JP2001263929A - Thawing cabinet - Google Patents
Thawing cabinetInfo
- Publication number
- JP2001263929A JP2001263929A JP2000080865A JP2000080865A JP2001263929A JP 2001263929 A JP2001263929 A JP 2001263929A JP 2000080865 A JP2000080865 A JP 2000080865A JP 2000080865 A JP2000080865 A JP 2000080865A JP 2001263929 A JP2001263929 A JP 2001263929A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- cool air
- thawing
- thawed
- microwave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Freezing, Cooling And Drying Of Foods (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、冷凍食品を解凍
する主に業務用に用いられる解凍庫に関し、特に解凍品
質を向上させるための手段に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thawing cabinet mainly used for business purposes for thawing frozen foods, and more particularly to a means for improving thawing quality.
【0002】[0002]
【従来の技術】この種の解凍庫として、従来から図14
に示すように、解凍室1内に収容された被解凍物2にマ
イクロ波発生手段(マグネトロン)3からマイクロ波を
照射して、誘電加熱により被解凍物2を解凍するものが
知られている。その際、被解凍物2の表面温度の変化を
温度センサ4で測定し、その信号に基づいてマイクロ波
制御手段5により出力や照射時間を制御し、マイクロ波
の過剰な照射による食品の劣化を防止している。2. Description of the Related Art FIG.
As shown in FIG. 1, there is known a method of irradiating microwaves from a microwave generating means (magnetron) 3 to an object 2 contained in a thawing chamber 1 to defrost the object 2 by dielectric heating. . At that time, a change in the surface temperature of the material 2 to be thawed is measured by the temperature sensor 4, and the output and irradiation time are controlled by the microwave control means 5 based on the signal, so that the deterioration of the food due to the excessive irradiation of the microwave is prevented. Preventing.
【0003】[0003]
【発明が解決しようとする課題】ところが、冷凍食品は
一般に水分が多く、マイクロ波は水に吸収されやすいた
め、特に水分量の多い肉や魚類はマイクロ波が表面で吸
収され、内部の解凍がされにくいという問題がある。ま
た、その解決策としてマイクロ波の出力を増やすと、被
解凍物の表面が過度に加熱され、その品質が損われると
いう問題がある。従って、被解凍物を内部まで良好に解
凍するには、出力を抑えながら解凍にある程度の時間を
かけ、熱伝導により均温化を待つ必要があり、短時間に
高品質の解凍を行うことは困難であった。However, since frozen foods generally contain a lot of water and microwaves are easily absorbed by water, meat and fish with a high water content are absorbed by the surface of the microwaves, and the thawing inside the foods is particularly difficult. There is a problem that it is difficult to be. Further, as a solution, when the output of the microwave is increased, there is a problem that the surface of the object to be thawed is excessively heated and its quality is impaired. Therefore, it is necessary to take a certain amount of time for thawing while suppressing output and wait for temperature equalization by heat conduction in order to thaw the object to be satisfactorily deep inside, and it is not possible to perform high-quality thawing in a short time. It was difficult.
【0004】そこで、この発明の発明者らはこれらの問
題について研究を進めてその解決手段を見出し、これに
ついて先に特許出願した(特開2000―80号公報参
照)。この出願に係る発明は、被解凍物にマイクロ波を
照射して解凍する際に、被解凍物の表面を冷気で冷却す
ることを要旨とし、これによりマイクロ波の出力を増や
して被解凍物の内部の解凍を促進する一方で、冷気によ
り被解凍物表面の過度の温度上昇を抑え、品質の劣化を
防止しようとするものである。[0004] The inventors of the present invention have conducted research on these problems and found a means for solving them, and have previously filed a patent application (see Japanese Patent Application Laid-Open No. 2000-80). The gist of the invention according to this application is to cool the surface of the object to be defrosted with cold air when irradiating the object with microwaves and defrosting the object, thereby increasing the output of the microwave and increasing the power of the object to be defrosted. While promoting internal thawing, the purpose is to prevent excessive temperature rise on the surface of the object to be thawed due to cold air, thereby preventing quality deterioration.
【0005】この発明は、上記出願に係る発明を基本に
して、更に解凍品質の向上を図ることを課題とするもの
で、特に加熱時の温度ムラを少なくして解凍の均質化を
進め、更に食品の包装形態の相違にも適切に対応できる
ようにするものである。The object of the present invention is to further improve the thawing quality on the basis of the invention according to the above-mentioned application, and in particular, to promote uniform thawing by reducing temperature unevenness during heating. It is intended to appropriately cope with a difference in the packaging form of food.
【0006】[0006]
【課題を解決するための手段】上記課題を解決するため
に、この発明は、被解凍物を収容する解凍室と、この解
凍室内の前記被解凍物にマイクロ波を照射するマイクロ
波発生手段と、前記解凍室と隔壁を介して区画された冷
却室と、この冷却室内に冷気を発生させる冷気発生手段
と、前記冷却室と前記解凍室との間で冷気を循環させる
冷気循環手段と、前記被解凍物の温度を測定する第1の
温度測定手段と、前記循環冷気の温度を測定する第2の
温度測定手段と、前記第1の温度測定手段からの信号に
基づいて前記マイクロ波発生手段の運転を制御するマイ
クロ波制御手段と、前記第1及び第2の温度測定手段か
らの信号に基づいて前記循環冷気の温度を制御する冷気
温度制御手段とを備えた解凍庫において、以下の手段を
講じるものとする。In order to solve the above-mentioned problems, the present invention provides a thawing chamber for accommodating an object to be defrosted, and a microwave generating means for irradiating the object to be defrosted with microwaves. A cooling chamber partitioned by the thawing chamber and a partition, a cool air generating means for generating cool air in the cooling chamber, a cool air circulating means for circulating cool air between the cooling chamber and the thawing chamber, First temperature measuring means for measuring the temperature of the object to be thawed, second temperature measuring means for measuring the temperature of the circulating cold air, and the microwave generating means based on a signal from the first temperature measuring means The following means are provided in a thawing cabinet comprising: a microwave control means for controlling the operation of the chiller; and a cool air temperature control means for controlling the temperature of the circulating cool air based on signals from the first and second temperature measuring means. Shall take
【0007】すなわち、まず被解凍物は解凍の進行に伴
い温度上昇して、冷気との温度差が徐々に大きくなる。
被解凍物と冷気との熱交換量は温度差に比例するため、
この温度差が広がると被解凍物の表面部が冷やされす
ぎ、結果として表面部からの熱伝導により被解凍物の内
部の解凍時間が長くなる。そこで、この発明は、被解凍
物と循環冷気との温度差を演算する温度差演算手段を設
け、その演算結果に基づいて前記温度差が一定値となる
ように、循環冷気温度を制御するようにする(請求項
1)。前記温度差が一定値になるように制御することに
より、被解凍物の解凍が進行して温度上昇した場合に
も、その表面部の冷やし過ぎにより、内部の解凍が妨げ
られることを防止することができる。That is, first, the temperature of the object to be thawed increases with the progress of thawing, and the temperature difference from the cold air gradually increases.
Because the amount of heat exchange between the material to be thawed and the cool air is proportional to the temperature difference,
If this temperature difference is widened, the surface of the object to be defrosted is excessively cooled, and as a result, the thawing time inside the object to be defrosted is prolonged due to heat conduction from the surface. Therefore, the present invention provides a temperature difference calculating means for calculating a temperature difference between the object to be thawed and the circulating cool air, and controls the circulating cool air temperature based on the calculation result so that the temperature difference becomes a constant value. (Claim 1). By controlling the temperature difference to be a constant value, even when thawing of the object to be thawed and the temperature rises, it is possible to prevent the internal thawing from being hindered by excessive cooling of the surface. Can be.
【0008】前記第1の温度測定手段に非接触式の温度
センサを用いた場合は、センサの視野の広がりや被解凍
物の位置関係により、被解凍物のみの温度の測定ができ
ず、被解凍物以外の周辺の温度や、それらと被解凍物の
温度との平均値を測定してしまうことが起こり得る。そ
こで、この発明は、前記第1の温度測定手段の複数の信
号から制御に使用する信号を選択する温度選択手段を設
け、マイクロ波制御手段及び冷気温度制御手段はこの温
度選択手段からの選択信号を用いて各々の前記制御を行
うようする(請求項2)。これにより、被解凍物の温度
のみを選択して、マイクロ波出力や循環冷気温度を適切
に制御することが可能になる。When a non-contact type temperature sensor is used as the first temperature measuring means, the temperature of only the object to be defrosted cannot be measured due to the expansion of the field of view of the sensor and the positional relationship of the object to be defrosted. It may happen that the ambient temperature other than the defrosted material and the average value of these and the temperature of the material to be defrosted are measured. Therefore, the present invention provides a temperature selection means for selecting a signal to be used for control from the plurality of signals of the first temperature measurement means, and the microwave control means and the cold air temperature control means provide a selection signal from the temperature selection means. Each of the above-mentioned controls is performed by using (Claim 2). This makes it possible to appropriately control the microwave output and the circulating cool air temperature by selecting only the temperature of the object to be thawed.
【0009】また、非接触式温度センサは、被解凍物の
包装形態により放射率が変化して温度測定値がずれる可
能性があるため、この発明は、前記第1の温度測定手段
からの信号に基づいて前記被解凍物の包装形態を判定す
る包装判定手段を設けるものとする(請求項3)。これ
により、包装形態に合わせて、適切なマイクロ波出力及
び循環冷気温度の制御を行うことができる。その場合、
前記包装判定手段からの信号に応じて、循環冷気の風速
を制御する冷気循環制御手段を設けるのがよい(請求項
4)。これにより、被解凍物が乾燥しないように配慮し
ながら、解凍室内の温度がなるべく均一になるように、
循環冷気の風量(風速)を適切に制御することができ
る。In the non-contact type temperature sensor, the emissivity may change due to the packaging form of the material to be thawed, and the measured temperature value may be shifted. Therefore, the present invention provides a signal from the first temperature measuring means. A packaging determining means for determining a packaging form of the object to be thawed on the basis of the above (claim 3). This makes it possible to appropriately control the microwave output and the circulating cool air temperature in accordance with the packaging form. In that case,
It is preferable to provide a cool air circulation control means for controlling the wind speed of the circulating cool air in accordance with a signal from the packaging determination means (claim 4). By doing so, the temperature inside the thawing chamber should be as uniform as possible, while taking care not to dry the material to be thawed.
The amount (wind speed) of the circulating cool air can be appropriately controlled.
【0010】上記いずれの解凍庫においても、前記第1
の温度測定手段からの複数個の信号に最高温度から順位
付けを行い、任意の順位からの任意個数の前記信号を用
いて制御を行うようにすることができる(請求項5)。
前記第1の温度測定手段で測定した被解凍物の複数箇所
の温度のうち、最高温度を用いると解凍をし過ぎること
がなくなる利点がある反面、未解凍の部分が多く残るな
ど、解凍状態に差が生じることがある。そこで、任意の
順位からの任意個数の温度の例えば平均値を用いるよう
にすることにより、解凍状態のばらつきを少なくするこ
とができる。その場合、更に、順位付けした前記複数個
の信号を任意の個数ずつの任意のグループに分け、その
中の2つのグループ間の温度差を用いて制御を行うよう
にすれば、解凍状態を一層きめこまかく管理することが
できる(請求項6)。[0010] In any of the above thawing boxes, the first
A plurality of signals from the temperature measuring means may be ranked from the highest temperature, and control may be performed using an arbitrary number of the signals from an arbitrary rank (claim 5).
Of the plurality of temperatures of the object to be thawed measured by the first temperature measuring means, the use of the highest temperature has the advantage of not thawing too much, but the unthawed portion remains in a state where many unthawed parts remain. Differences may occur. Therefore, by using, for example, an average value of an arbitrary number of temperatures from an arbitrary order, it is possible to reduce the variation in the thawing state. In this case, the plurality of ranked signals are further divided into arbitrary groups each having an arbitrary number, and the control is performed using the temperature difference between the two groups. It can be carefully managed (claim 6).
【0011】[0011]
【発明の実施の形態】図1は、この発明に係る解凍庫の
基本構成を示す縦断面図である。図1において、解凍庫
は発泡ウレタンなどの断熱層を有する断熱壁からなり、
その内部は隔壁6により解凍室1と冷却室7とに区画さ
れている。断熱壁は、マイクロ波が反射しやすい、例え
ばステンレス板で内張りされている。解凍室1の側面に
は、マグネトロンと導波管からなるマイクロ波発生手段
3が設けられ、マイクロ波制御手段5により照射出力や
照射時間を制御されたマイクロ波が解凍室1に収容され
た被解凍物2に照射される。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a longitudinal sectional view showing a basic structure of a thawing box according to the present invention. In FIG. 1, the thawing room is made of a heat insulating wall having a heat insulating layer such as urethane foam,
The inside is partitioned into a thawing chamber 1 and a cooling chamber 7 by a partition wall 6. The heat insulating wall is lined with a stainless steel plate, for example, which reflects microwaves easily. On the side surface of the thawing chamber 1, there is provided a microwave generating means 3 comprising a magnetron and a waveguide, and the microwave whose irradiation output and irradiation time are controlled by the microwave control means 5 is accommodated in the thawing chamber 1. Irradiate the thawing material 2.
【0012】解凍室1の上部には、被解凍物2の表面温
度を測定する第1の温度測定手段8が設置されている。
第1の温度測定手段8は、赤外線温度センサのような非
接触式の温度センサでも接触式の温度センサでもよい。
非接触式の温度センサは、同時に多点の測定が可能な、
例えば4×4アレイ式のものを用いれば、図6に示すよ
うに、被解凍物2の16箇所の温度分布を同時に計測す
ることができる。非接触式の温度センサは、マイクロ波
により損傷しないように、図示の通り断熱壁の中に埋設
するのがよく、解凍室1に接する面の開口は、マイクロ
波が通過せず、被解凍物2からの温度信号のみが通過す
る大きさに設定するのがよい。もっとも、マイクロ波が
遮断できれば、解凍室1の内部に設置してもよい。接触
式の温度センサは、マイクロ波内での使用が可能な光フ
ァイバー式のものがよい。Above the thawing chamber 1, a first temperature measuring means 8 for measuring the surface temperature of the material 2 to be thawed is provided.
The first temperature measuring means 8 may be a non-contact type temperature sensor such as an infrared temperature sensor or a contact type temperature sensor.
Non-contact type temperature sensor can measure multiple points at the same time,
For example, if a 4 × 4 array type is used, as shown in FIG. 6, it is possible to simultaneously measure the temperature distribution at 16 locations of the object 2 to be thawed. The non-contact type temperature sensor is preferably buried in a heat insulating wall as shown in the drawing so as not to be damaged by microwaves. It is preferable to set the size so that only the temperature signal from 2 passes. However, as long as the microwave can be cut off, it may be installed inside the thawing chamber 1. As the contact type temperature sensor, an optical fiber type sensor which can be used in a microwave is preferable.
【0013】冷却室7内には、例えば冷凍機の蒸発器か
らなる冷気発生手段9が設置され、マイクロ波は通過さ
せないが、冷気は通過可能な孔が多数あけられた隔壁6
を通して、冷却室7から解凍室1に冷気が供給される。
冷却室7内には、例えば熱電対からなる第2の温度測定
手段10が設置され、冷気発生手段9で発生する冷気の
温度は、第2の温度測定手段10からの信号に基づい
て、冷気温度制御手段11により制御される。冷気発生
手段9として冷凍機の蒸発器が用いられた場合、冷気温
度は冷凍機のON/OFFや電子膨張弁による冷媒蒸発
温度の調整により所望の値に制御される。解凍室1と冷
却室7とは冷気通路12で結ばれ、その途中に例えば風
量が可変なファンからなる冷気循環手段13が設置され
ている。冷気循環手段13の運転により、冷却室7と解
凍室1との間で冷気が矢印で示すように循環し、この冷
気は被解凍物2の表面を冷却する。冷気通路12の解凍
室1に接する面には、隔壁6と同様の隔壁14が設置さ
れている。In the cooling chamber 7, a cold air generating means 9 comprising, for example, an evaporator of a refrigerator is installed, and a partition wall 6 having a large number of holes through which microwaves can pass but cold air can pass.
, Cool air is supplied from the cooling chamber 7 to the thawing chamber 1.
In the cooling chamber 7, a second temperature measuring means 10 composed of, for example, a thermocouple is provided, and the temperature of the cold air generated by the cold air generating means 9 is determined based on a signal from the second temperature measuring means 10. It is controlled by the temperature control means 11. When an evaporator of a refrigerator is used as the cool air generating means 9, the cool air temperature is controlled to a desired value by ON / OFF of the refrigerator and adjustment of the refrigerant evaporation temperature by an electronic expansion valve. The thawing chamber 1 and the cooling chamber 7 are connected by a cool air passage 12, and a cool air circulating means 13 composed of, for example, a fan with a variable air volume is provided in the middle of the cool air passage 12. By the operation of the cool air circulation means 13, cool air circulates between the cooling chamber 7 and the thawing chamber 1 as shown by arrows, and cools the surface of the object 2 to be thawed. A partition 14 similar to the partition 6 is provided on a surface of the cold air passage 12 which is in contact with the thawing chamber 1.
【0014】図1の解凍庫の基本的な運転制御は次の通
りである。ここで、図7〜図13は運転制御の説明図で
あり、各実施の形態の説明においてそれらの図を参照す
る。さて、図1において、解凍初期には図7の線図に示
すように、冷気温度を例えば-20℃の低温に設定し、被
解凍物2にマイクロ波を照射する。マイクロ波の照射に
より被解凍物2の温度が上昇するが、表面部は冷気によ
り冷却されるため、内部(中心部)の方が温度が高くな
る。そこで、被解凍物2の表面温度を第1の温度測定手
段8でモニタし、この温度が例えば-10℃に達したとき
に、冷気温度を例えば-5℃に切り換える。これにより、
もともとマイクロ波により加熱されやすい表面部は急速
に温度上昇し、被解凍物2全体が-5℃に解凍される。The basic operation control of the defroster shown in FIG. 1 is as follows. Here, FIGS. 7 to 13 are explanatory diagrams of the operation control, and refer to those diagrams in the description of each embodiment. In FIG. 1, in the initial stage of thawing, as shown in the diagram of FIG. 7, the cold air temperature is set to a low temperature of, for example, −20 ° C., and the object to be thawed 2 is irradiated with microwaves. The temperature of the material 2 to be thawed rises due to the irradiation of microwaves, but since the surface is cooled by cold air, the temperature inside (in the center) is higher. Therefore, the surface temperature of the material 2 to be thawed is monitored by the first temperature measuring means 8, and when this temperature reaches, for example, -10 ° C, the cool air temperature is switched to, for example, -5 ° C. This allows
Originally, the surface portion which is easily heated by the microwave rapidly rises in temperature, and the whole object 2 is thawed to -5 ° C.
【0015】一方、マイクロ波照射については、図8の
線図に示すように、解凍初期は被解凍物2の中心部まで
温度上昇するように、出力を大き目の、例えば355Wに
設定する。そして、このマイクロ波を照射しながら、第
1の温度測定手段により、被解凍物2の表面温度を図6
に示すように多点(図8では4×4アレイ式として16
点)で測定し、それらの中の2点間、例えば点との
温度差が、例えば3℃に達した時点でマイクロ波の出力
を例えば145Wに小さくする。これにより高温部の温度
上昇が抑制される一方、低温部の温度が高温部からの熱
伝導に助けられて上昇し、低温部の温度が高温部に接近
して温度の均一化が行われ、この繰り返しにより温度ム
ラが抑制される。図8では出力を2段階に切り換える例
を示したが、3段以上に切り換えることも可能である。
なお、表面部と内部の温度差が大きくなりすぎ、図7で
説明した冷気温度の切り換えだけでは表面の温度上昇が
遅く、解凍時間が長くなる場合には、一旦出力を大きく
し、温度差を小さくする操作を行うことができる。On the other hand, as for the microwave irradiation, as shown in the diagram of FIG. 8, the output is set to a large value, for example, 355 W, so that the temperature rises to the center of the object 2 at the initial stage of thawing. Then, while irradiating the microwave, the surface temperature of the material 2 to be thawed is measured by the first temperature measuring means in FIG.
As shown in FIG. 8, multiple points (in FIG. 8, 16 ×
), And when the temperature difference between two points, for example, the point reaches, for example, 3 ° C., the microwave output is reduced to, for example, 145 W. As a result, while the temperature rise in the high-temperature portion is suppressed, the temperature in the low-temperature portion rises with the help of heat conduction from the high-temperature portion, and the temperature in the low-temperature portion approaches the high-temperature portion to make the temperature uniform, This repetition suppresses temperature unevenness. FIG. 8 shows an example in which the output is switched in two stages. However, the output can be switched in three or more stages.
In addition, when the temperature difference between the surface portion and the inside becomes too large, the temperature rise on the surface is slow only by switching the cool air temperature described in FIG. 7 and the thawing time is long, the output is increased once, and the temperature difference is reduced. An operation of reducing the size can be performed.
【0016】第1の温度測定手段8に非接触式の温度セ
ンサを用い、多点の温度を測定した場合、上記した制御
において測定した複数(例えば16個)の温度を最高温
度から順位付けし、所定の順位から任意の個数の温度を
制御に用いることができる。例えば、1番目の温度、す
なわち最高温度のみを用いて冷気温度とマイクロ波出力
の制御を行えば、例えば生鮮品であるマグロの解凍の場
合に、最高温度が20℃で解凍を停止すれば、マグロが焼
けるという品質の低下を抑えることができる。また、例
えば7番目の温度から例えば2個の温度の例えば平均値
を用いれば、その2箇所の温度分布を用いて制御したこ
とになり、使用する温度の個数を増やすほど、被解凍物
2の温度ムラを考慮した制御を行うことができる。When a non-contact type temperature sensor is used as the first temperature measuring means 8 and multiple points of temperature are measured, a plurality of (for example, 16) temperatures measured in the above control are ranked from the highest temperature. Any number of temperatures from a predetermined order can be used for control. For example, if the first temperature, that is, the control of the cool air temperature and the microwave output using only the maximum temperature, for example, when thawing fresh tuna, if thawing is stopped at the maximum temperature of 20 ° C., It is possible to suppress a decrease in quality such as burning of tuna. Further, for example, if an average value of, for example, two temperatures is used from the seventh temperature, it means that control is performed using the two temperature distributions. As the number of temperatures used increases, the Control can be performed in consideration of temperature unevenness.
【0017】更に、順位付けした上記複数の温度を任意
の個数ずつ任意のグループに分け、その中の2つのグル
ープ間の温度差を用いて、冷気温度とマイクロ波出力の
制御を行うことができる。例えば、複数の測定温度を高
低2つのグループに分け、高温グループの最高温度から
の例えば2個の温度の平均値と、低温グループの最低温
度からの例えば2個の温度の平均値とを用い、その温度
差が例えば2℃以内になるように制御を行えば、被解凍
物2内の温度分布(温度ムラ)を2℃以内に抑えて均一
な解凍を行うことができる。Further, the plurality of ranked temperatures can be divided into arbitrary groups by an arbitrary number, and the cool air temperature and the microwave output can be controlled by using the temperature difference between the two groups. . For example, a plurality of measured temperatures are divided into two groups, high and low, and an average value of, for example, two temperatures from the highest temperature of the high temperature group and an average value of, for example, two temperatures from the lowest temperature of the low temperature group are used. If control is performed so that the temperature difference is within 2 ° C., for example, the temperature distribution (temperature unevenness) in the object 2 can be suppressed to within 2 ° C. and uniform thawing can be performed.
【0018】図2は、請求項1に係る実施の形態を示す
ものである。図2において、図1との相違は、第1の温
度測定手段8及び第2の温度測定手段10からの信号に
基づいて、被解凍物2と冷気との温度差を演算する温度
差演算手段15が設けられている点である。冷気温度制
御手段11は温度差演算手段15の演算結果に基づい
て、被解凍物2と冷気との温度差が一定値となるように
冷気温度を制御する。例えば、上記温度差を5℃に設定
すると、第1の温度測定手段8で測定した被解凍物2の
表面温度と第2の温度測定手段10で測定した冷気温度
との温度差が5℃になるように、冷気温度制御手段は冷
気温度を制御する。図9はその場合の被解凍物2及び冷
気の温度変化を示したものである。被解凍物2と冷気と
の間の熱交換量は、その温度差に比例するが、この温度
差を一定値に保持する制御を行うことにより、被解凍物
2の解凍が進行して温度上昇した場合にも被解凍物1の
表面部の冷やし過ぎがなくなり、表面部からの熱伝導に
より冷却されて、内部の解凍が妨げられることが避けら
れる。FIG. 2 shows an embodiment according to the first aspect. In FIG. 2, the difference from FIG. 1 is that a temperature difference calculating unit that calculates a temperature difference between the object 2 and the cool air based on signals from the first temperature measuring unit 8 and the second temperature measuring unit 10. 15 is provided. The cool air temperature control means 11 controls the cool air temperature based on the calculation result of the temperature difference calculation means 15 so that the temperature difference between the object 2 and the cool air becomes a constant value. For example, when the temperature difference is set to 5 ° C., the temperature difference between the surface temperature of the object 2 to be defrosted measured by the first temperature measuring means 8 and the cool air temperature measured by the second temperature measuring means 10 becomes 5 ° C. Thus, the cool air temperature control means controls the cool air temperature. FIG. 9 shows the temperature changes of the object 2 and the cool air in that case. The amount of heat exchange between the object 2 and the cool air is proportional to the temperature difference. By controlling the temperature difference to be kept at a constant value, the thawing of the object 2 proceeds and the temperature rises. Also in this case, the surface of the object 1 is not overcooled, and it is prevented from being cooled by the heat conduction from the surface and hindering the thawing inside.
【0019】図3は、請求項2に係る実施の形態を示す
ものである。図3において、図1との相違は、第1の温
度測定手段8の複数の信号から制御に使用する信号を選
択する温度選択手段16が設けられている点である。温
度選択手段16に被解凍物2の凍結保存温度である例え
ば-40℃を設定しておくと、温度選択手段16はこの凍
結保存温度と第1の温度測定手段8で測定した被解凍物
1の各点の温度(図6参照)を比較し、その温度差が一
定値、例えば3℃以下の信号を被解凍物2の温度とみな
し、3℃を超える温度を被解凍物以外の温度と判定し
て、制御に使用したい被解凍物2の温度のみを選択す
る。これにより、第1の温度測定手段8で測定した温度
の中の例えば最高温度を用いて制御する場合に、例えば
被解凍物2の凍結保存温度が-40℃で、冷気温度が-20℃
の場合でも、冷気により冷やされた解凍室1の内壁や被
解凍物2の包装部分の温度を被解凍物2の最高温度と誤
認して、冷気温度やマイクロ波出力を制御する危険が避
けられる。FIG. 3 shows an embodiment according to the second aspect. 3 differs from FIG. 1 in that a temperature selecting means 16 for selecting a signal used for control from a plurality of signals of the first temperature measuring means 8 is provided. If the temperature of the cryopreservation temperature of the material 2 to be thawed, for example, -40 ° C., is set in the temperature selection means 16, the temperature selection means 16 determines the temperature of the cryopreservation temperature of the material 2 to be thawed by the first temperature measurement means 8. Are compared with each other (see FIG. 6), a signal having a temperature difference of a constant value, for example, 3 ° C. or less is regarded as the temperature of the object 2 and a temperature exceeding 3 ° C. is regarded as a temperature other than the temperature of the object. Judgment is made and only the temperature of the object 2 to be used for control is selected. Thereby, in the case of controlling using, for example, the highest temperature among the temperatures measured by the first temperature measuring means 8, for example, the cryopreservation temperature of the thawing object 2 is -40 ° C, and the cold air temperature is -20 ° C.
In this case, the temperature of the inner wall of the thawing chamber 1 cooled by the cool air and the temperature of the wrapped portion of the thawing object 2 are erroneously recognized as the maximum temperature of the thawing object 2, and the danger of controlling the cool air temperature and the microwave output can be avoided. .
【0020】図4は、請求項3に係る実施の形態を示す
ものである。図4において、図1との相違は、第1の温
度測定手段8の信号に基づいて、被解凍物2の包装形態
を判定する包装判定手段17が設けられている点であ
る。業務用の解凍庫では、家庭用の電子レンジに比べて
被解凍物2の種類が限定され、包装形態の種類も限定さ
れるため、包装判定手段17により以下のように包装形
態を特定する。すなわち、第1の温度測定手段8とし
て、図6に示すように多点計測が可能な例えば4×4ア
レイ式の非接触温度センサを用いた場合において、被解
凍物2がプラスチックのパックに入れられた場合と、フ
ィルムで密着してラップされた場合とを考えると、パッ
クはマイクロ波は透過するが赤外線は透過しないのに対
し、ラップは赤外線をほぼ透過する。FIG. 4 shows an embodiment according to claim 3. In FIG. 4, the difference from FIG. 1 is that a packaging judgment unit 17 for judging the packaging form of the material 2 to be thawed based on the signal of the first temperature measurement unit 8 is provided. In the commercial thawing box, the type of the object 2 to be thawed is limited and the type of the packaging form is also limited as compared with the household microwave oven. Therefore, the packaging form is specified by the packaging determination unit 17 as follows. That is, when a non-contact temperature sensor of a 4 × 4 array type capable of multipoint measurement is used as the first temperature measuring means 8 as shown in FIG. Considering the case where the pack is wrapped in close contact with the film, the pack transmits microwaves but does not transmit infrared rays, whereas the wrap substantially transmits infrared rays.
【0021】従って、被解凍物2の初期温度(凍結保存
温度)が-40℃、冷気温度が-20℃とすると、ラップ包装
の場合はラップと被解凍物2とが密着しているので、図
10に示すように、16点の温度信号がすべて被解凍物
2自身の温度-40℃を略検出する。これに対して、パッ
ク包装の場合は、冷気温度と略同温度の-20℃を検出す
る。そこで、パックの上面に図11に示すように温度測
定用の窓穴18をあけ、その部分に乾燥防止のためのラ
ップを施しておけば、このパックの場合には図12に示
すように、窓穴18の場所では温度信号は被解凍物2の
温度に近い-40℃検出し、それ以外の場所では冷気温度
と略同温度の-20℃を検出する。包装判定手段17は、
この-40℃と-20℃の2つの温度を同時に検出したときに
パック包装と判定する。なお、被解凍物2の初期温度と
冷気温度とが同温度の例えば-20℃の場合には、各点の
検出温度がすべて-20℃となり、包装形態の判定は行え
ない。その場合には、図13の線図に示すように、マイ
クロ波の吸収率が被解凍物2とパックとで異なることに
よるマイクロ波照射直後の温度上昇率の相違を利用して
包装形態を判定する。温度上昇率は、例えば被解凍物2
で(-20℃→-15℃)/10秒に対し、パックでは(-20℃→
-19℃)/10秒となる。この判定結果に応じて、次のよう
な冷気温度制御を行う。すなわち、パック包装の場合に
は、それ以外(ラップ包装、未包装)の場合に比べて冷
気温度を低温に設定し、冷気との温度差を大きくとる。
これにより、パック包装により被解凍物と冷気との熱交
換が妨げられることを補うことができる。Therefore, if the initial temperature (freezing storage temperature) of the material 2 to be thawed is -40.degree. C. and the temperature of the cold air is -20.degree. As shown in FIG. 10, all of the 16 temperature signals substantially detect the temperature -40 ° C. of the object 2 to be thawed. On the other hand, in the case of pack packaging, -20 ° C., which is approximately the same as the cold air temperature, is detected. Therefore, if a window hole 18 for temperature measurement is made on the upper surface of the pack as shown in FIG. 11 and a wrap is provided on that portion to prevent drying, as shown in FIG. At the location of the window hole 18, the temperature signal is detected at -40 ° C, which is close to the temperature of the material 2 to be defrosted, and at other locations, -20 ° C, which is substantially the same as the cold air temperature, is detected. Packaging determination means 17
When the two temperatures of -40 ° C and -20 ° C are detected at the same time, it is determined that the package is a pack package. When the initial temperature and the cold air temperature of the material 2 to be thawed are the same, for example, -20 ° C., the detected temperatures at all points are -20 ° C., and the packaging form cannot be determined. In this case, as shown in the diagram of FIG. 13, the packaging form is determined by using the difference in the rate of temperature rise immediately after microwave irradiation due to the difference in microwave absorption between the object 2 and the pack. I do. The temperature rise rate is, for example,
(-20 ° C → -15 ° C) / 10 seconds, while the pack (-20 ° C →
-19 ° C) / 10 seconds. The following cool air temperature control is performed according to the determination result. That is, in the case of pack packaging, the cold air temperature is set to a lower temperature than in the other cases (wrap packaging, unpackaged), and the temperature difference from the cold air is increased.
Thereby, it is possible to supplement that the heat exchange between the object to be thawed and the cool air is prevented by the pack packaging.
【0022】図5は、請求項4に係る実施の形態を示す
ものである。図5においては、図4における包装判定手
段17による判定に応じて、冷気循環手段13による循
環冷気の風速(風量)を変える冷気循環制御手段19が
設けられている。例えば、包装判定手段17がパック包
装と判定した場合には、冷気循環制御手段19は風速を
例えば大き目の2.0m/秒に設定し、冷気循環手段13の
風速を制御する。これにより、パック包装された被解凍
物2が解凍室1内に同時に複数個置かれても、解凍室1
内に風の淀み箇所が発生せず、すべての被解凍物2に対
して均等に冷気が送風され一方、被解凍物2はパックで
包装されているため、風速が大きくても乾燥が生じな
い。これに対して、被解凍物2が未包装と判定された場
合には、冷気循環制御手段19は風速を例えば小さ目の
0.7m/秒に設定する。これにより、解凍室1には多少の
風の淀み箇所が発生するが、被解凍物2の乾燥は防ぐと
いう品質を優先した解凍が行われる。FIG. 5 shows an embodiment according to the fourth aspect. In FIG. 5, a cool air circulation control means 19 for changing the wind speed (air volume) of the circulating cool air by the cool air circulation means 13 according to the judgment by the packaging judgment means 17 in FIG. 4 is provided. For example, when the packaging determination unit 17 determines that the package is packed, the cool air circulation control unit 19 sets the wind speed to, for example, 2.0 m / sec, which is a large value, and controls the wind speed of the cool air circulation unit 13. Thereby, even if a plurality of packed objects 2 are simultaneously placed in the thawing chamber 1,
There is no stagnation point in the air, and cold air is blown evenly to all the thawing objects 2, while the thawing objects 2 are packed in a pack, so that drying does not occur even if the wind speed is high. . On the other hand, when it is determined that the material to be thawed 2 is not packaged, the cool air circulation control unit 19 sets the wind speed to, for example, a small
Set to 0.7m / sec. As a result, some stagnation of the wind occurs in the thawing chamber 1, but thawing is performed with priority on quality such that drying of the object 2 is prevented.
【0023】[0023]
【発明の効果】以上の通り、この発明によれば、マイク
ロ波の出力を増やして被解凍物の内部の解凍を促進しな
がら、冷気により被解凍物表面の過度の温度上昇を抑
え、短時間かつ高品質の解凍を可能とすることができる
とともに、温度センサの特性、解凍室内での被解凍物の
配置状態や個数、被解凍物の包装状態等を考慮しなが
ら、きめ細かな制御を行い、被解凍物の解凍状態のばら
つきや乾燥を抑えて解凍品質を一層高めることができ
る。As described above, according to the present invention, while increasing the output of microwaves to promote thawing inside the object to be thawed, the excessive temperature rise on the surface of the object to be thawed is suppressed by the cool air. In addition to being able to perform high-quality thawing, detailed control is performed while considering the characteristics of the temperature sensor, the arrangement and number of objects to be thawed in the thawing room, the packaging state of the object to be thawed, Thaw quality can be further improved by suppressing the variation and drying of the thawing state of the material to be thawed.
【図1】この発明に係る解凍庫の基本構成を示す縦断面
図である。FIG. 1 is a longitudinal sectional view showing a basic configuration of a defroster according to the present invention.
【図2】この発明の請求項1に係る解凍庫の実施の形態
を示す縦断面図である。FIG. 2 is a longitudinal sectional view showing an embodiment of a thawing box according to claim 1 of the present invention.
【図3】この発明の請求項2に係る解凍庫の実施の形態
を示す縦断面図である。FIG. 3 is a longitudinal sectional view showing an embodiment of a thawing box according to claim 2 of the present invention.
【図4】この発明の請求項3に係る解凍庫の実施の形態
を示す縦断面図である。FIG. 4 is a longitudinal sectional view showing an embodiment of a defroster according to claim 3 of the present invention.
【図5】この発明の請求項4に係る解凍庫の実施の形態
を示す縦断面図である。FIG. 5 is a longitudinal sectional view showing an embodiment of a defroster according to claim 4 of the present invention.
【図6】非接触式の温度センサによる被解凍物の多点温
度測定の説明図で、(A)は側面図、(B)は平面図で
ある。6A and 6B are explanatory diagrams of multipoint temperature measurement of an object to be thawed by a non-contact type temperature sensor, where FIG. 6A is a side view and FIG. 6B is a plan view.
【図7】図1における冷気温度制御を説明する線図であ
る。FIG. 7 is a diagram illustrating cold air temperature control in FIG. 1;
【図8】図1におけるマイクロ波制御を説明する線図で
ある。FIG. 8 is a diagram illustrating microwave control in FIG. 1;
【図9】図2における冷気温度制御を説明する線図であ
る。FIG. 9 is a diagram illustrating cold air temperature control in FIG. 2;
【図10】被解凍物が未包装の場合の図6の温度センサ
による測定温度を説明する線図である。FIG. 10 is a diagram illustrating a temperature measured by the temperature sensor of FIG. 6 when an object to be thawed is not packaged.
【図11】図6の温度センサによるパック包装の被解凍
物の多点温度測定の説明図で、(A)は側面図、(B)
は平面図である。11A and 11B are explanatory diagrams of multi-point temperature measurement of the material to be thawed in the pack package by the temperature sensor of FIG. 6, wherein FIG. 11A is a side view and FIG.
Is a plan view.
【図12】図11の被解凍物の測定温度を説明する線図
である。FIG. 12 is a diagram illustrating a measured temperature of the object to be thawed in FIG. 11;
【図13】被解凍物の初期温度と冷気温度とが同じ場合
の包装形態による被解凍物の温度変化の相違を説明する
線図である。FIG. 13 is a diagram illustrating a difference in temperature change of the object to be defrosted depending on the packaging form when the initial temperature and the cold air temperature of the object to be defrosted are the same.
【図14】従来の解凍庫を示す縦断面図である。FIG. 14 is a longitudinal sectional view showing a conventional thawing box.
1 解凍室 2 被解凍物 3 マグネトロン 4 マイクロ波制御手段 5 断熱材 6 隔壁 7 冷却室 8 冷気発生手段 9 第1の温度測定手段 10 第2の温度測定手段 11 冷気温度制御手段 12 冷気通路 13 冷気循環手段 14 隔壁 15 温度差演算手段 16 温度選択手段 17 包装判定手段 18 窓穴 19 冷気循環制御手段 DESCRIPTION OF SYMBOLS 1 Thawing chamber 2 Thawed object 3 Magnetron 4 Microwave control means 5 Heat insulation material 6 Partition wall 7 Cooling chamber 8 Cold air generation means 9 1st temperature measurement means 10 2nd temperature measurement means 11 Cold air temperature control means 12 Cold air passage 13 Cold air Circulation means 14 Partition wall 15 Temperature difference calculation means 16 Temperature selection means 17 Packaging judgment means 18 Window hole 19 Cold air circulation control means
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 香 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 Fターム(参考) 4B022 LF02 LQ02 LQ07 LT07 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kaoru Yamaguchi 1-1-1, Tanabeshinden, Kawasaki-ku, Kawasaki-shi, Kanagawa F-term in Fuji Electric Co., Ltd. (reference) 4B022 LF02 LQ02 LQ07 LT07
Claims (6)
内の前記被解凍物にマイクロ波を照射するマイクロ波発
生手段と、前記解凍室と隔壁を介して区画された冷却室
と、この冷却室内に冷気を発生させる冷気発生手段と、
前記冷却室と前記解凍室との間で冷気を循環させる冷気
循環手段と、前記被解凍物の温度を測定する第1の温度
測定手段と、前記循環冷気の温度を測定する第2の温度
測定手段と、前記第1の温度測定手段からの信号に基づ
いて前記マイクロ波発生手段の運転を制御するマイクロ
波制御手段と、前記第1及び第2の温度測定手段からの
信号に基づいて前記循環冷気の温度を制御する冷気温度
制御手段とを備えた解凍庫において、 前記被解凍物と前記循環冷気との温度差を演算する温度
差演算手段を設け、その演算結果に基づいて前記温度差
が一定値となるように、前記冷気温度制御手段により前
記循環冷気の温度を制御するようにしたことを特徴とす
る解凍庫。1. A thawing chamber for accommodating an object to be thawed, microwave generating means for irradiating the object to be defrosted with microwaves, a cooling chamber partitioned from the thawing chamber by a partition, A cool air generating means for generating cool air in the cooling chamber;
Cool air circulating means for circulating cool air between the cooling chamber and the thawing chamber, first temperature measuring means for measuring the temperature of the object to be thawed, and second temperature measurement for measuring the temperature of the circulating cool air Means, microwave control means for controlling the operation of the microwave generation means based on a signal from the first temperature measurement means, and the circulation based on signals from the first and second temperature measurement means. In a defroster provided with cool air temperature control means for controlling the temperature of cool air, a temperature difference calculating means for calculating a temperature difference between the object to be thawed and the circulating cool air is provided, and the temperature difference is calculated based on the calculation result. A thaw storage, wherein the temperature of the circulating cool air is controlled by the cool air temperature control means so as to be a constant value.
内の前記被解凍物にマイクロ波を照射するマイクロ波発
生手段と、前記解凍室と隔壁を介して区画された冷却室
と、この冷却室内に冷気を発生させる冷気発生手段と、
前記冷却室と前記解凍室との間で冷気を循環させる冷気
循環手段と、前記被解凍物の温度を測定する第1の温度
測定手段と、前記循環冷気の温度を測定する第2の温度
測定手段と、前記第1の温度測定手段からの信号に基づ
いて前記マイクロ波発生手段の運転を制御するマイクロ
波制御手段と、前記第1及び第2の温度測定手段からの
信号に基づいて前記循環冷気の温度を制御する冷気温度
制御手段とを備えた解凍庫において、 前記第1の温度測定手段の複数の信号から制御に使用す
る信号を選択する温度選択手段を設け、前記マイクロ波
制御手段及び冷気温度制御手段はこの温度選択手段から
の選択信号を用いて各々の前記制御を行うようにしたこ
とを特徴とする解凍庫。2. A thawing chamber for accommodating an object to be thawed, microwave generating means for irradiating the object to be defrosted with microwaves, a cooling chamber partitioned from the thawing chamber by a partition wall, A cool air generating means for generating cool air in the cooling chamber;
Cool air circulating means for circulating cool air between the cooling chamber and the thawing chamber, first temperature measuring means for measuring the temperature of the object to be thawed, and second temperature measurement for measuring the temperature of the circulating cool air Means, microwave control means for controlling the operation of the microwave generation means based on a signal from the first temperature measurement means, and the circulation based on signals from the first and second temperature measurement means. A defroster provided with cold air temperature control means for controlling the temperature of the cold air, wherein a temperature selection means for selecting a signal used for control from a plurality of signals of the first temperature measurement means is provided, and the microwave control means and A defroster characterized in that the cool air temperature control means performs each of the controls using a selection signal from the temperature selection means.
内の前記被解凍物にマイクロ波を照射するマイクロ波発
生手段と、前記解凍室と隔壁を介して区画された冷却室
と、この冷却室内に冷気を発生させる冷気発生手段と、
前記冷却室と前記解凍室との間で冷気を循環させる冷気
循環手段と、前記被解凍物の温度を測定する第1の温度
測定手段と、前記循環冷気の温度を測定する第2の温度
測定手段と、前記第1の温度測定手段からの信号に基づ
いて前記マイクロ波発生手段の運転を制御するマイクロ
波制御手段と、前記第1及び第2の温度測定手段からの
信号に基づいて前記循環冷気の温度を制御する冷気温度
制御手段とを備えた解凍庫において、 前記第1の温度測定手段からの信号に基づいて前記被解
凍物の包装形態を判定する包装判定手段を設けたことを
特徴とする解凍庫。3. A thawing chamber for accommodating an object to be thawed, microwave generating means for irradiating the object to be thawed with microwaves, a cooling chamber partitioned from the thawing chamber by a partition, A cool air generating means for generating cool air in the cooling chamber;
Cool air circulating means for circulating cool air between the cooling chamber and the thawing chamber, first temperature measuring means for measuring the temperature of the object to be thawed, and second temperature measurement for measuring the temperature of the circulating cool air Means, microwave control means for controlling the operation of the microwave generation means based on a signal from the first temperature measurement means, and the circulation based on signals from the first and second temperature measurement means. A thawing cabinet having cold air temperature control means for controlling the temperature of cold air, wherein a packaging judgment means for judging a packaging form of the object to be thawed based on a signal from the first temperature measurement means is provided. Thaw storage.
記循環冷気の風速を制御する冷気循環制御手段を設けた
ことを特徴とする請求項3記載の解凍庫。4. A defroster according to claim 3, further comprising a cool air circulation control means for controlling a wind speed of said circulating cool air in response to a signal from said packaging judgment means.
号に最高温度から順位付けを行い、所定の順位からの任
意個数の前記信号を用いて制御を行うことを特徴とする
請求項1〜請求項4のいずれかに記載の解凍庫。5. A plurality of signals from said first temperature measuring means are ranked from the highest temperature, and control is performed using an arbitrary number of said signals from a predetermined rank. A defroster according to any one of claims 1 to 4.
数ずつの任意のグループに分け、その中の2つのグルー
プ間の温度差を用いて制御を行うことを特徴とする請求
項5記載の解凍庫。6. The control method according to claim 5, wherein the plurality of ranked signals are divided into arbitrary groups each having an arbitrary number, and control is performed using a temperature difference between two groups. Thawing room.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000080865A JP2001263929A (en) | 2000-03-22 | 2000-03-22 | Thawing cabinet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000080865A JP2001263929A (en) | 2000-03-22 | 2000-03-22 | Thawing cabinet |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001263929A true JP2001263929A (en) | 2001-09-26 |
Family
ID=18597898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000080865A Pending JP2001263929A (en) | 2000-03-22 | 2000-03-22 | Thawing cabinet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001263929A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003169646A (en) * | 2001-12-06 | 2003-06-17 | Toshiba Corp | Vacuum microwave thawing machine, and vacuum microwave thawing method |
JP2011257022A (en) * | 2010-06-07 | 2011-12-22 | Mitsubishi Electric Corp | Refrigerator |
JP2014189501A (en) * | 2013-03-26 | 2014-10-06 | Taiyo Nippon Sanso Corp | Thawing device for cryopreservation sample and method for thawing cryopreservation sample |
CN115336702A (en) * | 2022-09-09 | 2022-11-15 | 上海点为智能科技有限责任公司 | Radio frequency microwave thawing system capable of improving temperature difference by combining refrigeration |
-
2000
- 2000-03-22 JP JP2000080865A patent/JP2001263929A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003169646A (en) * | 2001-12-06 | 2003-06-17 | Toshiba Corp | Vacuum microwave thawing machine, and vacuum microwave thawing method |
JP2011257022A (en) * | 2010-06-07 | 2011-12-22 | Mitsubishi Electric Corp | Refrigerator |
JP2014189501A (en) * | 2013-03-26 | 2014-10-06 | Taiyo Nippon Sanso Corp | Thawing device for cryopreservation sample and method for thawing cryopreservation sample |
CN115336702A (en) * | 2022-09-09 | 2022-11-15 | 上海点为智能科技有限责任公司 | Radio frequency microwave thawing system capable of improving temperature difference by combining refrigeration |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4948562B2 (en) | refrigerator | |
JP5334892B2 (en) | refrigerator | |
WO2011135865A1 (en) | Refrigerator | |
JP2007057160A (en) | Refrigerator | |
WO2011135863A1 (en) | Refrigeration device, refrigerator provided with refrigeration device, and refrigeration device operating method | |
JP2019011932A (en) | Refrigerator and refrigerator temperature control method | |
JPH04369375A (en) | Refrigerator | |
JP4367576B2 (en) | refrigerator | |
JP2001263929A (en) | Thawing cabinet | |
WO2002101306A1 (en) | Refrigerator | |
JP2000000080A (en) | Thawing house | |
JP2002147919A (en) | Business-use refrigerator provided with defrosting function | |
JP2022189869A (en) | refrigerator | |
AU2021307486B2 (en) | Refrigerator preservation control method and refrigerator | |
US6490878B1 (en) | Cold sales cabinet | |
JPH11257824A (en) | Refrigerator | |
KR100483919B1 (en) | Refrigerator Having Temperature-Controlled Chamber Utlizing Thermoelectric Module | |
JP2002372358A (en) | Refrigerator | |
JP7308427B2 (en) | refrigerator | |
JP7199052B2 (en) | refrigerator | |
JP2631259B2 (en) | Thawing and refrigeration continuous processing equipment | |
JPH09126623A (en) | Food stockroom | |
JP2003028563A (en) | Freezing/melting cooking apparatus | |
JP2763623B2 (en) | Refrigerator with thawing room | |
JP7185000B2 (en) | Refrigerator and refrigerator temperature control method |