JP3767956B2 - One can two water bath hot water heater - Google Patents

One can two water bath hot water heater Download PDF

Info

Publication number
JP3767956B2
JP3767956B2 JP32786596A JP32786596A JP3767956B2 JP 3767956 B2 JP3767956 B2 JP 3767956B2 JP 32786596 A JP32786596 A JP 32786596A JP 32786596 A JP32786596 A JP 32786596A JP 3767956 B2 JP3767956 B2 JP 3767956B2
Authority
JP
Japan
Prior art keywords
hot water
water supply
water level
passage
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32786596A
Other languages
Japanese (ja)
Other versions
JPH10160245A (en
Inventor
幸伸 野口
喜久雄 岡本
修一 小野寺
健生 山口
Original Assignee
株式会社ガスター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ガスター filed Critical 株式会社ガスター
Priority to JP32786596A priority Critical patent/JP3767956B2/en
Publication of JPH10160245A publication Critical patent/JPH10160245A/en
Application granted granted Critical
Publication of JP3767956B2 publication Critical patent/JP3767956B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、給湯熱交換器と追い焚き熱交換器が一体化され、その一体化した熱交換器を共通のバーナーで加熱する一缶二水路風呂給湯器に関するものである。
【0002】
【従来の技術】
図3には出願人らが開発している一缶二水路風呂給湯器のシステム構成例が示されている。同図において、この一缶二水路風呂給湯器(器具)は燃焼室1を有し、この燃焼室1にはバーナー2が配設され、このバーナー2の上方には給湯熱交換器3と追い焚き熱交換器4が設けられている。これら給湯熱交換器3と追い焚き熱交換器4は一体化されて配設されている。すなわち、複数の共通のフィンプレート5に給湯側の管路を貫通装着して給湯熱交換器3と成し、同じくフィンプレート5に追い焚き側の管路を貫通装着して追い焚き熱交換器4と成しており、上記バーナー2は給湯熱交換器3と追い焚き熱交換器4を共に加熱する構成になっている。
【0003】
上記バーナー2の下方側の燃焼室1は給気通路6に連通され、この給気通路6には燃焼ファン7が組み込まれており、燃焼ファン7の回転駆動により外部から給気通路6を介してバーナー2へ空気が送り込まれると共に、バーナー2の燃焼により生じた排気ガスがバーナー2の上方の燃焼室1に連通する排気通路9から外部へ排出される。
【0004】
上記バーナー2のガス導入口にはガスノズル19が対向配設され、このガスノズル19には燃料ガスを導入するためのガス供給通路8が接続されており、このガス供給通路8により導かれた燃料ガスはガスノズル19を介してバーナー2に供給される。また、上記ガス供給通路8には通路の開閉を行う電磁弁10,11a,11bと、ガスの供給量を開弁量により制御する比例弁12とが介設されている。
【0005】
前記給湯熱交換器3の入側には給水通路13の一端側が接続され、給湯熱交換器3の出側には給湯通路14の一端側が接続されており、上記給水通路13の他端側は外部配管を介して水供給源に接続され、前記給湯通路14の他端側は外部配管を介して台所等の所望の給湯場所に導かれている。また、上記給湯熱交換器3の入側の給水通路13と出側の給湯通路14を短絡する常時バイパス通路15とバイパス通路16が設けられており、上記バイパス通路16には通路の開閉を行う電磁弁17が介設されている。
【0006】
前記追い焚き熱交換器4の入側には管路18の一端側が接続され、この管路18の他端側は循環ポンプ20の吐出口に接続されており、循環ポンプ20の吸入口には戻り管21の一端側が接続され、戻り管21の他端側は浴槽22に連接されている。また、追い焚き熱交換器4の出側には管路23の一端側が接続されており、この管路23の他端側は前記浴槽22に連接されている。上記戻り管21と管路18と追い焚き熱交換器4と管路23により追い焚き循環通路24が構成される。
【0007】
上記追い焚き循環通路24の管路18と前記給湯通路14は湯張り通路25により連通されており、この湯張り通路25には通路の開閉を制御する注湯制御弁26と、浴槽22の水位を水圧により検出する水位センサ28とが設けられている。
【0008】
なお、図中に示す30は燃焼室1内の風量を検出する風量センサであり、31は給水通路13に設けられて給水の流量を検出する水量センサであり、32は給水通路13の水の温度を検出する入水温度センサであり、34は給湯通路14に設けられて給湯の流量を制御する流量制御弁であり、35は給湯通路14に設けられて給湯が行われていることを水流により検出する給湯確認スイッチであり、36は追い焚き循環通路24の水流を検出する水流センサであり、37は追い焚き循環通路24の湯水を浴槽湯水の温度(風呂温度)として検出する追い焚き循環通路温度センサである風呂温度センサであり、38は給湯熱交換器3で作り出された湯の温度を検出する出湯温度センサである。
【0009】
この一缶二水路風呂給湯器には制御装置40が設けられており、この制御装置40にはリモコン41が接続されている。このリモコン41には給湯温度を設定するための給湯温度設定手段や、浴槽22の風呂の温度を設定する風呂温度設定手段や、浴槽22の湯水の水位を設定する風呂水位設定手段や、浴槽22の湯張りから保温に至るまでの一連の風呂の自動運転を開始させるための自動運転ボタン等が設けられている。
【0010】
上記制御装置40は各種センサのセンサ出力信号やリモコン41の情報を取り込み、予め与えられているシーケンスプログラムに従って、給湯運転や、風呂の自動運転等の各種の運転モードの動作を次のように制御する。
【0011】
例えば、台所等に導かれた給湯通路の水栓が開けられ、水供給源から給水通路13に水が流れ込んで水量センサ31が給水通路13の通水を検出すると、器具は給湯モードの運転を開始する。まず、燃焼ファン7の回転駆動を開始させ、電磁弁11a,11bの両方又はどちらか一方と電磁弁10を開動作させガス供給通路8を通してバーナー2に燃料ガスを供給し、図示されていない点着火手段によりバーナー2の点着火を行い燃焼を開始させる。
【0012】
そして、給湯湯温がリモコン41に設定されている給湯設定湯温となるように比例弁12の開弁量を制御して(バーナー2への供給ガス量を制御して)バーナー2の燃焼熱量を制御し、給湯熱交換器3の通水をバーナー2の燃焼火炎により加熱して設定温度の湯を作り出し、この湯を給湯通路14を通して給湯場所に供給する。
【0013】
湯の使用が終了して水栓が閉められると、給湯熱交換器3への通水が停止し、水量センサ31が給水通路13の通水を検知しなくなったときに、電磁弁10を閉じてバーナー2の燃焼を停止させる。その後、予め定められたポストパージ期間(例えば、5分間)が経過したときに、燃焼ファン7の回転駆動を停止して給湯モードの運転を終了し次の給湯に備える。
【0014】
また、リモコン41の自動運転ボタンにより風呂の自動運転が指令されると、図4のフローチャートのステップ101に示すように、まず、湯張りモードの動作が開始される。例えば、注湯制御弁26を開弁し、この注湯制御弁26の開弁動作により水供給源から給水通路13に水が流れ込み水量センサ31が給水通路13の通水を検知すると、上記給湯運転と同様にバーナー2の燃焼を開始させる。
【0015】
このバーナー2の燃焼火炎により給湯熱交換器3で作り出された湯は給湯通路14と湯張り通路25を順に介して追い焚き循環通路24に送り込まれ、追い焚き循環通路24に流れ込んだ湯は戻り管21を通る経路と追い焚き熱交換器4を通る経路との2経路で浴槽22に落とし込まれる。水位センサ28が検出する浴槽22の水位がリモコン41に設定されている設定水位に達したときに、注湯制御弁26を閉じ、電磁弁10を閉じてバーナー2の燃焼を停止させ、湯張りモードの動作を終了する。
【0016】
この湯張りモードの動作終了後に、図4のステップ102に示すように、循環ポンプ20を駆動させ、浴槽22の湯水を追い焚き循環通路24を通して循環させて浴槽22の湯水を撹拌させ、ステップ103で、風呂温度センサ37により浴槽22の風呂温度を検出し、ステップ104で、検出した風呂温度Thが風呂 の設定温度Tsよりも低いか否かを判断し、風呂温度Thが設定温度Ts よりも低いと判断したときには、ステップ110に進み、追い焚きモードの動作を開始する。
【0017】
例えば、循環ポンプ20の駆動を引き続き行って、浴槽22内の湯水を追い焚き循環通路24を通して循環させると共に、バーナー2の燃焼を開始させ、バーナー2の燃焼火炎により、追い焚き熱交換器4で上記循環湯水を加熱して追い焚きを行う。風呂温度センサ37により検出される風呂温度Thが設定温度Tsに達したと前記ステップ104で判断したときには、バーナー2の燃焼を停止させ、追い焚きモードの動作を終了する。
【0018】
そして、ステップ105に示すように、循環ポンプ20を停止させると共に、制御装置40に内蔵されているタイマによる時間計測をスタートさせ、保温モードの動作を開始する。
【0019】
例えば、ステップ106に示すように、上記タイマの計測時間tcが予め定め られた設定時間ts(例えば、30分)に達したか否かを判断する。上記計測時 間tcが設定時間tsに達したと判断したときには、上記ステップ102からステップ105までの動作を行い、風呂の温度Thが設定温度Tsよりも低下している場合には追い焚きを行って風呂の温度Thを設定温度Tsに保つことができる。
【0020】
また、前記ステップ106でタイマの計測時間tcが設定時間tsに達していないと判断される期間には、ステップ107,108,109に示す保水モードの動作を行う。
【0021】
まず、ステップ107で、水位センサ28のセンサ出力を取り込む。上記水位センサ28は湯張り通路25内の湯水の水圧を浴槽22の水圧として検出し、その浴槽水位の水圧をセンサ出力として出力するものである。前記制御装置40には水位センサ28が検出出力するセンサ出力(P)と、浴槽22の水量(Q)との関係を表す図5の実線Aに示すようなP−Qデータが予め求め与えられており、前記水位センサ28のセンサ出力を上記P−Qデータに参照して浴槽22の水位を検出する。
【0022】
そして、ステップ108で、上記検出された浴槽22の水位Pkが設定水位Psよりも低下しているか否かを判断し、浴槽22の水位Pkが設定水位Psよりも低下していないと判断したときには前記水位センサ28による水位検出動作を前記ステップ106以降の動作により繰り返し行い、また、浴槽22の水位Pkが入 浴者による湯の使用等により設定水位Psよりも低下していると判断したときに は、ステップ109で、湯張りの動作を開始して、浴槽22への注湯を行い、浴槽22の水位Pkを設定水位Psまで上昇させる。
【0023】
上記保水モードの動作は前記タイマの計測時間tcが設定時間tsになるまで、繰り返し行われる。
【0024】
上記保水動作を含む保温モードの動作は、予め定められている期間(例えば、風呂が沸き上がってから4時間の間)に渡り行われる。
【0025】
前記の如く、一缶二水路風呂給湯器は、一体化された給湯熱交換器3と追い焚き熱交換器4を共通のバーナー2を用いて加熱する方式であるので、別体に設けられた給湯熱交換器と追い焚き熱交換器をそれぞれ別個のバーナーを用いて燃焼加熱する方式に比べて、装置構成の簡易化が図れ、これに伴い、装置の小型化とコストの低減を図れることになる。
【0026】
【発明が解決しようとする課題】
ところで、一缶二水路風呂給湯器が追い焚き運転を行わず給湯のみの給湯単独運転を行うと、給湯単独運転直後等には次のような理由により正確な浴槽22の水位を得ることができないことが出願人らの実験によりわかった。
【0027】
上記給湯単独運転時には追い焚き熱交換器4内に湯水が滞留している状態にあり、給湯運転のためにバーナー2を燃焼させると、バーナー2の燃焼火炎によって給湯熱交換器3だけでなく追い焚き熱交換器4も加熱されるので、上記追い焚き熱交換器4内の滞留湯水は加熱される。このため、追い焚き熱交換器4内の滞留湯水の温度が上昇し沸騰に近い状態になる。
【0028】
上記追い焚き熱交換器4内の高温加熱された湯水は対流現象により追い焚き熱交換器4の入側の管路18と出側の管路23の両側へ流れ出て、この追い焚き熱交換器4から流れ出た高温の湯水の熱により追い焚き循環通路24や該追い焚き循環通路24に連通する連通通路である湯張り通路25内の湯水の温度が、例えば、70〜80℃と、かなり高温まで上昇する。
【0029】
このように、湯張り通路25内の湯水温度が高温に上昇することにより、水位センサ28の予め定められている保証温度範囲(正確な水位検出を保証している水温範囲(例えば、5〜48℃))を越えてしまうので、水位センサ28が正確な水圧を検出することができなくなり、図6の(b)に示すように、水位センサ28のセンサ出力が、浴槽22の水位が変化していないのにも拘らず、大きな温度依存性をもって上昇する方向又は下降する方向にシフトしてしまう。
【0030】
その上、上記の如く、追い焚き熱交換器4内の高温加熱された湯水が追い焚き熱交換器4の入側の管路18と出側の管路23の両側へ流れ出ると共に、管路18と管路23の両側から追い焚き熱交換器4内にぬるめの湯水が流れ込む対流が生じるので、この湯水の対流により追い焚き循環通路24および湯張り通路25内の湯水に不規則な振動が生じ、この湯張り通路25内の湯水の不規則な振動により、図6の(b)に示すように、水位センサ28のセンサ出力が不規則に振動する。
【0031】
上記のように、給湯単独運転時に追い焚き熱交換器4内の湯水が高温加熱されることにより、湯張り通路25内の湯水の温度上昇と不規則振動が相乗的に関与して水位センサ28のセンサ出力が不規則に変動し、この水位センサ28のセンサ出力に基づいて浴槽22の水位を正確に検出することは困難である。
【0032】
上記のように、給湯単独運転に起因して浴槽22の水位を正確に検出することが困難となり、例えば、自動運転の保水モードの運転中に給湯割り込みが行われて給湯単独運転が行われると、水位センサ28の出力が上昇シフトする場合には、浴槽22の水位よりも高めの水位が検出され、浴槽22の水位が設定水位よりも低下しているのに保水動作が行われないというような誤動作が生じてしまう場合がある。また、水位センサ28の出力が下降シフトする場合には、浴槽22の水位よりも低めの水位が検出されてしまう虞がある。
【0033】
本発明は、上記課題を解決するためになされたものであり、その目的は、給湯単独運転に起因した水位センサ出力の不規則変動により器具が誤動作するのを防止することができる一缶二水路風呂給湯器を提供することにある。
【0034】
【課題を解決するための手段】
上記目的を達成するためにこの発明は次のような構成をもって前記課題を解決する手段としている。すなわち、第1の発明は、給水通路から供給される水を加熱して給湯通路へ送出する給湯熱交換器と、浴槽湯水の追い焚き循環通路に組み込まれ浴槽湯水を追い焚き循環通路を通して循環させる循環ポンプと、追い焚き循環通路に組み込まれ上記循環ポンプの駆動により追い焚き循環通路を循環する循環湯水の追い焚きを行う追い焚き熱交換器と、追い焚き循環通路に設けられ湯水温を検出する追い焚き循環通路温度センサと、追い焚き循環通路又は追い焚き循環通路に連通する連通通路に配設され浴槽の湯水の水位を水圧により検出する水位センサとを備え、上記給湯熱交換器と追い焚き熱交換器は一体化され、この一体化された給湯熱交換器と追い焚き熱交換器を加熱する共通のバーナーが設けられ、予め定められたタイミングで上記水位センサによる水位検出動作が行われる一缶二水路タイプの風呂給湯器において、一缶二水路風呂給湯器が追い焚き運転を行わず給湯のみの給湯単独運転を行っているか否かを監視する給湯単独運転監視部と;給湯単独運転の停止後に予め定めたポンプ駆動時間を経過するまで循環ポンプを駆動させるポンプ駆動部と;給湯単独運転後に循環ポンプが停止するまで水位センサによる水位検出動作を停止させる水位検出停止部と;を設けた構成をもって前記課題を解決する手段としている。
【0035】
第2の発明は、給水通路から供給される水を加熱して給湯通路へ送出する給湯熱交換器と、浴槽湯水の追い焚き循環通路に組み込まれ浴槽湯水を追い焚き循環通路を通して循環させる循環ポンプと、追い焚き循環通路に組み込まれ上記循環ポンプの駆動により追い焚き循環通路を循環する循環湯水の追い焚きを行う追い焚き熱交換器と、追い焚き循環通路に設けられ湯水温を検出する追い焚き循環通路温度センサと、追い焚き循環通路又は追い焚き循環通路に連通する連通通路に配設され浴槽の湯水の水位を水圧により検出する水位センサとを備え、上記給湯熱交換器と追い焚き熱交換器は一体化され、この一体化された給湯熱交換器と追い焚き熱交換器を加熱する共通のバーナーが設けられ、予め定められたタイミングで上記水位センサによる水位検出動作が行われる一缶二水路タイプの風呂給湯器において、一缶二水路風呂給湯器が追い焚き運転を行わず給湯のみの給湯単独運転を行っているか否かを監視する給湯単独運転監視部と;給湯単独運転中に追い焚き循環通路温度センサが検出する湯水温が予め定めたしきい値温度以上になったときには給湯単独運転の停止後に予め定めたポンプ駆動時間を経過するまで循環ポンプを駆動させるポンプ駆動部と;給湯単独運転後に上記ポンプ駆動部により循環ポンプが駆動しているときには循環ポンプが停止するまで水位センサによる水位検出動作を停止させる水位検出停止部と;を設けた構成をもって前記課題を解決する手段としている。
【0036】
第3の発明は、上記第1又は第2の発明の構成に加えて、給湯単独運転中又は給湯単独運転が停止したときに追い焚き循環通路温度センサが検出する湯水温に基づいてポンプ駆動時間を可変設定する時間設定部を設けた構成をもって前記課題を解決する手段としている。
【0037】
上記構成の発明において、例えば、給湯単独運転監視部は一缶二水路風呂給湯器が給湯単独運転を行っているか否かを監視し、給湯単独運転が行われたときには必ず、あるいは、給湯単独運転中に追い焚き循環通路温度センサが検出する湯温が予め定めたしきい値温度以上になったときのみ、給湯単独運転後に予め定めたポンプ駆動時間を経過するまで、ポンプ駆動部は循環ポンプを駆動させる。水位検出停止部は給湯単独運転後に上記ポンプ駆動部により循環ポンプが駆動しているときには循環ポンプが停止するまで水位センサによる水位検出動作を停止させる。
【0038】
上記のように、給湯単独運転後に循環ポンプを駆動させることによって、追い焚き循環通路の湯水が流動し始め、給湯単独運転により高温に加熱された追い焚き熱交換器の滞留湯水および追い焚き循環通路や追い焚き循環通路に連通する連通通路の滞留湯水が浴槽に流出し追い焚き循環通路の湯水が入れ替わると共に、追い焚き熱交換器を流れる通水が追い焚き熱交換器の熱を奪っていき追い焚き熱交換器を冷却する。
【0039】
このため、給湯単独運転後に、僅かな時間で、水位センサの配設位置の湯水温が水位センサの保証温度に低下し、かつ、追い焚き熱交換器の高温加熱に起因した追い焚き循環通路や連通通路の不規則な湯水振動の発生を抑制させることができ、水位センサのセンサ出力が短時間で安定する。
【0040】
この発明では、上記の如く、給湯単独運転後に循環ポンプが駆動しているときには水位センサによる水位検出動作を停止させる。つまり、給湯単独運転後の循環ポンプ駆動により水位センサのセンサ出力を安定させるまで水位センサによる水位検出動作を停止させるので、給湯単独運転に起因して不規則変動している水位センサのセンサ出力に基づいて不正確な浴槽水位が検出されることが回避され、不正確な検出浴槽水位による器具運転の誤動作が防止される。
【0041】
【発明の実施の形態】
以下に、この発明の実施形態例を図面に基づき説明する。
【0042】
第1の実施形態例の一缶二水路風呂給湯器は前記図3に示すシステム構成を有し、図1にはこの実施形態例において特徴的な制御構成を示すブロック構成が実線により表されている。なお、図に示すシステム構成は前述したのでその重複説明は省略する。
【0043】
この実施形態例において特徴的な制御装置40は、図1の実線に示すように、燃焼運転制御部43と、給湯単独運転監視部44と、データ格納部46と、水位検出停止部47と、ポンプ駆動部48と、タイマ51とを有して構成されている。
【0044】
上記燃焼運転制御部43には給湯や自動運転等の各種の運転モードのシーケンスプログラムが予め定め与えられており、前記シーケンスプログラムに従って各種のセンサ出力やリモコン41の情報等を取り込んで、各種の運転モードの動作を行う。
【0045】
前記給湯単独運転監視部44は、上記燃焼運転制御部43の運転動作の情報を取り込み、この情報に基づき、注湯制御弁26が閉弁状態であり、かつ、水流センサ36が追い焚き循環通路24内の通水を検知しておらず、かつ、水量センサ31が給湯通路14内の通水を検知しているときには、給湯単独運転が行われていると検知し、それ以外のときには給湯単独運転が行われていないと検知して給湯単独運転が行われているか否かを監視する。
【0046】
水位検出停止部47は、上記給湯単独運転監視部44の監視情報を取り込んで、この情報に基づき一缶二水路風呂給湯器(器具)が給湯単独運転を開始したと検知したときに、給湯単独運転に起因して水位センサ28のセンサ出力が不規則変動する虞があると判断して水位センサ28による水位検出動作を停止させるための水位検出停止指令信号の出力を開始する。この指令信号は燃焼運転制御部43に出力され、燃焼運転制御部43は、湯張りモードや保水モード等の水位センサ28による水位検出動作を伴う運転モードの運転中に給湯割り込みが行われて給湯単独運転が行われている場合には、上記水位検出停止指令信号を受けて、水位センサ28による水位検出動作を停止する。
【0047】
ポンプ駆動部48は、前記給湯単独運転監視部44の監視情報により給湯単独運転が終了したと検知したときには、循環ポンプ20を駆動させて追い焚き循環通路24の湯水の循環を開始させると共に、タイマ51をリセット・駆動させて給湯単独運転が終了してからの経過時間の計測を開始させ、そのタイマ51の計測時間の取り込みを開始する。また、同時に、ポンプ駆動部48は循環ポンプ20を駆動させていることを示すポンプ駆動信号を前記水位検出停止部47に出力する。
【0048】
水位検出停止部47は、給湯単独運転後、ポンプ駆動部48から上記ポンプ駆動信号を受け、前記燃焼運転制御部43への水位検出停止指令信号の出力を継続して行う。この水位検出停止指令信号の継続出力により、燃焼運転制御部43は水位センサ28による水位検出停止動作を継続する。
【0049】
そして、ポンプ駆動部48は、データ格納部46に予め定められ格納されているポンプ駆動時間tps(例えば、3分)を読み込んで、このポンプ駆動時間tpsと上記タイマ51の計測時間を比較し、タイマ51の計測時間がポンプ駆動時間tpsに達したときに、循環ポンプ20の駆動を停止させ、同時に、水位検出停止部47への前記ポンプ駆動信号の出力を停止する。
【0050】
上記のように、給湯単独運転後に循環ポンプ20を駆動させることにより、浴槽22の湯水が追い焚き循環通路24に入り込むと共に、追い焚き循環通路24に滞留していた湯水が浴槽22に流出して追い焚き循環通路24の湯水が入れ替わる。また、給湯単独運転に起因して高温に加熱された追い焚き熱交換器4の熱が追い焚き循環通路24の通水によって奪われ浴槽22に流出するので、追い焚き熱交換器4が冷却される。
【0051】
このように、給湯単独運転後の循環ポンプ20の駆動により、追い焚き循環通路24の湯水が入れ替わり、かつ、追い焚き熱交換器4が冷却されるのに要する時間を実験や演算等により求め、この求めた時間がポンプ駆動時間tpsとしてデータ格納部46に格納されており、上記の如く、給湯単独運転後に上記ポンプ駆動時間tpsが経過するまで循環ポンプ20を駆動させることにより、追い焚き循環通路24の湯水を確実に入れ替えることができ、かつ、追い焚き熱交換器4の冷却を行うことができる。
【0052】
このため、給湯単独運転後に循環ポンプ20の駆動が停止したときには、水位センサ28の配設位置の湯温が水位センサ28の保証温度に低下し、かつ、追い焚き熱交換器4の湯水振動が抑制された状態になり、水位センサ28のセンサ出力は安定したものになっている。
【0053】
また、前記水位検出停止部47は、前記ポンプ駆動部48がポンプ駆動信号の出力を停止したときに、つまり、ポンプ駆動部48が循環ポンプ20の駆動を停止したときに、水位センサ28のセンサ出力が安定して、水位センサ28のセンサ出力に基づいて正確な浴槽水位を検出することが可能になったと判断し、燃焼運転制御部43への前記水位検出停止指令信号の出力を停止し、燃焼運転制御部43は水位センサ28による水位検出動作が行うことが可能となる。
【0054】
なお、上記ポンプ駆動部48は循環ポンプ20の駆動を停止するときにタイマ51の駆動を停止・リセットさせ次のタイマ駆動に備えさせてもよいし、給湯単独運転が停止する度に停止・リセット・駆動を順に行ってもよい。
【0055】
この実施形態例によれば、給湯単独運転監視部44とポンプ駆動部48を設けたので、給湯単独運転が終了したときから予め定めたポンプ駆動時間tpsが経過するまで、循環ポンプ20を駆動させることができる。このように、給湯単独運転後に循環ポンプ20を駆動させることにより、追い焚き循環通路24や湯張り通路25に滞留していた高温の湯を追い焚き循環通路24や湯張り通路25から流出させることができ、水位センサ28の配設位置の湯水温を僅かな時間で水位センサ28の保証温度に低下させることが可能である。
【0056】
その上、循環ポンプ20の駆動により追い焚き熱交換器4を流れる通水は、給湯単独運転により高温に加熱された追い焚き熱交換器4の保有熱量を奪って追い焚き循環通路24から流出するので、追い焚き熱交換器4を強制的に冷却することができ、追い焚き熱交換器4の高温加熱に起因した追い焚き熱交換器4の対流の不規則振動を非常に短時間で抑制することができる。
【0057】
このように、給湯単独運転後に循環ポンプ20を駆動させることにより、前記水位センサ28の温度依存性と、追い焚き熱交換器4の湯水の対流現象の発生との相乗関与による水位センサ28のセンサ出力の不規則変動を僅かな時間で抑えることができて水位センサ28のセンサ出力を安定させることが可能である。
【0058】
また、水位検出停止部47を設け、給湯単独運転中と、給湯単独運転後に予め定めたポンプ駆動時間tpsが経過するまで水位センサ28による水位検出動作を停止させる構成としたので、水位センサ28のセンサ出力が給湯単独運転に起因して不規則に変動する期間、水位センサ28による水位検出動作を停止させることができ、水位センサ28のセンサ出力の不規則変動により不正確な浴槽水位が検出されることが防止でき、不正確な浴槽水位に基づき器具が誤動作するという問題を確実に回避することができる。
【0059】
さらに、上記の如く、給湯単独運転後に循環ポンプ20を駆動させることにより、短時間で、水位センサ28のセンサ出力を安定させることができるので、給湯単独運転後に水位検出動作を停止させておく時間が短くて済む。
【0060】
以下に、第2の実施形態例を説明する。この実施形態例において特徴的なことは、図1の鎖線に示すポンプ駆動判断部52を設け、給湯単独運転中に風呂温度センサ37が検出する湯温が予め定めたしきい値温度Ts以上になったとポンプ 駆動判断部52が判断したときのみ、給湯単独運転後に循環ポンプ20を駆動させる構成としたことである。データ格納部46とポンプ駆動部48とポンプ駆動判断部52以外の構成は前記第1の実施形態例と同様であり、その共通部分の重複説明は省略する。
【0061】
ところで、給湯単独運転が開始されて直ぐに給湯単独運転が終了する場合がある。この場合には、バーナー2の燃焼時間が非常に短時間であることから追い焚き熱交換器4の湯水は高温にならず、このことから、湯水の対流現象に起因した追い焚き熱交換器4の湯水振動は発生せず、また、水位センサ28の配設位置の湯水温は水位センサ28の保証温度を越えて高温にならないので、水位センサ28のセンサ出力は不規則に変動しない。
【0062】
このようなときには、給湯単独運転後に循環ポンプ20の駆動を行わなくても安定した水位センサ28のセンサ出力を得ることができる。このことから、この実施形態例では、風呂温度センサ37が検出する湯温を水位センサ28の配設位置の湯温として取り込み、給湯単独運転中に風呂温度センサ37の検出湯温が水位センサ28の保証温度以上の高温になったときだけ、給湯単独運転後に循環ポンプ20の駆動を行い、それ以外の給湯単独運転後には循環ポンプ20の駆動を行わないようにした。
【0063】
それというのは、風呂温度センサ37の配設位置は水位センサ28の配設位置に近く、風呂温度センサ37の検出湯温は水位センサ28の配設位置の湯温とほぼ等しいと考えられ、風呂温度センサ37の検出湯温(水位センサ28の配設位置の湯温)が水位センサ28の保証温度以上であるときには、前記の如く、水位センサ28のセンサ出力が大きな温度依存性をもってシフトすると共に、追い焚き熱交換器4の湯温が非常に高温であり湯水の対流現象に起因した湯水振動が発生して水位センサ28のセンサ出力が不規則に変動すると考えられることから、風呂温度センサ37の検出湯温が水位センサ28の保証温度以上であるときには、給湯単独運転後に循環ポンプ20の駆動を行って追い焚き循環通路24の湯水の入れ替えを行うと共に、追い焚き熱交換器4を冷却し、水位センサ28のセンサ出力を安定させる。
【0064】
それ以外のとき、つまり、給湯単独運転中に風呂温度センサ37の検出湯温が保証温度以上に高温でないときには、循環ポンプ20の駆動を行わなくても安定した水位センサ28のセンサ出力を得ることができると考えられるので、給湯単独運転後に循環ポンプ20の駆動を行わない。
【0065】
前記データ格納部46には、ポンプ駆動時間tpsが格納されると共に、しきい値温度Ts(例えば48℃)が予め定めて格納されている。このしきい値温度Tsは、水位センサ28の保証温度に基づいて定められ、この実施形態例では、水 位センサ28の保証温度の上限値がしきい値温度Tsとして データ格納部46に格納されている。
【0066】
ポンプ駆動判断部52は給湯単独運転監視部44の監視情報を取り込み、この監視情報により給湯単独運転が開始されたと検知したときに、風呂温度センサ37が検出する湯水温の取り込みを開始する。同時に、前記データ格納部46からしきい値温度Tsを読み出す。
【0067】
ポンプ駆動判断部52はタイマ(図示せず)を内蔵し、予め定めたサンプリング時間間隔で風呂温度センサ37の検出湯温を取り込み、この風呂温度センサ37の検出湯温と上記しきい値温度Ts(つまり、水位センサ28の保証温度の上 限値)を比較し、風呂温度センサ37の検出湯温がしきい値温度Ts以上である と判断したときに、給湯単独運転に起因して追い焚 き熱交換器4の湯温が高温 に加熱され水位センサ28のセンサ出力が不規則 に変動すると判断し、給湯単 独運転後に水位センサ28のセンサ出力を短時間で安定させるために循環ポンプ20を駆動させて追い焚き循環通路24の湯水を入れ替えると共に、追い焚き熱交換器4の冷却を行う必要があると判断して、給湯単独運転後にポンプ駆動部48にポンプ駆動動作を行わせるためのポンプ駆動指令信号をポンプ駆動部48に出力する。
【0068】
ポンプ駆動部48は給湯単独運転中に前記ポンプ駆動判断部52からポンプ駆動指令信号を受け取ったときのみ、給湯単独運転後に循環ポンプ20の駆動を開始させる。
【0069】
この実施形態例では、給湯単独運転後にポンプ駆動部48による循環ポンプ20の駆動が行われないときには、水位検出停止部47は、給湯単独運転後にポンプ駆動部48からポンプ駆動信号を受けないので、給湯単独運転が終了したときに燃焼運転制御部43への水位検出停止指令信号の出力を停止し、燃焼運転制御部43に水位検出停止動作を終了させる。
【0070】
この実施形態例によれば、ポンプ駆動判断部52を設け、給湯単独運転中に風呂温度センサ37が検出した検出湯温が予め定めたしきい値温度Ts以上になっ たときのみ、給湯単独運転後にポンプ駆動部48により循環ポンプ20を駆動させる構成にしたので、給湯単独運転に起因して水位センサ28のセンサ出力が不規則に変動しているときだけ、給湯単独運転後に循環ポンプ20の駆動を行わせることができる。このことから、安定した水位センサ28のセンサ出力を得ることができるのに、給湯単独運転後に循環ポンプ20の駆動が行われるという器具運転の無駄をなくすことが可能である。
【0071】
以下に、第3の実施形態例を説明する。この実施形態例において特徴的なことは、図1の点線に示すように、時間設定部50を設け、この時間設定部50によりデータ格納部46のポンプ駆動時間tpsを可変設定する構成にしたことである。データ格納部46と時間設定部50以外の構成は前記各実施形態例と同様であり、その重複説明は省略する。
【0072】
データ格納部46にはポンプ駆動設定データが格納されている。このポンプ駆動設定データは、風呂温度センサ37が検出する湯温に対応させてポンプ駆動時間が与えられているもので、図2の(a)や(b)に示すように、風呂温度センサ37の検出湯温が高くなるに従ってポンプ駆動時間が連続的に又は段階的に長くなるように与えられている。
【0073】
それというのは、給湯単独運転により追い焚き熱交換器4に与えられた保有熱量が多くなるに従って、追い焚き熱交換器4の滞留湯水温が高くなり、この追い焚き熱交換器4の湯水の熱により追い焚き循環通路24の湯水が加熱されて風呂温度センサ37が検出する湯温が高くなる。このように、風呂温度センサ37の検出湯温は追い焚き熱交換器4の保有熱量に対応しており、風呂温度センサ37の検出湯温が高くなるに従って、つまり、追い焚き熱交換器4の保有熱量が多くなるに従って、給湯単独運転後の循環ポンプ20の駆動により追い焚き熱交換器4が冷却されるまでに多くの時間が必要である。このことから、この実施形態例では、風呂温度センサ37の検出湯温が高くなるに従ってポンプ駆動時間tpsを長くする方向に可変設定する構成にした。
【0074】
時間設定部50は、給湯単独運転監視部44の監視情報を取り込み、この監視情報に基づき給湯単独運転が終了したと検知したときに、風呂温度センサ37が検出する湯温を取り込むと同時に、データ格納部46から前記ポンプ駆動設定データを読み出して、風呂温度センサ37の検出湯温をポンプ駆動設定データに照らし合わせてポンプ駆動時間を設定する。
【0075】
この設定されたポンプ駆動時間はデータ格納部46に格納されているポンプ駆動時間tpsに上書きされ、ポンプ駆動部48は、給湯単独運転後に循環ポンプ20の駆動を行っている場合には、給湯単独運転が終了してから上記設定されたポンプ駆動時間tpsが経過するまで、循環ポンプ20の駆動を行う。
【0076】
この実施形態例によれば、時間設定部50を設けて、風呂温度センサ37が検出する湯温に基づきポンプ駆動時間tpsを可変設定する構成にしたので、水位センサ28のセンサ出力を安定させるために必要な循環ポンプ20の駆動時間にポンプ駆動時間tpsをより正確に合わせることができ、例えば、ポンプ駆動時間tpsが長い時間に固定設定されたために、水位センサ28のセンサ出力が安定するのに必要な湯水の循環が終了した後も、循環ポンプ20の駆動が無駄に行われたり、反対に、ポンプ駆動時間tpsが短い一定時間に設定されたために、水位センサ28のセンサ出力が安定するのに必要な湯水の循環が終了する前に、循環ポンプ20の駆動が停止され、例えば、追い焚き熱交換器4の滞留湯水に後沸きが生じて滞留湯水が高温になって水位センサ28のセンサ出力が不規則に変動し始め、不正確な浴槽水位が検出され器具が誤動作してしまうというような問題を確実に回避することができる。
【0077】
なお、上記の如く、給湯単独運転後に水位センサ28のセンサ出力が安定するまでの時間は、給湯単独運転により追い焚き熱交換器4に与えられる保有熱量の大きさに対応しており、上記追い焚き熱交換器4の保有熱量の変動範囲は予め定まり、その保有熱量の範囲の幅は狭いことから、給湯単独運転後に水位センサ28のセンサ出力が安定するのに要するポンプ駆動時間の変動幅は短い。このことから、ポンプ駆動時間tspを上記ポンプ駆動時間の範囲内の時間に固定しても、ポンプ駆動時間tpsが水位センサ28のセンサ出力が安定するまでの時間から大きくずれることはなく、上記のような問題をほぼ回避することができる。
【0078】
なお、この発明は上記各実施形態例に限定されるものではなく、様々な実施の形態を採り得る。例えば、上記第2や第3の実施形態例では、しきい値温度Ts は水位センサ28の保証温度の上限値に設定されていたが、しきい値温度Tsは 水位センサ28のセンサ出力の上限値に限定されるものではなく、水位センサ28の配設位置の湯温が保証温度以上で、かつ、湯水振動が発生しているか否かを判断することができる風呂温度センサ37の検出湯温に基づいて設定される。
【0079】
また、上記第3の実施形態例では、ポンプ駆動設定データは、図2に示すように、グラフデータのデータ形式で格納されていたが、風呂温度センサ37の検出湯温に対応させてポンプ駆動時間が与えられている表データや、風呂温度センサ37の検出湯温をパラメータとしてポンプ駆動時間を求める演算式データ等、グラフデータ以外のデータ形式によりポンプ駆動設定データを構成しデータ格納部46に格納してもよい。
【0080】
さらに、上記各実施形態例では、水位検出停止部47は給湯単独運転が行われている全期間に渡り水位センサ28による水位検出動作を停止させていたが、水位検出停止部47は給湯単独運転が行われている期間のうち予め定めた一部の期間だけ水位センサ28による水位検出動作を停止させるようにしてもよい。
【0081】
例えば、水位センサ28による水位検出動作の停止を判断する停止しきい値温度Tst(例えば、水位センサ28の保証温度の上限値)を予め定めておき、水位検出停止部47は給湯単独運転中に風呂温度センサ37が検出する検出温度と上記停止しきい値温度Tstを比較して風呂温度センサ37の検出温度が停止しきい値温度Tst以上になったと判断したときに、水位センサ28のセンサ出力が不規則に変動し始め、この水位センサ28のセンサ出力の不規則変動に起因して器具が誤動作を起こす虞があると判断し、水位センサ28による水位検出動作を給湯単独運転が終了するまで、又は、給湯単独運転後に循環ポンプ20の駆動が停止するまで停止させるようにしてもよい。
【0082】
また、給湯単独運転が開始されてからバーナー2の燃焼により追い焚き熱交換器4が加熱されて水位センサ28のセンサ出力が不規則に変動し始めると考えられるまでの期間を時間により求め、この求めた時間をしきい値時間tstとして予め定めておき、水位検出停止部47は、給湯単独運転が開始されてから上記しきい値時間tstが経過したときに、水位センサ28のセンサ出力が不規則に変動し始め、この水位センサ28のセンサ出力の不規則変動に起因して器具が誤動作を起こす虞があると判断し、水位センサ28による水位検出動作を給湯単独運転が終了するまで、又は、給湯単独運転後に循環ポンプ20の駆動が停止するまで停止させるようにしてもよい。
【0083】
さらに、水位検出停止部47は給湯単独運転中には水位検出停止動作を行わず、給湯単独運転後に循環ポンプ20の駆動が行われているときには循環ポンプ20の駆動が停止するまでの期間だけ、水位センサ28による水位検出動作を停止させるようにしてもよい。
【0084】
さらに、上記各実施形態例に示したポンプ駆動判断部52は、風呂温度センサ37が検出する湯温に基づいて、給湯単独運転後に循環ポンプ20の駆動を行うか否かを判断していたが、風呂温度センサ37とは別個の温度センサを水位センサ28の配設位置の近傍の追い焚き循環通路24又は湯張り通路25に設けて、この温度センサが検出する湯温に基づき、給湯単独運転後に循環ポンプ20の駆動を行うか否かを判断してもよい。
【0085】
さらに、第3の実施形態例では、時間設定部50は給湯単独運転が終了したときに風呂温度センサ37が検出する湯温を取り込んでポンプ駆動時間を設定していたが、給湯単独運転中に取り込んだ風呂温度センサ37の検出湯温に基づいてポンプ駆動時間を設定してもよい。例えば、給湯単独運転中に風呂温度センサ37が検出する湯温を時々刻々取り込み、給湯単独運転が終了したときに、給湯単独運転終了直前の風呂温度センサ37の検出湯温に基づきポンプ駆動時間を設定してもよい。
【0086】
さらに、上記各実施形態例では自動運転中に給湯単独運転が行われた場合を例にして説明したが、この発明は自動運転以外の運転モード中に給湯単独運転が行われる場合にも適用することが可能である。
【0087】
さらに、上記各実施形態例は図3に示す器具を例にして説明したが、この発明は一缶二水路タイプの風呂給湯器で、追い焚き循環通路に循環ポンプと追い焚き循環通路温度センサが設けられ、また、追い焚き循環通路又は追い焚き循環通路に連通する連通通路に浴槽の水位を水圧により検出する水位センサが設けられているものであれば、図3以外のシステム構成の一缶二水路風呂給湯器にも適用することができる。例えば、図3に示す湯張り通路25が省略されて水位センサ28が追い焚き循環通路24に配設されている一缶二水路風呂給湯器にも適用することができる。この場合にも、上記各実施形態例同様に、給湯単独運転後に循環ポンプ20の駆動を行わせると共に水位検出動作の停止を行うことにより、給湯単独運転による追い焚き熱交換器4の滞留湯水の高温加熱に起因した水位センサ28のセンサ出力の不規則変動に因る器具の誤動作を防止することができる。
【0088】
【発明の効果】
この発明によれば、給湯単独運転監視部とポンプ駆動部を設けたので、給湯単独運転が終了してから予め定めたポンプ駆動時間を経過するまで、循環ポンプを駆動させることができる。このように、給湯単独運転後に、循環ポンプを駆動させることにより、給湯単独運転により高温に加熱された追い焚き熱交換器の湯水や追い焚き循環通路や連通通路の湯水を浴槽に流出させることができ、水位センサの配設位置の湯温を僅かな時間で水位センサの保証温度に低下させることができる。
【0089】
その上、循環ポンプの駆動により追い焚き熱交換器を流れる通水によって、追い焚き熱交換器の熱が奪われて追い焚き循環通路から流出するので、追い焚き熱交換器を強制的に冷却させることが可能であり、追い焚き熱交換器の高温加熱に起因した湯水振動を短時間で抑制させることができる。
【0090】
これらのことから、給湯単独運転後に僅かな時間で、水位センサのセンサ出力を安定させることができる。
【0091】
また、水位検出停止部を設け、給湯単独運転後に循環ポンプの駆動が停止するまで水位センサによる水位検出動作を停止させるので、給湯単独運転により水位センサが不規則に変動している期間、水位検出動作を停止することができ、水位センサの不規則変動しているセンサ出力により不正確な浴槽水位が検出されるのを回避することができ、不正確な浴槽水位に基づいて器具が誤動作するのを防止することができる。
【0092】
給湯単独運転中に、追い焚き循環通路温度センサが検出する湯温が予め定めたしきい値温度以上になったときのみ、給湯単独運転後に循環ポンプを駆動させる構成にあっては、給湯単独運転に起因して水位センサのセンサ出力が不規則変動すると判断されるときだけ、給湯単独運転後に循環ポンプを駆動させるので、給湯単独運転後に循環ポンプを駆動させなくても安定した水位センサのセンサ出力が得られるときには、給湯単独運転後に循環ポンプを駆動させなくてもよいので、循環ポンプの無駄な運転を省略することが可能である。
【0093】
上記ポンプ駆動時間を可変設定する時間設定部を設けた発明にあっては、追い焚き循環通路温度センサの検出湯温に応じてポンプ駆動時間を可変設定できるので、ポンプ駆動時間を、給湯単独運転後の循環ポンプにより水位センサのセンサ出力が安定するまでの期間に、より正確に合わせることができる。
【0094】
このことにより、次のような問題を回避することが可能である。例えば、ポンプ駆動時間を長い一定時間に設定したために、給湯単独運転後に水位センサのセンサ出力が安定するのに必要な時間が過ぎてからポンプ駆動時間が終了するまでに時間がかかり、器具運転の無駄が生じたり、反対に、ポンプ駆動時間を短い一定時間に設定したために、追い焚き熱交換器が冷却される前にポンプ駆動時間が終了して追い焚き循環通路の通水が停止し、追い焚き熱交換器の滞留湯水に後沸きが生じて追い焚き熱交換器の湯水が加熱され、水位センサのセンサ出力が不規則変動し始めてしまい、水位センサのセンサ出力の不規則変動により器具が誤動作してしまうという問題が生じるが、上記のように、給湯単独運転後に水位センサのセンサ出力が安定するまでの期間に合うようにポンプ駆動時間を可変設定することにより、上記のような器具運転の無駄や器具の誤動作を確実に回避することが可能である。
【図面の簡単な説明】
【図1】本発明に係る一缶二水路風呂給湯器の実施形態例を示すブロック構成図である。
【図2】追い焚き循環通路の検出湯温に対応させてポンプ駆動時間が与えられているポンプ駆動設定データの一例を示すグラフである。
【図3】一缶二水路風呂給湯器のシステム構成例を示す説明図である。
【図4】自動運転動作の一例を示すフローチャートである。
【図5】水位センサのセンサ出力と浴槽水量の関係を示すP−Qデータの一例を示すグラフである。
【図6】従来の課題を示す説明図である。
【符号の説明】
2 バーナー
3 給湯熱交換器
4 追い焚き熱交換器
13 給水通路
14 給湯通路
24 追い焚き循環通路
25 湯張り通路
28 水位センサ
37 風呂温度センサ
44 給湯単独運転監視部
46 データ格納部
47 水位検出停止部
48 ポンプ駆動部
50 時間設定部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a canned two-way bath water heater in which a hot water supply heat exchanger and a reheating heat exchanger are integrated, and the integrated heat exchanger is heated by a common burner.
[0002]
[Prior art]
FIG. 3 shows a system configuration example of a one-can two-water bath water heater developed by the applicants. In the figure, this single can two water bath water heater (equipment) has a combustion chamber 1, a burner 2 is disposed in the combustion chamber 1, and a hot water supply heat exchanger 3 and a follower are disposed above the burner 2. A soaking heat exchanger 4 is provided. These hot water supply heat exchangers 3 and reheating heat exchangers 4 are integrated. That is, a hot water supply side pipe line is inserted through a plurality of common fin plates 5 to form a hot water supply heat exchanger 3, and a reheating side pipe line is similarly inserted through the fin plate 5. Reheating The heat exchanger 4 is configured, and the burner 2 is configured to heat both the hot water supply heat exchanger 3 and the reheating heat exchanger 4.
[0003]
The combustion chamber 1 on the lower side of the burner 2 communicates with an air supply passage 6, and a combustion fan 7 is incorporated in the air supply passage 6. Then, air is sent to the burner 2 and exhaust gas generated by the combustion of the burner 2 is discharged to the outside from the exhaust passage 9 communicating with the combustion chamber 1 above the burner 2.
[0004]
A gas nozzle 19 is disposed opposite to the gas inlet of the burner 2, and a gas supply passage 8 for introducing fuel gas is connected to the gas nozzle 19, and the fuel gas introduced by the gas supply passage 8 is connected to the gas nozzle 19. Is supplied to the burner 2 via the gas nozzle 19. The gas supply passage 8 is provided with electromagnetic valves 10, 11a, 11b for opening and closing the passage, and a proportional valve 12 for controlling the gas supply amount by the valve opening amount.
[0005]
One end side of the water supply passage 13 is connected to the inlet side of the hot water supply heat exchanger 3, one end side of the hot water supply passage 14 is connected to the outlet side of the hot water supply heat exchanger 3, and the other end side of the water supply passage 13 is It is connected to a water supply source through an external pipe, and the other end of the hot water supply passage 14 is led to a desired hot water supply place such as a kitchen through the external pipe. Further, a bypass passage 15 and a bypass passage 16 are provided to short-circuit the water supply passage 13 on the inlet side and the hot water supply passage 14 on the outlet side of the hot water supply heat exchanger 3, and the bypass passage 16 is opened and closed. An electromagnetic valve 17 is interposed.
[0006]
One end of a pipe 18 is connected to the inlet side of the reheating heat exchanger 4, and the other end of the pipe 18 is connected to the discharge port of the circulation pump 20. One end side of the return pipe 21 is connected, and the other end side of the return pipe 21 is connected to the bathtub 22. In addition, one end side of a pipe line 23 is connected to the outlet side of the reheating heat exchanger 4, and the other end side of the pipe line 23 is connected to the bathtub 22. The return pipe 21, the pipe 18, the reheating heat exchanger 4, and the line 23 constitute a recirculation circulation path 24.
[0007]
The pipe 18 of the recirculation circulation passage 24 and the hot water supply passage 14 are communicated with each other by a hot water filling passage 25, and the hot water filling passage 25 has a pouring control valve 26 for controlling the opening and closing of the passage, and the water level of the bathtub 22. And a water level sensor 28 that detects water pressure by water pressure.
[0008]
In the figure, 30 is an air volume sensor that detects the air volume in the combustion chamber 1, 31 is a water volume sensor that is provided in the water supply passage 13 and detects the flow rate of the water supply, and 32 is water in the water supply passage 13. A water temperature sensor for detecting temperature, 34 is a flow rate control valve that is provided in the hot water supply passage 14 to control the flow rate of hot water supply, and 35 is provided in the hot water supply passage 14 to indicate that hot water is being supplied. A hot water supply confirmation switch to be detected, 36 is a water flow sensor for detecting the water flow in the recirculation circulation passage 24, and 37 is a recirculation circulation passage for detecting the hot water in the recirculation circulation passage 24 as a bath water temperature (bath temperature). A bath temperature sensor, which is a temperature sensor, is a hot water temperature sensor 38 that detects the temperature of hot water produced by the hot water supply heat exchanger 3.
[0009]
A control device 40 is provided in the single can two water bath hot water heater, and a remote controller 41 is connected to the control device 40. The remote controller 41 includes a hot water supply temperature setting means for setting the hot water supply temperature, a bath temperature setting means for setting the bath temperature of the bathtub 22, a bath water level setting means for setting the hot water level of the bathtub 22, and the bathtub 22. An automatic operation button for starting automatic operation of a series of baths from hot water filling to heat insulation is provided.
[0010]
The control device 40 takes in sensor output signals of various sensors and information from the remote controller 41, and controls operations in various operation modes such as hot water supply operation and automatic bath operation in accordance with a sequence program given in advance as follows. To do.
[0011]
For example, when a faucet of a hot water supply passage led to a kitchen or the like is opened, water flows into the water supply passage 13 from a water supply source, and the water amount sensor 31 detects water passing through the water supply passage 13, the appliance operates in the hot water supply mode. Start. First, the rotational drive of the combustion fan 7 is started, and both or one of the solenoid valves 11a and 11b and the solenoid valve 10 are opened to supply the fuel gas to the burner 2 through the gas supply passage 8, which is not shown. The burner 2 is ignited by ignition means to start combustion.
[0012]
Then, the amount of combustion heat of the burner 2 is controlled by controlling the valve opening amount of the proportional valve 12 (controlling the amount of gas supplied to the burner 2) so that the hot water temperature becomes the hot water set hot water temperature set in the remote controller 41. The hot water supply heat exchanger 3 is heated by the combustion flame of the burner 2 to produce hot water at a set temperature, and this hot water is supplied to the hot water supply place through the hot water supply passage 14.
[0013]
When the use of hot water is finished and the faucet is closed, water flow to the hot water supply heat exchanger 3 is stopped, and the electromagnetic valve 10 is closed when the water amount sensor 31 no longer detects water flow through the water supply passage 13. The combustion of the burner 2 is stopped. Thereafter, when a predetermined post-purge period (for example, 5 minutes) elapses, the rotation drive of the combustion fan 7 is stopped, the operation in the hot water supply mode is terminated, and the next hot water supply is prepared.
[0014]
When the automatic operation button of the remote controller 41 is used to instruct the automatic operation of the bath, first, the operation in the hot water filling mode is started as shown in step 101 of the flowchart of FIG. For example, when the pouring control valve 26 is opened and when the pouring control valve 26 is opened, water flows from the water supply source into the water supply passage 13 and the water amount sensor 31 detects the water flow through the water supply passage 13. The combustion of the burner 2 is started similarly to the operation.
[0015]
Hot water produced in the hot water supply heat exchanger 3 by the combustion flame of the burner 2 is sent to the recirculation circulation passage 24 through the hot water supply passage 14 and the hot water filling passage 25 in order, and the hot water flowing into the recirculation circulation passage 24 returns. It is dropped into the bathtub 22 by two paths, a path passing through the pipe 21 and a path passing through the reheating heat exchanger 4. When the water level of the bathtub 22 detected by the water level sensor 28 reaches the set water level set in the remote controller 41, the hot water control valve 26 is closed and the solenoid valve 10 is closed to stop the combustion of the burner 2 to fill the hot water. End mode operation.
[0016]
After the operation of the hot water filling mode is completed, as shown in step 102 of FIG. 4, the circulation pump 20 is driven to recirculate hot water in the bathtub 22 and circulate it through the circulation passage 24 to stir the hot water in the bathtub 22. Then, the bath temperature of the bathtub 22 is detected by the bath temperature sensor 37. In step 104, it is determined whether or not the detected bath temperature Th is lower than the set temperature Ts of the bath. The bath temperature Th is lower than the set temperature Ts. When it is determined that the value is low, the process proceeds to step 110, and the operation in the chase mode is started.
[0017]
For example, the circulation pump 20 is continuously driven to recirculate hot water in the bathtub 22 through the recirculation circulation passage 24 and start combustion of the burner 2, and the reheating heat exchanger 4 is driven by the combustion flame of the burner 2. The circulating hot water is heated and reheated. When it is determined in step 104 that the bath temperature Th detected by the bath temperature sensor 37 has reached the set temperature Ts, the combustion of the burner 2 is stopped and the operation in the reheating mode is ended.
[0018]
And as shown to step 105, while stopping the circulation pump 20, the time measurement by the timer incorporated in the control apparatus 40 is started, and operation | movement of a heat retention mode is started.
[0019]
For example, as shown in step 106, it is determined whether or not the measurement time tc of the timer has reached a predetermined set time ts (for example, 30 minutes). When it is determined that the measurement time tc has reached the set time ts, the operation from step 102 to step 105 is performed, and when the bath temperature Th is lower than the set temperature Ts, retreat is performed. Thus, the bath temperature Th can be maintained at the set temperature Ts.
[0020]
Further, during the period in which it is determined in step 106 that the timer measurement time tc has not reached the set time ts, the water retention mode operation shown in steps 107, 108, and 109 is performed.
[0021]
First, in step 107, the sensor output of the water level sensor 28 is captured. The water level sensor 28 detects the water pressure of the hot water in the hot water passage 25 as the water pressure of the bathtub 22 and outputs the water pressure of the bathtub water level as a sensor output. PQ data as shown by the solid line A in FIG. 5 representing the relationship between the sensor output (P) detected by the water level sensor 28 and the amount of water (Q) in the bathtub 22 is obtained and given to the control device 40 in advance. The water level of the bathtub 22 is detected by referring to the PQ data with respect to the sensor output of the water level sensor 28.
[0022]
When it is determined in step 108 whether or not the detected water level Pk of the bathtub 22 is lower than the set water level Ps, and it is determined that the water level Pk of the bathtub 22 is not lower than the set water level Ps. When the water level detection operation by the water level sensor 28 is repeated by the operation after the step 106, and when it is determined that the water level Pk of the bathtub 22 is lower than the set water level Ps due to the use of hot water by the bather, etc. In Step 109, the hot water filling operation is started, the hot water is poured into the bathtub 22, and the water level Pk of the bathtub 22 is raised to the set water level Ps.
[0023]
The operation in the water retention mode is repeatedly performed until the measurement time tc of the timer reaches the set time ts.
[0024]
The operation in the heat retention mode including the water retention operation is performed over a predetermined period (for example, for 4 hours after the bath has boiled up).
[0025]
As described above, the single can two water bath hot water heater is a system in which the integrated hot water supply heat exchanger 3 and the reheating heat exchanger 4 are heated by using the common burner 2, and thus are provided separately. Compared with the method in which the hot water supply heat exchanger and the reheating heat exchanger are each heated by combustion using separate burners, the configuration of the apparatus can be simplified, and as a result, the apparatus can be downsized and the cost can be reduced. Become.
[0026]
[Problems to be solved by the invention]
By the way, if the single-can two-water bath water heater does not perform the reheating operation and performs the hot water supply single operation only with the hot water supply, an accurate water level of the bathtub 22 cannot be obtained immediately after the hot water supply single operation for the following reasons. It was found by the applicant's experiment.
[0027]
During the hot water supply single operation, hot water remains in the reheating heat exchanger 4 and when the burner 2 is burned for the hot water operation, not only the hot water heat exchanger 3 but also the hot water heat exchanger 3 is driven by the combustion flame of the burner 2. Since the soaking heat exchanger 4 is also heated, the staying hot water in the reheating heat exchanger 4 is heated. For this reason, the temperature of the stagnant hot water in the reheating heat exchanger 4 rises to a state close to boiling.
[0028]
The hot water heated at a high temperature in the reheating heat exchanger 4 flows out to both sides of the inlet line 18 and the outlet line 23 of the reheating heat exchanger 4 by a convection phenomenon, and this reheating heat exchanger. The temperature of the hot water in the hot water supply passage 25 which is a communication passage communicating with the reheating circulation passage 24 and the reheating circulation passage 24 by the heat of the hot hot water flowing out from the hot water 4 is considerably high, for example, 70 to 80 ° C. To rise.
[0029]
As described above, the hot water temperature in the hot water filling passage 25 rises to a high temperature, so that a predetermined guaranteed temperature range of the water level sensor 28 (a water temperature range in which accurate water level detection is guaranteed (for example, 5 to 48). ))), The water level sensor 28 cannot detect the correct water pressure, and the sensor output of the water level sensor 28 changes the water level of the bathtub 22 as shown in FIG. In spite of this, it shifts in the direction of ascending or descending with a large temperature dependency.
[0030]
In addition, as described above, hot water heated at a high temperature in the reheating heat exchanger 4 flows out to both sides of the inlet line 18 and the outlet line 23 of the reheating heat exchanger 4, and the line 18 Then, convection in which warm hot water flows into the reheating heat exchanger 4 from both sides of the pipe line 23 is generated, and the convection of the hot water causes irregular vibrations in the reheating circulation passage 24 and the hot water passage 25. The irregular vibration of the hot water in the hot water passage 25 causes the sensor output of the water level sensor 28 to vibrate irregularly as shown in FIG.
[0031]
As described above, when the hot water in the reheating heat exchanger 4 is heated at a high temperature during the hot water supply single operation, the rise in the temperature of the hot water in the hot water filling passage 25 and irregular vibrations are synergistically involved, and the water level sensor 28. The sensor output fluctuates irregularly, and it is difficult to accurately detect the water level of the bathtub 22 based on the sensor output of the water level sensor 28.
[0032]
As described above, it is difficult to accurately detect the water level of the bathtub 22 due to the single operation of the hot water supply. For example, when the hot water supply interruption is performed during the operation in the water retention mode of the automatic operation, the single operation of the hot water supply is performed. When the output of the water level sensor 28 shifts upward, a water level higher than the water level of the bathtub 22 is detected, and the water holding operation is not performed even though the water level of the bathtub 22 is lower than the set water level. May malfunction. In addition, when the output of the water level sensor 28 is shifted downward, a water level lower than the water level of the bathtub 22 may be detected.
[0033]
The present invention has been made in order to solve the above-described problems, and its purpose is to provide a single can two water channel that can prevent the appliance from malfunctioning due to irregular fluctuations in the water level sensor output caused by hot water single operation. The purpose is to provide a bath water heater.
[0034]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following configuration as means for solving the above problems. That is, the first invention is a hot water heat exchanger that heats water supplied from the water supply passage and sends it to the hot water supply passage, and is incorporated in the recirculation circulation passage of the bathtub hot water and circulates the hot water in the bathtub through the recirculation circulation passage. A circulation pump, a reheating heat exchanger that is installed in the recirculation circulation passage and recirculates the recirculation hot water circulating through the recirculation circulation passage by driving the circulation pump, and a hot water temperature provided in the recirculation circulation passage is detected. A recirculation circulation path temperature sensor, and a water level sensor that is disposed in the recirculation circulation path or a communication passage that communicates with the recirculation circulation path and detects the water level of the hot water in the bathtub by water pressure. The heat exchanger is integrated, and a common burner for heating the integrated hot water supply heat exchanger and the reheating heat exchanger is provided. In a single can / two water channel type bath water heater where the water level detection operation is performed by the sensor, the single water heater that monitors whether the single can / two water channel bath water heater performs a hot water supply only operation without a reheating operation. An operation monitoring unit; a pump drive unit that drives the circulation pump until a predetermined pump drive time elapses after the hot water supply single operation is stopped; and a water level detection operation by the water level sensor is stopped until the circulation pump is stopped after the hot water supply single operation. A means for solving the above problem is provided with a configuration in which a water level detection stop unit is provided.
[0035]
The second invention is a hot water heat exchanger that heats water supplied from the water supply passage and sends it to the hot water supply passage, and a circulation pump that is incorporated in the recirculation circulation passage of the bathtub hot water and circulates the bathtub hot water through the recirculation circulation passage. And a reheating heat exchanger that recirculates the circulating hot water that circulates in the recirculation circulation passage by driving the circulation pump, and a recuperation that detects the hot water temperature provided in the recirculation circulation passage. A circulation passage temperature sensor and a water level sensor that is disposed in the recirculation passage or the communication passage that communicates with the recirculation circulation passage and detects the water level of the hot water in the bathtub based on the water pressure; The unit is integrated, and a common burner for heating the integrated hot water supply heat exchanger and the reheating heat exchanger is provided, and the water level sensor is attached to the water level sensor at a predetermined timing. In a single can / two water channel type bath water heater where a water level detection operation is performed, a single hot water supply operation that monitors whether or not the single can / two water bath water heater performs a reheating operation without a reheating operation. A monitoring unit; during hot water supply single operation, when the hot water temperature detected by the recirculation circulation path temperature sensor is equal to or higher than a predetermined threshold temperature, it circulates until a predetermined pump drive time elapses after the hot water supply single operation is stopped A pump drive unit for driving the pump; and a water level detection stop unit for stopping the water level detection operation by the water level sensor until the circulation pump is stopped when the circulation pump is driven by the pump drive unit after the hot water supply single operation. The configuration serves as means for solving the above-described problems.
[0036]
According to a third aspect of the invention, in addition to the configuration of the first or second aspect of the invention, the pump drive time is based on the hot water temperature detected by the recirculation circulation passage temperature sensor during the hot water supply single operation or when the hot water supply single operation is stopped. A means for solving the above-mentioned problems is provided with a configuration in which a time setting unit for variably setting is provided.
[0037]
In the invention of the above configuration, for example, the hot water supply single operation monitoring unit monitors whether or not the single can two-channel bath water heater is performing the single hot water supply operation, or whenever the single hot water supply operation is performed, or the single hot water supply operation Only when the hot water temperature detected by the recirculation circulation path temperature sensor is equal to or higher than a predetermined threshold temperature, the pump drive unit turns the circulation pump on until a predetermined pump drive time elapses after the hot water supply single operation. Drive. The water level detection stop unit stops the water level detection operation by the water level sensor until the circulation pump is stopped when the circulation pump is driven by the pump driving unit after the hot water supply single operation.
[0038]
As described above, by driving the circulation pump after the hot water supply single operation, the hot water in the recirculation circulation passage starts to flow, and the hot water staying in the reheating heat exchanger heated to a high temperature by the hot water supply single operation and the recirculation circulation passage Remaining hot water in the communication passage communicating with the recirculation circulation passage flows out into the bathtub and the hot water in the recirculation circulation passage is replaced, and the water flowing through the reheating heat exchanger takes away the heat of the reheating heat exchanger. Cool the heat exchanger.
[0039]
For this reason, the hot water temperature at the position where the water level sensor is disposed decreases to the guaranteed temperature of the water level sensor in a short time after the hot water supply single operation, and the recirculation circulation passage or the like caused by the high temperature heating of the reheating heat exchanger Occurrence of irregular hot water vibration in the communication passage can be suppressed, and the sensor output of the water level sensor is stabilized in a short time.
[0040]
In the present invention, as described above, when the circulation pump is driven after the hot water supply single operation, the water level detection operation by the water level sensor is stopped. In other words, since the water level detection operation by the water level sensor is stopped until the sensor output of the water level sensor is stabilized by the circulation pump drive after the hot water supply individual operation, the sensor output of the water level sensor that fluctuates irregularly due to the single operation of hot water supply Based on this, it is avoided that an incorrect bathtub water level is detected, and an erroneous operation of the appliance operation due to an incorrect detection bathtub water level is prevented.
[0041]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0042]
The single can two-way bath water heater of the first embodiment has the system configuration shown in FIG. 3, and FIG. 1 shows a block configuration showing a characteristic control configuration in this embodiment by a solid line. Yes. Figure 3 Since the system configuration shown in FIG.
[0043]
As shown by the solid line in FIG. 1, the control device 40 that is characteristic in this embodiment includes a combustion operation control unit 43, a hot water supply single operation monitoring unit 44, a data storage unit 46, a water level detection stop unit 47, A pump drive unit 48 and a timer 51 are included.
[0044]
The combustion operation control unit 43 is preliminarily provided with sequence programs for various operation modes such as hot water supply and automatic operation. According to the sequence program, various sensor outputs, information from the remote controller 41, and the like are taken in and various operations are performed. Perform mode operation.
[0045]
The hot water supply independent operation monitoring unit 44 takes in information on the operation operation of the combustion operation control unit 43, and on the basis of this information, the hot water control valve 26 is in a closed state and the water flow sensor 36 is in a recirculation circulation path. When the water flow in the hot water supply passage 14 is not detected and the water amount sensor 31 detects the water flow in the hot water supply passage 14, it is detected that the hot water supply single operation is being performed. It detects that the operation is not performed and monitors whether the hot water supply single operation is performed.
[0046]
The water level detection stop unit 47 takes in the monitoring information of the hot water supply single operation monitoring unit 44 and, based on this information, detects that the single can two water bath hot water heater (appliance) has started the hot water supply single operation, It is determined that the sensor output of the water level sensor 28 may fluctuate irregularly due to the operation, and output of a water level detection stop command signal for stopping the water level detection operation by the water level sensor 28 is started. This command signal is output to the combustion operation control unit 43, and the combustion operation control unit 43 performs hot water supply interruption during operation in the operation mode involving the water level detection operation by the water level sensor 28 such as the hot water filling mode and the water retention mode. When the islanding operation is performed, the water level detection operation by the water level sensor 28 is stopped in response to the water level detection stop command signal.
[0047]
When the pump drive unit 48 detects that the single hot water supply operation has been completed based on the monitoring information of the single hot water supply operation monitoring unit 44, the pump drive unit 48 drives the circulation pump 20 to start circulation of hot water in the recirculation circulation passage 24 and a timer. 51 is reset and driven to start measuring the elapsed time after the hot water supply single operation is completed, and starts to take in the measurement time of the timer 51. At the same time, the pump drive unit 48 outputs a pump drive signal indicating that the circulation pump 20 is being driven to the water level detection stop unit 47.
[0048]
The water level detection stop unit 47 continuously outputs the water level detection stop command signal to the combustion operation control unit 43 upon receiving the pump drive signal from the pump drive unit 48 after the hot water supply single operation. With the continuous output of the water level detection stop command signal, the combustion operation control unit 43 continues the water level detection stop operation by the water level sensor 28.
[0049]
Then, the pump drive unit 48 reads a pump drive time tps (for example, 3 minutes) that is predetermined and stored in the data storage unit 46, compares the pump drive time tps with the measurement time of the timer 51, and When the measurement time of the timer 51 reaches the pump drive time tps, the drive of the circulation pump 20 is stopped, and at the same time, the output of the pump drive signal to the water level detection stop unit 47 is stopped.
[0050]
As described above, by driving the circulation pump 20 after the hot water supply single operation, hot water in the bathtub 22 enters the recirculation circulation path 24 and hot water remaining in the recirculation circulation path 24 flows out to the bathtub 22. The hot and cold water in the recirculation circulation passage 24 is replaced. Moreover, since the heat of the reheating heat exchanger 4 heated to a high temperature due to the hot water supply single operation is taken away by the recirculation passage 24 and flows out to the bathtub 22, the reheating heat exchanger 4 is cooled. The
[0051]
Thus, by driving the circulation pump 20 after the hot water supply single operation, the time required for the hot water in the recirculation circulation passage 24 to be replaced and the reheating heat exchanger 4 to be cooled is obtained by experiments, calculations, and the like. The obtained time is stored in the data storage unit 46 as the pump drive time tps, and as described above, the circulating pump 20 is driven until the pump drive time tps elapses after the hot water supply single operation. The hot and cold water of 24 can be reliably replaced, and the reheating heat exchanger 4 can be cooled.
[0052]
For this reason, when the driving of the circulation pump 20 is stopped after the hot water supply single operation, the hot water temperature at the position where the water level sensor 28 is disposed is lowered to the guaranteed temperature of the water level sensor 28, and the hot water vibration of the reheating heat exchanger 4 is caused. The state is suppressed, and the sensor output of the water level sensor 28 is stable.
[0053]
The water level detection stop unit 47 is a sensor of the water level sensor 28 when the pump drive unit 48 stops outputting the pump drive signal, that is, when the pump drive unit 48 stops driving the circulation pump 20. It is determined that the output is stable and an accurate bath water level can be detected based on the sensor output of the water level sensor 28, and the output of the water level detection stop command signal to the combustion operation control unit 43 is stopped. The combustion operation control unit 43 can perform the water level detection operation by the water level sensor 28.
[0054]
The pump driving unit 48 may stop / reset the driving of the timer 51 when stopping the driving of the circulation pump 20 to prepare for the next timer driving, or stop / reset every time the hot water supply independent operation stops. -You may drive in order.
[0055]
According to this embodiment, since the hot water supply single operation monitoring unit 44 and the pump drive unit 48 are provided, the circulating pump 20 is driven until a predetermined pump drive time tps elapses after the hot water supply single operation is completed. be able to. Thus, by driving the circulation pump 20 after the hot water supply single operation, the hot water staying in the recirculation circulation passage 24 or the hot water filling passage 25 is caused to flow out from the recirculation circulation passage 24 or the hot water filling passage 25. The hot water temperature at the position where the water level sensor 28 is disposed can be lowered to the guaranteed temperature of the water level sensor 28 in a short time.
[0056]
In addition, the water flowing through the reheating heat exchanger 4 by driving the circulation pump 20 takes away the amount of heat held by the reheating heat exchanger 4 heated to a high temperature by the hot water supply single operation and flows out from the recirculation circulation passage 24. Therefore, the reheating heat exchanger 4 can be forcibly cooled, and the convective irregular vibration of the reheating heat exchanger 4 caused by the high temperature heating of the reheating heat exchanger 4 can be suppressed in a very short time. be able to.
[0057]
In this way, by driving the circulation pump 20 after the hot water supply single operation, the sensor of the water level sensor 28 due to the synergistic contribution of the temperature dependence of the water level sensor 28 and the occurrence of the convection phenomenon of hot water in the reheating heat exchanger 4. Irregular fluctuations in output can be suppressed in a short time, and the sensor output of the water level sensor 28 can be stabilized.
[0058]
In addition, since the water level detection stop unit 47 is provided and the water level detection operation by the water level sensor 28 is stopped during a single hot water supply operation and until a predetermined pump drive time tps elapses after the single hot water supply operation, During the period when the sensor output fluctuates irregularly due to the hot water supply single operation, the water level detection operation by the water level sensor 28 can be stopped, and an incorrect bath water level is detected due to the irregular fluctuation of the sensor output of the water level sensor 28. And the problem that the appliance malfunctions based on an inaccurate bathtub water level can be reliably avoided.
[0059]
Further, as described above, by driving the circulation pump 20 after the hot water supply single operation, the sensor output of the water level sensor 28 can be stabilized in a short time. Therefore, the time during which the water level detection operation is stopped after the hot water supply single operation is performed. Is short.
[0060]
The second embodiment will be described below. What is characteristic in this embodiment is that a pump drive determination unit 52 shown by a chain line in FIG. 1 is provided, and the hot water temperature detected by the bath temperature sensor 37 during the hot water supply single operation is equal to or higher than a predetermined threshold temperature Ts. Only when the pump drive determination unit 52 determines that it has become, the configuration is such that the circulation pump 20 is driven after the hot water supply single operation. The configuration other than the data storage unit 46, the pump drive unit 48, and the pump drive determination unit 52 is the same as that of the first embodiment, and the description of the common parts is omitted.
[0061]
By the way, there is a case where the hot water supply single operation ends immediately after the hot water supply single operation is started. In this case, since the burning time of the burner 2 is very short, the hot water in the reheating heat exchanger 4 does not reach a high temperature. From this, the reheating heat exchanger 4 caused by the hot water convection phenomenon Since the hot water temperature at the position where the water level sensor 28 is disposed does not exceed the guaranteed temperature of the water level sensor 28, the sensor output of the water level sensor 28 does not fluctuate irregularly.
[0062]
In such a case, a stable sensor output of the water level sensor 28 can be obtained without driving the circulation pump 20 after the hot water supply single operation. Accordingly, in this embodiment, the hot water temperature detected by the bath temperature sensor 37 is taken in as the hot water temperature at the position where the water level sensor 28 is disposed, and the hot water temperature detected by the bath temperature sensor 37 during the hot water supply single operation is the water level sensor 28. Only when the temperature is higher than the guaranteed temperature, the circulation pump 20 is driven after the single hot water supply operation, and the circulation pump 20 is not driven after the other single hot water supply operations.
[0063]
This is because the location of the bath temperature sensor 37 is close to the location of the water level sensor 28, and the detected hot water temperature of the bath temperature sensor 37 is considered to be substantially equal to the hot water temperature of the location of the water level sensor 28. When the detected hot water temperature of the bath temperature sensor 37 (the hot water temperature at the position where the water level sensor 28 is disposed) is equal to or higher than the guaranteed temperature of the water level sensor 28, the sensor output of the water level sensor 28 shifts with a large temperature dependence as described above. At the same time, since the hot water temperature of the reheating heat exchanger 4 is very high and hot water vibration caused by hot water convection phenomenon occurs, the sensor output of the water level sensor 28 is considered to fluctuate irregularly. When the detected hot water temperature 37 is equal to or higher than the guaranteed temperature of the water level sensor 28, the hot water supply alone is operated to drive the circulation pump 20 and replace the hot water in the circulation passage 24. The fired heat exchanger 4 follow cooled, stabilizing the sensor output of the water level sensor 28.
[0064]
In other cases, that is, when the detected hot water temperature of the bath temperature sensor 37 is not higher than the guaranteed temperature during the hot water supply single operation, a stable sensor output of the water level sensor 28 can be obtained without driving the circulation pump 20. Therefore, the circulation pump 20 is not driven after the hot water supply single operation.
[0065]
The data storage unit 46 stores a pump driving time tps and a predetermined threshold temperature Ts (for example, 48 ° C.). This threshold temperature Ts is determined based on the guaranteed temperature of the water level sensor 28. In this embodiment, the upper limit value of the guaranteed temperature of the water level sensor 28 is stored in the data storage unit 46 as the threshold temperature Ts. ing.
[0066]
The pump drive determination unit 52 takes in the monitoring information of the hot water supply independent operation monitoring unit 44, and starts to take in the hot and cold water temperature detected by the bath temperature sensor 37 when detecting that the hot water supply independent operation is started based on the monitoring information. At the same time, the threshold temperature Ts is read from the data storage unit 46.
[0067]
The pump drive determination unit 52 incorporates a timer (not shown), takes in the detected hot water temperature of the bath temperature sensor 37 at a predetermined sampling time interval, and detects the detected hot water temperature of the bath temperature sensor 37 and the threshold temperature Ts. (In other words, the upper limit value of the guaranteed temperature of the water level sensor 28) is compared, and when it is determined that the detected hot water temperature of the bath temperature sensor 37 is equal to or higher than the threshold temperature Ts, the chasing is due to the hot water supply single operation. In order to stabilize the sensor output of the water level sensor 28 in a short time after the hot water single operation, it is determined that the hot water temperature of the water heat exchanger 4 is heated to a high temperature and the sensor output of the water level sensor 28 fluctuates irregularly. The hot water in the recirculation circulation passage 24 is replaced by driving the recirculation passage 24, and it is determined that the reheating heat exchanger 4 needs to be cooled. Outputs a pump drive command signals for causing the pump drive unit 48.
[0068]
The pump drive unit 48 starts driving the circulation pump 20 after the hot water supply single operation only when the pump drive command signal is received from the pump drive determination unit 52 during the single hot water supply operation.
[0069]
In this embodiment, when the circulating pump 20 is not driven by the pump drive unit 48 after the hot water supply single operation, the water level detection stop unit 47 does not receive the pump drive signal from the pump drive unit 48 after the hot water supply single operation. When the hot water supply single operation is completed, the output of the water level detection stop command signal to the combustion operation control unit 43 is stopped, and the combustion operation control unit 43 ends the water level detection stop operation.
[0070]
According to this embodiment, the pump drive determination unit 52 is provided, and the hot water supply single operation is performed only when the detected hot water temperature detected by the bath temperature sensor 37 during the hot water supply single operation is equal to or higher than a predetermined threshold temperature Ts. Since the pump pump 48 is used to drive the circulation pump 20 later, the circulation pump 20 is driven after the hot water supply single operation only when the sensor output of the water level sensor fluctuates irregularly due to the hot water supply single operation. Can be performed. Thus, although the sensor output of the stable water level sensor 28 can be obtained, it is possible to eliminate the waste of the instrument operation that the circulation pump 20 is driven after the hot water supply single operation.
[0071]
The third embodiment will be described below. What is characteristic in this embodiment is that a time setting unit 50 is provided as shown by the dotted line in FIG. 1, and the pump driving time tps of the data storage unit 46 is variably set by the time setting unit 50. It is. Configurations other than the data storage unit 46 and the time setting unit 50 are the same as those in each of the embodiments described above, and redundant description thereof is omitted.
[0072]
The data storage unit 46 stores pump drive setting data. The pump drive setting data is provided with a pump drive time corresponding to the hot water temperature detected by the bath temperature sensor 37. As shown in (a) and (b) of FIG. As the detected hot water temperature increases, the pump drive time is given to increase continuously or stepwise.
[0073]
This is because as the amount of retained heat given to the reheating heat exchanger 4 by the hot water supply single operation increases, the hot water temperature of the reheating heat exchanger 4 increases, and the hot water of the reheating heat exchanger 4 increases. The hot water in the recirculation passage 24 is heated by the heat, and the hot water temperature detected by the bath temperature sensor 37 increases. Thus, the detected hot water temperature of the bath temperature sensor 37 corresponds to the amount of heat held by the reheating heat exchanger 4, and as the detected hot water temperature of the bath temperature sensor 37 becomes higher, that is, the reheating heat exchanger 4 has a higher temperature. As the amount of retained heat increases, more time is required until the reheating heat exchanger 4 is cooled by driving the circulation pump 20 after the hot water supply single operation. Therefore, in this embodiment, the pump drive time tps is variably set as the detected hot water temperature of the bath temperature sensor 37 increases.
[0074]
The time setting unit 50 takes in the monitoring information of the hot water supply independent operation monitoring unit 44, and takes in the hot water temperature detected by the bath temperature sensor 37 when it detects that the hot water supply independent operation has ended based on this monitoring information. The pump driving setting data is read from the storage unit 46, and the pump driving time is set by comparing the hot water temperature detected by the bath temperature sensor 37 with the pump driving setting data.
[0075]
The set pump drive time is overwritten with the pump drive time tps stored in the data storage unit 46, and the pump drive unit 48 can supply only the hot water supply when the circulating pump 20 is driven after the hot water supply single operation. The circulation pump 20 is driven until the set pump drive time tps elapses after the operation ends.
[0076]
According to this embodiment, the time setting unit 50 is provided so that the pump drive time tps is variably set based on the hot water temperature detected by the bath temperature sensor 37. Therefore, the sensor output of the water level sensor 28 is Stability The pump drive time tps can be more accurately matched to the drive time of the circulation pump 20 required to reduce the pressure. For example, since the pump drive time tps is fixedly set to a long time, the sensor output of the water level sensor 28 is stabilized. Even after the circulation of hot water required for this is completed, the circulation pump 20 is driven unnecessarily, and conversely, the pump drive time tps is set to a short fixed time, so that the sensor output of the water level sensor 28 is stable. Before the circulation of the hot water necessary for the operation is completed, the driving of the circulation pump 20 is stopped. For example, the accumulated hot water in the reheating heat exchanger 4 is boiled and the retained hot water becomes high temperature. Thus, it is possible to reliably avoid such a problem that the sensor output starts to fluctuate irregularly, an incorrect bath water level is detected, and the appliance malfunctions.
[0077]
Note that, as described above, the time until the sensor output of the water level sensor 28 is stabilized after the hot water supply single operation corresponds to the amount of retained heat given to the reheating heat exchanger 4 by the hot water supply single operation. The variation range of the retained heat amount of the soaking heat exchanger 4 is determined in advance, and the range of the retained heat amount is narrow. Therefore, the variation range of the pump drive time required for the sensor output of the water level sensor 28 to stabilize after the hot water supply single operation is short. Therefore, even if the pump drive time tsp is fixed to a time within the range of the pump drive time, the pump drive time tps does not deviate greatly from the time until the sensor output of the water level sensor 28 is stabilized. Such problems can be almost avoided.
[0078]
The present invention is not limited to the above embodiments, and various embodiments can be adopted. For example, in the second and third embodiments, the threshold temperature Ts is set to the upper limit value of the guaranteed temperature of the water level sensor 28, but the threshold temperature Ts is the upper limit value of the sensor output of the water level sensor 28. The hot water temperature detected by the bath temperature sensor 37 can determine whether the hot water temperature at the position where the water level sensor 28 is disposed is equal to or higher than the guaranteed temperature and whether hot water vibration is occurring. Is set based on
[0079]
In the third embodiment, the pump drive setting data is stored in the data format of the graph data as shown in FIG. 2, but the pump drive is set according to the detected hot water temperature of the bath temperature sensor 37. Pump drive setting data is configured in a data format other than graph data, such as table data given time, arithmetic expression data for obtaining pump drive time using the detected hot water temperature of the bath temperature sensor 37 as a parameter, and the data storage unit 46 It may be stored.
[0080]
Further, in each of the above embodiments, the water level detection stop unit 47 stops the water level detection operation by the water level sensor 28 over the entire period in which the hot water supply single operation is performed. The water level detection operation by the water level sensor 28 may be stopped only during a part of the period during which the water level is determined.
[0081]
For example, a stop threshold temperature Tst for determining stoppage of the water level detection operation by the water level sensor 28 (for example, an upper limit value of the guaranteed temperature of the water level sensor 28) is determined in advance, and the water level detection stop unit 47 is operated during hot water supply single operation. When the detected temperature detected by the bath temperature sensor 37 is compared with the stop threshold temperature Tst and it is determined that the detected temperature of the bath temperature sensor 37 is equal to or higher than the stop threshold temperature Tst, the sensor output of the water level sensor 28 is output. Starts to fluctuate irregularly, and it is determined that there is a possibility that the instrument may malfunction due to irregular fluctuations in the sensor output of the water level sensor 28, and the water level detection operation by the water level sensor 28 is continued until the hot water supply independent operation is completed. Or you may make it stop until the drive of the circulation pump 20 stops after hot water supply independent operation.
[0082]
Further, the time period from when the hot water supply single operation is started to when the reheating heat exchanger 4 is heated by the combustion of the burner 2 and the sensor output of the water level sensor 28 is considered to start to fluctuate irregularly is obtained by time. The obtained time is set in advance as a threshold time tst, and the water level detection stopping unit 47 determines that the sensor output of the water level sensor 28 is not output when the above threshold time tst has elapsed since the start of a single hot water supply operation. It begins to fluctuate regularly, it is determined that there is a possibility that the appliance may malfunction due to irregular fluctuations in the sensor output of the water level sensor 28, and the water level detection operation by the water level sensor 28 is terminated until the hot water supply single operation ends, or Further, it may be stopped until the driving of the circulation pump 20 is stopped after the hot water supply single operation.
[0083]
Further, the water level detection stop unit 47 does not perform the water level detection stop operation during the hot water supply single operation, and when the circulation pump 20 is driven after the hot water supply single operation, only the period until the drive of the circulation pump 20 is stopped, The water level detection operation by the water level sensor 28 may be stopped.
[0084]
Further, the pump drive determination unit 52 shown in each of the above embodiments determines whether or not to drive the circulation pump 20 after the hot water supply single operation based on the hot water temperature detected by the bath temperature sensor 37. In addition, a temperature sensor separate from the bath temperature sensor 37 is provided in the recirculation circulation passage 24 or the hot water filling passage 25 in the vicinity of the position where the water level sensor 28 is disposed, and the hot water supply single operation is performed based on the hot water temperature detected by the temperature sensor. It may be determined whether or not the circulation pump 20 is driven later.
[0085]
Further, in the third embodiment, the time setting unit 50 takes in the hot water temperature detected by the bath temperature sensor 37 when the hot water supply independent operation is completed and sets the pump drive time. The pump drive time may be set based on the detected hot water temperature of the bath temperature sensor 37 taken in. For example, the hot water temperature detected by the bath temperature sensor 37 during the hot water supply single operation is taken in every moment, and when the hot water single operation ends, the pump drive time is set based on the detected hot water temperature of the bath temperature sensor 37 immediately before the hot water single operation ends. It may be set.
[0086]
Further, in each of the above embodiments, the case where the hot water supply single operation is performed during the automatic operation has been described as an example. However, the present invention is also applied to the case where the hot water supply single operation is performed during the operation mode other than the automatic operation. It is possible.
[0087]
Further, each of the above embodiments has been described by taking the appliance shown in FIG. 3 as an example. However, the present invention is a one-can two-water channel type bath water heater, and a circulation pump and a recirculation circulation passage temperature sensor are provided in the recirculation circulation passage. If the water level sensor that detects the water level of the bathtub by water pressure is provided in the recirculation passage or the communication passage that communicates with the recirculation circulation passage, one can two of the system configurations other than FIG. It can also be applied to a waterway bath water heater. For example, the present invention can also be applied to a single can two water bath hot water heater in which the hot water filling passage 25 shown in FIG. 3 is omitted and the water level sensor 28 is disposed in the recirculation circulation passage 24. Also in this case, similarly to the above embodiments, the circulating pump 20 is driven after the hot water supply single operation and the water level detection operation is stopped, so that the staying hot water of the reheating heat exchanger 4 by the hot water supply single operation is stopped. It is possible to prevent malfunction of the instrument due to irregular fluctuations in the sensor output of the water level sensor 28 due to high temperature heating.
[0088]
【The invention's effect】
According to this invention, since the hot water supply single operation monitoring unit and the pump drive unit are provided, the circulation pump can be driven until a predetermined pump drive time elapses after the hot water supply single operation is completed. Thus, after the hot water supply single operation, by driving the circulation pump, the hot water of the reheating heat exchanger heated to a high temperature by the single operation of hot water supply, the hot water of the recirculation circulation passage or the communication passage can be discharged to the bathtub. The hot water temperature at the position where the water level sensor is disposed can be lowered to the guaranteed temperature of the water level sensor in a short time.
[0089]
In addition, the water flowing through the reheating heat exchanger by driving the circulation pump removes the heat of the reheating heat exchanger and flows out of the recirculation circulation passage, so that the reheating heat exchanger is forcibly cooled. It is possible to suppress the hot water vibration caused by the high temperature heating of the reheating heat exchanger in a short time.
[0090]
From these things, the sensor output of a water level sensor can be stabilized in a short time after hot water supply independent operation.
[0091]
In addition, a water level detection stop unit is provided to stop the water level detection operation by the water level sensor until the circulating pump stops driving after the hot water supply single operation, so the water level detection is performed during the period when the water level sensor fluctuates irregularly due to the hot water supply single operation. The operation can be stopped, and the water level sensor's irregularly changing sensor output can prevent the incorrect bath water level from being detected, causing the appliance to malfunction based on the incorrect bath water level. Can be prevented.
[0092]
Only when the hot water temperature detected by the recirculation circulation path temperature sensor is equal to or higher than a predetermined threshold temperature during the hot water supply single operation, the hot water supply single operation Only when it is determined that the sensor output of the water level sensor fluctuates irregularly due to the water pump, the circulating pump is driven after the hot water supply single operation. Is obtained, it is not necessary to drive the circulation pump after the hot water supply single operation, and therefore it is possible to omit useless operation of the circulation pump.
[0093]
In the invention provided with the time setting unit for variably setting the pump driving time, the pump driving time can be variably set according to the detected hot water temperature of the recirculation circulation path temperature sensor. It can be adjusted more accurately during the period until the sensor output of the water level sensor is stabilized by the subsequent circulation pump.
[0094]
As a result, the following problems can be avoided. For example, because the pump drive time is set to a long and constant time, it takes time for the pump drive time to end after the time required for the sensor output of the water level sensor to stabilize after hot water supply single operation, On the contrary, because the pump drive time is set to a short fixed time, the pump drive time ends before the reheating heat exchanger is cooled, and the water flow in the recirculation circulation passage is stopped and replenished. Hot water in the reheating heat exchanger is heated due to post-boiling in the hot water in the soaking heat exchanger, the sensor output of the water level sensor starts to fluctuate irregularly, and the equipment malfunctions due to irregular fluctuation in the sensor output of the water level sensor However, as described above, the pump drive time should be variably set so as to match the period until the sensor output of the water level sensor stabilizes after hot water supply single operation. More, it is possible to reliably avoid a malfunction of the waste and the instrument of the instrument operation as described above.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of a single can / two water bath hot water heater according to the present invention.
FIG. 2 is a graph showing an example of pump drive setting data in which a pump drive time is given corresponding to a detected hot water temperature in a recirculation circulation passage.
FIG. 3 is an explanatory diagram showing a system configuration example of a single can / two water bath hot water heater.
FIG. 4 is a flowchart showing an example of an automatic driving operation.
FIG. 5 is a graph showing an example of PQ data indicating the relationship between the sensor output of the water level sensor and the amount of bathtub water.
FIG. 6 is an explanatory diagram showing a conventional problem.
[Explanation of symbols]
2 Burner
3 Hot water supply heat exchanger
4 Reheating heat exchanger
13 Water supply passage
14 Hot water passage
24 Recirculation passage
25 Hot water passage
28 Water level sensor
37 Bath temperature sensor
44 Hot water supply independent operation monitoring section
46 Data storage
47 Water level detection stop
48 Pump drive
50 hours setting section

Claims (3)

給水通路から供給される水を加熱して給湯通路へ送出する給湯熱交換器と、浴槽湯水の追い焚き循環通路に組み込まれ浴槽湯水を追い焚き循環通路を通して循環させる循環ポンプと、追い焚き循環通路に組み込まれ上記循環ポンプの駆動により追い焚き循環通路を循環する循環湯水の追い焚きを行う追い焚き熱交換器と、追い焚き循環通路に設けられ湯水温を検出する追い焚き循環通路温度センサと、追い焚き循環通路又は追い焚き循環通路に連通する連通通路に配設され浴槽の湯水の水位を水圧により検出する水位センサとを備え、上記給湯熱交換器と追い焚き熱交換器は一体化され、この一体化された給湯熱交換器と追い焚き熱交換器を加熱する共通のバーナーが設けられ、予め定められたタイミングで上記水位センサによる水位検出動作が行われる一缶二水路タイプの風呂給湯器において、一缶二水路風呂給湯器が追い焚き運転を行わず給湯のみの給湯単独運転を行っているか否かを監視する給湯単独運転監視部と;給湯単独運転の停止後に予め定めたポンプ駆動時間を経過するまで循環ポンプを駆動させるポンプ駆動部と;給湯単独運転後に循環ポンプが停止するまで水位センサによる水位検出動作を停止させる水位検出停止部と;を設けたことを特徴とする一缶二水路風呂給湯器。A hot water supply heat exchanger that heats water supplied from the water supply passage and sends it to the hot water supply passage, a circulation pump that is incorporated in the recirculation circulation passage of the bathtub hot water, and recirculates the bathtub hot water through the circulation passage, and a recirculation circulation passage A reheating heat exchanger for recirculating hot water circulating through the recirculation circulation passage by driving the circulation pump, a recirculation circulation passage temperature sensor for detecting a hot water temperature provided in the recirculation circulation passage, A water level sensor that is disposed in a recirculation passage or a communication passage that communicates with the recirculation circulation passage and detects the water level of the hot water in the bathtub by water pressure, and the hot water supply heat exchanger and the reheating heat exchanger are integrated, A common burner for heating the integrated hot water supply heat exchanger and the reheating heat exchanger is provided, and the water level detection operation by the water level sensor at a predetermined timing. In the canned and two-fluid type bath water heater in which hot water supply is operated, a single hot water supply independent operation monitoring unit that monitors whether or not the canned and two-fluidic bath water heater performs the hot water supply alone operation without performing the reheating operation; A pump drive unit that drives the circulation pump until a predetermined pump drive time elapses after the hot water supply single operation is stopped; a water level detection stop unit that stops the water level detection operation by the water level sensor until the circulation pump stops after the hot water supply single operation; One can two water bath hot water heater characterized by having provided; 給水通路から供給される水を加熱して給湯通路へ送出する給湯熱交換器と、浴槽湯水の追い焚き循環通路に組み込まれ浴槽湯水を追い焚き循環通路を通して循環させる循環ポンプと、追い焚き循環通路に組み込まれ上記循環ポンプの駆動により追い焚き循環通路を循環する循環湯水の追い焚きを行う追い焚き熱交換器と、追い焚き循環通路に設けられ湯水温を検出する追い焚き循環通路温度センサと、追い焚き循環通路又は追い焚き循環通路に連通する連通通路に配設され浴槽の湯水の水位を水圧により検出する水位センサとを備え、上記給湯熱交換器と追い焚き熱交換器は一体化され、この一体化された給湯熱交換器と追い焚き熱交換器を加熱する共通のバーナーが設けられ、予め定められたタイミングで上記水位センサによる水位検出動作が行われる一缶二水路タイプの風呂給湯器において、一缶二水路風呂給湯器が追い焚き運転を行わず給湯のみの給湯単独運転を行っているか否かを監視する給湯単独運転監視部と;給湯単独運転中に追い焚き循環通路温度センサが検出する湯水温が予め定めたしきい値温度以上になったときには給湯単独運転の停止後に予め定めたポンプ駆動時間を経過するまで循環ポンプを駆動させるポンプ駆動部と;給湯単独運転後に上記ポンプ駆動部により循環ポンプが駆動しているときには循環ポンプが停止するまで水位センサによる水位検出動作を停止させる水位検出停止部と;を設けたことを特徴とする一缶二水路風呂給湯器。A hot water supply heat exchanger that heats water supplied from the water supply passage and sends it to the hot water supply passage, a circulation pump that is incorporated in the recirculation circulation passage of the bathtub hot water, and recirculates the bathtub hot water through the circulation passage, and a recirculation circulation passage A reheating heat exchanger for recirculating hot water circulating through the recirculation circulation passage by driving the circulation pump, a recirculation circulation passage temperature sensor for detecting a hot water temperature provided in the recirculation circulation passage, A water level sensor that is disposed in a recirculation passage or a communication passage that communicates with the recirculation circulation passage and detects the water level of the hot water in the bathtub by water pressure, and the hot water supply heat exchanger and the reheating heat exchanger are integrated, A common burner for heating the integrated hot water supply heat exchanger and the reheating heat exchanger is provided, and the water level detection operation by the water level sensor at a predetermined timing. In the canned and two-fluid type bath water heater in which hot water supply is operated, a single hot water supply independent operation monitoring unit that monitors whether or not the canned and two-fluidic bath water heater performs the hot water supply alone operation without performing the reheating operation; When the hot water temperature detected by the recirculation passage temperature sensor exceeds the predetermined threshold temperature during the hot water single operation, the circulating pump is driven until a predetermined pump drive time elapses after the hot water single operation is stopped. And a water level detection stop unit that stops the water level detection operation by the water level sensor until the circulation pump stops when the circulation pump is driven by the pump drive unit after the hot water supply single operation. One can two water bath hot water heater. 給湯単独運転中又は給湯単独運転が停止したときに追い焚き循環通路温度センサが検出する湯水温に基づいてポンプ駆動時間を可変設定する時間設定部を設けたことを特徴とする請求項1又は請求項2記載の一缶二水路風呂給湯器。2. A time setting unit that variably sets a pump drive time based on a hot water temperature detected by a recirculation circulation path temperature sensor during hot water supply single operation or when hot water supply single operation is stopped is provided. Item 1. A can of two water bath hot water heater.
JP32786596A 1996-11-22 1996-11-22 One can two water bath hot water heater Expired - Lifetime JP3767956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32786596A JP3767956B2 (en) 1996-11-22 1996-11-22 One can two water bath hot water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32786596A JP3767956B2 (en) 1996-11-22 1996-11-22 One can two water bath hot water heater

Publications (2)

Publication Number Publication Date
JPH10160245A JPH10160245A (en) 1998-06-19
JP3767956B2 true JP3767956B2 (en) 2006-04-19

Family

ID=18203844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32786596A Expired - Lifetime JP3767956B2 (en) 1996-11-22 1996-11-22 One can two water bath hot water heater

Country Status (1)

Country Link
JP (1) JP3767956B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6060025B2 (en) * 2013-04-03 2017-01-11 株式会社コロナ Bath water heater

Also Published As

Publication number Publication date
JPH10160245A (en) 1998-06-19

Similar Documents

Publication Publication Date Title
JP3767956B2 (en) One can two water bath hot water heater
JPH05149567A (en) Tap-controlled hot water supplying apparatus
JP3776997B2 (en) One can two water bath hot water heater
JP3767959B2 (en) One can two water bath hot water heater
JP3777005B2 (en) One can two water bath hot water heater
JP3776998B2 (en) One can two water bath hot water heater
JP5797043B2 (en) Hot water heater
JP3848728B2 (en) One can two water bath hot water heater
JP3880119B2 (en) One can two water bath hot water heater
JP3822721B2 (en) One can two water bath hot water heater
JP3834423B2 (en) One can multi-channel combustion equipment
JP3754537B2 (en) One can two water heater
JP3748681B2 (en) One can two water bath hot water heater
JPH10148397A (en) Hot water supply apparatus
JP3792338B2 (en) One can two water bath hot water heater
JP3777001B2 (en) One can two water channel combustion system
JP3798134B2 (en) One can two water heater
KR960005776B1 (en) Room heating device
JP3776994B2 (en) One can two water bath hot water heater
JP4022236B2 (en) One can two water bath hot water heater
JP3811525B2 (en) 1 can 2 water bath hot water heater
JP3777037B2 (en) Remaining water amount calculation method
JP2002005513A (en) Method for detecting quantity of remaining water in bathtub
JP3579452B2 (en) Water heater and control method thereof
JP2008128511A (en) Hot water supply device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term