が所定温度範囲(例えば、2℃以内)を超えるときは、マグネトロン22のマイクロ波出力を停止して解凍作業を中断するようにしてもよい。この場合、真空ポンプ46による減圧を停止して、被解凍物73を収容するチャンバー10内を大気開放し、ターンテーブル15上における被解凍物73の位置を変更するなどすることにより、被解凍物73の局部加熱が進行しないうちに解凍操作を調整することができる。
【0042】
制御装置50において解凍サイクルの終了が決定されると、大気開放弁40が開放されると共に、ポンプ駆動モータ45の電源を遮断して真空ポンプ46が停止され、収納室9内が大気圧に戻るとドア11の開放が可能となり、チャンバー10内から基準値である約−3℃に解凍された被解凍物73を取り出すことができる。
【0043】
このように本実施形態では、被解凍物73の複数箇所の温度を検出し、該温度検出値の平均が基準値である約−3℃に到達すると、マイクロ波の出力を停止すると共に、減圧を停止して被解凍物73を収容するチャンバー10内を大気開放し、解凍作業を終了するので、被解凍物73の加熱むらがなく、ドリップの発生しない良好な状態の解凍仕上がりを実現することができる。
【0044】
さらに、温度検出値の平均が基準値である約−3℃よりも低い温度であり、かつ検出箇所間の温度差が所定温度以上(例えば、1℃以上)であるときは、マイクロ波の出力を低下し、および/またはマイクロ波の照射時間を短縮して解凍サイクルを継続し、その後、温度検出値の平均が基準値である約−3℃に到達すると解凍作業を終了するので、被加熱物(被解凍物)の加熱むら生じている場合でも、最終的にはドリップの発生しない良好な状態の解凍仕上がりを実現することができるものである。
【0045】
なお、前記実施形態においては、赤外線式温度センサーを例に挙げて説明したが、本発明の非接触型温度センサーは、非解凍物に接触することなく温度を検出することができればどのような構成の温度センサーでもよい。そして、マイクロ波照射を緩めたり、或いは停止させる前記温度差は、前記実施形態では1℃、2℃として説明したが、この設定は適宜設定値を設計変更することができる。しかしながら、冷凍食品にあっては−3℃が解凍適温であり、ドリップの発生を防止するためには、前記設定温度は3℃以内、望ましくは1℃以内である。
【0046】
また、前記実施形態では、被解凍物を冷凍食品として説明したが、本発明で解凍する被解凍物は食品に限定されるものではなく、血液、血清、精液、薬品などでもよい。
【0047】
【発明の効果】
以上の説明から明らかなように、本発明の真空マイクロ波解凍機によれば、以下のような優れた効果を奏する。
即ち、非接触型温度センサーにより被解凍物の複数箇所の温度を検出すると、平衡状態から被解凍物の温度を推測するよりも温度管理を高い精度で行うことができる。そして、解凍終了となる基準値よりも低い温度であって、且つ検出箇所の温度差が所定温度以上であるときは、マイクロ波加熱を弱くして解凍を継続すると、被解凍物の局部加熱が生じないように加熱操作することができ、ドリップの発生しない良好な状態の解凍仕上がりを実現することができ、しかも効率良く行うことができる。
【0048】
また、被解凍物の複数箇所の温度を検出し、該温度検出値の検出箇所間の温度差が所定温度範囲を超えるときは、マイクロ波の出力を停止して解凍作業を中断するように構成すると、ターンテーブル上における被解凍物の配置を変更するなどして、被解凍物の局部加熱が進行しないうちに解凍操作を調整することができる。
【図面の簡単な説明】
【図1】本実施形態の真空マイクロ波解凍機の外観を示す正面図である。
【図2】本実施形態の真空マイクロ波解凍機の右側面における内部構造を示す概略図である。
【図3】本実施形態の真空マイクロ波解凍機における非接触型温度センサーを示す概略図である。
【図4】本実施形態の真空マイクロ波解凍機における制御系を示すブロック図である。
【図5】本実施形態の真空マイクロ波解凍機における解凍サイクルを示す説明図である。
【符号の説明】
1 真空マイクロ波解凍機
2 筐体
3 食品収容部
4 機械収納部
5 制御部
6 表示部
7 操作部
8 キャスター
10 チャンバー
11 ドア
12 把手
13 回転軸
14 軸受
15 ターンテーブル
16 テーブル駆動モータ
20 直状導波管
21 レジューサ導波管
22 マイクロ波発生器(マグネトロン)
23,24 フランジ継手
25 圧力隔壁
26 減圧領域
27 非減圧領域
28 弾性体
29 ボルト・ナット
30 放電検出センサー
31 真空圧力センサー
40 大気開放弁
41 調圧弁
43 減圧系
44 逆止弁
45 ポンプ駆動モータ
46 真空ポンプ
50 制御装置
51 ROM
52 テーブル駆動モータの電源制御系
53 ポンプ駆動モータの電源制御系
54 大気開放弁の開閉制御系
55 調圧弁の開閉制御系
56 マイクロ波発生器の電源制御系
57 放電検出センサーの検出値入力系
58 真空圧力センサーの検出値入力系
59 操作部の設定値等の入力系
60 表示部の表示出力系
70 非接触型温度センサー
71 温度検出素子
72 非接触型温度センサーの検出値入力系
73 被解凍物
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vacuum microwave thawing machine that heats and thaws an object to be thawed by irradiating microwaves in a reduced pressure state, and a vacuum microwave thawing method that is performed by the thawing machine.
[0002]
[Prior art]
A conventional vacuum microwave thawing machine is an apparatus for thawing an object to be thawed by irradiating microwaves in a pressure reduction process while repeatedly performing a pressure reduction process and a pressure reduction process. The machine includes a chamber for storing the material to be thawed, a vacuum pump for decompressing the chamber, a decompression means for decompressing the chamber decompressed by the vacuum pump, and irradiating the chamber with microwaves in the decompression step. A microwave generator.
[0003]
In this type of vacuum microwave thawing machine, when a certain suction force is applied by a vacuum pump, the change in reduced pressure per unit time at this time is detected by a vacuum sensor, and the reduced pressure change is reduced and it can be considered that the equilibrium state has been reached. The temperature of the object to be thawed was estimated from the pressure of the thawing, and when the estimated temperature reached the thawing end temperature, the thawing operation was finished.
[0004]
[Problems to be solved by the invention]
However, in the conventional vacuum microwave thawing machine, the temperature of the object to be thawed is not directly detected, so even if the object to be thawed is locally heated by uneven heating, it is estimated as the average temperature of the object to be thawed. Therefore, at the end of the thawing operation, for example, a part of the material to be thawed becomes 0 ° C. or higher, and there is a possibility that the thawing finish in which the drip is generated is poor.
[0005]
As described above, the conventional vacuum microwave thawing machine cannot cope with the temperature variation due to the part to be thawed.
[0006]
Therefore, the present invention can detect the surface temperature of multiple parts of the object to be thawed and perform heating operation so that local heating of the object to be thawed does not occur, realizing a good thawing finish without drip generation An object of the present invention is to provide a vacuum microwave thawing machine that can be used, and a vacuum microwave thawing method performed using the same.
[0007]
[Means for Solving the Problems]
The present invention has been proposed in view of the above, and according to the first aspect of the present invention, there is provided a chamber for storing an object to be thawed, a vacuum pump for reducing the pressure in the chamber, and a pressure regulating valve for returning the pressure in the chamber. A microwave generator for irradiating the inside of the chamber with microwaves, and a control device for controlling the vacuum pump, the pressure regulating valve, and the microwave generator. In a vacuum microwave defroster that heats and defrosts the object to be thawed by irradiating microwaves while repeating the pressure step,
In the chamber, a non-contact type temperature sensor that detects the surface temperature of a plurality of locations of the object to be thawed and outputs a temperature detection value of each detection location is provided,
The controller is configured to stop the output of the microwave generator when the average of the temperature detection values reaches a reference value, and stop the decompression to open the chamber to the atmosphere,
The vacuum microwave thawing machine is characterized in that a temperature signal from the non-contact type temperature sensor is input to the control device to manage the temperature of an object to be thawed at a plurality of locations.
[0009]
According to a second aspect of the present invention, when the control device is such that the average temperature detection value is lower than the reference value and the temperature difference between the detection points is equal to or higher than a predetermined temperature set in advance. Reduce the output of the microwave generator and / or shorten the irradiation time and continue the thawing cycle. When the average of the temperature detection values reaches the reference value, the output of the microwave generator is stopped and the decompression is stopped. The vacuum microwave defroster according to claim 1, wherein the chamber is open to the atmosphere.
[0010]
According to a third aspect of the present invention, when the control device is a temperature at which the average of the temperature detection values is lower than the reference value, and the temperature difference between the detection points exceeds a predetermined temperature set in advance, The vacuum microwave thawing machine according to claim 1, wherein the thawing operation is stopped by stopping wave output.
[0011]
What is described in claim 4 is a vacuum microwave thawing method in which the object to be thawed is heated and thawed by irradiating microwaves while repeatedly performing the decompression step and the decompression step.
Detects the surface temperature at multiple locations of the material to be thawed, stops the microwave output when the average of the temperature detection values reaches the reference value, and stops the decompression to open the chamber containing the material to be thawed to the atmosphere Then, the vacuum microwave thawing method is characterized by terminating the thawing operation.
[0012]
According to a fifth aspect of the present invention, when the average of the temperature detection values is lower than a reference value and the temperature difference between the detection points is equal to or higher than a predetermined temperature, the output of the microwave is reduced and / or 5. The vacuum microwave thawing method according to claim 4 , wherein the thawing cycle is continued by shortening the irradiation time, and the thawing operation is terminated when the average of the temperature detection values reaches a reference value.
[0013]
What is described in claim 6 is a vacuum microwave thawing method in which the object to be thawed is heated and thawed by irradiating microwaves while repeating the decompression step and the decompression step.
Detecting the surface temperature at multiple locations of the object to be thawed, and if the temperature difference between the detected locations of the temperature detection values exceeds a predetermined temperature, stop the microwave output and interrupt the thawing operation A vacuum microwave thawing method characterized.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a front view showing the appearance of the vacuum microwave defroster of the present embodiment. FIG. 2 is a schematic view showing the internal structure of the right side surface of the vacuum microwave defroster according to the present embodiment.
[0015]
As shown in FIG. 1, the vacuum microwave thawing machine 1 of the present embodiment is provided with a food container 3 for storing an object to be thawed such as frozen food at the upper part of the housing 2, and a drive described later at the lower part. A machine storage unit 4 that stores a motor, a vacuum pump, and the like is disposed, and a control unit 5 that stores a control device is provided at the top, and the weight of the object to be thawed is placed on the front panel of the control unit 5. And a display unit 6 for displaying the decompression time and the like, and an operation unit 7 for inputting power on / off and various setting values. In addition, a caster 8 for facilitating the movement of the thawer 1 is provided on the lower surface of the casing 2 of the vacuum microwave thawer 1.
[0016]
As shown in FIGS. 1 and 2, the main body of the food container 3 in the vacuum microwave thawing machine 1 of the present embodiment is constituted by a hollow box-shaped chamber 10 having an opening on the front surface, and the chamber 10 is an electromagnetic wave. It is formed as a metal pressure-tight airtight container having an inner wall structure capable of blocking A door 11 capable of closing the inside of the chamber 10 in a sealed state is attached to the front opening of the chamber 10 through a hinge portion at the right front end of the chamber 10 so as to be openable and closable. On the left side of the front surface is attached a handle 12 that is gripped during the opening / closing operation. Between the door 11 and the chamber 10, an electromagnetic wave sealing material made of a metal net string and a chamber for preventing electromagnetic waves from leaking to the outside. An airtight sealing material that maintains the airtightness of the inside 10 is mounted.
[0017]
At the bottom of the chamber 10, a rotating shaft 13 is rotatably supported in a state of being supported by a bearing 14, and an object to be thawed is placed on the upper end of the rotating shaft 13 in the chamber 10. Then, the rotating turntable 15 is detachably attached, and a table driving motor 16 is connected to the base end portion of the rotating shaft 13 via a speed reduction mechanism.
[0018]
A central portion of the back surface of the chamber 10 is placed on the turntable 15 by irradiating the chamber 10 with microwaves via a straight waveguide 20 and a reducer waveguide 21 communicating with the chamber 10. A microwave generator 22 for heating the object to be thawed is connected. In this embodiment, a magnetron is employed as the microwave generator 22, and a pressure partition made of a glass plate that easily transmits microwaves to the flange connection portion 23 between the straight waveguide 20 and the reducer waveguide 21. Is installed.
[0019]
A discharge detection sensor 30 is provided at the upper back of the chamber 10 to detect when a discharge occurs in the chamber 10 due to microwave irradiation. A UV sensor that is determined by detecting ultraviolet rays (UV) is employed. A vacuum pressure sensor 31 that detects the pressure in the chamber 10 is provided in front of the upper portion of the chamber 10.
[0020]
An upper part of the chamber 10 includes an air release valve 40 that releases the pressure in the chamber 10 to the atmosphere, and a pressure regulating valve 41 that adjusts the pressure in the chamber 10. Further, a decompression system 43 for decompressing the interior of the chamber 10 is connected to the back surface of the chamber 10, and a vacuum pump 46 driven by a pump drive motor 45 is connected to the decompression system 43 via a check valve 44. Yes. The air release valve 40 and the pressure regulating valve 41 are constituted by, for example, electromagnetic valves in order to enable opening / closing control by a control device housed in the control unit 5.
[0021]
In addition, a non-contact type temperature sensor 70 that detects surface temperatures of a plurality of places of the object to be thawed placed on the turntable 15 is provided on the ceiling surface portion in the chamber 10. For example, an infrared temperature sensor having an infrared element as the temperature detection element 71 is suitable. In the present embodiment, as the non-contact type temperature sensor 70, as shown in FIGS. 2 and 3, a non-contact type temperature sensor that includes a plurality of temperature detection elements 71 as a single unit is adopted. It is not limited to. For example, a plurality of non-contact type temperature sensors provided with a single temperature detecting element may be provided individually. In addition, in order to control the thawing operation by calculating the temperature detection value (temperature signal) of the location detected by each temperature detection element 71 by the control device 50 described later, for example, a, b, c, d in FIG. As shown in ..., it is desirable to output each temperature detection value.
[0022]
In FIGS. 2 and 3, for the sake of convenience, a single non-contact type temperature sensor 70 is illustrated as having four temperature detection elements 71, but the number thereof is the directivity of the temperature detection element 71. The position where the non-contact temperature sensor 70 is attached is not limited to the ceiling surface portion in the chamber 10 as in this embodiment, and the temperature of the object to be thawed is set. Any position that can be detected may be used. For example, the back surface portion or the side surface portion in the chamber 10 may be used.
[0023]
FIG. 4 is a block diagram showing a control system in the vacuum microwave thawing machine 1 of the present embodiment.
The control device 50 is housed in the control unit 5 described above, and is configured by, for example, a microcomputer that executes a control program recorded in the ROM 51. The control device 50 includes a power control system 52 for the table drive motor 16 that rotationally drives the turntable 15, a power control system 53 for the pump drive motor 45 that drives the vacuum pump 46, and the atmosphere release valve 40. Open / close control system 54, open / close control system 55 of the pressure regulating valve 41, power source control system 56 of the microwave generator 22, detection value input system 57 of the discharge detection sensor 30, and vacuum pressure sensor 31. A detection value input system 58, a detection value input system 72 of the non-contact type temperature sensor 70, an input system 59 such as a set value of the operation unit 7, and a display output system 60 of the display unit 6 are connected. The control recorded in the ROM based on the set value of the operation unit 7 and the detection values of the discharge detection sensor 30, the vacuum pressure sensor 31, and the non-contact temperature sensor 70, etc. For driving and controlling the respective devices such as the pump drive motor 45 and the microwave generator 22 in accordance with the program.
[0024]
Next, the vacuum microwave thawing method of the present embodiment performed using the vacuum microwave thawing machine 1 as described above will be described. FIG. 5 is an explanatory diagram showing a thawing cycle in the vacuum microwave thawing machine 1 of the present embodiment.
[0025]
As shown in FIG. 5, the vacuum microwave thawing machine 1 of the present embodiment repeatedly performs the decompression steps G, G ′, G ″... And the decompression steps F, F ′. However, this is an apparatus for heating and thawing the object to be thawed by irradiating microwaves M, M ′, etc. The vacuum pump 46 continues to operate during the decompression process as well as the decompression process.
[0026]
As a preparation stage for thawing, first, the front door 11 is opened and an object to be thawed such as frozen food is placed on the turntable 15, and the door 11 is closed again to be in a sealed state. Contains the thaw. Note that the atmosphere release valve 40 and the pressure regulating valve 41 are closed.
[0027]
Next, the pump drive motor 45 is driven to operate the vacuum pump 46, and pressure reduction in the chamber 10 is started via the pressure reduction system 43. Then, the pressure reduction degree gradually decreases from 101.3 kPa (760 Torr) of the atmospheric pressure through the point A, and the pressure reduction step G is performed to the pressure reduction equilibrium region B. In this pressure reduction step G, the material to be thawed is pre-dried. .
[0028]
Here, the decompression equilibrium region is a region in which the degree of decompression with respect to a certain time is extremely reduced. For example, the degree of decompression (ΔP) in 30 seconds (Δt) is ΔP / Δt <13.3 Pa (0.1 Torr). Although it is sometimes grasped that the decompression equilibrium region has been reached, the equilibrium pressure in the decompression equilibrium region rises and falls due to the saturated vapor pressure in the chamber 10. Whether or not the pressure reduction equilibrium range has been reached is determined by the control device 50 based on the pressure signal from the vacuum pressure sensor 31.
[0029]
After performing the decompression step G to the decompression equilibrium region B, the pressure regulating valve 41 is opened at a predetermined opening degree to be described later, and the process proceeds to the decompression step F. The degree of decompression in the decompression step F causes vacuum discharge. The microwave irradiation M by the magnetron 22 is started and set in advance at the point C after exceeding the lower limit P1 [set to 1.33 kPa (10 Torr) with some margin in this embodiment] When the pressure is restored to the return pressure upper limit D, the control device 50 closes the pressure regulating valve 41 based on the pressure signal from the vacuum pressure sensor 31, and then proceeds to the pressure reducing step G 'again. Then, the object to be thawed is heated by continuing the microwave irradiation M by the magnetron 22 up to the point A ′ before reaching the lower limit P1 at which the degree of decompression does not cause vacuum discharge. Stop irradiation.
[0030]
In the present embodiment, the lower limit P1 of the degree of decompression that does not cause vacuum discharge is set to 1.33 kPa (10 Torr) as described above. That is, at the point C after the degree of decompression in the decompression step F exceeds 1.33 kPa (10 Torr), the microwave irradiation M by the magnetron 22 is started and the decompression is restored to the preset decompression upper limit D. Then, the process proceeds to the decompression step G ′ again, and the microwave irradiation M by the magnetron is continued to the point A ′ just before the degree of decompression reaches 1.33 kPa (10 Torr) to heat the material to be thawed. As described above, since the microwave irradiation M is performed from the middle of the decompression process F to the decompression process G ′, one thawing cycle including the decompression process and the decompression process is performed as compared with the conventional case where irradiation is performed only in the decompression process. A sufficient irradiation time can be secured.
[0031]
The return pressure upper limit value D is a variable pressure value set by the output of the magnetron 22 that irradiates microwaves, the pressure reduction capability of the vacuum pump 46, and the volume of the chamber 10, and in this embodiment, the throttle of the pressure regulating valve 41 It is set to 6.66 kPa (50 Torr) by adjusting the throttle of the valve 41 ′. Therefore, when the pressure is restored to 6.66 kPa (50 Torr), the leak from the pressure regulating valve 41 and the suction capacity of the vacuum pump 46 balance, and the pressure rises while maintaining the pressure regulating valve 41 at 6.66 kPa (50 Torr). I do not.
[0032]
In the present embodiment, the pressure value of the decompression upper limit D is appropriately set in accordance with the output of the magnetron 22 that irradiates the microwave, the decompression capability of the vacuum pump 46, and the volume of the chamber 10, so that the vacuum discharge The microwave irradiation time without excess or deficiency can be taken before entering the generation area, and the pressure can be reduced efficiently.
[0033]
As a means for detecting that the return pressure upper limit value D has been reached, in the present embodiment, it is detected by a signal from the vacuum pressure sensor 31, whereby the control device 50 closes the pressure regulating valve 43 and shifts to the pressure reducing process. However, the present invention is not limited to this, and may be stopped by timer control.
[0034]
After the microwave irradiation is stopped, the object to be thawed is sublimated and cooled in the decompression process from the point A ′ to the decompression equilibrium region B ′. In this way, after the object to be thawed is heated by irradiating the microwave to the point A ′ in the decompression step G ′, the object to be thawed is sublimated and cooled in the decompression process from the point A ′ to the decompression equilibrium region B ′. When the object to be thawed is heated by irradiating with microwaves, the temperature of the surface part of the object to be thawed becomes higher than the temperature of the center part, and if heating is continued as it is, there will be inconveniences such as drip on the surface part. This is because the surface portion is cooled by sublimation to reduce the temperature difference between the inside and outside.
[0035]
That is, when sublimation starts, the latent heat of vaporization is deprived and the temperature of the surface portion decreases, and the heat of the surface portion moves (heat conduction) to raise the temperature of the central portion. As a result, the temperature of the material to be thawed is made uniform, and the temperature of the material to be thawed rises as a whole, and thawing is promoted. In addition, the thawing of the material to be thawed is promoted as a whole while the temperature of the material to be thawed is made uniform, so that thawing partially proceeds and drip is generated or microwaves concentrate on this drip. Can be prevented.
[0036]
In the present embodiment, the process proceeds to the decompression step F, and the microwave is generated at the point C after the decompression degree of the decompression step F exceeds the lower limit P1 of 1.33 kPa (10 Torr) that does not cause vacuum discharge. Irradiation M is started, and after returning to 6.66 kPa (50 Torr) which is a preset decompression upper limit D, the process proceeds to the decompression step G ′ again, and the degree of decompression is the lower limit P1 at which no vacuum discharge occurs. A thawing cycle in which microwave irradiation M is continuously heated to a point before A 'reaches 1.33 kPa (10 Torr), and after the microwave irradiation M is stopped, sublimation cooling is performed in the decompression process to the decompression equilibrium region B ′. Is repeated as one cycle.
[0037]
That is, in FIG. 5, after performing the decompression step G ′ to the decompression equilibrium region B ′, the process proceeds to the decompression step F ′, and the decompression degree of the decompression step F ′ is the lower limit value P1 at which no vacuum discharge occurs. At the point C ′ after exceeding 33 kPa (10 Torr), the microwave irradiation M ′ is started again, and after returning to 6.66 kPa (50 Torr) which is a preset decompression upper limit D ′, the pressure is reduced again. The process proceeds to step G ″, and the microwave irradiation M ′ is continuously heated until the pressure reaches 1.33 kPa (10 Torr) of A ″ which is the lower limit P1 at which the degree of decompression does not cause vacuum discharge. After the irradiation is stopped again, a defrosting cycle for sublimation cooling in the decompression process up to the decompression equilibrium region B ″ is performed as the second cycle. The decompression characteristics in each decompression process F, F ′. 41 'installation Because it depends on, constant in each thawing cycle, i.e., the curve of the condensate pressure curve is constant in each thawing cycle, which makes it possible to perform stable thawed.
[0038]
Such a thawing cycle is repeated to perform a thawing operation. As shown in FIG. 3, the non-contact temperature sensor 70 disposed on the ceiling surface in the chamber 10 always has a plurality of thawing objects 73. The surface temperature of the location is detected. The temperature detection value outputs a, b, c, d... At the detection points of the temperature detection elements 71 of the temperature sensor 70 are respectively input to the control device 50 via the detection value input system 72 and processed. The When the average of the temperature detection values reaches a reference value (for example, about −3 ° C.), the end of the thawing operation is determined.
[0039]
On the other hand, the average temperature detection value is lower than a reference value (for example, about −3 ° C.), and the temperature difference between detection points (for example, the temperature difference between a, b, c, and d in FIG. 3). Is equal to or higher than a predetermined temperature (for example, 1 ° C. or higher), the control device 50 reduces the microwave output of the magnetron 22 and / or shortens the microwave irradiation time and continues the thawing cycle. When the average of the temperature detection values reaches a reference value (for example, about −3 ° C.), the end of the thawing operation is determined as described above.
[0040]
In this way, when there is a temperature difference of a predetermined temperature or more depending on the part of the object to be thawed, the microwave output can be reduced or the irradiation time can be shortened, so that the heating can be gradually changed. In, heat conduction is performed from the high temperature portion to the low temperature portion, and the temperature is made uniform. Therefore, a local temperature rise in the object to be thawed can be avoided, whereby the whole is thawed evenly and the occurrence of drip can be prevented.
[0041]
Moreover, when the temperature difference between the detection points of the temperature detection value (for example, the temperature difference between a, b, c, and d in FIG. 3) exceeds a predetermined temperature range (for example, within 2 ° C.), the magnetron 22 micro The wave output may be stopped and the thawing operation may be interrupted. In this case, the decompression by the vacuum pump 46 is stopped, the inside of the chamber 10 accommodating the material to be thawed 73 is opened to the atmosphere, and the position of the material to be thawed 73 on the turntable 15 is changed. The thawing operation can be adjusted before 73 local heating progresses.
[0042]
When the controller 50 determines the end of the thawing cycle, the air release valve 40 is opened, the power source of the pump drive motor 45 is shut off, the vacuum pump 46 is stopped, and the inside of the storage chamber 9 returns to atmospheric pressure. The door 11 can be opened, and the material 73 to be thawed that has been thawed to about −3 ° C., which is the reference value, can be taken out of the chamber 10.
[0043]
As described above, in this embodiment, the temperature of a plurality of locations of the object to be thawed 73 is detected, and when the average of the temperature detection values reaches the reference value of about −3 ° C., the microwave output is stopped and the pressure is reduced. Is stopped, the inside of the chamber 10 containing the material to be thawed 73 is opened to the atmosphere, and the thawing operation is completed, so that the material to be thawed 73 is not evenly heated and a satisfactory thawing finish without drip is realized. Can do.
[0044]
Furthermore, when the average temperature detection value is lower than the reference value of about −3 ° C. and the temperature difference between the detection points is equal to or higher than a predetermined temperature (eg, 1 ° C. or higher), the output of the microwave And / or shortening the microwave irradiation time and continuing the thawing cycle, and then the thawing operation is terminated when the average temperature detection value reaches the reference value of about −3 ° C. Even when heating of the product (material to be thawed) is uneven, it is possible to finally achieve a thawed finish in a good state where no drip is generated.
[0045]
In the above embodiment, the infrared temperature sensor has been described as an example, but the non-contact temperature sensor of the present invention can be any configuration as long as the temperature can be detected without contacting the non-thawed material. The temperature sensor may be used. The temperature difference at which microwave irradiation is relaxed or stopped has been described as 1 ° C. and 2 ° C. in the embodiment, but this setting can be appropriately changed in design. However, in frozen foods, −3 ° C. is a suitable thawing temperature, and the set temperature is within 3 ° C., preferably within 1 ° C., in order to prevent the occurrence of drip.
[0046]
Moreover, although the to-be-thawed material was demonstrated as frozen food in the said embodiment, the to-be-thawed material thawed by this invention is not limited to food, Blood, serum, semen, a medicine, etc. may be sufficient.
[0047]
【The invention's effect】
As is clear from the above description, the vacuum microwave defroster of the present invention has the following excellent effects.
That is, when the temperatures of a plurality of locations of the object to be thawed are detected by the non-contact type temperature sensor, temperature management can be performed with higher accuracy than when the temperature of the material to be thawed is estimated from the equilibrium state. When the temperature is lower than the reference value at which thawing is completed and the temperature difference between the detection points is equal to or higher than a predetermined temperature, if microwave heating is weakened and thawing is continued, local heating of the object to be thawed is performed. A heating operation can be performed so as not to occur, and a satisfactory thawing finish without drip can be realized, and moreover, it can be performed efficiently.
[0048]
In addition, the temperature at a plurality of locations of the object to be thawed is detected, and when the temperature difference between the detected locations of the temperature detection value exceeds a predetermined temperature range, the microwave output is stopped and the thawing operation is interrupted. Then, the arrangement | positioning of the to-be-thawed object on a turntable can be changed, etc., and thawing operation can be adjusted before the local heating of the to-be-thawed object progresses.
[Brief description of the drawings]
FIG. 1 is a front view showing an appearance of a vacuum microwave defroster according to an embodiment of the present invention.
FIG. 2 is a schematic diagram showing the internal structure of the right side surface of the vacuum microwave defroster of the present embodiment.
FIG. 3 is a schematic view showing a non-contact temperature sensor in the vacuum microwave defroster of the present embodiment.
FIG. 4 is a block diagram showing a control system in the vacuum microwave defroster of the present embodiment.
FIG. 5 is an explanatory diagram showing a thawing cycle in the vacuum microwave thawing machine of the present embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vacuum microwave thawing machine 2 Housing | casing 3 Food storage part 4 Machine storage part 5 Control part 6 Display part 7 Operation part 8 Caster 10 Chamber 11 Door 12 Handle 13 Rotating shaft 14 Bearing 15 Turntable 16 Table drive motor 20 Direct guide Wave tube 21 Reducer waveguide 22 Microwave generator (magnetron)
23, 24 Flange joint 25 Pressure bulkhead 26 Depressurized area 27 Non-depressurized area 28 Elastic body 29 Bolt / nut 30 Discharge detection sensor 31 Vacuum pressure sensor 40 Atmospheric release valve 41 Pressure regulating valve 43 Depressurization system 44 Check valve 45 Pump drive motor 46 Vacuum Pump 50 Controller 51 ROM
52 Table Drive Motor Power Supply Control System 53 Pump Drive Motor Power Supply Control System 54 Atmospheric Open Valve Open / Close Control System 55 Pressure Regulator Open / Close Control System 56 Microwave Generator Power Supply Control System 57 Detection Value Input System 58 of the Discharge Detection Sensor Detection value input system 59 of vacuum pressure sensor 59 Input system 60 for setting value of operation unit Display output system 70 of display unit Non-contact temperature sensor 71 Temperature detection element 72 Detection value input system 73 of non-contact type temperature sensor

Claims (6)

被解凍物を収容するチャンバーと、該チャンバー内を減圧する真空ポンプと、上記チャンバー内を復圧する調圧弁と、上記チャンバー内へマイクロ波を照射するマイクロ波発生器と、上記真空ポンプ、調圧弁、及びマイクロ波発生器を制御する制御装置とを有し、該制御装置の制御の下で減圧工程と復圧工程とを繰り返し行いながらマイクロ波を照射して被解凍物を加熱し解凍を行う真空マイクロ波解凍機において、
上記チャンバー内に、被解凍物の複数箇所の表面温度を検出し、各検出箇所の温度検出値をそれぞれ出力する非接触型温度センサーを設け、
前記制御装置は、温度検出値の平均が基準値に到達するとマイクロ波発生器の出力を停止するとともに、減圧を停止してチャンバー内を大気開放する構成とし、
該制御装置に、前記非接触型温度センサーからの温度信号を入力して被解凍物の温度を複数箇所で管理することを特徴とする真空マイクロ波解凍機。
A chamber for containing an object to be thawed, a vacuum pump for decompressing the inside of the chamber, a pressure regulating valve for restoring the pressure inside the chamber, a microwave generator for irradiating microwaves into the chamber, the vacuum pump, and a pressure regulating valve And a control device that controls the microwave generator, and under the control of the control device, the object to be thawed is heated and thawed by irradiating microwaves while repeating the decompression step and the decompression step. In vacuum microwave thawing machine,
In the chamber, a non-contact type temperature sensor that detects the surface temperature of a plurality of locations of the object to be thawed and outputs a temperature detection value of each detection location is provided,
The controller is configured to stop the output of the microwave generator when the average of the temperature detection values reaches a reference value, and stop the decompression to open the chamber to the atmosphere,
A vacuum microwave thawing machine , wherein a temperature signal from the non-contact type temperature sensor is input to the control device to manage the temperature of an object to be thawed at a plurality of locations.
前記制御装置は、温度検出値の平均が前記基準値よりも低い温度であって、かつ検出箇所間の温度差が、予め設定した所定温度以上であるときは、マイクロ波発生器の出力を低下および/または照射時間を短縮して解凍サイクルを継続し、前記温度検出値の平均が基準値に到達するとマイクロ波発生器の出力を停止するとともに、減圧を停止してチャンバー内を大気開放する構成であることを特徴とする請求項1に記載の真空マイクロ波解凍機。 The control device reduces the output of the microwave generator when the average temperature detection value is lower than the reference value and the temperature difference between detection points is equal to or higher than a predetermined temperature set in advance. And / or shortening the irradiation time and continuing the thawing cycle, when the average of the temperature detection values reaches the reference value, the output of the microwave generator is stopped and the decompression is stopped to open the chamber to the atmosphere vacuum microwave thawing machine according to claim 1, characterized in that. 前記制御装置は、温度検出値の平均が前記基準値よりも低い温度であって、かつ検出箇所間の温度差が、予め設定した所定温度を超えると、マイクロ波の出力を停止して解凍作業を中断する構成であることを特徴とする請求項1に記載の真空マイクロ波解凍機。 When the temperature detection value average is lower than the reference value and the temperature difference between the detection points exceeds a predetermined temperature, the control device stops the microwave output and performs the thawing operation. The vacuum microwave thawing machine according to claim 1, wherein the vacuum microwave thawing machine is configured to interrupt the process . 減圧工程と復圧工程とを繰り返し行いながらマイクロ波を照射して被解凍物を加熱し解凍を行う真空マイクロ波解凍方法において、In the vacuum microwave thawing method in which the object to be thawed is heated and thawed by irradiating the microwave while repeatedly performing the decompression step and the decompression step,
被解凍物の複数箇所の表面温度を検出し、該温度検出値の平均が基準値に到達するとマイクロ波の出力を停止すると共に、減圧を停止して被解凍物を収容するチャンバー内を大気開放し、解凍作業を終了することを特徴とする真空マイクロ波解凍方法。  Detects the surface temperature at multiple locations of the material to be thawed, stops the microwave output when the average of the temperature detection values reaches the reference value, and stops the decompression to open the chamber containing the material to be thawed to the atmosphere And thawing operation is completed.
前記温度検出値の平均が基準値よりも低い温度であり、かつ検出箇所間の温度差が所定温度以上であるときは、マイクロ波の出力を低下および/または照射時間を短縮して解凍サイクルを継続し、前記温度検出値の平均が基準値に到達すると解凍作業を終了することを特徴とする請求項4に記載の真空マイクロ波解凍方法。 When the average of the temperature detection values is lower than the reference value and the temperature difference between the detection points is equal to or higher than a predetermined temperature, the microwave output is reduced and / or the irradiation time is shortened to perform a thawing cycle. 5. The vacuum microwave thawing method according to claim 4, wherein the thawing operation is continued when the average of the temperature detection values reaches a reference value . 減圧工程と復圧工程とを繰り返し行いながらマイクロ波を照射して被解凍物を加熱し解凍を行う真空マイクロ波解凍方法において、
被解凍物の複数箇所の表面温度を検出し、該温度検出値の検出箇所間の温度差が予め設定した所定温度を超えるときは、マイクロ波の出力を停止して解凍作業を中断することを特徴とする真空マイクロ波解凍方法。
In the vacuum microwave thawing method in which the object to be thawed is heated and thawed by irradiating the microwave while repeatedly performing the decompression step and the decompression step,
Detecting the surface temperature at multiple locations of the object to be thawed, and if the temperature difference between the detected locations of the temperature detection values exceeds a predetermined temperature, stop the microwave output and interrupt the thawing operation A vacuum microwave thawing method characterized .
JP2001372928A 2001-12-06 2001-12-06 Vacuum microwave thawing machine and vacuum microwave thawing method Expired - Lifetime JP3769498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001372928A JP3769498B2 (en) 2001-12-06 2001-12-06 Vacuum microwave thawing machine and vacuum microwave thawing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001372928A JP3769498B2 (en) 2001-12-06 2001-12-06 Vacuum microwave thawing machine and vacuum microwave thawing method

Publications (2)

Publication Number Publication Date
JP2003169646A JP2003169646A (en) 2003-06-17
JP3769498B2 true JP3769498B2 (en) 2006-04-26

Family

ID=19181731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001372928A Expired - Lifetime JP3769498B2 (en) 2001-12-06 2001-12-06 Vacuum microwave thawing machine and vacuum microwave thawing method

Country Status (1)

Country Link
JP (1) JP3769498B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2567627T3 (en) * 2011-09-09 2015-10-19 Gea Food Solutions Bakel Bv Thawing apparatus and method of thawing

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05103649A (en) * 1991-10-18 1993-04-27 Brother Ind Ltd Method for thawing frozen material in vacuum and device therefor
JPH109582A (en) * 1996-06-25 1998-01-16 Hitachi Home Tec Ltd Frozen food thawing apparatus
JPH10141669A (en) * 1996-11-12 1998-05-29 Sharp Corp Control method for thawing
JP3284409B2 (en) * 1999-04-27 2002-05-20 エリー株式会社 Decompression method and device
KR100366020B1 (en) * 1999-07-12 2002-12-26 삼성전자 주식회사 Defrosting method for a microwave oven
JP2001263929A (en) * 2000-03-22 2001-09-26 Fuji Electric Co Ltd Thawing cabinet

Also Published As

Publication number Publication date
JP2003169646A (en) 2003-06-17

Similar Documents

Publication Publication Date Title
JP3662530B2 (en) Vacuum microwave thawing method and vacuum microwave thawing machine
JP3769498B2 (en) Vacuum microwave thawing machine and vacuum microwave thawing method
CN110933937B (en) Combined device and method for smoothing the surface of plastic products
US5211713A (en) Temperature control method with simultaneous heating and cooling near the set-point
JPH0755319A (en) Refrigerator
JP3769497B2 (en) Vacuum microwave thawing method and vacuum microwave thawing machine
JP3920601B2 (en) Vacuum microwave thawing machine
CN213713747U (en) Vacuum drying oven capable of quickly adjusting vacuum degree
JP3769483B2 (en) Vacuum microwave thawing machine
JP2001299313A (en) Apparatus and method for low-temperature cooking
JPH04187914A (en) Vacuum thawing machine
JP3769482B2 (en) Vacuum microwave thawing machine
JP2563668B2 (en) Decompression high frequency heating device
JP2003169648A (en) Vacuum microwave thawing machine
JP4594702B2 (en) Vacuum microwave thawing method
JP2003169649A (en) Vacuum microwave thawing machine
JPH05248748A (en) Cooling device
JP2833250B2 (en) Decompression high-frequency heating device
JP4099422B2 (en) Vacuum microwave thawing machine
JPH06109252A (en) Reduced pressure type high frequency heating device
JPS58313B2 (en) Vacuum thawing method and equipment
JP2001104455A (en) Steam sterilizing device and steam supply device
JPH08327068A (en) Heating and cooking device
JP2003074862A (en) Vacuum microwave defrosting device
JPH07318067A (en) Reduced pressure high-frequency wave heating device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060206

R150 Certificate of patent or registration of utility model

Ref document number: 3769498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term