JP3769497B2 - Vacuum microwave thawing method and vacuum microwave thawing machine - Google Patents

Vacuum microwave thawing method and vacuum microwave thawing machine Download PDF

Info

Publication number
JP3769497B2
JP3769497B2 JP2001372925A JP2001372925A JP3769497B2 JP 3769497 B2 JP3769497 B2 JP 3769497B2 JP 2001372925 A JP2001372925 A JP 2001372925A JP 2001372925 A JP2001372925 A JP 2001372925A JP 3769497 B2 JP3769497 B2 JP 3769497B2
Authority
JP
Japan
Prior art keywords
pressure
microwave
vacuum
thawed
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001372925A
Other languages
Japanese (ja)
Other versions
JP2003169647A (en
Inventor
信雄 伊藤
芳喜 杉山
崇 浅原
Original Assignee
東芝コンシューママーケティング株式会社
東芝家電製造株式会社
東静電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝コンシューママーケティング株式会社, 東芝家電製造株式会社, 東静電気株式会社 filed Critical 東芝コンシューママーケティング株式会社
Priority to JP2001372925A priority Critical patent/JP3769497B2/en
Publication of JP2003169647A publication Critical patent/JP2003169647A/en
Application granted granted Critical
Publication of JP3769497B2 publication Critical patent/JP3769497B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、減圧工程と復圧工程とを繰り返し行いながらマイクロ波を照射して冷凍食品などの被解凍物を加熱し解凍を行う真空マイクロ波解凍方法、及び該解凍方法を実施する真空マイクロ波解凍機に関する。
【0002】
【従来の技術】
従来の真空マイクロ波解凍機は、減圧工程と復圧工程とを繰り返し行いながら、減圧工程においてマイクロ波を照射して被解凍物を加熱し解凍を行う装置である。そして、この種の真空マイクロ波解凍機には、被解凍物を収容するチャンバーと、該チャンバー内を減圧する真空ポンプと、該真空ポンプにより減圧したチャンバー内を復圧する復圧手段と、上記減圧工程においてチャンバー内へマイクロ波を照射するマイクロ波発生器とが備えられており、一般的に、チャンバーの大きさ及び真空ポンプの能力は固定要素であり、可変要素ではない。
【0003】
【発明が解決しようとする課題】
ところで、従来の真空マイクロ波解凍機による解凍方法においては、被解凍物の重量によりチャンバー内で気化する水分量が変化するため、減圧速度や到達減圧度等の減圧変化量が変動することになる。また、所望する温度まで解凍するには、被解凍物の重量に応じて必要とされる熱エネルギー(即ち、マイクロ波の出力や照射時間)も変化する。したがって、チャンバーの大きさ及び真空ポンプの能力が一定の場合、解凍操作を行うに際して、被解凍物の重量を初期設定値としてその都度個別に入力しなければならず、この設定値に基づいてマイクロ波の出力やマイクロ波の照射時間を調整することとなり、操作が煩雑であった。
【0004】
そこで、本発明は、被解凍物の重量を初期設定値としてその都度個別に入力することなく、被解凍物の重量に応じてマイクロ波の出力やマイクロ波の照射時間を自動制御することができる真空マイクロ波解凍方法、及び真空マイクロ波解凍機を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、上記に鑑み提案されたもので、請求項1に記載のものは、制御装置の制御の下で減圧工程と復圧工程とを繰り返し行いながらマイクロ波を照射して被解凍物を加熱し解凍を行う真空マイクロ波解凍方法において、
予め標準試料の減圧変化量をその重量との相関に基づき標準値として制御装置に設定しておき、
マイクロ波を照射することなく最初に減圧する予備乾燥工程において、被解凍物を収容したチャンバー内の減圧変化量を実測し、実測した減圧変化量を上記標準値と比較して、上記相関から被解凍物の重量を推測し、この重量に応じてマイクロ波の出力または/およびマイクロ波の照射時間を制御することを特徴とする真空マイクロ波解凍方法である。
【0006】
請求項2に記載のものは、前記減圧変化量を、減圧平衡域に至る減圧到達時間の比較で行うことを特徴とする請求項1に記載の真空マイクロ波解凍方法である。
【0007】
請求項3に記載のものは、前記減圧変化量を、減圧平衡域の到達減圧度の比較で行うことを特徴とする請求項1に記載の真空マイクロ波解凍方法である。
【0008】
請求項4に記載のものは、被解凍物を収容するチャンバーと、該チャンバー内を減圧する真空ポンプと、チャンバー内を復圧する調圧弁と、チャンバー内へマイクロ波を照射するマイクロ波発生器と、上記真空ポンプ、調圧弁及びマイクロ波発生器を制御する制御装置とを有し、該制御装置による制御の下で減圧工程と復圧工程とを繰り返し行いながらマイクロ波を照射して被解凍物を加熱し解凍を行う真空マイクロ波解凍機において、
予め標準試料の減圧変化量をその重量との相関に基づき標準値として設定可能であって、マイクロ波を照射することなく最初に減圧する予備乾燥工程において、被解凍物を収容したチャンバー内の減圧変化量を実測した減圧変化量を上記標準値と比較して、上記相関から被解凍物の重量を推測し、この重量に応じてマイクロ波の出力または/およびマイクロ波の照射時間の制御を実行する制御装置を有することを特徴とする真空マイクロ波解凍機である。
【0009】
請求項5に記載のものは、前記制御装置が、これに入力する減圧変化量を、減圧平衡域に至る減圧到達時間の比較で行うことを特徴とする請求項4に記載の真空マイクロ波解凍機である。
【0010】
請求項6に記載のものは、前記制御装置が、これに入力する減圧変化量を、減圧平衡域の到達減圧度の比較で行うことを特徴とする請求項4に記載の真空マイクロ波解凍機である。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。図1は、本実施形態の真空マイクロ波解凍機の外観を示す正面図である。図2は、本実施形態の真空マイクロ波解凍機における主要な構成要素を示す概略図である。
【0012】
図1に示すように、本実施形態の真空マイクロ波解凍機1は、筐体2の上部に、冷凍食品等の被解凍物を収容する食品収容部3が配設され、下部には後述する駆動モータや真空ポンプ等を収納する機械収納部4が配設され、最上部には制御装置を収納する制御部5が備えられており、この制御部5の前面パネルには、被解凍物の重量や解凍時間等を表示する表示部6と、電源のオン/オフや被解凍物の種類等を入力する操作部7とが設けられている。また、真空マイクロ波解凍機1の筐体2の下面には、本解凍機1の移動を容易にするためのキャスター8が設けられている。
【0013】
図1及び図2に示すように、本実施形態の真空マイクロ波解凍機1における食品収容部3の本体は前面に開口部を有する中空箱体状のチャンバー10によって構成され、該チャンバー10は電磁波を遮断しうる内壁構造を有する耐圧気密容器として形成されている。このチャンバー10の前面開口部には、チャンバー10内を密閉状態で閉成しうるドア11が正面右側端部のヒンジ部を介して開閉自在に取り付けられており、該ドア11の開放側となる前面左側にはその開閉操作の際に把持する把手12が取り付けられ、チャンバー10の前面またはドア11の背面には電磁波が外部へ洩れるのを防止するための金属網紐製の電磁波シールと気密性を維持する気密シールが装着されている。
【0014】
チャンバー10内の底部には、回転軸13が軸受14に支承されて起立した状態で回転自在に設けられており、この回転軸13の上端部には、上記チャンバー10内に臨んだ被解凍物を載置して該回転軸13と共に回転するターンテーブル15が着脱自在に取り付けられ、この回転軸13の基端部には減速機構を介してテーブル駆動モータ16が接続されている。
【0015】
チャンバー10の背面中央部には、該チャンバー10内に連通した直状導波管20及びレジューサ導波管21を介して、該チャンバー10内へマイクロ波を照射して上記ターンテーブル15上に載置された被解凍物を加熱するためのマイクロ波発生器22が接続されている。本実施形態では、マイクロ波発生器22としてマグネトロンが採用されており、直状導波管20とレジューサ導波管21とのフランジ接続部23にはマイクロ波を透過し易いガラス板製の圧力隔壁が介設されている。
【0016】
チャンバー10の背面には、マイクロ波の照射によりチャンバー10内で放電が生じた場合に、これを検出する放電検出センサー30が設けられており、この放電検出センサー30としては放電現象の有無を紫外線(UV)の検出により判定するUVセンサーが採用されている。また、チャンバー10の上部には、チャンバー10内の圧力を検出する真空圧力センサー31が設けられている。なお、チャンバー10内の圧力変化を時間の経過に伴って実測し得るように、上記真空圧力センサー31に時間計測機能を備えてもよいし、或いは後述する制御装置に時間計測機能を備えてもよい。
【0017】
チャンバー10の上部には、チャンバー10内の圧力を大気開放する大気開放弁40、及びチャンバー10内の圧力を調整する調圧弁41が備えられており、またチャンバー10の背面には、その内部を減圧する減圧系43が接続され、該減圧系43には逆止弁44を介してポンプ駆動モータ45により駆動される真空ポンプ46が接続されており、これらポンプ駆動モータ45及び真空ポンプ46は上記機械収納部4内に収納されている。
【0018】
上記大気開放弁40及び調圧弁41は、上記制御部5に収納された制御装置による開閉制御を可能とするため、例えば電磁弁によって構成されている。なお、調圧弁41は減圧系43の途中、例えばチャンバー10と逆止弁44との間に接続して設けて、復圧工程でチャンバー10内に酸素が入り難いように構成しても良い。
【0019】
図3は、本実施形態の真空マイクロ波解凍機における制御系を示すブロック図である。図3に示すように、上記制御部5に収納された制御装置50は、例えばROM51に記録した制御プログラムを実行するマイクロコンピュータ等により構成され、この制御装置50には、上記ターンテーブル15を回転駆動するテーブル駆動モータ16の電源制御系52と、上記真空ポンプ46を駆動するポンプ駆動モータ45の電源制御系53と、上記大気開放弁40の開閉制御系54と、上記調圧弁41の開閉制御系55と、上記マイクロ波発生器22の電源制御系56と、上記放電検出センサー30の検出値入力系57と、上記真空圧力センサー31の検出値入力系(時間計測機能の減圧時間入力系も含む)58と、上記操作部7の設定値等の入力系59と、上記表示部6の表示出力系60とが接続されており、制御装置50は上記操作部7の設定値や、上記放電検出センサー30及び真空圧力センサー31の検出値等に基づいて、ROM51に記録された制御プログラムに従って上記ポンプ駆動モータ45やマイクロ波発生器22等の各機器を駆動制御する。
【0020】
また、制御装置50のROM51には、後述する減圧平衡域までの予備乾燥工程における標準試料の減圧変化量が、その重量との相関に基づき標準値として予め設定されており、上記時間計測機能を備えた真空圧力センサー31が予備乾燥工程における被解凍物を収容したチャンバー10内の減圧変化量を実測し、検出値入力系58を介して制御装置50に入力され、該制御装置50が、実測した減圧変化量を上記標準値と比較して、上記減圧変化量と重量との相関から被解凍物の重量を推測し、この重量に応じて、電源制御系56を介してマイクロ波発生器22へ制御信号を出力することにより、マイクロ波の出力または/およびマイクロ波の照射時間の制御を実行するように成っており、制御装置50に入力する減圧変化量としては、予備乾燥工程における減圧平衡域に至る減圧到達時間または到達減圧度等が用いられる。
【0021】
次に、以上のような真空マイクロ波解凍機1を用いて実施する本実施形態の真空マイクロ波解凍方法について説明する。図4は、本実施形態の真空マイクロ波解凍機1における解凍サイクルを示す説明図であり、図5は、本実施形態の真空マイクロ波解凍方法において、被解凍物の重量推定手法を示す説明図である。
図4に示すように、本実施形態の真空マイクロ波解凍機1は、減圧工程G、G′、G″…と復圧工程F、F′…とを繰り返し行いながらマイクロ波を照射M、M′…して被解凍物を加熱し解凍を行う装置である。なお、真空ポンプ46は減圧工程は勿論のこと復圧工程中も一定の吸引能力で作動し続ける。
【0022】
解凍の準備段階として、まず、正面のドア11を開放してターンテーブル15上に冷凍食品等の被解凍物を載置し、再びドア11を閉成して密閉状態とし、チャンバー10内に被解凍物を収容する。なお、大気開放弁40及び調圧弁41は閉成状態とする。
【0023】
次に、ポンプ駆動モータ45を駆動して真空ポンプ46を作動させ、減圧系43を介してチャンバー10内の減圧を開始する。すると、大気圧の101.3kPa(760Torr)からA点を経て徐々に減圧度が減少し、減圧平衡域Bまで減圧工程Gが行われ、この減圧工程Gにおいて被解凍物の予備乾燥がなされる。すなわち、予備乾燥工程は、マイクロ波を照射することなく最初に減圧する工程である。
【0024】
ここで、減圧平衡域とは、一定時間に対する減圧度が極めて低下する領域であり、例えば30秒間(Δt)における減圧度(ΔP)がΔP/Δt<13.3Pa(0.1Torr)となったときに減圧平衡域に達したと把握するが、該減圧平衡域における平衡圧力はチャンバー10内の飽和蒸気圧により上下する。なお、この減圧平衡域に到達したか否かは、真空圧力センサー31からの圧力信号に基づいて制御装置が演算して判断する。
【0025】
この予備乾燥工程では、真空圧力センサー31により、被解凍物を収容したチャンバー10内の減圧変化量も減圧時間の経過に伴って実測されており、実測された減圧変化量が検出値入力系58を介して制御装置50へと入力される。上述したように、制御装置50へ入力される減圧変化量としては、本実施形態では予備乾燥工程における減圧平衡域に至る減圧到達時間または到達減圧度が用いられる。
【0026】
また図5に示すように、例えば重量3kgの被解凍物を標準試料Sとして、予備乾燥工程における減圧速度または到達減圧度を定め、予めこの標準試料Hの減圧変化量(減圧速度または到達減圧度)がその重量との相関に基づき標準値としてROM51に設定されている。
【0027】
実際に予備乾燥工程を行うと、被解凍物の重量により、チャンバー10内で気化する水分量が異なるため、減圧変化量(減圧平衡域に至る減圧到達時間または到達減圧度等)が変動することになる。即ち、図5に示すように、重量が3kgよりも軽い(即ち、標準試料Sよりも軽い)被解凍物Lの場合には、標準試料Sよりも水分量が少ないため、減圧到達時間は標準試料Sよりもt1だけ早くなり、到達減圧度は標準試料Sよりもp1だけ低くなる。一方、重量が3kgよりも重い(即ち、標準試料Sよりも重い)被解凍物Hの場合には、標準試料Sよりも水分量が多いため、減圧到達時間が標準試料Sよりもt2だけ遅くなり、到達減圧度が標準試料Sよりもp2だけ高くなる。なお、被解凍物の種類により水分量が異なる場合には、想定される被解凍物の種類に応じて複数の標準試料Sを設定しておき、操作部7により被解凍物の種類を選定可能とする。
【0028】
したがって、制御装置50は、実測した減圧変化量を上記ROM51に設定された標準値と比較して、減圧変化量と重量との相関から被解凍物の重量を推測し、電源制御系56を介してマイクロ波発生器22へ制御信号を出力することにより、減圧到達時間(t1またはt2)や到達減圧度(p1またはp2)に応じて、即ち推測した重量に応じて、後述の加熱工程におけるマイクロ波の出力または/およびマイクロ波の照射時間を加減制御する。即ち、減圧到達時間がt1だけ速いか、到達減圧度がp1だけ低い場合には、それに応じてマイクロ波の出力を下降させ、または/およびマイクロ波の照射時間を短くして急激に温度上昇することを回避する。一方、減圧到達時間がt2だけ遅いか、到達減圧度がp2だけ高い場合には、それに応じてマイクロ波の出力を上昇させ、または/およびマイクロ波の照射時間を長くして効率良く解凍する。これにより、被解凍物の重量を初期設定値としてその都度個別に入力することなく、被解凍物の重量に応じてマイクロ波の出力やマイクロ波の照射時間を自動制御することができ、しかも被解凍物の解凍後の品質劣化を防止するものである。
【0029】
また、本実施形態では、後述する解凍サイクルを開始するに際して、予備乾燥を行っているので、被解凍物の表面に霜解けの水分が付着していてもこれを予備乾燥で除去してから解凍でき、後述するマイクロ波を照射しても、その照射集中を回避することができる。
【0030】
上記減圧平衡域Bまで減圧工程Gを行った後、上記調圧弁41を後述する所定の開度で開放して復圧工程Fへと移行し、復圧工程Fの減圧度が真空放電を起こさないC〔本実施形態では多少余裕を見て1.33kPa(10Torr)に設定〕を超えた後のC点のときに、上記マグネトロン22によるマイクロ波の照射Mを開始し、予め設定した復圧上限値Dまで復圧したときに真空圧力センサーからの圧力信号に基づいて制御装置が上記調圧弁41を閉成し、その後再度減圧工程G′へ移行する。そして、その減圧度が真空放電を起こさない下限値P1に達する手前のA′点まで上記マグネトロン22によるマイクロ波の照射Mを継続して被解凍物を加熱し、このA′点においてマイクロ波の照射を停止する。
【0031】
本実施形態では、減圧平衡域BからT1時間(予め設定した所定時間であり、例えば10秒)の経過により復圧工程Fの減圧度が真空放電を起こさない下限値P1を超えたとされるC点のときに、上記マグネトロン22によるマイクロ波の照射Mを開始しているが、これに限るものではなく、復圧工程Fの減圧度が真空放電を起こさない下限値P1に達したことを真空圧力センサー31からの圧力信号により検知し、これに基づいてマイクロ波の照射Mを開始してもよい。
【0032】
なお、本実施形態において、マイクロ波の照射を開始する時点C,C´…を調整、例えば遅らせると、マイクロ波の照射時間の短縮化を図ることができ、重量が標準試料よりも軽い場合に適用できる。逆にこのC,C´…を早める(但し、P1を通過した後)ことにより、照射時間を最長にして、重量が標準試料よりも重い場合に適用できる。また、後述する照射の停止時点の調整でも可能である。
【0033】
また本実施形態では、上記真空放電を起こさない減圧度の下限値P1は、上述したように、1.33kPa(10Torr)に設定されている。即ち、復圧工程Fにおける減圧度が1.33kPa(10Torr)を超えた後のC点のときに、上記マグネトロン22によるマイクロ波の照射Mを開始し、予め設定した復圧上限値Dまで復圧した後、再度減圧工程G′へ移行すると共に、その減圧度が1.33kPa(10Torr)に達する手前のA′点まで上記マグネトロンによるマイクロ波の照射Mを継続して被解凍物を加熱する。このように復圧工程Fの途中から減圧工程G′にわたってマイクロ波の照射Mを行っているため、減圧工程でのみ照射する従来に比較して、復圧工程と減圧工程とからなる1解凍サイクルにおける照射時間を充分に確保することができる。したがって、被解凍物の質量に対してマイクロ波の出力を小さくできるので、被解凍物の角部へマイクロ波が集中する現象である端面効果が生じない。
【0034】
また、復圧工程Fにおける減圧度が1.33kPa(10Torr)を超えたC点からマイクロ波の照射Mを開始するので、被解凍物の表面からの水分の気化量が少なく、乾燥が生じないと同時に減圧速度が遅くならず、良好な解凍を安定して行うことができる。さらに、減圧度が1.33kPa(10Torr)以上の範囲においてマイクロ波の照射Mを行っているので、チャンバー10内において放電現象が生じ難く、被解凍物へ充分にマイクロ波が吸収され、解凍時間を短くすることができ、安定した解凍を実現することができる。
【0035】
上記復圧上限値Dは、マイクロ波を照射するマグネトロン22の出力と真空ポンプ46の減圧能力とチャンバー10の容積によって設定される可変な圧力値であり、本実施形態では、調圧弁41の絞り弁41′の絞りを調整することにより、6.66kPa(50Torr)に設定されている。したがって、6.66kPa(50Torr)まで復圧すると、調圧弁41からのリークと真空ポンプ46の吸引能力がバランスして、調圧弁41を閉じない限り6.66kPa(50Torr)を維持して圧力上昇はしない。
【0036】
本実施形態では、このように復圧上限値Dの圧力値が、マイクロ波を照射するマグネトロン22の出力と真空ポンプ46の減圧能力とチャンバー10の容積に応じて適宜設定されるので、真空放電発生域に入るまでに過不足のないマイクロ波の照射時間を採ることができ、しかも効率良く減圧できる。
【0037】
なお、復圧上限値Dに到達したことを検知する手段として、本実施形態では真空圧力センサー31からの信号により検知し、これにより制御装置が調圧弁43を閉じて減圧工程に移行するように構成したが、本発明はこれに限らず、例えば、マイクロ波の照射を開始した時点Cからの時間T2(T1と同様に、真空ポンプの能力とチャンバーの容積から実験的に求められる。)により制御してもよい。具体的には、Cからの時間T2を80秒間に設定し、この80秒間が満了した時点で調圧弁43を閉じて減圧工程に移行するように構成しても良い。
【0038】
マイクロ波照射の停止後、A′点から減圧平衡域B′までの減圧過程において、被解凍物を昇華冷却する。このように減圧工程G′におけるA′点までマイクロ波を照射して被解凍物を加熱した後、A′点から減圧平衡域B′までの減圧過程において被解凍物を昇華冷却するのは、マイクロ波を照射して被解凍物を加熱すると、被解凍物の表面部分の温度が中心部分の温度よりも高くなり、そのまま加熱を継続すると表面部分にドリップが発生するなどの不都合が生じるからであり、昇華により表面部分を冷却して内外の温度差を縮めるためである。
【0039】
すなわち、昇華が始まると気化潜熱が奪われて表面部分の温度が低下していくとともに、表面部分の熱が中心部分に移動(熱伝導)して中心部分を昇温する。これにより被解凍物の温度が均一化されて、全体として被解凍物の温度が上昇し解凍が促進されることになる。また、被解凍物の温度が均一化されながら、全体として被解凍物の解凍が促進されるので、部分的に解凍が進行してドリップが発生したり、このドリップにマイクロ波が集中する不都合を防止することができる。
【0040】
本実施形態は、復圧工程Fへ移行し、復圧工程Fの減圧度が真空放電を起こさない下限値P1である1.33kPa(10Torr)を超えた後のC点のときにマイクロ波の照射Mを開始し、予め設定した復圧上限値Dである6.66kPa(50Torr)まで復圧した後に再度減圧工程G′へ移行すると共に、その減圧度が真空放電を起こさない下限値P1であるA′の1.33kPa(10Torr)に達する手前までマイクロ波の照射Mを継続して加熱し、マイクロ波の照射Mの停止後に、減圧平衡域B′までの減圧過程において昇華冷却する解凍サイクルを1サイクルとして、この解凍サイクルを繰り返し行う。
【0041】
即ち、図4において、減圧平衡域B′まで減圧工程G′を行った後復圧工程F′へ移行し、復圧工程F′の減圧度が真空放電を起こさない下限値P1である1.33kPa(10Torr)を超えた後のC′点のときにマイクロ波の照射M′を再び開始し、予め設定した復圧上限値D′である6.66kPa(50Torr)まで復圧した後に再度減圧工程G″へ移行すると共に、その減圧度が真空放電を起こさない下限値P1であるA″の1.33kPa(10Torr)に達する手前までマイクロ波の照射M′を継続して加熱し、マイクロ波照射を再度停止した後、減圧平衡域B″までの減圧過程において昇華冷却する解凍サイクルを2サイクル目として行う。各復圧工程F、F′…における復圧特性は、復圧弁41の絞り弁41′の設定に依存しているので、各解凍サイクルにおいて一定、即ち、復圧曲線のカーブが各解凍サイクルにおいて一定であり、これにより安定した解凍を行うことができる。
【0042】
図4に示すように、このような解凍サイクルを繰り返し行うと、チャンバー10内の飽和蒸気圧が被解凍物の温度上昇に伴って上昇するので、上記減圧平衡域B、B′、B″…の減圧度は解凍サイクルの繰り返しに伴い順次上昇する現象を示す。そこで、この減圧平衡域B、B′、B″…における減圧度が所定の値に達したときに解凍サイクルを終了する。すなわち、所望する解凍温度は飽和蒸気圧の領域設定で行うことができ、この設定領域で減圧平衡になったならば所望解凍温度になったものとして解凍操作を終了する。そして、この設定領域になるまでの解凍サイクルの繰り返しサイクル数は、被解凍物の重量(質量)やマグネトロン22の出力、及び真空ポンプ46の減圧能力等によっても異なり、本実施形態では、図4におけるP2Aの圧力値を480Pa(3.6Torr)、P2Bの圧力値を453Pa(3.4Torr)として、上記減圧平衡域B、B′、B″…における減圧度がP2A〜P2Bの間の値に達したときに、被解凍物の温度が約−3℃に成ったものと想定して解凍サイクルを終了する。
【0043】
なお、上記したP2A及びP2Bの設定圧力値は、仕上がり温度を−3℃に設定した場合の飽和蒸気圧に前後13.3Pa(0.1Torr)の幅を持たせたものであり、この幅を増減してもよい。また、仕上がり温度は−3℃に限定されるものではなく、所望する温度に設定でき、この設定温度に対応する飽和蒸気圧に応じて前記P2A及びP2Bを設定する。
【0044】
制御装置50において解凍サイクルの終了が決定されると、大気開放弁40が開放されると共に、ポンプ駆動モータ45の電源を遮断して真空ポンプ46が停止され、真空圧力センサー31の圧力が101.3kPa(760Torr)を示すと、ドア11の開放が可能となり、チャンバー10内から約−3℃に解凍された被解凍物を取り出すことができるものである。
【0045】
なお、前記実施形態では被解凍物を冷凍食品として説明したが、本発明で解凍する被解凍物は食品に限定されるものではなく、血液、血清、精液、薬品などでもよい。
【0046】
【発明の効果】
以上の説明から明らかなように、本発明によれば、予備乾燥工程において、被解凍物を収容したチャンバー内の減圧平衡域に至る減圧到達時間や到達減圧度等の減圧変化量を実測し、実測した減圧変化量を予め設定した標準値と比較して、重量と減圧変化量との相関から被解凍物の重量を推測し、この重量に応じてマイクロ波の出力または/およびマイクロ波の照射時間を制御するので、被解凍物の重量を初期設定値としてその都度個別に入力することなく、被解凍物の重量に応じてマイクロ波の出力やマイクロ波の照射時間を自動制御し、これにより品質を劣化させることなく、効率の良い解凍を行うことができ、しかも操作が簡単である。
【図面の簡単な説明】
【図1】本実施形態の真空マイクロ波解凍機の外観を示す正面図である。
【図2】本実施形態の真空マイクロ波解凍機における主要な構成要素を示す概略図である。
【図3】本実施形態の真空マイクロ波解凍機における制御系を示すブロック図である。
【図4】本実施形態の真空マイクロ波解凍機における解凍サイクルを示す説明図である。
【図5】本実施形態の真空マイクロ波解凍方法において、被解凍物の重量推定手法を示す説明図である。
【符号の説明】
1 真空マイクロ波解凍機
2 筐体
3 食品収容部
4 機械収納部
5 制御部
6 表示部
7 操作部
8 キャスター
10 チャンバー
11 ドア
12 把手
13 回転軸
14 軸受
15 ターンテーブル
16 テーブル駆動モータ
20 直状導波管
21 レジューサ導波管
22 マイクロ波発生器(マグネトロン)
23 フランジ接続部
30 放電検出センサー
31 真空圧力センサー
40 大気開放弁
41 調圧弁
43 減圧系
44 逆止弁
45 ポンプ駆動モータ
46 真空ポンプ
50 制御装置
51 ROM
52 テーブル駆動モータの電源制御系
53 ポンプ駆動モータの電源制御系
54 大気開放弁の開閉制御系
55 調圧弁の開閉制御系
56 マイクロ波発生器の電源制御系
57 放電検出センサーの検出値入力系
58 真空圧力センサーの検出値入力系
59 操作部の設定値等の入力系
60 表示部の表示出力系
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vacuum microwave thawing method for heating and thawing an object to be thawed such as frozen food by irradiating microwaves while repeatedly performing a decompression step and a decompression step, and a vacuum microwave for performing the thawing method. Regarding the decompressor.
[0002]
[Prior art]
A conventional vacuum microwave thawing machine is an apparatus that heats a material to be thawed by irradiating microwaves in a pressure reduction process while repeatedly performing a pressure reduction process and a pressure reduction process. The vacuum microwave thawing machine of this type includes a chamber for containing the material to be thawed, a vacuum pump for decompressing the inside of the chamber, a decompression means for decompressing the inside of the chamber decompressed by the vacuum pump, and the decompression In the process, a microwave generator for irradiating microwaves into the chamber is provided. Generally, the size of the chamber and the capacity of the vacuum pump are fixed elements, not variable elements.
[0003]
[Problems to be solved by the invention]
By the way, in the conventional thawing method using a vacuum microwave thawing machine, the amount of water vaporized in the chamber varies depending on the weight of the material to be thawed. . Further, in order to defrost to a desired temperature, the required heat energy (that is, microwave output and irradiation time) varies depending on the weight of the material to be thawed. Therefore, when the chamber size and the capacity of the vacuum pump are constant, when performing the thawing operation, the weight of the material to be thawed must be individually input as an initial set value each time. It was necessary to adjust the wave output and microwave irradiation time, and the operation was complicated.
[0004]
Therefore, the present invention can automatically control the microwave output and microwave irradiation time according to the weight of the object to be thawed without individually inputting the weight of the object to be thawed as an initial set value each time. An object of the present invention is to provide a vacuum microwave thawing method and a vacuum microwave thawing machine.
[0005]
[Means for Solving the Problems]
The present invention has been proposed in view of the above, and according to the first aspect, the object to be thawed is irradiated with microwaves while repeatedly performing the decompression step and the decompression step under the control of the control device. In a vacuum microwave thawing method that performs heating and thawing,
In advance, the amount of change in pressure reduction of the standard sample is set in the control device as a standard value based on the correlation with the weight,
In the preliminary drying step in which the pressure is first reduced without irradiating with microwaves, the amount of change in pressure in the chamber containing the material to be thawed is measured, and the amount of change in pressure measured is compared with the standard value, and then the correlation is obtained from the above correlation. A vacuum microwave thawing method characterized by estimating a weight of a thawing product and controlling a microwave output and / or a microwave irradiation time according to the weight.
[0006]
According to a second aspect of the present invention, there is provided the vacuum microwave thawing method according to the first aspect, wherein the reduced pressure change amount is performed by comparing a reduced pressure arrival time to reach a reduced pressure equilibrium region.
[0007]
According to a third aspect of the present invention, there is provided the vacuum microwave thawing method according to the first aspect, wherein the amount of change in pressure reduction is performed by comparing the ultimate pressure reduction degree in a pressure reduction equilibrium region.
[0008]
According to a fourth aspect of the present invention, there is provided a chamber for containing an object to be thawed, a vacuum pump for reducing the pressure in the chamber, a pressure regulating valve for returning the pressure in the chamber, and a microwave generator for irradiating the chamber with microwaves. And a control device for controlling the vacuum pump, the pressure regulating valve, and the microwave generator. Under the control of the control device, the object to be thawed is irradiated with microwaves while repeating the decompression step and the decompression step. In a vacuum microwave thawing machine that heats and defrosts ,
The amount of change in vacuum of the standard sample can be set in advance as a standard value based on the correlation with its weight, and the pressure in the chamber containing the material to be thawed is reduced in the preliminary drying step in which pressure is first reduced without irradiation with microwaves. Comparing the amount of change in vacuum actually measured with the above standard value, estimating the weight of the object to be thawed from the above correlation, and controlling the microwave output and / or microwave irradiation time according to this weight It is a vacuum microwave defroster characterized by having a control device .
[0009]
According to a fifth aspect of the present invention, in the vacuum microwave thawing according to the fourth aspect, the controller is configured to compare the amount of change in pressure input to the control device by comparing the arrival time of the reduced pressure reaching the reduced pressure equilibrium region. Machine.
[0010]
The pump of Claim 6, wherein the controller, decompression amount of change, vacuum microwave thawing machine according to claim 4, characterized in that the comparison of the arrival vacuum degree of vacuum equilibrium zone for inputting thereto It is.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a front view showing the appearance of the vacuum microwave defroster of the present embodiment. FIG. 2 is a schematic view showing main components in the vacuum microwave defroster of the present embodiment.
[0012]
As shown in FIG. 1, the vacuum microwave thawing machine 1 of the present embodiment is provided with a food container 3 for storing an object to be thawed such as frozen food at the upper part of a housing 2, and will be described below at the lower part. A machine storage unit 4 for storing a drive motor, a vacuum pump, and the like is disposed, and a control unit 5 for storing a control device is provided at the top, and a front panel of the control unit 5 has a thawing object. A display unit 6 that displays weight, thawing time, and the like, and an operation unit 7 that inputs power on / off, the type of an object to be thawed, and the like are provided. In addition, a caster 8 for facilitating the movement of the thawer 1 is provided on the lower surface of the casing 2 of the vacuum microwave thawer 1.
[0013]
As shown in FIGS. 1 and 2, the main body of the food container 3 in the vacuum microwave thawing machine 1 of the present embodiment is constituted by a hollow box-shaped chamber 10 having an opening on the front surface, and the chamber 10 is an electromagnetic wave. It is formed as a pressure-tight and airtight container having an inner wall structure capable of blocking. A door 11 capable of closing the inside of the chamber 10 in a sealed state is attached to the front opening of the chamber 10 through a hinge portion at the right front end of the chamber 10 so as to be openable and closable. On the left side of the front surface, a handle 12 is attached for holding the opening / closing operation. On the front surface of the chamber 10 or on the back surface of the door 11, an electromagnetic wave seal made of a metal mesh string and an airtightness for preventing leakage of electromagnetic waves to the outside A hermetic seal is installed to maintain
[0014]
At the bottom of the chamber 10, a rotating shaft 13 is rotatably supported in a state where it is supported by a bearing 14, and an object to be thawed facing the chamber 10 is provided at the upper end of the rotating shaft 13. A turntable 15 that rotates together with the rotary shaft 13 is detachably attached, and a table drive motor 16 is connected to a base end portion of the rotary shaft 13 via a speed reduction mechanism.
[0015]
A central portion of the back surface of the chamber 10 is placed on the turntable 15 by irradiating the chamber 10 with microwaves via a straight waveguide 20 and a reducer waveguide 21 communicating with the chamber 10. A microwave generator 22 for heating the object to be thawed is connected. In this embodiment, a magnetron is employed as the microwave generator 22, and a pressure partition made of a glass plate that easily transmits microwaves to the flange connection portion 23 between the straight waveguide 20 and the reducer waveguide 21. Is installed.
[0016]
A discharge detection sensor 30 is provided on the back surface of the chamber 10 to detect when a discharge occurs in the chamber 10 due to microwave irradiation. A UV sensor that is determined by detecting (UV) is employed. Further, a vacuum pressure sensor 31 for detecting the pressure in the chamber 10 is provided on the upper portion of the chamber 10. The vacuum pressure sensor 31 may be provided with a time measurement function, or the control device described later may be provided with a time measurement function so that the pressure change in the chamber 10 can be measured with time. Good.
[0017]
An upper part of the chamber 10 is provided with an air release valve 40 for releasing the pressure in the chamber 10 to the atmosphere, and a pressure regulating valve 41 for adjusting the pressure in the chamber 10. A decompression system 43 for reducing pressure is connected, and a vacuum pump 46 driven by a pump drive motor 45 is connected to the decompression system 43 via a check valve 44. It is stored in the machine storage unit 4.
[0018]
The air release valve 40 and the pressure regulating valve 41 are constituted by, for example, electromagnetic valves in order to enable opening / closing control by a control device housed in the control unit 5. The pressure regulating valve 41 may be provided in the middle of the pressure reducing system 43, for example, between the chamber 10 and the check valve 44, so that oxygen does not easily enter the chamber 10 in the pressure-reducing step.
[0019]
FIG. 3 is a block diagram showing a control system in the vacuum microwave defroster of the present embodiment. As shown in FIG. 3, the control device 50 housed in the control unit 5 is constituted by, for example, a microcomputer that executes a control program recorded in the ROM 51. The control device 50 rotates the turntable 15. A power control system 52 for the table drive motor 16 to be driven, a power control system 53 for the pump drive motor 45 for driving the vacuum pump 46, an open / close control system 54 for the atmospheric release valve 40, and an open / close control for the pressure regulating valve 41. A system 55, a power supply control system 56 of the microwave generator 22, a detection value input system 57 of the discharge detection sensor 30, and a detection value input system of the vacuum pressure sensor 31 (also a depressurization time input system of the time measurement function). 58), an input system 59 for setting values of the operation unit 7, and a display output system 60 of the display unit 6 are connected. The devices such as the pump drive motor 45 and the microwave generator 22 are driven according to the control program recorded in the ROM 51 based on the set values of the unit 7 and the detection values of the discharge detection sensor 30 and the vacuum pressure sensor 31. Control.
[0020]
Further, in the ROM 51 of the control device 50, the amount of change in the reduced pressure of the standard sample in the preliminary drying step up to the later-described reduced pressure equilibrium region is set in advance as a standard value based on the correlation with the weight, and the time measurement function is provided. The provided vacuum pressure sensor 31 measures the amount of change in pressure reduction in the chamber 10 containing the material to be thawed in the preliminary drying process, and inputs it to the control device 50 via the detection value input system 58. The reduced pressure change amount is compared with the standard value, the weight of the object to be thawed is estimated from the correlation between the reduced pressure change amount and the weight, and the microwave generator 22 is connected via the power supply control system 56 according to the weight. The control signal is output to the output of the microwave, and / or the irradiation time of the microwave is controlled. Vacuum reaches the reduced pressure equilibrium zone in the drying step arrival time or arrival vacuum degree or the like is used.
[0021]
Next, the vacuum microwave thawing method of the present embodiment performed using the vacuum microwave thawing machine 1 as described above will be described. FIG. 4 is an explanatory diagram showing a thawing cycle in the vacuum microwave thawing machine 1 of the present embodiment, and FIG. 5 is an explanatory diagram showing a weight estimation method of an object to be thawed in the vacuum microwave thawing method of the present embodiment. It is.
As shown in FIG. 4, the vacuum microwave thawing machine 1 of the present embodiment irradiates microwaves M and M while repeatedly performing the decompression steps G, G ′, G ″... And the decompression steps F, F ′. This is a device for heating and thawing the object to be thawed The vacuum pump 46 continues to operate with a constant suction capacity not only during the decompression process but also during the decompression process.
[0022]
As a preparation stage for thawing, first, the front door 11 is opened and an object to be thawed such as frozen food is placed on the turntable 15, and the door 11 is closed again to be in a sealed state. Contains the thaw. Note that the atmosphere release valve 40 and the pressure regulating valve 41 are closed.
[0023]
Next, the pump drive motor 45 is driven to operate the vacuum pump 46, and pressure reduction in the chamber 10 is started via the pressure reduction system 43. Then, the pressure reduction degree gradually decreases from 101.3 kPa (760 Torr) of the atmospheric pressure through the point A, and the pressure reduction step G is performed to the pressure reduction equilibrium region B. In this pressure reduction step G, the material to be thawed is pre-dried. . That is, the preliminary drying step is a step in which the pressure is first reduced without irradiation with microwaves.
[0024]
Here, the decompression equilibrium region is a region in which the degree of decompression with respect to a certain time is extremely reduced. For example, the degree of decompression (ΔP) in 30 seconds (Δt) is ΔP / Δt <13.3 Pa (0.1 Torr). Although it is sometimes grasped that the decompression equilibrium region has been reached, the equilibrium pressure in the decompression equilibrium region rises and falls due to the saturated vapor pressure in the chamber 10. Note that whether or not the decompression equilibrium region has been reached is determined by the control device based on the pressure signal from the vacuum pressure sensor 31.
[0025]
In this preliminary drying step, the reduced pressure change amount in the chamber 10 containing the material to be thawed is also measured with the elapse of the reduced pressure time by the vacuum pressure sensor 31, and the actually measured reduced pressure change amount is detected value input system 58. To the control device 50. As described above, as the amount of change in pressure input to the control device 50, in this embodiment, the time to reach pressure reduction or the degree of pressure reduction to reach the pressure reduction equilibrium region in the preliminary drying step is used.
[0026]
Further, as shown in FIG. 5, for example, a to-be-thawed material having a weight of 3 kg is used as a standard sample S, and a depressurization speed or an ultimate depressurization degree in the preliminary drying step is determined. ) Is set in the ROM 51 as a standard value based on the correlation with the weight.
[0027]
When the preliminary drying process is actually performed, the amount of water vaporized in the chamber 10 varies depending on the weight of the material to be thawed, so that the amount of change in reduced pressure (such as the time to reach the reduced pressure equilibrium region or the degree of reduced pressure reached) varies. become. That is, as shown in FIG. 5, in the case of the thawing object L that is lighter than 3 kg (that is, lighter than the standard sample S), the amount of water is less than that of the standard sample S, so It will be faster by t1 than the sample S, and the ultimate reduced pressure will be lower by p1 than the standard sample S. On the other hand, in the case of the material to be thawed H that is heavier than 3 kg (that is, heavier than the standard sample S), the amount of water is larger than that of the standard sample S. Thus, the ultimate pressure reduction is higher than the standard sample S by p2. If the amount of water varies depending on the type of material to be thawed, a plurality of standard samples S can be set according to the type of material to be thawed, and the type of material to be thawed can be selected using the operation unit 7. And
[0028]
Therefore, the control device 50 compares the actually measured amount of change in pressure reduction with the standard value set in the ROM 51, estimates the weight of the object to be thawed from the correlation between the amount of change in pressure reduction and the weight, and passes the power supply control system 56. By outputting a control signal to the microwave generator 22 in accordance with the pressure reduction arrival time (t1 or t2) and the ultimate pressure reduction degree (p1 or p2), that is, according to the estimated weight, Wave output and / or microwave irradiation time is controlled. That is, when the pressure reduction arrival time is faster by t1 or the ultimate pressure reduction degree is lower by p1, the microwave output is lowered accordingly, and / or the microwave irradiation time is shortened and the temperature rises rapidly. Avoid that. On the other hand, when the pressure reduction arrival time is delayed by t2 or the ultimate pressure reduction degree is high by p2, the microwave output is increased accordingly, and / or the microwave irradiation time is lengthened to efficiently thaw. As a result, the microwave output and the microwave irradiation time can be automatically controlled according to the weight of the object to be thawed without individually inputting the weight of the object to be thawed as an initial setting value each time. It prevents quality degradation after thawing of the thawing product.
[0029]
Further, in this embodiment, since pre-drying is performed when starting the thawing cycle described later, even if moisture from frost thaw adheres to the surface of the object to be thawed, it is thawed after removing it by pre-drying. It is possible to avoid concentration of irradiation even if microwaves described later are irradiated.
[0030]
After performing the decompression step G to the decompression equilibrium region B, the pressure regulating valve 41 is opened at a predetermined opening degree to be described later, and the process proceeds to the decompression step F. The degree of decompression in the decompression step F causes vacuum discharge. At the point C after exceeding C [set to 1.33 kPa (10 Torr) with some margin in this embodiment], microwave irradiation M by the magnetron 22 is started, and a preset recovery pressure is obtained. When the pressure is restored to the upper limit value D, the control device closes the pressure regulating valve 41 based on the pressure signal from the vacuum pressure sensor, and then proceeds to the pressure reducing step G ′ again. Then, the object to be thawed is heated by continuing the microwave irradiation M by the magnetron 22 up to the point A ′ before reaching the lower limit P1 at which the degree of decompression does not cause vacuum discharge. Stop irradiation.
[0031]
In this embodiment, it is assumed that the degree of pressure reduction in the decompression step F exceeds the lower limit value P1 at which no vacuum discharge occurs due to the elapse of T1 time (a predetermined time set in advance, for example, 10 seconds) from the pressure reduction equilibrium region B. At the time of the point, the microwave irradiation M by the magnetron 22 is started. However, the present invention is not limited to this, and the fact that the degree of pressure reduction in the decompression step F has reached the lower limit value P1 that does not cause vacuum discharge is reduced. Detection may be performed by a pressure signal from the pressure sensor 31, and the microwave irradiation M may be started based on the detection.
[0032]
In this embodiment, when the time points C, C ′... At which the microwave irradiation is started are adjusted, for example, delayed, the microwave irradiation time can be shortened and the weight is lighter than the standard sample. Applicable. Conversely, by accelerating C, C ′... (But after passing through P1), the irradiation time can be maximized, and the present invention can be applied when the weight is heavier than the standard sample. It is also possible to adjust the irradiation stop point described later.
[0033]
In the present embodiment, the lower limit P1 of the degree of decompression that does not cause vacuum discharge is set to 1.33 kPa (10 Torr) as described above. That is, at the point C after the degree of decompression in the decompression step F exceeds 1.33 kPa (10 Torr), the microwave irradiation M by the magnetron 22 is started and the decompression is restored to the preset decompression upper limit D. Then, the process proceeds to the decompression step G ′ again, and the object to be thawed is heated by continuing the microwave irradiation M by the magnetron to the point A ′ before the degree of decompression reaches 1.33 kPa (10 Torr). . As described above, since the microwave irradiation M is performed from the middle of the decompression process F to the decompression process G ′, one thawing cycle including the decompression process and the decompression process is performed as compared with the conventional case where irradiation is performed only in the decompression process. A sufficient irradiation time can be secured. Therefore, since the output of the microwave can be reduced with respect to the mass of the object to be thawed, the end face effect that is a phenomenon in which the microwaves concentrate on the corners of the object to be thawed does not occur.
[0034]
Moreover, since the microwave irradiation M is started from the point C where the degree of decompression in the decompression step F exceeds 1.33 kPa (10 Torr), the amount of water vaporized from the surface of the material to be thawed is small, and drying does not occur. At the same time, the decompression speed is not slow, and good thawing can be performed stably. Further, since the microwave irradiation M is performed in the range of the decompression degree of 1.33 kPa (10 Torr) or more, the discharge phenomenon hardly occurs in the chamber 10, and the microwave is sufficiently absorbed by the object to be thawed, and the thawing time is increased. Can be shortened, and stable thawing can be realized.
[0035]
The return pressure upper limit value D is a variable pressure value set by the output of the magnetron 22 that irradiates microwaves, the pressure reduction capability of the vacuum pump 46, and the volume of the chamber 10, and in this embodiment, the throttle of the pressure regulating valve 41 By adjusting the throttle of the valve 41 ′, it is set to 6.66 kPa (50 Torr). Therefore, when the pressure is restored to 6.66 kPa (50 Torr), the leak from the pressure regulating valve 41 and the suction capacity of the vacuum pump 46 balance, and the pressure rises while maintaining the pressure regulating valve 41 at 6.66 kPa (50 Torr). I do not.
[0036]
In the present embodiment, the pressure value of the decompression upper limit D is appropriately set in accordance with the output of the magnetron 22 that irradiates the microwave, the decompression capability of the vacuum pump 46, and the volume of the chamber 10, so that the vacuum discharge The microwave irradiation time without excess or deficiency can be taken before entering the generation area, and the pressure can be reduced efficiently.
[0037]
In this embodiment, as a means for detecting that the return pressure upper limit value D has been reached, it is detected by a signal from the vacuum pressure sensor 31 so that the control device closes the pressure regulating valve 43 and proceeds to the pressure reducing process. Although the present invention is configured, the present invention is not limited to this. For example, the present invention is based on time T2 from time C when microwave irradiation is started (similarly to T1, it is experimentally determined from the capacity of the vacuum pump and the volume of the chamber). You may control. Specifically, the time T2 from C may be set to 80 seconds, and when the 80 seconds have expired, the pressure regulating valve 43 may be closed and the process proceeds to the pressure reducing process.
[0038]
After the microwave irradiation is stopped, the object to be thawed is sublimated and cooled in the decompression process from the point A ′ to the decompression equilibrium region B ′. In this way, after the object to be thawed is heated by irradiating the microwave to the point A ′ in the decompression step G ′, the object to be thawed is sublimated and cooled in the decompression process from the point A ′ to the decompression equilibrium region B ′. When the object to be thawed is heated by irradiating with microwaves, the temperature of the surface part of the object to be thawed becomes higher than the temperature of the center part, and if heating is continued as it is, there will be inconveniences such as drip on the surface part. This is because the surface portion is cooled by sublimation to reduce the temperature difference between the inside and outside.
[0039]
That is, when sublimation starts, the latent heat of vaporization is deprived and the temperature of the surface portion decreases, and the heat of the surface portion moves (heat conduction) to raise the temperature of the central portion. As a result, the temperature of the material to be thawed is made uniform, and the temperature of the material to be thawed rises as a whole, and thawing is promoted. In addition, the thawing of the material to be thawed is promoted as a whole while the temperature of the material to be thawed is made uniform, so that thawing partially proceeds and drip is generated or microwaves concentrate on this drip. Can be prevented.
[0040]
In the present embodiment, the process proceeds to the decompression step F, and the microwave is generated at the point C after the decompression degree of the decompression step F exceeds the lower limit P1 of 1.33 kPa (10 Torr) that does not cause vacuum discharge. Irradiation M is started, and after returning to 6.66 kPa (50 Torr) which is a preset decompression upper limit D, the process proceeds to the decompression step G ′ again, and the degree of decompression is the lower limit P1 at which no vacuum discharge occurs. A thawing cycle in which microwave irradiation M is continuously heated to a point before A 'reaches 1.33 kPa (10 Torr), and after the microwave irradiation M is stopped, sublimation cooling is performed in the decompression process to the decompression equilibrium region B ′. Is repeated as one cycle.
[0041]
That is, in FIG. 4, after the decompression step G ′ is performed up to the decompression equilibrium region B ′, the process proceeds to the decompression step F ′, and the decompression degree of the decompression step F ′ is the lower limit value P1 at which no vacuum discharge occurs. At the point C ′ after exceeding 33 kPa (10 Torr), the microwave irradiation M ′ is started again, and after returning to 6.66 kPa (50 Torr) which is a preset decompression upper limit D ′, the pressure is reduced again. The process proceeds to step G ″, and the microwave irradiation M ′ is continuously heated until the pressure reaches 1.33 kPa (10 Torr) of A ″ which is the lower limit P1 at which the degree of decompression does not cause vacuum discharge. After the irradiation is stopped again, a defrosting cycle for sublimation cooling in the decompression process up to the decompression equilibrium region B ″ is performed as the second cycle. The decompression characteristics in each decompression process F, F ′. 41 'installation Because it depends on, constant in each thawing cycle, i.e., the curve of the condensate pressure curve is constant in each thawing cycle, which makes it possible to perform stable thawed.
[0042]
As shown in FIG. 4, when such a thawing cycle is repeated, the saturated vapor pressure in the chamber 10 increases as the temperature of the material to be thawed rises, so that the decompression equilibrium regions B, B ′, B ″. The depressurization degree of the above shows a phenomenon of increasing sequentially as the thawing cycle is repeated. Therefore, when the depressurization degree in the depressurization equilibrium regions B, B ′, B ″. That is, the desired thawing temperature can be set by setting the saturated vapor pressure region, and when the decompression equilibrium is reached in this setting region, the thawing operation is terminated assuming that the desired thawing temperature has been reached. The number of repetitions of the thawing cycle until reaching the set region also depends on the weight (mass) of the material to be thawed, the output of the magnetron 22, the decompression capacity of the vacuum pump 46, and the like. The pressure value of P2A at 480 Pa (3.6 Torr) and the pressure value of P2B is 453 Pa (3.4 Torr), and the degree of pressure reduction in the pressure reduction equilibrium regions B, B ′, B ″. When the temperature reaches, the thawing cycle is terminated assuming that the temperature of the material to be thawed is about -3 ° C.
[0043]
The set pressure values of P2A and P2B described above are values obtained by adding a width of 13.3 Pa (0.1 Torr) to the saturated vapor pressure when the finishing temperature is set to -3 ° C. It may be increased or decreased. Further, the finishing temperature is not limited to −3 ° C., but can be set to a desired temperature, and the P2A and P2B are set according to the saturated vapor pressure corresponding to the set temperature.
[0044]
When the end of the thawing cycle is determined in the control device 50, the atmosphere release valve 40 is opened, the power source of the pump drive motor 45 is shut off, the vacuum pump 46 is stopped, and the pressure of the vacuum pressure sensor 31 is 101. When 3 kPa (760 Torr) is shown, the door 11 can be opened, and the material to be thawed that has been thawed to about −3 ° C. can be taken out from the chamber 10.
[0045]
In addition, although the to-be-thawed material was demonstrated as frozen food in the said embodiment, the to-be-thawed material thawed by this invention is not limited to food, Blood, serum, semen, a medicine, etc. may be sufficient.
[0046]
【The invention's effect】
As is apparent from the above description, according to the present invention, in the preliminary drying step, the amount of change in reduced pressure such as the time to reach reduced pressure and the degree of reduced pressure reaching the reduced pressure equilibrium region in the chamber containing the material to be thawed is measured, Compare the measured amount of change in vacuum with a preset standard value, estimate the weight of the material to be thawed from the correlation between the weight and the amount of change in vacuum, and output microwave and / or microwave irradiation according to this weight Since the time is controlled, the microwave output and the microwave irradiation time are automatically controlled according to the weight of the object to be thawed without inputting the weight of the object to be thawed as an initial setting value each time. Efficient thawing can be performed without degrading the quality, and the operation is simple.
[Brief description of the drawings]
FIG. 1 is a front view showing an appearance of a vacuum microwave defroster according to an embodiment of the present invention.
FIG. 2 is a schematic view showing main components in the vacuum microwave defroster of the present embodiment.
FIG. 3 is a block diagram showing a control system in the vacuum microwave defroster of the present embodiment.
FIG. 4 is an explanatory diagram showing a thawing cycle in the vacuum microwave thawing machine of the present embodiment.
FIG. 5 is an explanatory diagram showing a weight estimation method of an object to be thawed in the vacuum microwave thawing method of the present embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vacuum microwave thawing machine 2 Housing | casing 3 Food storage part 4 Machine storage part 5 Control part 6 Display part 7 Operation part 8 Caster 10 Chamber 11 Door 12 Handle 13 Rotating shaft 14 Bearing 15 Turntable 16 Table drive motor 20 Direct guide Wave tube 21 Reducer waveguide 22 Microwave generator (magnetron)
23 Flange connection 30 Discharge detection sensor 31 Vacuum pressure sensor 40 Atmospheric release valve 41 Pressure regulating valve 43 Depressurization system 44 Check valve 45 Pump drive motor 46 Vacuum pump 50 Controller 51 ROM
52 Table Drive Motor Power Supply Control System 53 Pump Drive Motor Power Supply Control System 54 Atmospheric Open Valve Open / Close Control System 55 Pressure Regulator Open / Close Control System 56 Microwave Generator Power Supply Control System 57 Detection Value Input System 58 for Discharge Detection Sensor Detection value input system 59 for the vacuum pressure sensor Input system 60 for setting values for the operation unit Display output system for the display unit

Claims (6)

制御装置の制御の下で減圧工程と復圧工程とを繰り返し行いながらマイクロ波を照射して被解凍物を加熱し解凍を行う真空マイクロ波解凍方法において、
予め標準試料の減圧変化量をその重量との相関に基づき標準値として制御装置に設定しておき、
マイクロ波を照射することなく最初に減圧する予備乾燥工程において、被解凍物を収容したチャンバー内の減圧変化量を実測し、実測した減圧変化量を上記標準値と比較して、上記相関から被解凍物の重量を推測し、この重量に応じてマイクロ波の出力または/およびマイクロ波の照射時間を制御することを特徴とする真空マイクロ波解凍方法。
In the vacuum microwave thawing method in which the object to be thawed is heated and thawed by irradiating microwaves while repeatedly performing the decompression step and the decompression step under the control of the control device,
In advance, the amount of change in pressure reduction of the standard sample is set in the control device as a standard value based on the correlation with the weight,
In the preliminary drying step in which the pressure is first reduced without irradiating with microwaves, the amount of change in pressure in the chamber containing the material to be thawed is measured, and the amount of change in pressure measured is compared with the standard value, and then the correlation is obtained from the above correlation. A vacuum microwave thawing method characterized by estimating a weight of a thawing product and controlling a microwave output and / or a microwave irradiation time according to the weight.
前記減圧変化量を、減圧平衡域に至る減圧到達時間の比較で行うことを特徴とする請求項1に記載の真空マイクロ波解凍方法。  2. The vacuum microwave thawing method according to claim 1, wherein the amount of change in pressure reduction is performed by comparing a time required to reach a pressure reduction equilibrium region. 前記減圧変化量を、減圧平衡域の到達減圧度の比較で行うことを特徴とする請求項1に記載の真空マイクロ波解凍方法。  The vacuum microwave thawing method according to claim 1, wherein the amount of change in pressure reduction is performed by comparing the degree of pressure reduction reached in a pressure reduction equilibrium region. 被解凍物を収容するチャンバーと、該チャンバー内を減圧する真空ポンプと、チャンバー内を復圧する調圧弁と、チャンバー内へマイクロ波を照射するマイクロ波発生器と、上記真空ポンプ、調圧弁及びマイクロ波発生器を制御する制御装置とを有し、該制御装置による制御の下で減圧工程と復圧工程とを繰り返し行いながらマイクロ波を照射して被解凍物を加熱し解凍を行う真空マイクロ波解凍機において、
予め標準試料の減圧変化量をその重量との相関に基づき標準値として設定可能であって、マイクロ波を照射することなく最初に減圧する予備乾燥工程において、被解凍物を収容したチャンバー内の減圧変化量を実測した減圧変化量を上記標準値と比較して、上記相関から被解凍物の重量を推測し、この重量に応じてマイクロ波の出力または/およびマイクロ波の照射時間の制御を実行する制御装置を有することを特徴とする真空マイクロ波解凍機。
A chamber for containing an object to be thawed, a vacuum pump for depressurizing the inside of the chamber, a pressure regulating valve for returning the pressure inside the chamber, a microwave generator for irradiating microwaves into the chamber, the vacuum pump, the pressure regulating valve and the micro A vacuum microwave that has a control device for controlling the wave generator and that heats the material to be thawed by irradiating the microwave while repeating the decompression step and the decompression step under the control of the control device. In the decompressor ,
The amount of change in vacuum of the standard sample can be set in advance as a standard value based on the correlation with its weight, and the pressure in the chamber containing the material to be thawed is reduced in the preliminary drying step in which pressure is first reduced without irradiation with microwaves. Comparing the amount of change in vacuum actually measured with the above standard value, estimating the weight of the object to be thawed from the above correlation, and controlling the microwave output and / or microwave irradiation time according to this weight A vacuum microwave thawing machine characterized by having a control device .
前記制御装置は、これに入力する減圧変化量を、減圧平衡域に至る減圧到達時間の比較で行うことを特徴とする請求項4に記載の真空マイクロ波解凍機。5. The vacuum microwave defroster according to claim 4, wherein the control device performs a reduced pressure change amount input thereto by comparing a reduced pressure arrival time to reach a reduced pressure equilibrium region. 前記制御装置は、これに入力する減圧変化量を、減圧平衡域の到達減圧度の比較で行うことを特徴とする請求項4に記載の真空マイクロ波解凍機。5. The vacuum microwave defroster according to claim 4, wherein the control device performs the amount of change in pressure input to the controller by comparing an ultimate pressure reduction degree in a pressure reduction equilibrium region.
JP2001372925A 2001-12-06 2001-12-06 Vacuum microwave thawing method and vacuum microwave thawing machine Expired - Lifetime JP3769497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001372925A JP3769497B2 (en) 2001-12-06 2001-12-06 Vacuum microwave thawing method and vacuum microwave thawing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001372925A JP3769497B2 (en) 2001-12-06 2001-12-06 Vacuum microwave thawing method and vacuum microwave thawing machine

Publications (2)

Publication Number Publication Date
JP2003169647A JP2003169647A (en) 2003-06-17
JP3769497B2 true JP3769497B2 (en) 2006-04-26

Family

ID=19181728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001372925A Expired - Lifetime JP3769497B2 (en) 2001-12-06 2001-12-06 Vacuum microwave thawing method and vacuum microwave thawing machine

Country Status (1)

Country Link
JP (1) JP3769497B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4594702B2 (en) * 2004-11-11 2010-12-08 株式会社東芝 Vacuum microwave thawing method

Also Published As

Publication number Publication date
JP2003169647A (en) 2003-06-17

Similar Documents

Publication Publication Date Title
JP3662530B2 (en) Vacuum microwave thawing method and vacuum microwave thawing machine
EP1514503A1 (en) Vacuum cooking apparatus and cooking method using the same
JP3769497B2 (en) Vacuum microwave thawing method and vacuum microwave thawing machine
JPH0755319A (en) Refrigerator
JP3769498B2 (en) Vacuum microwave thawing machine and vacuum microwave thawing method
JP3920601B2 (en) Vacuum microwave thawing machine
JPH05103649A (en) Method for thawing frozen material in vacuum and device therefor
JP3769483B2 (en) Vacuum microwave thawing machine
JPH04187914A (en) Vacuum thawing machine
JP3769482B2 (en) Vacuum microwave thawing machine
JP2563668B2 (en) Decompression high frequency heating device
JP4099422B2 (en) Vacuum microwave thawing machine
JP4594702B2 (en) Vacuum microwave thawing method
JP2003169649A (en) Vacuum microwave thawing machine
KR100388793B1 (en) A thawing apparatus operated at low temperature and vacuum condition
JPH07218421A (en) Thermo-hygrostat
JP2003169648A (en) Vacuum microwave thawing machine
JPS58313B2 (en) Vacuum thawing method and equipment
JPH08327068A (en) Heating and cooking device
JP2003074862A (en) Vacuum microwave defrosting device
JPH07318067A (en) Reduced pressure high-frequency wave heating device
JPH06109252A (en) Reduced pressure type high frequency heating device
JPH05248748A (en) Cooling device
JP2003173866A (en) Vacuum microwave thawing machine
JPH06129649A (en) Pressure reduction high frequency heating device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060206

R150 Certificate of patent or registration of utility model

Ref document number: 3769497

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term