JP3767959B2 - One can two water bath hot water heater - Google Patents

One can two water bath hot water heater Download PDF

Info

Publication number
JP3767959B2
JP3767959B2 JP33499396A JP33499396A JP3767959B2 JP 3767959 B2 JP3767959 B2 JP 3767959B2 JP 33499396 A JP33499396 A JP 33499396A JP 33499396 A JP33499396 A JP 33499396A JP 3767959 B2 JP3767959 B2 JP 3767959B2
Authority
JP
Japan
Prior art keywords
hot water
water level
water
heat exchanger
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33499396A
Other languages
Japanese (ja)
Other versions
JPH10160244A (en
Inventor
幸伸 野口
喜久雄 岡本
修一 小野寺
健生 山口
Original Assignee
株式会社ガスター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ガスター filed Critical 株式会社ガスター
Priority to JP33499396A priority Critical patent/JP3767959B2/en
Publication of JPH10160244A publication Critical patent/JPH10160244A/en
Application granted granted Critical
Publication of JP3767959B2 publication Critical patent/JP3767959B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control For Baths (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、給湯熱交換器と追い焚き熱交換器が一体化され、その一体化した熱交換器を共通のバーナーで加熱する一缶二水路風呂給湯器に関するものである。
【0002】
【従来の技術】
図7には出願人らが開発している一缶二水路風呂給湯器のシステム構成例が示されている。同図において、この一缶二水路風呂給湯器(器具)は燃焼室1を有し、この燃焼室1にはバーナー2が配設され、このバーナー2の上方には給湯熱交換器3と追い焚き熱交換器4が設けられている。これら給湯熱交換器3と追い焚き熱交換器4は一体化されて配設されている。すなわち、複数の共通のフィンプレート5に給湯側の管路を貫通装着して給湯熱交換器3と成し、同じくフィンプレート5に追い焚き側の管路を貫通装着して風呂熱交換器4と成しており、上記バーナー2は給湯熱交換器3と追い焚き熱交換器4を共に加熱する構成になっている。
【0003】
上記バーナー2の下方側の燃焼室1は給気通路6に連通され、この給気通路6には燃焼ファン7が組み込まれており、燃焼ファン7の回転駆動により外部から給気通路6を介してバーナー2へ空気が送り込まれると共に、バーナー2の燃焼により生じた排気ガスがバーナー2の上方の燃焼室1に連通する排気通路9から外部へ排出される。
【0004】
上記バーナー2のガス導入口にはガスノズル19が対向配設され、このガスノズル19には燃料ガスを導入するためのガス供給通路8が接続されており、このガス供給通路8により導かれた燃料ガスはガスノズル19を介してバーナー2に供給される。また、上記ガス供給通路8には通路の開閉を行う電磁弁10,11a,11bと、ガスの供給量を開弁量により制御する比例弁12とが介設されている。
【0005】
前記給湯熱交換器3の入側には給水通路13の一端側が接続され、給湯熱交換器3の出側には給湯通路14の一端側が接続されており、上記給水通路13の他端側は外部配管を介して水供給源に接続され、前記給湯通路14の他端側は外部配管を介して台所等の所望の給湯場所に導かれている。また、上記給湯熱交換器3の入側の給水通路13と出側の給湯通路14を短絡する常時バイパス通路15とバイパス通路16が設けられており、上記バイパス通路16には通路の開閉を行う電磁弁17が介設されている。
【0006】
前記追い焚き熱交換器4の入側には管路18の一端側が接続され、この管路18の他端側は循環ポンプ20の吐出口に接続されており、循環ポンプ20の吸入口には戻り管21の一端側が接続され、戻り管21の他端側は浴槽22に連接されている。また、追い焚き熱交換器4の出側には管路23の一端側が接続されており、この管路23の他端側は前記浴槽22に連接されている。上記戻り管21と管路18と追い焚き熱交換器4と管路23により追い焚き循環通路24が構成される。
【0007】
上記追い焚き循環通路24の管路18と前記給湯通路14は湯張り通路25により連通されており、この湯張り通路25には通路の開閉を制御する注湯制御弁26と、浴槽22の水位を水圧により検出する水位センサ28とが設けられている。
【0008】
なお、図中に示す30は燃焼室1内の風量を検出する風量センサであり、31は給水通路13に設けられて給水の流量を検出する水量センサであり、32は給水通路13の水の温度を検出する入水温度センサであり、34は給湯通路14に設けられて給湯の流量を制御する流量制御弁であり、35は給湯通路14に設けられて給湯が行われていることを水流により検出する給湯確認スイッチであり、36は追い焚き循環通路24の水流を検出する水流センサであり、37は追い焚き循環通路24の湯水を浴槽湯水の温度(風呂温度)として検出する追い焚き循環通路温度センサである風呂温度センサであり、38は給湯熱交換器3で作り出された湯の温度を検出する出湯温度センサである。
【0009】
この一缶二水路風呂給湯器には制御装置40が設けられており、この制御装置40にはリモコン41が接続されている。このリモコン41には給湯温度を設定するための給湯温度設定手段や、浴槽22の風呂の温度を設定する風呂温度設定手段や、浴槽22の湯水の水位を設定する風呂水位設定手段や、浴槽22の湯張りから保温に至るまでの一連の風呂の自動運転を開始させるための自動運転ボタン等が設けられている。
【0010】
上記制御装置40は各種センサのセンサ出力信号やリモコン41の情報を取り込み、予め与えられているシーケンスプログラムに従って、給湯運転や、風呂の自動運転等の各種の運転モードの動作を次のように制御する。
【0011】
例えば、台所等に導かれた給湯通路の水栓が開けられ、水供給源から給水通路13に水が流れ込んで水量センサ31が給水通路13の通水を検出すると、器具は給湯モードの運転を開始する。まず、燃焼ファン7の回転駆動を開始させ、電磁弁11a,11bの両方又はどちらか一方と電磁弁10を開動作させガス供給通路8を通してバーナー2に燃料ガスを供給し、図示されていない点着火手段によりバーナー2の点着火を行い燃焼を開始させる。
【0012】
そして、給湯湯温がリモコン41に設定されている給湯設定湯温となるように比例弁12の開弁量を制御して(バーナー2への供給ガス量を制御して)バーナー2の燃焼熱量を制御し、給湯熱交換器3の通水をバーナー2の燃焼火炎により加熱して設定温度の湯を作り出し、この湯を給湯通路14を通して給湯場所に供給する。
【0013】
湯の使用が終了して水栓が閉められると、給湯熱交換器3への通水が停止し、水量センサ31が給水通路13の通水を検知しなくなったときに、電磁弁10を閉じてバーナー2の燃焼を停止させる。その後、燃焼室1内の排気ガスの排出がほぼ終了するポストパージ期間(例えば、5分間)が経過したときに、燃焼ファン7の回転駆動を停止して給湯モードの運転を終了し次の給湯に備える。
【0014】
また、リモコン41の自動運転ボタンにより風呂の自動運転が指令されると、図8のフローチャートのステップ101に示すように、まず、湯張りモードの動作が開始される。例えば、注湯制御弁26を開弁し、この注湯制御弁26の開弁動作により水供給源から給水通路13に水が流れ込み水量センサ31が給水通路13の通水を検知すると、上記給湯運転と同様にバーナー2の燃焼を開始させる。
【0015】
このバーナー2の燃焼火炎により給湯熱交換器3で作り出された湯は給湯通路14と湯張り通路25を順に介して追い焚き循環通路24に送り込まれ、追い焚き循環通路24に流れ込んだ湯は戻り管21を通る経路と追い焚き熱交換器4を通る経路との2経路で浴槽22に落とし込まれる。水位センサ28が検出する浴槽22の水位がリモコン41に設定されている設定水位に達したときに、注湯制御弁26を閉じ、電磁弁10を閉じてバーナー2の燃焼を停止させ、湯張りモードの動作を終了する。
【0016】
この湯張りモードの動作終了後に、図8のステップ102に示すように、循環ポンプ20を駆動させ、浴槽22の湯水を追い焚き循環通路24を通して循環させて浴槽22の湯水を撹拌させ、ステップ103で、風呂温度センサ37により浴槽22の風呂温度を検出し、ステップ104で、検出した風呂温度Thが風呂 の設定温度Tsよりも低いか否かを判断し、風呂温度Thが設定温度Ts よりも低いと判断したときには、ステップ110に進み、追い焚きモードの動作を開始する。
【0017】
例えば、循環ポンプ20の駆動を引き続き行って、浴槽22内の湯水を追い焚き循環通路24を通して循環させると共に、バーナー2の燃焼を開始させ、バーナー2の燃焼火炎により、追い焚き熱交換器4で上記循環湯水を加熱して追い焚きを行う。風呂温度センサ37により検出される風呂温度Thが設定温度Tsに達したと前記ステップ104で判断したときには、バーナー2の燃焼を停止させ、追い焚きモードの動作を終了する。
【0018】
そして、ステップ105に示すように、循環ポンプ20を停止させると共に、制御装置40に内蔵されているタイマによる時間計測をスタートさせ、保温モードの動作を開始する。
【0019】
例えば、ステップ106に示すように、上記タイマの計測時間tcが予め定め られた設定時間ts(例えば、30分)に達したか否かを判断する。上記計測時 間tcが設定時間tsに達したと判断したときには、上記ステップ102からステップ105までの動作を行い、風呂の温度Thが設定温度Tsよりも低下している場合には追い焚きを行って風呂の温度Thを設定温度Tsに保つことができる。
【0020】
また、前記ステップ106でタイマの計測時間tcが設定時間tsに達していないと判断される期間には、ステップ107,108,109に示す保水モードの動作を行う。
【0021】
まず、ステップ107で、水位センサ28が検出するセンサ出力を検出する。上記水位センサ28は湯張り通路25内の湯水の水圧を浴槽22の水圧として検出し、その浴槽水位の水圧をセンサ出力として出力するものである。前記制御装置40には水位センサ28が検出するセンサ出力(P)と、浴槽22の水量(Q)との関係を表す図9の実線Aに示すようなP−Qデータが予め求め与えられており、前記水位センサ28のセンサ出力を上記P−Qデータに参照して浴槽22の水位を検出する。
【0022】
そして、ステップ108で、上記検出された浴槽22の水位Pkが設定水位Psよりも低下しているか否かを判断し、浴槽22の水位Pkが設定水位Psよりも低下していないと判断したときには前記水位センサ28による水位検出動作を前記ステップ106以降の動作により繰り返し行い、また、浴槽22の水位Pkが入 浴者による湯の使用等により設定水位Psよりも低下していると判断したときに は、ステップ109で、湯張りの動作を開始して、浴槽22への注湯を行い、浴槽22の水位Pkを設定水位Psまで上昇させる。
【0023】
上記保水モードの動作は前記タイマの計測時間tcが設定時間tsになるまで、繰り返し行われる。
【0024】
上記保水動作を含む保温モードの動作は、予め定められている期間(例えば、風呂が沸き上がってから4時間の間)に渡り行われる。
【0025】
前記の如く、一缶二水路風呂給湯器は、一体化された給湯熱交換器3と追い焚き熱交換器4を共通のバーナー2を用いて加熱する方式であるので、別体に設けられた給湯熱交換器と追い焚き熱交換器をそれぞれ別個のバーナーを用いて燃焼加熱する方式に比べて、装置構成の簡易化が図れ、これに伴い、装置の小型化とコストの低減を図れることになる。
【0026】
【発明が解決しようとする課題】
ところで、一缶二水路風呂給湯器が追い焚き運転を行わず給湯のみの給湯単独運転を行うと、給湯単独運転直後等には次のような理由により正確な浴槽22の水位を得ることができないことが出願人らの実験によりわかった。
【0027】
上記給湯単独運転時には追い焚き熱交換器4内に湯水が滞留している状態にあり、給湯運転のためにバーナー2を燃焼させると、バーナー2の燃焼火炎によって給湯熱交換器3だけでなく追い焚き熱交換器4も加熱されるので、上記追い焚き熱交換器4内の滞留湯水は加熱される。このため、追い焚き熱交換器4内の滞留湯水の温度が上昇し沸騰状態になる。
【0028】
上記追い焚き熱交換器4内の高温加熱された湯水は対流現象により追い焚き熱交換器4の入側の管路18と出側の管路23の両側へ流れ出て、この追い焚き熱交換器4から流れ出た高温の湯水の熱により追い焚き循環通路24や該追い焚き循環通路24に連通する連通通路である湯張り通路25内の湯水の温度が、例えば、70〜80℃と、かなり高温まで上昇する。
【0029】
このように、湯張り通路25内の湯水温度が高温に上昇することにより、水位センサ28の予め定められている保証温度範囲(正確な水位検出が保証されている水温範囲(例えば、5〜48℃))を越えてしまうので、水位センサ28が正確な水圧を検出することができなくなり、図10の(b)に示すように、水位センサ28のセンサ出力が、浴槽22の水位が変化していないのにも拘らず、大きな温度依存性をもって上昇する方向に又は下降する方向にシフトしてしまう。
【0030】
その上、上記の如く、追い焚き熱交換器4内の高温加熱された湯水が追い焚き熱交換器4の入側の管路18と出側の管路23の両側へ流れ出ると共に、管路18と管路23の両側から追い焚き熱交換器4内にぬるめの湯水が流れ込む対流が生じるので、この湯水の対流により追い焚き循環通路24および湯張り通路25内の湯水に不規則な振動が生じ、この湯張り通路25内の湯水の不規則な振動により、図10の(b)に示すように、水位センサ28のセンサ出力が不規則に振動する。
【0031】
上記のように、給湯単独運転時に追い焚き熱交換器4内の湯水が高温加熱されることにより、湯張り通路25内の湯水の温度上昇と不規則振動が相乗的に関与して水位センサ28のセンサ出力が不規則に変動し、この水位センサ28のセンサ出力に基づいて浴槽22の水位を正確に検出することは困難である。
【0032】
上記のように、給湯単独運転により浴槽22の水位を正確に検出することが困難となり、例えば、自動運転の保温モードの運転中に給湯割り込みが行われて給湯単独運転が行われると、水位センサ28の出力が上昇シフトする場合には浴槽22の水位よりも高めの水位が検出され、浴槽22の水位が設定水位よりも低下しているのに保水動作が行われないというような誤動作が生じてしまう場合がある。また、水位センサ28の出力が下降シフトする場合には浴槽22の水位よりも低めの水位が検出され、浴槽22の水位が設定水位よりも低下していないのに保水動作が行われてしまう場合がある。
【0033】
本発明は、上記課題を解決するためになされたものであり、その目的は、給湯単独運転に起因した水位センサ出力の不規則変動により器具が誤動作するのを防止することができる一缶二水路風呂給湯器を提供することにある。
【0034】
【課題を解決するための手段】
上記目的を達成するためにこの発明は次のような構成をもって前記課題を解決する手段としている。すなわち、第1の発明は、給水通路から供給される水を加熱して給湯通路へ送出する給湯熱交換器と、浴槽湯水の追い焚き循環通路に組み込まれ追い焚き循環通路を循環する循環湯水の追い焚きを行う追い焚き熱交換器と、追い焚き循環通路に配設され湯水温度を検出する追い焚き循環通路温度センサと、追い焚き循環通路又は追い焚き循環通路に連通する連通通路に配設され浴槽の湯水の水位を水圧により検出する水位センサとを備え、上記給湯熱交換器と追い焚き熱交換器は一体化され、この一体化された給湯熱交換器と追い焚き熱交換器を加熱する共通のバーナーが設けられ、予め定められたタイミングで上記水位センサによる水位検出動作が行われる一缶二水路タイプの風呂給湯器において、一缶二水路風呂給湯器が追い焚き運転を行わず給湯運転だけを行う給湯単独運転を行っているか否かを監視する給湯単独運転監視部と;給湯単独運転の停止後に水位センサの配設位置の水温を直接的に検出した直接検出値あるいは水位センサの配設位置の水温を推定検出した推定検出値が予め定めたしきい値に達するまで、又は、上記しきい値に達してから予め定めた余裕期間が経過するまで水位センサによる水位検出動作を停止させる水位検出停止部と;を設けた構成をもって前記課題を解決する手段としている。
【0035】
第2の発明は、給水通路から供給される水を加熱して給湯通路へ送出する給湯熱交換器と、浴槽湯水の追い焚き循環通路に組み込まれ追い焚き循環通路を循環する循環湯水の追い焚きを行う追い焚き熱交換器と、追い焚き循環通路又は追い焚き循環通路に連通する連通通路に配設され浴槽の湯水の水位を水圧により検出する水位センサとを備え、上記給湯熱交換器と追い焚き熱交換器は一体化され、この一体化された給湯熱交換器と追い焚き熱交換器を加熱する共通のバーナーと、該バーナーへの給排気を行う燃焼ファンとが設けられ、予め定められたタイミングで上記水位センサによる水位検出動作が行われる一缶二水路タイプの風呂給湯器において、一缶二水路風呂給湯器が追い焚き運転を行わず給湯運転だけを行う給湯単独運転を行っているか否かを監視する給湯単独運転監視部と;給湯単独運転の停止後に燃焼ファンを継続駆動させて追い焚き熱交換器を冷却するファン駆動部と;給湯単独運転の停止後に水位センサの配設位置の水温を直接的に検出した直接検出値あるいは水位センサの配設位置の水温を推定検出した推定検出値が予め定めたしきい値に達するまで、又は、上記しきい値に達してから予め定めた余裕期間が経過するまで水位センサによる水位検出動作を停止させる水位検出停止部と;を設けた構成をもって前記課題を解決する手段としている。
【0036】
第3の発明は、上記第1又は第2の発明を構成する水位センサの配設位置の水温を直接的に検出する手段は追い焚き循環通路温度センサによって構成され、水位センサの配設位置の水温を推定検出する手段は、給湯単独運転が行われている給湯単独運転時間と、給湯単独運転の燃焼運転情報とを少なくともパラメータにして求められる追い焚き熱交換器の保有熱量に基づき水位センサの配設位置の水温を推定検出する保有熱量検出手段、あるいは、一缶二水路風呂給湯器の給気温に基づき水位センサの配設位置の水温を推定検出する給気温検出手段、あるいは、上記追い焚き熱交換器の保有熱量と給気温を組み合わせて水位センサの配設位置の水温を推定検出する保有熱量・給気温検出手段のうちのいずれか1つの手段により構成されている構成をもって前記課題を解決する手段としている。
【0037】
第4の発明は、給水通路から供給される水を加熱して給湯通路へ送出する給湯熱交換器と、浴槽湯水の追い焚き循環通路に組み込まれ追い焚き循環通路を循環する循環湯水の追い焚きを行う追い焚き熱交換器と、追い焚き循環通路又は追い焚き循環通路に連通する連通通路に配設され浴槽の湯水の水位を水圧により検出する水位センサとを備え、上記給湯熱交換器と追い焚き熱交換器は一体化され、この一体化された給湯熱交換器と追い焚き熱交換器を加熱する共通のバーナーと、該バーナーへの給排気を行う燃焼ファンとが設けられ、予め定められたタイミングで上記水位センサによる水位検出動作が行われる一缶二水路タイプの風呂給湯器において、一缶二水路風呂給湯器が追い焚き運転を行わず給湯運転だけを行う給湯単独運転を行っているか否かを監視する給湯単独運転監視部と;給湯単独運転の停止後に予め定めたファン駆動延長時間を経過するまで燃焼ファンを継続駆動させるファン駆動部と;給湯単独運転の停止後に燃焼ファンの駆動が停止されるまで、又は、停止されてから予め定めた余裕期間を経過するまで水位センサによる水位検出動作を停止させる水位検出停止部と;を設けた構成をもって前記課題を解決する手段としている。
【0038】
第5の発明は、上記第4の発明の構成に加えて、一缶二水路風呂給湯器の給気温を検出する給気温センサが設けられており、給気温センサが検出する給気温に基づいてファン駆動延長時間を設定するファン駆動延長時間データが与えられ、上記給気温センサが検出する給気温に応じてファン駆動延長時間を可変設定する延長時間設定部を設けた構成をもって前記課題を解決する手段としている。
【0039】
第6の発明は、上記第4の発明の構成に加えて、一缶二水路風呂給湯器が給湯単独運転を行っている時間を計測する時間計測手段と;少なくとも給湯単独運転の燃焼熱量情報と給湯単独運転時間をパラメータとして給湯単独運転によるバーナーの燃焼熱により追い焚き熱交換器に与えられる追い焚き熱交換器の保有熱量を求める保有熱量データが与えられ、該保有熱量データを求めるための前記給湯単独運転時のパラメータ情報を取り込んで前記保有熱量データから追い焚き熱交換器の保有熱量を求め、該保有熱量に応じたファン駆動延長時間を可変設定する延長時間設定部を設けた構成をもって前記課題を解決する手段としている。
【0040】
上記構成の発明において、例えば、給湯単独運転監視部は一缶二水路風呂給湯器が給湯単独運転を行っているか否かを監視し、この給湯単独運転監視部の監視情報により給湯単独運転が終了したと検知したときから、水位センサ配設位置の水温の直接検出値又は推定検出値がしきい値に達するまで、あるいは、上記直接検出値又は推定検出値がしきい値に達してから予め定めた余裕期間を経過するまで、あるいは、燃焼ファンの駆動が停止するまで、あるいは、燃焼ファンの駆動が停止してから予め定めた余裕期間を経過するまで、水位検出停止部は水位センサによる水位検出動作を停止させる。
【0041】
上記給湯単独運転後に上記直接検出値又は推定検出値がしきい値に達したとき、あるいは、上記直接検出値又は推定検出値がしきい値に達してから余裕期間が経過したとき、あるいは、給湯単独運転後に燃焼ファンが停止したとき、あるいは、燃焼ファンが停止してから予め定めた余裕期間が経過したときには、給湯単独運転により高温になっていた追い焚き熱交換器の湯水温が冷却して湯水の対流が収まり、かつ、追い焚き循環通路や該追い焚き循環通路に連通する連通通路の湯水が冷却して水位センサのセンサ出力が安定するので、上記のように、給湯単独運転後に上記直接検出値又は推定検出値がしきい値に達するまで、あるいは、上記直接検出値又は推定検出値がしきい値に達してから余裕期間が経過するまで、あるいは、給湯単独運転後に燃焼ファンが停止するまで、あるいは、燃焼ファンが停止してから予め定めた余裕期間が経過するまで水位センサによる水位検出動作を停止させることにより、給湯単独運転に起因して不規則変動する水位センサのセンサ出力により不正確な浴槽水位が検出されるのを回避することが可能で、不正確な検出浴槽水位による器具運転の誤動作が防止される。
【0042】
【発明の実施の形態】
以下に、この発明の実施形態例を図面に基づき説明する。
【0043】
第1の実施形態例の一缶二水路風呂給湯器は前記図7に示すシステム構成を有し、図1にはこの実施形態例において特徴的な制御構成を示すブロック構成が表されている。なお、図7に示すシステム構成は前述したのでその重複説明は省略する。
【0044】
この実施形態例において特徴的な制御装置40は、図1に示すように、燃焼運転制御部43と、給湯単独運転監視部44と、データ格納部46と、ファン駆動部47と、水位検出停止部48とを有して構成されている。
【0045】
上記燃焼運転制御部43には給湯や自動運転等の各種の運転モードのシーケンスプログラムが予め定め与えられており、前記シーケンスプログラムに従って各種のセンサ出力やリモコン41の情報等を取り込んで、各種の運転モードの動作を行う。
【0046】
前記給湯単独運転監視部44は、上記燃焼運転制御部43の運転動作の情報を取り込み、この情報に基づき、注湯制御弁26が閉状態であり、かつ、水流センサ36が追い焚き循環通路24内の通水を検知しておらず、かつ、水量センサ31が給水通路13内の通水を検知しているときには、給湯単独運転が行われていると検知し、それ以外のときには給湯単独運転が行われていないと検知して給湯単独運転が行われているか否かを監視する。
【0047】
ファン駆動部47は、燃焼運転制御部43の運転動作情報を取り込み、燃焼運転制御部43がファン駆動の指令を出力したときに、燃焼ファン7を回転駆動させ、燃焼運転制御部43がファン停止の指令を出力したときに燃焼ファン7を停止させる。この実施形態例では、バーナー2の燃焼停止後に燃焼室1内の排気ガスを排出させるために燃焼ファン7を継続駆動させるためのファン駆動延長時間であるポストパージ期間(例えば、5分間)がデータ格納部46に与えられており、燃焼運転制御部43はバーナー2の燃焼を停止させた後に上記ポストパージ期間(ファン駆動延長時間)が終了したときに、燃焼ファン7の停止指令をファン駆動部47に出力し、ファン駆動部47はこの停止指令を受けて燃焼ファン7の駆動を停止する。そうすることにより、バーナー2の燃焼停止後に燃焼室1内の排気ガスをほぼ外部へ排出することができる。
【0048】
データ格納部46には、さらに、予め定めたしきい値温度Tsp(例えば、48℃)が格納されている。このしきい値温度Tspは、水位センサ28に予め定められる保証温度に基づき設定されるもので、この実施形態例では、水位センサ28の保証温度範囲内の上限値がしきい値温度Tspとしてデータ格納部46に与えられている。
【0049】
水位検出停止部48は、前記給湯単独運転監視部44の監視情報を取り込んで、この情報に基づき一缶二水路風呂給湯器(器具)が給湯単独運転を開始したと検知したときに水位センサ28による水位検出動作を停止させる水位検出停止指令信号の出力を開始する。この指令信号は燃焼運転制御部43に出力され、燃焼運転制御部43は、湯張りモードや保水モード等の水位センサ28による水位検出動作を伴う運転モードの運転中に給湯割り込みが行われて給湯単独運転が行われる場合には、上記水位検出停止指令信号を受けて、水位センサ28による水位検出動作を停止する。
【0050】
その後、給湯単独運転が停止すると、上記水位検出停止部48は、データ格納部46から上記しきい値温度Tspを取り込むと共に、風呂温度センサ37が検出出力したセンサ出力を直接検出値である検出湯水温として該風呂温度センサ37の検出湯水温の取り込みを開始し、上記しきい値温度Tspと風呂温度センサ37の検出湯水温を比較する。この比較により、上記風呂温度センサ37の検出湯水温がしきい値温度Tspよりも高温であると判断したときには、水位検出停止部48は上記水位検出停止指令信号の出力を継続して行う。
【0051】
それというのは、風呂温度センサ37が設けられている場所は水位センサ28が配設されている場所に近く、風呂温度センサ37が検出する温度は水位センサ28が配設されている場所の湯水温とほぼ等しいと考えられることから、風呂温度センサ37の検出湯水温がしきい値温度Tsp(この実施形態例ではしきい値温度Tspは前記の如く水位センサ28の保証温度の上限値)よりも高温であるということは、水位センサ28の配設位置の湯水温が水位センサ28の保証温度範囲を越えて高温であると判断され、かつ、追い焚き熱交換器4内の湯水温はより高温で対流現象が抑制されていないと判断されて、前記水位センサ28の温度依存性と追い焚き熱交換器4の高温湯水による対流現象の発生との相乗関与により水位センサ28のセンサ出力が不規則に変動しているために正確な浴槽水位を検出することができないと判断されるからである。
【0052】
給湯単独運転の停止後、時間の経過と共に追い焚き循環通路24と湯張り通路25内の湯水温は低下し、このことにより、風呂温度センサ37の検出湯水温が低下して風呂温度センサ37の検出湯水温が前記しきい値温度Tsp以下に低下したときに、水位センサ28の配設位置の湯水温が水位センサ28の保証温度範囲内の湯水温に低下し、かつ、追い焚き熱交換器4内の湯水の対流現象が抑制されたと判断し、水位センサ28のセンサ出力が安定して水位センサ28による正確な浴槽水位検出を行うことが可能となったとして、水位検出停止部48は燃焼運転制御部43への水位検出停止信号の出力を停止する。
【0053】
この実施形態例によれば、給湯単独運転監視部44と水位検出停止部48を設けたので、給湯単独運転中と、給湯単独運転後に風呂温度センサ37の検出湯水温がしきい値温度Tsp以下に低下するまで、水位センサ28による水位検出動作を停止させることができる。このことにより、水位センサ28の配設位置の湯水温が保証温度範囲を越えて高温であり、水位センサ28のセンサ出力が大きな温度依存性でもってシフトすると共に、追い焚き熱交換器4の高温加熱の湯水による対流現象の発生により水位センサ28のセンサ出力が不規則に振動している期間には、水位センサ28による水位検出動作が行われないことになり、上記水位センサ28の温度依存性と追い焚き熱交換器4内の湯水の対流現象の発生との相乗関与による水位センサ28のセンサ出力の不規則変動に起因して不正確な浴槽水位が検出され、この不正確な浴槽水位に基づいて器具運転が行われることによる器具運転の誤動作を確実に回避することができる。
【0054】
また、給湯単独運転後に燃焼ファン7の継続駆動が行われるので、燃焼ファン7の駆動による給気の通風が燃焼室1内に生じて追い焚き熱交換器4を強制的に冷却し、給湯単独運転後に燃焼ファン7を駆動させない場合に比べて、早く追い焚き熱交換器4が冷却され、追い焚き熱交換器4の湯水を早く冷ますことができ、追い焚き熱交換器4の湯水の対流現象の抑制と水位センサ28の配設位置の湯水温の低下を早めることが可能である。
【0055】
もちろん、この実施形態例では、給湯単独運転後に風呂温度センサ37の検出湯温がしきい値温度Tspに低下したときに水位センサ28による水位検出停止動作を終了させるので、上記の如く、給湯単独運転後に燃焼ファン7の継続駆動を行うことにより給湯単独運転後に水位センサ28のセンサ出力を早く安定させることができて、給湯単独運転後に燃焼ファン7の継続駆動が停止する前(ポストパージ期間が終了する前)に、短時間で、水位検出停止動作を終了させることが可能である。
【0056】
図2には第2の実施形態例において特徴的な制御構成を示すブロック構成図が実線により示されている。この第2の実施形態例が前記第1の実施形態例と異なる特徴的なことは、給湯単独運転後に水位検出停止動作を終了させるタイミングを風呂温度センサ37の検出湯水温に基づいて決定するのではなく、給湯単独運転後に燃焼ファン7の停止に同期させて水位検出停止動作を終了させる構成としたことであり、上記水位検出停止部48以外の構成は前記第1の実施形態例と同様である。なお、この実施形態例では、前記第1の実施形態例と同一名称部分には同一符号を付し、上記の如く、水位検出停止部48以外の構成部分は前記第1の実施形態例と同様であるので、その重複説明は省略する。
【0057】
水位検出停止部48は、給湯単独運転監視部44の監視情報を取り込んで、この情報により器具が給湯単独運転を開始したと検知したときに、燃焼運転制御部43へ水位検出停止信号の出力を開始する。燃焼運転制御部43は上記水位検出停止信号を受けて、湯張りモードや保水モード等の水位センサ28による水位検出動作を停止する。
【0058】
給湯単独運転の停止後、水位検出停止部48は、燃焼運転制御部43とファン駆動部47のどちらか一方又は両方の情報を取り込んで、この取り込んだ情報により燃焼ファン7の停止を検知したときに、次のような理由により水位検出停止信号の燃焼運転制御部43への出力を停止する。
【0059】
バーナー2の燃焼停止後のポストパージ期間に燃焼ファン7が継続駆動することにより、燃焼室1内には外部から取り込まれた給気による通風が生じており、この通風により給湯熱交換器3と追い焚き熱交換器4は強制的に冷やされて追い焚き熱交換器4内の湯水温が低下する。この追い焚き熱交換器4内の湯水の冷却に伴って、追い焚き循環通路24と湯張り通路25内の湯水温も低下し、かつ、追い焚き熱交換器4内の湯水温の対流現象が抑制されて追い焚き循環通路24と湯張り通路25内の湯水の不規則振動が収まるので、前記ポストパージ期間が経過する頃には、水位センサ28が配設されている配設位置の湯水温が水位センサ28の保証温度範囲内の湯水に低下し、かつ、水位センサ28の配設位置の湯水の不規則振動がなくなっていると考えられる。
【0060】
このことから、上記の如く、給湯単独運転後に燃焼ファン7の駆動が停止されたときには水位センサ28の配設位置の湯水温は水位センサ28の保証温度に低下し、かつ、水位センサ28の配設位置の湯水の不規則振動がなくなって水位センサ28のセンサ出力が安定していると判断し水位センサ28により正確な浴槽水位を検出することができるとして、水位検出停止部48は燃焼運転制御部43への水位検出停止信号の出力を停止する。この水位検出停止信号の出力停止により燃焼運転制御部43は水位センサ28による水位検出動作を再開することが可能である。
【0061】
この実施形態例によれば、水位検出停止部48は、給湯単独運転中と給湯単独運転後に燃焼ファン7の駆動が停止されるまで、水位センサ28による水位検出動作を停止させる構成にしたので、給湯単独運転に起因して水位センサ28のセンサ出力が不規則に変動すると考えられる期間、水位センサ28による水位検出動作を停止させることができる。このことから、上記水位センサ28のセンサ出力の不規則変動に起因して不正確な浴槽水位が検出され、この不正確な浴槽水位に基づいて器具運転が行われることによる器具運転の誤動作を回避することができる。
【0062】
以下に、第3の実施形態例を説明する。この実施形態例において特徴的なことは、図7の点線に示すように、燃焼ファン7の駆動によりバーナー2へ供給される給気の温度を検出する給気温センサ27を給気通路6やガスノズル19等に設けると共に、前記第2の実施形態例に示した制御構成に加えて、図2の点線に示すように、給気温に応じて給湯単独運転後のファン駆動延長時間を可変設定する延長時間設定部50を設けたことである。燃焼運転制御部43とデータ格納部46と延長時間設定部50以外の構成は前記第2の実施形態例と同様であり、その共通部分の重複説明は省略する。
【0063】
ところで、給湯単独運転が停止した後の燃焼ファン7の継続駆動により燃焼室1内に通風が生じている場合に、給気温が低いと、上記通風が追い焚き熱交換器4から奪う熱量が多くなり、追い焚き熱交換器4が冷却する速度は早くなる。反対に、給気温が高いと、上記通風が追い焚き熱交換器4から奪う熱量は少なくなり、追い焚き熱交換器4の冷却速度は遅くなる。このように、追い焚き熱交換器4の冷却速度は給気温が低下するに従って早くなり、反対に、給気温が高くなるに従って遅くなるというように、給気温により異なる。
【0064】
このため、給湯単独運転後にポストパージ期間が過ぎても、給気温が高いために追い焚き熱交換器4内の湯水が冷め切らずに高温で、追い焚き熱交換器4の高温湯水に起因した対流現象が抑制されておらず、かつ、水位センサ28の配設位置の湯水温が水位センサ28の保証温度よりも高い場合が生じる。そこで、この実施形態例では、給気温に応じて給湯単独運転後のファン駆動延長時間を可変設定する構成とした。
【0065】
データ格納部46にはファン駆動延長時間データが予め実験や演算等により求めて格納されている。このファン駆動延長時間データは、図3の(a)や(b)に示すように、給気温に対応させてファン駆動延長時間が与えられているもので、この実施形態例では、給気温が実験や演算等により求められた図3の(a)や(b)に示す給気温Ta未満の場合には、ファン駆動延長時間は予め定められる ポストパージ期間に一定であり、給気温Ta以上の場合には給気温が高くなるに 従ってファン駆動延長時間が前記ポストパージ期間から連続的又は段階的に長くなる。
【0066】
また、データ格納部46には、給湯単独運転によるバーナー2の燃焼が停止した後に燃焼ファン7を継続駆動させるためのファン駆動延長時間と、給湯単独運転以外の運転によるバーナー2の燃焼が停止した後に、燃焼ファン7を継続駆動させるためのポストパージ期間とがそれぞれ別個に格納されており、この実施形態例では、燃焼運転制御部43は、給湯単独運転のバーナー2の燃焼停止後には上記ファン駆動延長時間が終了するまで燃焼ファン7を継続駆動させ、給湯単独運転以外の運転のバーナー2の燃焼停止後には上記ポストパージ期間が終了するまで燃焼ファン7の継続駆動を行わせる。
【0067】
上記延長時間設定部50は給湯単独運転監視部44の監視情報を取り込んで、この情報により給湯単独運転中と検知したときに、データ格納部46のファン駆動延長時間データを読み出すと共に、給気温センサ27が検出出力するセンサ出力を検出給気温として取り込む。そして、上記給気温センサ27の検出給気温に対応したファン駆動延長時間を前記ファン駆動延長時間データから求めて設定し、この設定したファン駆動延長時間をデータ格納部46のファン駆動延長時間に上書きする。
【0068】
燃焼運転制御部43は給湯単独運転後に上記データ格納部46のファン駆動延長時間をデータ格納部46から読み出し、このファン駆動延長時間が終了したときに、燃焼ファン7の継続駆動により燃焼室1内の排気ガスがほぼ排出終了したと判断すると共に、追い焚き熱交換器4内の湯水温が冷却して湯水の対流現象が抑制され、かつ、水位センサ28の配設位置の湯水温が水位センサ28の保証温度に低下したので、水位センサ28のセンサ出力が安定して水位センサ28による浴槽水位検出動作により浴槽水位を正確に検出することが可能となったと判断して、燃焼ファン7の継続駆動を停止させる停止信号をファン駆動部47へ出力し、ファン駆動部47により燃焼ファン7の停止を行わせる。
【0069】
この実施形態例によれば、延長時間設定部50を設けて、給気温に応じてファン駆動延長時間を可変設定する構成にしたので、給湯単独運転後にポストパージ期間が過ぎても、給気温が高いために水位センサ28のセンサ出力が安定しない場合に、給気温に応じてファン駆動延長時間をポストパージ期間よりも長く設定することができ、ポストパージ期間を越えて燃焼ファン7をファン駆動延長時間が終了するまで、つまり、追い焚き熱交換器4内の湯水温が冷却して湯水の対流現象が抑制され、かつ、水位センサ28の配設位置の湯水温が水位センサ28の保証温度に低下するまで、継続駆動させることができる。
【0070】
この燃焼ファン7の継続駆動により、給気通風による追い焚き熱交換器4内の湯水の強制冷却を継続させることができ、通風が停止してしまう場合よりも、追い焚き熱交換器4内の湯水の冷却を早めることができる。その上、追い焚き熱交換器4内の湯水温が冷却して湯水の対流現象が抑制され、かつ、水位センサ28の配設位置の湯水温が水位センサ28の保証温度に低下して燃焼ファン7が停止するまで、水位センサ28による水位検出動作が水位検出停止部48の動作により停止されているので、前記各実施形態例同様に、水位センサ28のセンサ出力の不規則変動に起因した器具運転の誤動作を防止することができる。
【0071】
もちろん、給気温が高くても、殆どの場合、給湯単独運転後にポストパージ期間を経過する頃には、燃焼ファン7の駆動による給気通風により、湯水の対流現象はほぼ抑制され、かつ、水位センサ28の配設位置の湯水温は水位センサ28の保証温度に近く低下するので、水位センサ28のセンサ出力はほぼ安定する。このことから、給気温に関係なく、給湯単独運転後にポストパージ期間の終了と共に、燃焼ファン7の駆動を停止させ、水位センサ28による水位検出動作を再開させても器具運転が誤動作するのをほぼ回避することが可能である。
【0072】
以下に、第4の実施形態例を説明する。この実施形態例において特徴的なことは、図4に示すように、延長時間設定部50と時間計測部51と保有熱量検出部52を設けて、給湯単独運転により追い焚き熱交換器4に与えられた保有熱量を求め、該保有熱量に応じてファン駆動延長時間を可変設定する構成にしたことである。それ以外の構成は前記各実施形態例と同様であり、その共通部分の重複説明は省略する。なお、図4では、前記各実施形態例に示した燃焼運転制御部43と給湯単独運転監視部44とファン駆動部47と水位検出停止部48の図示が省略されている。
【0073】
時間計測部51は給湯単独運転監視部44の情報を取り込んで、この情報により給湯単独運転が開始されてから給湯単独運転が終了するまでの給湯単独運転時間を計測する構成を有している。
【0074】
データ格納部46にはバーナー2の燃焼により追い焚き熱交換器4に与えられる追い焚き熱交換器4の保有熱量を求める保有熱量データが予め実験や演算等により求め格納されている。上記保有熱量データは、図5に示すように、燃焼熱量毎に給湯単独運転時間に対応させて追い焚き熱交換器4の保有熱量が与えられているもので、各燃焼熱量のデータとも給湯単独運転の開始時には時間の経過と共に追い焚き熱交換器4の保有熱量は増加し、その後、追い焚き熱交換器4の保有熱量は飽和状態となる。
【0075】
保有熱量検出部52は給湯単独運転監視部44の監視情報を取り込み、この情報により給湯単独運転が行われていることを検知すると、燃焼運転制御部43からバーナー2の燃焼熱量の情報を給湯単独運転の燃焼熱量情報として取り込んで、上記データ格納部46の保有熱量データの中からバーナー2の燃焼熱量に対応するデータを選択して読み込む。そして、給湯単独運転監視部44の情報により給湯単独運転が終了したことを検知すると、前記時間計測部51が計測した給湯単独運転時間を取り込んで、この給湯単独運転時間を前記読み込んだ保有熱量データに照らし合わせて給湯単独運転による追い焚き熱交換器4の保有熱量を求め、この求めた保有熱量に対応する信号を延長時間設定部50に出力する。
【0076】
前記データ格納部46には、さらに、図6の(a)や(b)に示すようなファン駆動延長時間データが格納されている。上記ファン駆動延長時間データは給湯単独運転により追い焚き熱交換器4に与えられた保有熱量に応じて給湯単独運転後のファン駆動延長時間を可変設定するためのデータで、保有熱量に対応させてファン駆動延長時間が与えられている。この実施形態例では、予め実験や演算等により求められた図6の(a)や(b)に示す保有熱量Pc未満である場合には 、ファン駆動延長時間はポストパー ジ期間に一定であり、上記保有熱量Pc以上である場合には、追い焚き熱交換器4の保有熱量が多くなるに従ってファン駆動延長時間が上記ポストパージ期間から連続的に又は段階的に長くなる。
【0077】
それというのは、追い焚き熱交換器4の保有熱量が多い場合には、燃焼ファン7の駆動による通風により追い焚き熱交換器4が冷却されるのに時間がかかり、追い焚き熱交換器4の湯水の対流現象が抑制され、かつ、水位センサ28の配設位置の湯水温が保証温度に低下するまでの時間が多く必要であり、反対に、追い焚き熱交換器4の保有熱量が少ない場合には、追い焚き熱交換器4が早く冷却されるので、湯水の対流現象が抑制され、かつ、水位センサ28の配設位置の湯水温が保証温度になって水位センサ28のセンサ出力が安定するまでの時間が少なくて済むからである。
【0078】
ただ、バーナー2の燃焼による排気ガスを燃焼室1内から外部に排出させるためにバーナー2の燃焼停止後のポストパージ期間は燃焼ファン7の継続駆動が必要であると考えるので、この実施形態例では、ファン駆動延長時間をポストパージ期間よりも短くしない。
【0079】
延長時間設定部50は給湯単独運転監視部44の監視情報を取り込んで、給湯単独運転が終了したときに、データ格納部46から上記ファン駆動延長時間データを読み込み、前記保有熱量検出部52が検出出力した追い焚き熱交換器4の保有熱量を上記ファン駆動延長時間データに参照してファン駆動延長時間を求め設定する。この設定されたファン駆動延長時間はデータ格納部46のファン駆動延長時間(給湯単独運転以外のバーナー2の燃焼停止後のポストパージ期間とは別に格納されているファン駆動延長時間)に上書きされる。燃焼運転制御部43は給湯単独運転後にデータ格納部46のファン駆動延長時間が終了するまで燃焼ファン7の駆動を継続して行わせる。
【0080】
もちろん、この実施形態例においても、給湯単独運転が開始されてから燃焼ファン7の駆動が停止されるまで、つまり、水位センサ28のセンサ出力が安定するまで、水位検出停止部48による水位検出停止動作により水位センサ28による水位検出動作は停止されている。
【0081】
この実施形態例によれば、時間計測部51と保有熱量検出部52を設けたので、給湯単独運転により追い焚き熱交換器4に与えられる保有熱量を求めることができる。この実施形態例では、上記求めた保有熱量に応じてファン駆動延長時間を可変設定する構成にしたので、給湯単独運転による追い焚き熱交換器4の保有熱量が多い場合には、給湯単独運転後のファン駆動延長時間をポストパージ期間よりも延長させることができる。
【0082】
このため、例えば、追い焚き熱交換器4の保有熱量が多いために、給湯単独運転後にポストパージ期間が過ぎても水位センサ28のセンサ出力が安定しない場合に、水位センサ28のセンサ出力が安定するまで燃焼ファン7の継続駆動を行わせることが可能である。
【0083】
また、燃焼ファン7の駆動が停止されるまで水位センサ28による水位検出動作を停止させるので、水位センサ28のセンサ出力が安定したと判断されて燃焼ファン7の駆動が停止されるまで、水位センサ28による水位検出動作は停止されることになり、水位センサ28のセンサ出力が不規則に変動しているときには該水位センサ28のセンサ出力に基づいた器具運転は行われず、水位センサ28のセンサ出力の不規則変動に起因した器具運転の誤動作を回避することができる。
【0084】
以下に、第5の実施形態例を説明する。この実施形態例において特徴的なことは、給湯単独運転後には給湯単独運転以外の燃焼運転後のポストパージ期間よりも燃焼室1内の風量が多くなるように燃焼運転制御部43がファン駆動部47を介して燃焼ファン7の回転制御を行うことである。それ以外の構成は前記各実施形態例と同様であり、その重複説明は省略する。
【0085】
燃焼運転後のポストパージ期間に燃焼ファン7の継続駆動が行われるときには、バーナー2の燃焼運転時に燃焼室1に生じる風量よりも格段に風量が少なくなるように燃焼ファン7の回転制御が行われることが多い。この実施形態例では、前記の如く、給湯単独運転後には給湯単独運転以外の燃焼運転後のポストパージ期間よりも燃焼室1内の風量が多くなるように燃焼ファン7の回転駆動を制御するようにし、給湯単独運転後の追い焚き熱交換器4の強制冷却をより促進させる構成にした。
【0086】
この実施形態例によれば、前記各実施形態例と同様の効果を奏することができる上に、給湯単独運転後には給湯単独運転以外の燃焼運転後のポストパージ期間よりも燃焼室1内の風量が多くなるように燃焼ファン7の回転制御が行われるので、給湯単独運転後の燃焼室1内の風量が上記ポストパージ期間のときよりも多くなり、給湯単独運転後に給気通風により追い焚き熱交換器4の冷却をより効果的に行うことができる。
【0087】
なお、この実施形態例のように、給湯単独運転後に給湯単独運転以外の燃焼運転後のポストパージ期間よりも燃焼室1内の風量が多くなるように燃焼ファン7の回転制御を行った場合には、バーナー2の燃焼により生じた排気ガスが上記ポストパージ期間のときよりも早く排出されるので、ファン駆動延長時間をポストパージ期間よりも短く設定することが可能である。
【0088】
以下に、第6の実施形態例を説明する。この実施形態例が前記第1の実施形態例と異なる特徴的なことは、給湯単独運転後に水位センサ28の配設位置の湯水温を風呂温度センサ37により直接的に検出するのではなく、給気温に基づき水位センサ28の配設位置の湯水温を推定検出し、該推定検出値が予め定めたしきい値に達したときに水位検出停止動作を終了させる構成としたことである。それ以外の構成は前記第1の実施形態例と同様であり、その共通部分の重複説明は省略する。
【0089】
この実施形態例では、図1の点線に示すように、給気温検出手段である給気温センサ27を設ける。前述したように、給湯単独運転後に燃焼ファン7が継続駆動する場合には、給湯単独運転後の燃焼ファン7の駆動により燃焼室1内に給気通風が生じ、この給気通風により追い焚き熱交換器4の熱量が奪われて追い焚き熱交換器4が時間の経過と共に冷却し、この追い焚き熱交換器4の冷却により水位センサ28の配設位置の湯水温が低下する。上記給気温が低くなるに従って追い焚き熱交換器4の冷却が早くなり、水位センサ28の配設位置の湯水温の低下が早くなる。反対に、給気温が高くなるに従って追い焚き熱交換器4の冷却が遅くなり、水位センサ28の配設位置の湯水温の低下が遅くなる。
【0090】
上記のように、水位センサ28の配設位置の湯水温の低下傾向は給気温毎に異なるので、給湯単独運転が停止してからの経過時間と水位センサ28の配設位置の湯水温の低下温度の関係を給気温毎に求めることができ、このことにより、給湯単独運転が停止してからの経過時間と給気温に基づき水位センサ28の配設位置の湯水温を推定検出することが可能である。
【0091】
上記のことから、この実施形態例では、給湯単独運転後に水位センサ28の配設位置の湯水温が前記第1の実施形態例に示したしきい値温度Tspに低下するまでのしきい値時間tαを給気温毎に実験や演算等により予め求めて水温推定検出データとしてデータ格納部46に格納する。上記水温推定検出データは、給気温としきい値時間tαの関係を示すグラフデータや表データや演算式データ等のデ ータ形式によりデータ格納部46に格納される。
【0092】
水位検出停止部48は、給湯単独運転後に、給気温センサ27のセンサ出力を検出給気温として取り込み、この検出給気温を前記データ格納部46の水温推定検出データに参照し、水位センサ28の配設位置の湯温がしきい値温度Tspに低下するまでのしきい値時間tαを求める。
【0093】
また、上記水位検出停止部48は給湯単独運転が終了したときに図1の点線に示すタイマ53をリセット・駆動させて給湯単独運転が停止してからの経過時間の計測を開始させ、このタイマ53の計測時間を推定検出値として取り込んで、この推定検出値が上記しきい値時間tαに達したときに、水位センサ28の配設位置の湯水温がしきい値温度Tspに達したと判断して、水位センサ28のセンサ出力が安定したと判断して水位検出停止動作を終了させる。
【0094】
この実施形態例によれば、給湯単独運転後の経過時間と給気温に基づき水位センサ28の配設位置の湯水温を推定検出して水位検出停止動作の終了タイミングを決定する構成としたので、前記各実施形態例同様に、給湯単独運転後に水位センサ28のセンサ出力が安定するまでの期間、水位検出停止部48により水位検出を停止させることができ、給湯単独運転に起因した水位センサ28の不安定なセンサ出力によって器具が誤動作するという問題を回避することが可能である。
【0095】
また、この実施形態例では、水位センサ28の配設位置の湯水温を推定検出して水位検出停止動作の終了タイミングを決定するので、前記の如く、給湯単独運転後に燃焼ファン7の継続駆動を行うことによって水位センサ28の配設位置の湯水温をより早く冷却できて水位センサ28のセンサ出力が早く安定したときには、ポストパージ期間が終了するよりも前に、短時間で、水位検出停止動作を終了させることができる。
【0096】
以下に、第7の実施形態例を説明する。この実施形態例が前記第1の実施形態例と異なる特徴的なことは、給湯単独運転後に追い焚き熱交換器4の保有熱量に基づき水位センサ28の配設位置の湯水温を推定検出して水位検出停止動作の終了タイミングを決定する構成としたことである。それ以外の構成は前記第1の実施形態例と同様であり、その重複説明は省略する。
【0097】
前述したように、追い焚き熱交換器4の保有熱量が多くなるに従って給湯単独運転後に水位センサ28の配設位置の湯水温が予め定めたしきい値温度Tspに低下するまでの時間が多くかかり、反対に、追い焚き熱交換器4の保有熱量が少なくなるに従って給湯単独運転後に水位センサ28の配設位置の湯水温が上記しきい値温度Tspに低下するまでの時間が少なくて済み。このように、給湯単独運転が停止してからの経過時間と水位センサ28の配設位置の湯水温の低下温度との関係を追い焚き熱交換器4の保有熱量毎に求めることができ、このことにより、追い焚き熱交換器4の保有熱量と給湯単独運転後の経過時間に基づき水位センサ28の配設位置の湯水温を推定検出することが可能である。
【0098】
上記のことから、この実施形態例に示す制御装置40は、前記第4の実施形態例に示した時間計測部51と保有熱量検出部52から構成される図1の鎖線に示す保有熱量検出手段54を、図1の実線の制御構成に加えて構成されている。上記保有熱量検出手段54は、前記第4の実施形態例同様に、給湯単独運転後に追い焚き熱交換器4の保有熱量を求める。
【0099】
データ格納部46には給湯単独運転後に水位センサ28の配設位置の湯水温が予め定めたしきい値温度Tspに低下するまでの時間を追い焚き熱交換器4の保有熱量毎に実験や演算等により予め求めて水温推定検出データとして格納されている。水位検出停止部48は、上記保有熱量検出手段54が求めた保有熱量を前記データ格納部46の水温推定検出データに参照して水位センサ28の配設位置の湯水温がしきい値温度Tspに低下するのに要するしきい値時間を求める。
【0100】
また、水位検出停止部48は給湯単独運転が停止したときにタイマ53をリセット・駆動させ、給湯単独運転が停止してからの経過時間の計測を開始させ、このタイマ53の計測時間を推定検出値として取り込んで、このタイマ53の計測時間が上記しきい値時間に達したときに、水位センサ28の配設位置の湯水温がしきい値温度Tspに低下したと判断し、水位センサ28のセンサ出力が安定したと判断して水位検出停止動作を終了させる。
【0101】
この実施形態例によれば、給湯単独運転後の経過時間と追い焚き熱交換器4の保有熱量に基づき水位センサ28の配設位置の湯水温を推定検出して給湯単独運転後の水位検出停止動作の終了タイミングを決定する構成としたので、前記各実施形態例同様に、給湯単独運転後に水位センサ28のセンサ出力が安定するまでの期間、水位検出停止部48により水位検出動作を停止させることができ、給湯単独運転に起因した水位センサ28の不安定なセンサ出力によって器具が誤動作するという問題を回避することが可能である。
【0102】
以下に、第8の実施形態例を説明する。この実施形態例が前記第1の実施形態例と異なる特徴的なことは、給気温と追い焚き熱交換器4の保有熱量を組み合わせて水位センサ28の配設位置の湯水温を推定検出して給湯単独運転後の水位検出停止動作の終了タイミングを決定する構成としたことである。それ以外の構成は前記第1の実施形態例と同様であり、その共通部分の重複説明は省略する。
【0103】
この実施形態例では、図1の実線に示した制御構成に加えて、図1の二点鎖線に示す保有熱量・給気温検出手段55を設けて構成されている。この保有熱量・給気温検出手段55は、前記第4の実施形態例に示した時間計測部51と保有熱量検出部52を有して構成されており、保有熱量検出部52は、時間計測部51が計測した給湯単独運転運転時間と給気温に基づいて、給湯単独運転後に、追い焚き熱交換器4の保有熱量を求める。
【0104】
データ格納部46には、上記第7の実施形態例に示した水温推定検出データ、つまり、給湯単独運転後に水位センサ28の配設位置の湯水温がしきい値温度Tspに低下するのに要する時間が追い焚き熱交換器4の保有熱量毎に与えられているデータが格納されている。
【0105】
水位検出停止部48は、給湯単独運転後に、上記保有熱量・給気温検出手段55の保有熱量検出部52が検出した追い焚き熱交換器4の保有熱量を上記データ格納部46の水温推定検出データに参照させてしきい値時間を求める。また、水位検出停止部48は、給湯単独運転が停止したときにタイマ53をリセット・駆動させて給湯単独運転が停止してからの計測時間を計測させ、このタイマ53の計測時間を推定検出値として取り込んで、このタイマ53の計測時間が上記しきい値時間に達したときに、水位センサ28の配設位置の湯水温がしきい値温度Tspに低下したと判断し、水位センサ28のセンサ出力が安定したと判断して水位検出停止動作を終了させる。
【0106】
この実施形態例によれば、給気温を考慮した追い焚き熱交換器4の保有熱量に基づき給湯単独運転後の水位検出停止動作の終了タイミングを決定する構成としたので、前記各実施形態例同様に、給湯単独運転後に水位センサ28のセンサ出力が安定するまでの期間、水位検出停止部48により水位検出動作を停止させることができ、給湯単独運転に起因した水位センサ28の不安定なセンサ出力によって器具が誤動作するという問題を回避することが可能である。
【0107】
なお、この発明は上記各実施形態例に限定されるものではなく、様々な実施の形態を採り得る。例えば、上記第1の実施形態例では、しきい値温度は水位センサ28の保証温度範囲の上限値に設定されていたが、しきい値温度は水位センサ28の保証温度範囲の上限値に限定されるものではない。例えば、給湯単独運転後に風呂温度センサ37が検出する湯水温が水位センサ28の配設位置の湯水温よりも低い場合には、しきい値温度は水位センサ28の保証温度の上限値よりも低く設定される。
【0108】
また、風呂温度センサ37が水位センサ28の配設位置よりも追い焚き熱交換器4に近く追い焚き熱交換器4の近傍に設けられている場合には、給湯単独運転時に風呂温度センサ37が検出する検出湯水温は水位センサ28の配設位置の湯水温よりも高いので、給湯単独運転後に水位センサ28の配設位置の湯水温が水位センサ28の保証温度の上限値に低下したときに、風呂温度センサ37の検出湯水温は水位センサ28の保証温度の上限値よりも高くなる。このような場合には上記しきい値温度は水位センサ28の保証温度の上限値よりも高く設定してもよい。もちろん、しきい値温度を水位センサ28の保証温度の上限値よりも低く設定してもよい。
【0109】
さらに、上記第3や第4の実施形態例では、給湯単独運転のバーナー2の燃焼停止後に燃焼ファン7の継続駆動を行わせる期間であるファン駆動延長時間と、給湯単独運転以外の運転のバーナー2の燃焼停止後に燃焼ファン7の継続駆動を行わせるポストパージ期間とは別個に与えられていたが、上記ファン駆動延長時間だけを与えておき、給湯単独運転以外の運転のバーナー2の燃焼停止後にも上記ファン駆動延長時間の間、燃焼ファン7の継続駆動を行わせるようにしてもよい。
【0110】
上記第3や第4の実施形態例では、ファン駆動延長時間データは、図3や図6に示すように、グラフデータのデータ形式で格納されていたが、給気温(第4の実施形態例では追い焚き熱交換器4の保有熱量)に対応させてファン駆動延長時間が与えられている表データや、給気温(保有熱量)をパラメータとしてファン駆動延長時間を求める演算式データ等、グラフデータ以外のデータ形式によりファン駆動延長時間データを構成しデータ格納部46に格納してもよい。
【0111】
さらに、上記第4の実施形態例では、保有熱量データは、図5に示すように、グラフデータにより構成されていたが、表データや演算式データ等のグラフデータ以外のデータ形式で構成してデータ格納部46に格納してもよい。
【0112】
さらに、上記第4の実施形態例では、保有熱量検出部52は、燃焼運転制御部43からバーナー2の燃焼熱量の情報を取り込んでいたが、次に示す情報をバーナー2の燃焼熱量情報として取り込んでもよい。例えば、燃焼ファン7の駆動量はバーナー2の燃焼熱量に応じて可変制御されるものなので、燃焼ファン7の駆動量はバーナー2の燃焼熱量に対応している。このことから、保有熱量検出部52は燃焼ファン7の駆動量をバーナー2の燃焼熱量情報として取り込んでもよい。
【0113】
また、バーナー2の燃焼熱量はバーナー2に供給される燃料ガスの供給量により制御しており、この燃焼ガスの供給量は比例弁12の開弁量により制御しているので、保有熱量検出部52は比例弁12の開弁量を制御している比例弁駆動電流をバーナー2の燃焼熱量情報として取り込んでもよいし、上記比例弁12の開弁量に応じてガス供給通路8を流れる燃料ガス流量が可変するので、ガス供給通路8に燃料ガス流量を検出するためのフローセンサを設け、保有熱量検出部52は上記フローセンサにより検出される燃焼ガスの流量をバーナー2の燃焼熱量情報として取り込んでもよい。
【0114】
さらに、給湯単独運転中に、入水温度センサ32が検出する入水温度Tinと、リモコン41に設定されている給湯設定温度Tsと、水量センサ31が検出する 入水量Qと、出湯温度センサ38が検出した出湯温度Toutとをバーナー2の燃 焼熱量情報として取り込んで、予め与えられている燃焼熱量検出用データ(例えば、P=(Ts−Tin)・Q+(Tout−Tin)・Q)に基づきバーナー2の燃焼熱量Pを保有熱量検出部52が直接に求めてもよい。さらに、保有熱量検出部52は給気温センサ27が検出する給気温を考慮して給湯単独運転中の追い焚き熱交換器4の保有熱量をより正確に求めるようにしてもよい。
【0115】
さらに、上記各実施形態例では、水位検出停止部48は給湯単独運転が行われている全期間に渡り水位センサ28による水位検出動作を停止させていたが、水位検出停止部48は給湯単独運転が行われている期間のうち予め定めた一部の期間だけ水位センサ28による水位検出動作を停止させるようにしてもよい。
【0116】
例えば、水位センサ28による水位検出動作の停止を判断する停止しきい値温度Tstを予め定めておき、水位検出停止部48は給湯単独運転中に風呂温度センサ37が検出する検出温度と上記停止しきい値温度Tstを比較して風呂温度センサ37の検出温度が停止しきい値温度Tst以上になったと判断したときに、水位センサ28のセンサ出力が不規則に変動し始め、この水位センサ28のセンサ出力の不規則変動に起因して器具が誤動作を起こす虞があると判断し、水位センサ28による水位検出動作を停止させるようにしてもよい。
【0117】
また、給湯単独運転が開始されバーナー2の燃焼により追い焚き熱交換器4が加熱され始めて水位センサ28のセンサ出力が不規則に変動し始めると考えられる、例えば、図5に示す時間tbをしきい値時間として予め定めておき、水位検 出停止部48は、給湯単独運転が開始されてから上記しきい値時間が経過したときに、水位センサ28のセンサ出力が不規則に変動し始め、この水位センサ28のセンサ出力の不規則変動に起因して器具が誤動作を起こす虞があると判断し、水位センサ28による水位検出動作を停止させるようにしてもよい。また、給湯単独運転が開始されてから水位センサ28のセンサ出力が不安定になるまでの時間は追い焚き熱交換器4の保有熱量に応じて可変することから、前記した保有熱量検出部52を設けて、この保有熱量検出部52が検出する追い焚き熱交換器4の保有熱量が多くなるに従って上記しきい値時間tbを短くなる方向 に可変制御してもよい。
【0118】
さらに、水位検出停止部48は給湯単独運転中には水位検出停止動作を行わず、給湯単独運転後に予め定めた期間が終了するまでの期間だけ、水位センサ28による水位検出動作を停止させるようにしてもよい。
【0119】
さらに、上記各実施形態例に示した器具は、バーナー2の燃焼後に、燃焼ファン7の駆動を継続して行うポストパージ期間が与えられていたが、この発明は上記ポストパージ期間が設定されていない器具にも適用することができる。例えば、上記第1の実施形態例に示すように、水位検出停止部48を設けて、給湯単独運転後に風呂温度センサ37の検出湯水が予め定めたしきい値温度に低下するまで水位センサ28による水位検出動作を停止させることにより、上記各実施形態例同様に、水位センサ28のセンサ出力の不規則変動に起因した器具運転の誤動作を回避することが可能である。
【0120】
また、前記各実施形態例に示すように、給湯単独運転後のファン駆動延長時間を予め定めて与えておき、給湯単独運転後に上記ファン駆動延長時間が終了するまで燃焼ファン7の継続駆動を行わせることにより、給湯単独運転により加熱された追い焚き熱交換器4を燃焼ファン7の駆動による通風により強制的に冷却させることができる。その上、給湯単独運転後に風呂温度センサ37が検出した湯水温がしきい値温度に低下するまでの期間、あるいは、燃焼ファン7が駆動している期間は水位検出停止部48により水位検出動作を停止させることができるので、水位センサ28の不規則変動に起因した器具の誤動作を回避することができる。
【0121】
さらに、上記各実施形態例では、給湯単独運転後に予め定めたファン駆動延長時間が経過したときに燃焼ファン7の継続駆動を停止していたが、風呂温度センサ37の検出湯水温が予め定めたしきい値温度に低下したときに燃焼ファン7の継続駆動を停止するようにしてもよい。
【0122】
さらに、上記第1と第6と第7と第8の各実施形態例では、給湯単独運転後に水位センサ28の配設位置の湯水温の直接検出値又は推定検出値がしきい値に達したときに水位検出停止動作を終了させていたが、上記直接検出値又は推定検出値がしきい値に達してから予め定めた余裕期間を経過したときに、水位検出停止動作を終了させるようにしてもよい。
【0123】
さらに、上記第2と第3と第4と第5の各実施形態例では、給湯単独運転後に燃焼ファン7の継続駆動が停止したときに水位検出停止動作を終了させていたが、燃焼ファン7の継続駆動が終了してから予め定めた余裕期間が経過したときに水位検出停止動作を終了させるようにしてもよい。
【0124】
さらに、上記各実施形態例では、給湯単独運転監視部44は、注湯制御弁26が閉状態であり、かつ、水流センサ36が追い焚き循環通路24内の通水を検知しておらず、かつ、水量センサ31が給水通路13内の通水を検知しているときには、給湯単独運転が行われていると検知していたが、給湯単独運転監視部44は、水量センサ31と給湯確認スイッチ35が共に通水を検知し、かつ、上記水量センサ31が検出している給水通路13の水流検出値と、給湯確認スイッチ35が検出している給湯通路14の流量検出値とがほぼ等しいときに、給湯単独運転が行われていると検知するようにしてもよい。さらに、給湯単独運転監視部44は、給湯確認スイッチ35が給湯通路14の通水を検知し、かつ、注湯制御弁26が開状態のときの予め定まる湯張り通路25の水圧(動圧)を水位センサ28が検知しておらず、かつ、循環ポンプ20が駆動していないときには、給湯単独運転が行われていると検知するようにしてもよい。
【0125】
さらに、上記各実施形態例は図7に示す器具を例にして説明したが、この発明は一缶二水路タイプの風呂給湯器で、追い焚き循環通路に追い焚き循環通路温度センサが設けられ、また、追い焚き循環通路又は追い焚き循環通路に連通する連通通路に浴槽の水位を水圧により検出する水位センサが設けられているものであれば、図7以外のシステム構成の一缶二水路風呂給湯器にも適用することができる。例えば、図7に示す湯張り通路25が省略されて水位センサ28が追い焚き循環通路24に配設されている一缶二水路風呂給湯器にも適用することができる。この場合にも、上記各実施形態例同様に水位センサ28による水位検出動作の停止を行うことにより、給湯単独運転による追い焚き熱交換器4の滞留湯水の高温加熱に起因した水位センサ28のセンサ出力の不規則変動に因る器具の誤動作を防止することができる。
【0126】
【発明の効果】
この発明によれば、給湯単独運転監視部と水位検出停止部を設けたので、給湯単独運転後に予め定めた期間、水位センサの配設位置の水温の直接検出値又は推定検出値が予め定めたしきい値に達するまで、あるいは、水位センサの配設位置の水温の直接検出値又は推定検出値が予め定めたしきい値に達してから予め定めた余裕期間が経過するまで、あるいは、燃焼ファンの継続駆動が停止するまで、あるいは、燃焼ファンの継続駆動が停止してから予め定めた余裕期間が経過するまでの期間が終了するまで、上記水位検出停止部により水位検出動作を停止させることができる。
【0127】
上記水位検出停止部により水位検出動作が停止される期間は、給湯単独運転時の追い焚き熱交換器の加熱に起因して水位センサのセンサ出力が不規則に変動すると判断される期間であることから、上記の如く、その期間に水位検出動作を停止することにより、上記不規則変動している水位センサ出力に基づき不正確な浴槽水位が検出され該不正確な浴槽水位に基づいて器具運転が行われ器具が誤動作するという問題を回避することができる。
【0128】
給湯単独運転後にファン駆動延長時間を経過するまで、燃焼ファンを継続駆動させるファン駆動部を設けたものにあっては、給湯単独運転により加熱された追い焚き熱交換器を燃焼ファンの駆動による給気通風により強制冷却させることができる。このことから、給湯単独運転後に燃焼ファンを駆動させない場合よりも、追い焚き熱交換器を早く冷却させることができ、このことにより、給湯単独運転後に水位センサのセンサ出力が安定するまでの期間を短縮させることが可能である。
【0129】
上記ファン駆動延長時間を可変設定する延長時間設定部を設けた発明にあっては、給湯単独運転に起因して不規則変動していた水位センサのセンサ出力が給湯単独運転後に安定するまでの期間を決定する給気温、あるいは、追い焚き熱交換器の保有熱量に応じて、ファン駆動延長時間を可変設定することができるので、ファン駆動延長時間を水位センサのセンサ出力が安定するまでの期間により正確に合わせることができる。
【0130】
このことにより、次のような問題を回避することが可能である。例えば、ファン駆動延長時間を長い一定時間に設定したために、給湯単独運転後に水位センサのセンサ出力が安定してからファン駆動延長時間が終了するまでの時間が開いてしまい、器具運転の無駄が生じたり、反対に、ファン駆動延長時間を短い一定時間に設定したために、水位センサのセンサ出力が安定する前にファン駆動延長時間か終了してしまい、水位センサの不規則変動しているセンサ出力により器具が誤動作してしまうという問題が生じるが、上記のように、給湯単独運転後に水位センサのセンサ出力が安定するまでの期間に合うようにファン駆動延長時間を可変設定することにより、上記のような器具運転の無駄や器具の誤動作を回避することが可能である。
【図面の簡単な説明】
【図1】水位センサの配設位置の水温の直接検出値又は推定検出値に基づき水位検出停止動作を行う一缶二水路風呂給湯器の実施形態例を示すブロック構成図である。
【図2】第2と第3の実施形態例を示すブロック構成図である。
【図3】給気温に対応させてファン駆動延長時間が与えられているファン駆動延長時間データの一例を示すグラフである。
【図4】第4の実施形態例において特徴的な制御構成部分を抜き出して示したブロック構成図である。
【図5】給湯単独運転により追い焚き熱交換器に与えられる追い焚き熱交換器の保有熱量の時間的変化の一例を燃焼熱量毎に示すグラフである。
【図6】追い焚き熱交換器の保有熱量に応じてファン駆動延長時間が与えられているファン駆動延長時間データの一例を示すグラフである。
【図7】一缶二水路風呂給湯器のシステム構成例を示す説明図である。
【図8】自動運転動作の一例を示すフローチャートである。
【図9】水位センサのセンサ出力と浴槽水量の関係を示すP−Qデータの一例を示すグラフである。
【図10】従来の課題を示す説明図である。
【符号の説明】
2 バーナー
3 給湯熱交換器
4 追い焚き熱交換器
7 燃焼ファン
13 給水通路
14 給湯通路
24 追い焚き循環通路
25 湯張り通路
28 水位センサ
37 風呂温度センサ
44 給湯単独運転監視部
46 データ格納部
47 ファン駆動部
48 水位検出停止部
50 延長時間設定部
51 時間計測部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a canned two-way bath water heater in which a hot water supply heat exchanger and a reheating heat exchanger are integrated, and the integrated heat exchanger is heated by a common burner.
[0002]
[Prior art]
FIG. 7 shows a system configuration example of a one-can two-water bath water heater developed by the applicants. In the figure, this single can two water bath water heater (equipment) has a combustion chamber 1, a burner 2 is disposed in the combustion chamber 1, and a hot water supply heat exchanger 3 and a follower are disposed above the burner 2. A soaking heat exchanger 4 is provided. These hot water supply heat exchangers 3 and reheating heat exchangers 4 are integrated. That is, a hot water supply side pipe is penetrated and attached to a plurality of common fin plates 5 to form a hot water supply heat exchanger 3. The burner 2 is configured to heat both the hot water supply heat exchanger 3 and the reheating heat exchanger 4.
[0003]
The combustion chamber 1 on the lower side of the burner 2 communicates with an air supply passage 6, and a combustion fan 7 is incorporated in the air supply passage 6. Then, air is sent to the burner 2 and exhaust gas generated by the combustion of the burner 2 is discharged to the outside from the exhaust passage 9 communicating with the combustion chamber 1 above the burner 2.
[0004]
A gas nozzle 19 is disposed opposite to the gas inlet of the burner 2, and a gas supply passage 8 for introducing fuel gas is connected to the gas nozzle 19, and the fuel gas introduced by the gas supply passage 8 is connected to the gas nozzle 19. Is supplied to the burner 2 via the gas nozzle 19. The gas supply passage 8 is provided with electromagnetic valves 10, 11a, 11b for opening and closing the passage, and a proportional valve 12 for controlling the gas supply amount by the valve opening amount.
[0005]
One end side of the water supply passage 13 is connected to the inlet side of the hot water supply heat exchanger 3, one end side of the hot water supply passage 14 is connected to the outlet side of the hot water supply heat exchanger 3, and the other end side of the water supply passage 13 is It is connected to a water supply source through an external pipe, and the other end of the hot water supply passage 14 is led to a desired hot water supply place such as a kitchen through the external pipe. Further, a bypass passage 15 and a bypass passage 16 are provided to short-circuit the water supply passage 13 on the inlet side and the hot water supply passage 14 on the outlet side of the hot water supply heat exchanger 3, and the bypass passage 16 is opened and closed. An electromagnetic valve 17 is interposed.
[0006]
One end of a pipe 18 is connected to the inlet side of the reheating heat exchanger 4, and the other end of the pipe 18 is connected to the discharge port of the circulation pump 20. One end side of the return pipe 21 is connected, and the other end side of the return pipe 21 is connected to the bathtub 22. In addition, one end side of a pipe line 23 is connected to the outlet side of the reheating heat exchanger 4, and the other end side of the pipe line 23 is connected to the bathtub 22. The return pipe 21, the pipe 18, the reheating heat exchanger 4, and the line 23 constitute a recirculation circulation path 24.
[0007]
The pipe 18 of the recirculation circulation passage 24 and the hot water supply passage 14 are communicated with each other by a hot water filling passage 25, and the hot water filling passage 25 has a pouring control valve 26 for controlling the opening and closing of the passage, and the water level of the bathtub 22. And a water level sensor 28 that detects water pressure by water pressure.
[0008]
In the figure, 30 is an air volume sensor that detects the air volume in the combustion chamber 1, 31 is a water volume sensor that is provided in the water supply passage 13 and detects the flow rate of the water supply, and 32 is water in the water supply passage 13. A water temperature sensor for detecting temperature, 34 is a flow rate control valve that is provided in the hot water supply passage 14 to control the flow rate of hot water supply, and 35 is provided in the hot water supply passage 14 to indicate that hot water is being supplied. A hot water supply confirmation switch to be detected, 36 is a water flow sensor for detecting the water flow in the recirculation circulation passage 24, and 37 is a recirculation circulation passage for detecting the hot water in the recirculation circulation passage 24 as a bath water temperature (bath temperature). A bath temperature sensor, which is a temperature sensor, is a hot water temperature sensor 38 that detects the temperature of hot water produced by the hot water supply heat exchanger 3.
[0009]
A control device 40 is provided in the single can two water bath hot water heater, and a remote controller 41 is connected to the control device 40. The remote controller 41 includes a hot water supply temperature setting means for setting the hot water supply temperature, a bath temperature setting means for setting the bath temperature of the bathtub 22, a bath water level setting means for setting the hot water level of the bathtub 22, and the bathtub 22. An automatic operation button for starting automatic operation of a series of baths from hot water filling to heat insulation is provided.
[0010]
The control device 40 takes in sensor output signals of various sensors and information from the remote controller 41, and controls operations in various operation modes such as hot water supply operation and automatic bath operation in accordance with a sequence program given in advance as follows. To do.
[0011]
For example, when a faucet of a hot water supply passage led to a kitchen or the like is opened, water flows into the water supply passage 13 from a water supply source, and the water amount sensor 31 detects water passing through the water supply passage 13, the appliance operates in the hot water supply mode. Start. First, the rotational drive of the combustion fan 7 is started, and both or one of the solenoid valves 11a and 11b and the solenoid valve 10 are opened to supply the fuel gas to the burner 2 through the gas supply passage 8, which is not shown. The burner 2 is ignited by ignition means to start combustion.
[0012]
Then, the amount of combustion heat of the burner 2 is controlled by controlling the valve opening amount of the proportional valve 12 (controlling the amount of gas supplied to the burner 2) so that the hot water temperature becomes the hot water set hot water temperature set in the remote controller 41. The hot water supply heat exchanger 3 is heated by the combustion flame of the burner 2 to produce hot water at a set temperature, and this hot water is supplied to the hot water supply place through the hot water supply passage 14.
[0013]
When the use of hot water is finished and the faucet is closed, water flow to the hot water supply heat exchanger 3 is stopped, and the electromagnetic valve 10 is closed when the water amount sensor 31 no longer detects water flow through the water supply passage 13. The combustion of the burner 2 is stopped. Thereafter, when a post-purge period (for example, 5 minutes) in which the exhaust gas in the combustion chamber 1 is almost finished has elapsed, the rotation drive of the combustion fan 7 is stopped and the operation in the hot water supply mode is ended, and the next hot water supply Prepare for.
[0014]
Further, when an automatic bath operation is commanded by the automatic operation button of the remote controller 41, first, the operation of the hot water filling mode is started as shown in step 101 of the flowchart of FIG. For example, when the pouring control valve 26 is opened and when the pouring control valve 26 is opened, water flows from the water supply source into the water supply passage 13 and the water amount sensor 31 detects the water flow through the water supply passage 13. The combustion of the burner 2 is started similarly to the operation.
[0015]
Hot water produced in the hot water supply heat exchanger 3 by the combustion flame of the burner 2 is sent to the recirculation circulation passage 24 through the hot water supply passage 14 and the hot water filling passage 25 in order, and the hot water flowing into the recirculation circulation passage 24 returns. It is dropped into the bathtub 22 by two paths, a path passing through the pipe 21 and a path passing through the reheating heat exchanger 4. When the water level of the bathtub 22 detected by the water level sensor 28 reaches the set water level set in the remote controller 41, the hot water control valve 26 is closed and the solenoid valve 10 is closed to stop the combustion of the burner 2 to fill the hot water. End mode operation.
[0016]
After the operation of the hot water filling mode is finished, as shown in step 102 of FIG. 8, the circulation pump 20 is driven to recirculate hot water in the bathtub 22 and circulate it through the circulation passage 24 to stir the hot water in the bathtub 22. Then, the bath temperature of the bathtub 22 is detected by the bath temperature sensor 37. In step 104, it is determined whether or not the detected bath temperature Th is lower than the set temperature Ts of the bath. The bath temperature Th is lower than the set temperature Ts. When it is determined that the value is low, the process proceeds to step 110, and the operation in the chase mode is started.
[0017]
For example, the circulation pump 20 is continuously driven to recirculate hot water in the bathtub 22 through the recirculation circulation passage 24 and start combustion of the burner 2, and the reheating heat exchanger 4 is driven by the combustion flame of the burner 2. The circulating hot water is heated and reheated. When it is determined in step 104 that the bath temperature Th detected by the bath temperature sensor 37 has reached the set temperature Ts, the combustion of the burner 2 is stopped and the operation in the reheating mode is ended.
[0018]
And as shown to step 105, while stopping the circulation pump 20, the time measurement by the timer incorporated in the control apparatus 40 is started, and operation | movement of a heat retention mode is started.
[0019]
For example, as shown in step 106, it is determined whether or not the measurement time tc of the timer has reached a predetermined set time ts (for example, 30 minutes). When it is determined that the measurement time tc has reached the set time ts, the operation from step 102 to step 105 is performed, and when the bath temperature Th is lower than the set temperature Ts, retreat is performed. Thus, the bath temperature Th can be maintained at the set temperature Ts.
[0020]
Further, during the period in which it is determined in step 106 that the timer measurement time tc has not reached the set time ts, the water retention mode operation shown in steps 107, 108, and 109 is performed.
[0021]
First, in step 107, the sensor output detected by the water level sensor 28 is detected. The water level sensor 28 detects the water pressure of the hot water in the hot water passage 25 as the water pressure of the bathtub 22 and outputs the water pressure of the bathtub water level as a sensor output. PQ data as shown by the solid line A in FIG. 9 representing the relationship between the sensor output (P) detected by the water level sensor 28 and the amount of water (Q) in the bathtub 22 is obtained and given to the control device 40 in advance. The water level of the bathtub 22 is detected by referring to the PQ data with respect to the sensor output of the water level sensor 28.
[0022]
When it is determined in step 108 whether or not the detected water level Pk of the bathtub 22 is lower than the set water level Ps, and it is determined that the water level Pk of the bathtub 22 is not lower than the set water level Ps. When the water level detection operation by the water level sensor 28 is repeated by the operation after the step 106, and when it is determined that the water level Pk of the bathtub 22 is lower than the set water level Ps due to the use of hot water by the bather, etc. In Step 109, the hot water filling operation is started, the hot water is poured into the bathtub 22, and the water level Pk of the bathtub 22 is raised to the set water level Ps.
[0023]
The operation in the water retention mode is repeatedly performed until the measurement time tc of the timer reaches the set time ts.
[0024]
The operation in the heat retention mode including the water retention operation is performed over a predetermined period (for example, for 4 hours after the bath has boiled up).
[0025]
As described above, the single can two water bath hot water heater is a system in which the integrated hot water supply heat exchanger 3 and the reheating heat exchanger 4 are heated by using the common burner 2, and thus are provided separately. Compared with the method in which the hot water supply heat exchanger and the reheating heat exchanger are each heated by combustion using separate burners, the configuration of the apparatus can be simplified, and as a result, the apparatus can be downsized and the cost can be reduced. Become.
[0026]
[Problems to be solved by the invention]
By the way, if the single-can two-water bath water heater does not perform the reheating operation and performs the hot water supply single operation only with the hot water supply, an accurate water level of the bathtub 22 cannot be obtained immediately after the hot water supply single operation for the following reasons. It was found by the applicant's experiment.
[0027]
During the hot water supply single operation, hot water remains in the reheating heat exchanger 4 and when the burner 2 is burned for the hot water operation, not only the hot water heat exchanger 3 but also the hot water heat exchanger 3 is driven by the combustion flame of the burner 2. Since the soaking heat exchanger 4 is also heated, the staying hot water in the reheating heat exchanger 4 is heated. For this reason, the temperature of the stagnant hot water in the reheating heat exchanger 4 rises to a boiling state.
[0028]
The hot water heated at a high temperature in the reheating heat exchanger 4 flows out to both sides of the inlet line 18 and the outlet line 23 of the reheating heat exchanger 4 by a convection phenomenon, and this reheating heat exchanger. The temperature of the hot water in the hot water supply passage 25 which is a communication passage communicating with the reheating circulation passage 24 and the reheating circulation passage 24 by the heat of the hot hot water flowing out from the hot water 4 is considerably high, for example, 70 to 80 ° C. To rise.
[0029]
As described above, when the hot water temperature in the hot water filling passage 25 rises to a high temperature, a predetermined guaranteed temperature range of the water level sensor 28 (a water temperature range in which accurate water level detection is guaranteed (for example, 5 to 48). ))), The water level sensor 28 cannot detect an accurate water pressure, and the sensor output of the water level sensor 28 changes the water level of the bathtub 22 as shown in FIG. In spite of this, it shifts in the direction of ascending or descending with a large temperature dependency.
[0030]
In addition, as described above, hot water heated at a high temperature in the reheating heat exchanger 4 flows out to both sides of the inlet line 18 and the outlet line 23 of the reheating heat exchanger 4, and the line 18 Then, convection in which warm hot water flows into the reheating heat exchanger 4 from both sides of the pipe line 23 is generated, and the convection of the hot water causes irregular vibrations in the reheating circulation passage 24 and the hot water passage 25. The irregular vibration of the hot water in the hot water filling passage 25 causes the sensor output of the water level sensor 28 to vibrate irregularly as shown in FIG.
[0031]
As described above, when the hot water in the reheating heat exchanger 4 is heated at a high temperature during the hot water supply single operation, the rise in the temperature of the hot water in the hot water filling passage 25 and irregular vibrations are synergistically involved, and the water level sensor 28. The sensor output fluctuates irregularly, and it is difficult to accurately detect the water level of the bathtub 22 based on the sensor output of the water level sensor 28.
[0032]
As described above, it becomes difficult to accurately detect the water level of the bathtub 22 by hot water supply single operation. For example, when a hot water supply interruption is performed and the hot water supply single operation is performed during the operation in the heat retention mode of automatic operation, the water level sensor When the output of 28 shifts upward, a water level higher than the water level of the bathtub 22 is detected, and a malfunction occurs such that the water retention operation is not performed even though the water level of the bathtub 22 is lower than the set water level. May end up. Further, when the output of the water level sensor 28 shifts downward, a water level lower than the water level of the bathtub 22 is detected, and the water retention operation is performed even though the water level of the bathtub 22 is not lower than the set water level. There is.
[0033]
The present invention has been made in order to solve the above-described problems, and its purpose is to provide a single can two water channel that can prevent the appliance from malfunctioning due to irregular fluctuations in the water level sensor output caused by hot water single operation. The purpose is to provide a bath water heater.
[0034]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following configuration as means for solving the above problems. That is, the first invention is a hot water heat exchanger that heats water supplied from the water supply passage and sends it to the hot water supply passage, and circulating hot water that is incorporated in the recirculation circulation passage of the bathtub hot water and circulates in the recirculation circulation passage. A reheating heat exchanger that performs reheating, a recirculation circulation path temperature sensor that is disposed in the recirculation circulation passage to detect hot water temperature, and a communication passage that communicates with the recirculation circulation passage or the recirculation circulation passage. A water level sensor for detecting the water level of the hot water in the bathtub by water pressure, the hot water heat exchanger and the reheating heat exchanger are integrated, and the integrated hot water supply heat exchanger and reheating heat exchanger are heated. In a single can / two water channel type bath water heater in which a common burner is provided and the water level detection operation is performed by the water level sensor at a predetermined timing, the single can / two water bath water heater performs a chasing operation. A hot water supply single operation monitoring unit for monitoring whether or not the hot water supply single operation is performed, or a direct detection value that directly detects the water temperature at the position where the water level sensor is disposed after the hot water supply single operation is stopped. The water level is detected by the water level sensor until the estimated detection value obtained by estimating the water temperature at the position where the water level sensor is arranged reaches a predetermined threshold value or until a predetermined margin period elapses after the threshold value is reached. A means for solving the above problems is provided with a configuration in which a water level detection stop unit for stopping the operation is provided.
[0035]
The second invention is a hot water heat exchanger that heats water supplied from the water supply passage and sends it to the hot water supply passage, and recirculation of the circulating hot water that is incorporated in the recirculation circulation passage of the bathtub hot water and circulates in the recirculation circulation passage. And a water level sensor that is disposed in the recirculation passage or the communication passage communicating with the recirculation passage and detects the water level of the hot water in the bathtub by water pressure, the heat supply heat exchanger and the reheating heat exchanger. The fired heat exchanger is integrated, a common burner for heating the integrated hot water supply heat exchanger and the reheating heat exchanger, and a combustion fan for supplying and exhausting the burner are provided, and are determined in advance. In a single can / two water channel type bath water heater where the water level detection operation is performed by the above water level sensor at the same time, the single water / two water channel bath water heater performs a hot water supply independent operation without performing a reheating operation. A hot water single operation monitoring section for monitoring whether or not; a fan drive section for continuously driving the combustion fan after the hot water single operation is stopped and cooling the heat exchanger; and disposing a water level sensor after the hot water single operation is stopped. The direct detection value obtained by directly detecting the water temperature at the position or the estimated detection value obtained by estimating the water temperature at the position where the water level sensor is installed reaches a predetermined threshold value or after reaching the above threshold value. And a water level detection stop unit that stops the water level detection operation by the water level sensor until a predetermined margin period elapses.
[0036]
In the third invention, the means for directly detecting the water temperature at the position where the water level sensor is arranged constituting the first or second invention is constituted by a recirculation circulation path temperature sensor. The means for estimating and detecting the water temperature is based on the amount of heat stored in the reheating heat exchanger, which is obtained using at least the parameters of the hot water single operation time during which the hot water single operation is performed and the combustion operation information of the hot water single operation. Retained heat amount detection means for estimating and detecting the water temperature at the installation position, or a supply air temperature detection means for estimating and detecting the water temperature at the installation position of the water level sensor based on the supply air temperature of the single can two water bath hot water heater It is constituted by any one of the retained heat quantity / air temperature detection means for estimating and detecting the water temperature at the position where the water level sensor is arranged by combining the retained heat quantity of the heat exchanger and the supply air temperature. And a means to solve the problem with the formation.
[0037]
A fourth aspect of the invention relates to a hot water heat exchanger that heats water supplied from the water supply passage and sends it to the hot water supply passage, and recirculation of the circulating hot water that is incorporated in the recirculation circulation passage of the bathtub hot water and circulates in the recirculation circulation passage. And a water level sensor that is disposed in the recirculation passage or the communication passage communicating with the recirculation passage and detects the water level of the hot water in the bathtub by water pressure, the heat supply heat exchanger and the reheating heat exchanger. The fired heat exchanger is integrated, a common burner for heating the integrated hot water supply heat exchanger and the reheating heat exchanger, and a combustion fan for supplying and exhausting the burner are provided, and are determined in advance. In a single can / two water channel type bath water heater where the water level detection operation is performed by the above water level sensor at the same time, the single water / two water channel bath water heater performs a hot water supply independent operation without performing a reheating operation. A hot water supply single operation monitoring unit for monitoring whether or not; a fan drive unit for continuously driving the combustion fan until a predetermined fan drive extension time elapses after the hot water supply single operation is stopped; A water level detection stop unit that stops the water level detection operation by the water level sensor until the drive is stopped or until a predetermined margin period has elapsed after the drive is stopped is provided as a means for solving the above problems. .
[0038]
According to a fifth aspect of the present invention, in addition to the configuration of the fourth aspect of the present invention, an air temperature sensor for detecting the air temperature of the single can two water channel bath water heater is provided, and based on the air temperature detected by the air temperature sensor. Fan driving extension time data for setting a fan driving extension time is given, and the problem is solved by providing an extension time setting unit that variably sets the fan driving extension time according to the air temperature detected by the air temperature sensor. As a means.
[0039]
In addition to the configuration of the fourth aspect of the invention, a sixth aspect of the invention includes time measuring means for measuring a time during which the single can two-channel bath water heater is performing a single hot water supply operation; at least combustion heat amount information of the single hot water supply operation; The stored heat amount data for obtaining the retained heat amount of the reheating heat exchanger given to the reheating heat exchanger by the combustion heat of the burner by the hot water supply independent operation with the hot water independent operation time as a parameter is given, and the above-mentioned for obtaining the retained heat amount data With the configuration provided with an extended time setting unit that takes in parameter information at the time of hot water supply single operation and obtains the retained heat amount of the reheating heat exchanger from the retained heat amount data, and variably sets the fan drive extension time according to the retained heat amount As a means to solve the problem.
[0040]
In the invention of the above configuration, for example, the hot water supply single operation monitoring unit monitors whether or not the single can two-channel bath water heater is performing the hot water single operation, and the hot water single operation is terminated by the monitoring information of the hot water single operation monitoring unit Until the direct detection value or the estimated detection value of the water temperature at the position where the water level sensor is disposed reaches the threshold value or after the direct detection value or the estimated detection value reaches the threshold value. The water level detection stop unit detects the water level with the water level sensor until the specified margin period elapses, until the combustion fan drive stops, or until the predetermined margin period elapses after the combustion fan drive stops. Stop operation.
[0041]
When the direct detection value or the estimated detection value reaches a threshold value after the hot water supply single operation, or when a margin period elapses after the direct detection value or the estimated detection value reaches the threshold value, or hot water supply When the combustion fan stops after the stand-alone operation, or when a predetermined margin period has elapsed after the stop of the combustion fan, the hot water temperature of the reheating heat exchanger that has become high due to the hot water supply stand-alone operation is cooled. Since the hot water in the recirculation passage and the communication passage communicating with the recirculation passage is cooled and the sensor output of the water level sensor is stabilized, the sensor output of the water level sensor is stabilized as described above. Until the detection value or estimated detection value reaches the threshold value, or until the margin period elapses after the direct detection value or estimated detection value reaches the threshold value, or hot water supply alone The water level detection operation by the water level sensor is stopped until the combustion fan stops after the rotation or until the predetermined margin period elapses after the combustion fan stops. It is possible to avoid the detection of an incorrect bath water level by the sensor output of the water level sensor, and the malfunction of the appliance operation due to the incorrect detection bath water level is prevented.
[0042]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0043]
The single can two-way bath water heater of the first embodiment has the system configuration shown in FIG. 7, and FIG. 1 shows a block configuration showing a characteristic control configuration in this embodiment. Since the system configuration shown in FIG. 7 has been described above, a duplicate description thereof will be omitted.
[0044]
As shown in FIG. 1, the control device 40 that is characteristic in this embodiment includes a combustion operation control unit 43, a hot water supply single operation monitoring unit 44, a data storage unit 46, a fan drive unit 47, and a water level detection stop. Part 48.
[0045]
The combustion operation control unit 43 is preliminarily provided with sequence programs for various operation modes such as hot water supply and automatic operation. According to the sequence program, various sensor outputs, information from the remote controller 41, and the like are taken in and various operations are performed. Perform mode operation.
[0046]
The hot water supply independent operation monitoring unit 44 takes in information on the operation of the combustion operation control unit 43, and based on this information, the hot water control valve 26 is closed, and the water flow sensor 36 is replenished. When water flow in the water supply sensor 31 is not detected and the water amount sensor 31 detects water flow in the water supply passage 13, it is detected that the hot water supply single operation is being performed, and otherwise, the hot water supply single operation is performed. It is detected that the hot water supply is not operated, and whether or not the hot water supply single operation is being performed is monitored.
[0047]
The fan drive unit 47 captures the operation information of the combustion operation control unit 43, and when the combustion operation control unit 43 outputs a fan drive command, the fan drive unit 47 rotates the combustion fan 7, and the combustion operation control unit 43 stops the fan. When the command is output, the combustion fan 7 is stopped. In this embodiment, the post-purge period (for example, 5 minutes), which is the fan drive extension time for continuously driving the combustion fan 7 in order to exhaust the exhaust gas in the combustion chamber 1 after the combustion of the burner 2 is stopped, is data. The combustion operation control unit 43 gives a stop command for the combustion fan 7 to the fan drive unit when the post-purge period (fan drive extension time) ends after the combustion of the burner 2 is stopped. The fan drive unit 47 receives this stop command and stops the drive of the combustion fan 7. By doing so, the exhaust gas in the combustion chamber 1 can be substantially discharged outside after the combustion of the burner 2 is stopped.
[0048]
The data storage unit 46 further stores a predetermined threshold temperature Tsp (for example, 48 ° C.). This threshold temperature Tsp is set based on a guaranteed temperature predetermined for the water level sensor 28. In this embodiment, the upper limit value within the guaranteed temperature range of the water level sensor 28 is data as the threshold temperature Tsp. It is given to the storage unit 46.
[0049]
The water level detection stop unit 48 takes in the monitoring information of the hot water supply single operation monitoring unit 44 and, based on this information, detects that the single can two water bath hot water heater (appliance) has started the hot water supply single operation, the water level sensor 28. Starts output of a water level detection stop command signal for stopping the water level detection operation by. This command signal is output to the combustion operation control unit 43, and the combustion operation control unit 43 performs hot water supply interruption during operation in the operation mode involving the water level detection operation by the water level sensor 28 such as the hot water filling mode and the water retention mode. When the independent operation is performed, the water level detection operation by the water level sensor 28 is stopped in response to the water level detection stop command signal.
[0050]
Thereafter, when the hot water supply independent operation is stopped, the water level detection stop unit 48 takes in the threshold temperature Tsp from the data storage unit 46 and detects the sensor output detected and output by the bath temperature sensor 37 directly as a detected hot water. As the water temperature, the detection of the hot water temperature detected by the bath temperature sensor 37 is started, and the threshold temperature Tsp and the detected hot water temperature of the bath temperature sensor 37 are compared. If it is determined from this comparison that the detected hot water temperature of the bath temperature sensor 37 is higher than the threshold temperature Tsp, the water level detection stop unit 48 continuously outputs the water level detection stop command signal.
[0051]
This is because the place where the bath temperature sensor 37 is provided is close to the place where the water level sensor 28 is provided, and the temperature detected by the bath temperature sensor 37 is the hot water at the place where the water level sensor 28 is provided. Since it is considered that the water temperature is substantially equal to the water temperature, the detected hot water temperature of the bath temperature sensor 37 is more than the threshold temperature Tsp (in this embodiment, the threshold temperature Tsp is the upper limit value of the guaranteed temperature of the water level sensor 28 as described above). Is that the hot water temperature at the position where the water level sensor 28 is disposed exceeds the guaranteed temperature range of the water level sensor 28, and the hot water temperature in the reheating heat exchanger 4 is higher. It is determined that the convection phenomenon is not suppressed at a high temperature, and the sensor output of the water level sensor 28 is caused by a synergistic relationship between the temperature dependence of the water level sensor 28 and the occurrence of the convection phenomenon due to the hot water in the reheating heat exchanger 4. This is because it is judged that an accurate bathtub water level cannot be detected because the force fluctuates irregularly.
[0052]
After the hot water supply independent operation is stopped, the hot water temperature in the recirculation circulation passage 24 and the hot water filling passage 25 decreases with the passage of time, and thereby the hot water temperature detected by the bath temperature sensor 37 decreases and the bath temperature sensor 37 When the detected hot water temperature falls below the threshold temperature Tsp, the hot water temperature at the position where the water level sensor 28 is disposed falls to a hot water temperature within the guaranteed temperature range of the water level sensor 28, and a reheating heat exchanger. 4, it is determined that the convection phenomenon of the hot and cold water in the tank 4 has been suppressed, and the water level detection stop unit 48 is combusted assuming that the sensor output of the water level sensor 28 is stable and the water level sensor 28 can accurately detect the bathtub water level. The output of the water level detection stop signal to the operation control unit 43 is stopped.
[0053]
According to this embodiment, since the hot water supply single operation monitoring unit 44 and the water level detection stop unit 48 are provided, the detected hot water temperature of the bath temperature sensor 37 is equal to or lower than the threshold temperature Tsp during the single hot water supply operation and after the single hot water supply operation. The water level detection operation by the water level sensor 28 can be stopped until it decreases to As a result, the hot water temperature at the position where the water level sensor 28 is disposed is a high temperature exceeding the guaranteed temperature range, the sensor output of the water level sensor 28 shifts with a large temperature dependence, and the high temperature of the reheating heat exchanger 4 is increased. The water level detection operation by the water level sensor 28 is not performed during the period in which the sensor output of the water level sensor 28 is irregularly vibrated due to the occurrence of the convection phenomenon caused by the heated hot water. And an inaccurate bathtub water level is detected due to irregular fluctuations in the sensor output of the water level sensor 28 due to the synergy between the hot water in the reheating heat exchanger 4 and the occurrence of convection in the hot water. It is possible to reliably avoid the malfunction of the appliance operation due to the appliance operation being performed on the basis.
[0054]
In addition, since the combustion fan 7 is continuously driven after the hot water supply single operation, the supply air ventilation by the drive of the combustion fan 7 is generated in the combustion chamber 1 to forcibly cool the reheating heat exchanger 4 and the hot water supply alone. Compared to the case where the combustion fan 7 is not driven after the operation, the reheating heat exchanger 4 is cooled earlier, and the hot water in the reheating heat exchanger 4 can be cooled quickly, and the convection of the reheating water in the reheating heat exchanger 4 is achieved. It is possible to suppress the phenomenon and accelerate the decrease in hot water temperature at the position where the water level sensor 28 is disposed.
[0055]
Of course, in this embodiment, since the water level detection stop operation by the water level sensor 28 is terminated when the detected hot water temperature of the bath temperature sensor 37 is lowered to the threshold temperature Tsp after the hot water supply single operation, as described above, By continuously driving the combustion fan 7 after operation, the sensor output of the water level sensor 28 can be quickly stabilized after the hot water supply single operation, and before the continuous drive of the combustion fan 7 is stopped after the hot water supply single operation (the post purge period is It is possible to end the water level detection stop operation in a short time before the end).
[0056]
In FIG. 2, a block diagram showing a characteristic control configuration in the second embodiment is shown by a solid line. The second embodiment is different from the first embodiment in that the timing for terminating the water level detection stop operation after hot water single operation is determined based on the detected hot water temperature of the bath temperature sensor 37. Instead, the water level detection stop operation is terminated in synchronization with the stop of the combustion fan 7 after the hot water supply single operation, and the configuration other than the water level detection stop unit 48 is the same as that of the first embodiment. is there. In this embodiment, the same reference numerals are assigned to the same names as those in the first embodiment, and the components other than the water level detection stop unit 48 are the same as those in the first embodiment as described above. Therefore, the duplicate description is omitted.
[0057]
The water level detection stop unit 48 takes in the monitoring information of the hot water supply single operation monitoring unit 44, and outputs a water level detection stop signal to the combustion operation control unit 43 when detecting that the appliance has started the hot water supply single operation based on this information. Start. The combustion operation control unit 43 receives the water level detection stop signal and stops the water level detection operation by the water level sensor 28 in the hot water filling mode or the water retention mode.
[0058]
After the hot water supply single operation is stopped, the water level detection stop unit 48 captures information on one or both of the combustion operation control unit 43 and the fan drive unit 47, and detects the stop of the combustion fan 7 based on the captured information. In addition, the output of the water level detection stop signal to the combustion operation control unit 43 is stopped for the following reason.
[0059]
The combustion fan 7 is continuously driven during the post-purge period after the combustion of the burner 2 is stopped, whereby ventilation is generated in the combustion chamber 1 by the intake air taken in from the outside, and this ventilation allows the hot water supply heat exchanger 3 and The reheating heat exchanger 4 is forcibly cooled, and the hot water temperature in the reheating heat exchanger 4 is lowered. As the hot water in the reheating heat exchanger 4 is cooled, the hot water temperature in the recirculation circulation passage 24 and the hot water filling passage 25 also decreases, and the convection phenomenon of the hot water temperature in the reheating heat exchanger 4 occurs. Since the irregular vibrations of the hot water in the recirculation circulation passage 24 and the hot water filling passage 25 are suppressed, the hot water temperature at the position where the water level sensor 28 is disposed when the post-purge period elapses. It is considered that the hot water falls within the guaranteed temperature range of the water level sensor 28 and the irregular vibration of the hot water at the position where the water level sensor 28 is disposed is eliminated.
[0060]
Therefore, as described above, when the driving of the combustion fan 7 is stopped after the hot water supply single operation, the hot water temperature at the position where the water level sensor 28 is disposed is lowered to the guaranteed temperature of the water level sensor 28 and the water level sensor 28 is arranged. The water level detection stop unit 48 determines that the water level sensor 28 can detect the accurate bathtub water level by eliminating the irregular vibration of the hot and cold water at the installation position and stabilizing the sensor output of the water level sensor 28. The output of the water level detection stop signal to the unit 43 is stopped. By stopping the output of the water level detection stop signal, the combustion operation control unit 43 can restart the water level detection operation by the water level sensor 28.
[0061]
According to this embodiment example, the water level detection stop unit 48 is configured to stop the water level detection operation by the water level sensor 28 until the drive of the combustion fan 7 is stopped during the hot water supply single operation and after the hot water supply single operation. The water level detection operation by the water level sensor 28 can be stopped during a period when the sensor output of the water level sensor 28 is considered to fluctuate irregularly due to the hot water supply single operation. From this, an incorrect bathtub water level is detected due to irregular fluctuations in the sensor output of the water level sensor 28, and an erroneous operation of the appliance operation due to the appliance operation being performed based on this incorrect bathtub water level is avoided. can do.
[0062]
The third embodiment will be described below. What is characteristic in this embodiment is that the air supply temperature sensor 27 that detects the temperature of the supply air supplied to the burner 2 by driving the combustion fan 7 is connected to the air supply passage 6 and the gas nozzle as shown by the dotted line in FIG. 19 and the like, and in addition to the control configuration shown in the second embodiment, as shown by the dotted line in FIG. 2, the fan drive extension time after the hot water supply single operation is variably set according to the air supply temperature. The time setting unit 50 is provided. The configuration other than the combustion operation control unit 43, the data storage unit 46, and the extended time setting unit 50 is the same as that of the second embodiment, and the description of the common parts is omitted.
[0063]
By the way, when ventilation is generated in the combustion chamber 1 due to the continuous drive of the combustion fan 7 after the hot water supply independent operation is stopped, if the supply air temperature is low, the ventilation is replenished and the amount of heat taken away from the heat exchanger 4 is large. Thus, the speed at which the reheating heat exchanger 4 cools becomes faster. On the other hand, when the supply air temperature is high, the amount of heat taken by the ventilation from the reheating heat exchanger 4 decreases, and the cooling rate of the reheating heat exchanger 4 becomes slow. As described above, the cooling rate of the reheating heat exchanger 4 becomes faster as the supply air temperature decreases, and conversely, the cooling rate becomes slower as the supply air temperature becomes higher.
[0064]
For this reason, even after the post-purge period after the hot water supply single operation, the hot water in the reheating heat exchanger 4 is not cooled down due to the high temperature of the hot water, and the hot water in the reheating heat exchanger 4 is high. In some cases, the convection phenomenon is not suppressed, and the hot water temperature at the position where the water level sensor 28 is disposed is higher than the guaranteed temperature of the water level sensor 28. Therefore, in this embodiment, the fan drive extension time after the hot water supply single operation is variably set according to the air supply temperature.
[0065]
In the data storage unit 46, fan drive extension time data is obtained and stored in advance by experiments or calculations. As shown in FIGS. 3A and 3B, the fan drive extension time data is provided with a fan drive extension time corresponding to the supply air temperature. In this embodiment, the supply air temperature is When the temperature is less than the supply air temperature Ta shown in (a) or (b) of FIG. 3 obtained by experiments, calculations, etc., the fan drive extension time is constant during a predetermined post-purge period, and is greater than the supply air temperature Ta. In this case, the fan drive extension time becomes longer continuously or stepwise from the post purge period as the air supply temperature becomes higher.
[0066]
Further, in the data storage unit 46, the fan drive extended time for continuously driving the combustion fan 7 after the combustion of the burner 2 due to the hot water single operation is stopped and the combustion of the burner 2 due to the operation other than the hot water single operation are stopped. Later, a post-purge period for continuously driving the combustion fan 7 is stored separately. In this embodiment, the combustion operation control unit 43 performs the above-described fan operation after the combustion of the burner 2 in the hot water supply single operation is stopped. The combustion fan 7 is continuously driven until the drive extension time ends, and after the combustion of the burner 2 other than the hot water supply independent operation is stopped, the combustion fan 7 is continuously driven until the post-purge period ends.
[0067]
The extended time setting unit 50 takes in the monitoring information of the hot water supply individual operation monitoring unit 44 and reads out the fan drive extended time data in the data storage unit 46 when it is detected that the hot water supply single operation is in progress based on this information. The sensor output detected and output by 27 is taken in as the detected air temperature. Then, the fan drive extension time corresponding to the detected air temperature is obtained from the fan drive extension time data and set, and the set fan drive extension time is overwritten on the fan drive extension time of the data storage unit 46. To do.
[0068]
The combustion operation control unit 43 reads out the fan drive extension time of the data storage unit 46 from the data storage unit 46 after the hot water supply single operation, and when the fan drive extension time is over, the combustion fan 7 continues to drive the combustion chamber 1 in the combustion chamber 1. It is determined that the exhaust gas is almost exhausted, the hot water temperature in the reheating heat exchanger 4 is cooled to suppress the convection phenomenon of the hot water, and the hot water temperature at the position where the water level sensor 28 is disposed is the water level sensor. 28, the sensor output of the water level sensor 28 is stable, and it is determined that the bathtub water level can be accurately detected by the bathtub water level detection operation by the water level sensor 28, and the combustion fan 7 continues. A stop signal for stopping the drive is output to the fan drive unit 47, and the fan drive unit 47 stops the combustion fan 7.
[0069]
According to this embodiment, the extended time setting unit 50 is provided so that the fan drive extended time is variably set according to the supply air temperature. When the sensor output of the water level sensor 28 is not stable due to the high temperature, the fan drive extension time can be set longer than the post-purge period according to the supply air temperature, and the fan drive of the combustion fan 7 is extended beyond the post-purge period. Until the time ends, that is, the hot water temperature in the reheating heat exchanger 4 is cooled, the hot water convection phenomenon is suppressed, and the hot water temperature at the position where the water level sensor 28 is disposed becomes the guaranteed temperature of the water level sensor 28. It can be continuously driven until it decreases.
[0070]
Due to the continuous drive of the combustion fan 7, the forced cooling of the hot water in the reheating heat exchanger 4 by the supply air ventilation can be continued. Cooling of hot water can be accelerated. In addition, the hot water temperature in the reheating heat exchanger 4 is cooled to suppress the hot water convection phenomenon, and the hot water temperature at the position where the water level sensor 28 is disposed is lowered to the guaranteed temperature of the water level sensor 28, so that the combustion fan Since the water level detection operation by the water level sensor 28 is stopped by the operation of the water level detection stop unit 48 until the stop 7 is stopped, the instrument caused by irregular fluctuations in the sensor output of the water level sensor 28 as in the above embodiments. A malfunction of driving can be prevented.
[0071]
Of course, even if the supply air temperature is high, in most cases, when the post-purge period elapses after the hot water supply single operation, the convection phenomenon of hot water is substantially suppressed by the supply air ventilation by driving the combustion fan 7, and the water level The hot / cold water temperature at the position where the sensor 28 is disposed falls close to the guaranteed temperature of the water level sensor 28, so that the sensor output of the water level sensor 28 is substantially stabilized. From this, regardless of the supply air temperature, the operation of the appliance almost malfunctions even when the driving of the combustion fan 7 is stopped and the water level detection operation by the water level sensor 28 is restarted at the end of the post-purge period after the hot water supply single operation. It is possible to avoid it.
[0072]
The fourth embodiment will be described below. What is characteristic in this embodiment is that, as shown in FIG. 4, an extended time setting unit 50, a time measurement unit 51, and a retained heat amount detection unit 52 are provided and given to the reheating heat exchanger 4 by hot water supply single operation. The obtained retained heat amount is obtained, and the fan drive extension time is variably set according to the retained heat amount. Other configurations are the same as those in each of the above-described embodiments, and a duplicate description of common portions is omitted. In FIG. 4, the combustion operation control unit 43, the hot water supply single operation monitoring unit 44, the fan drive unit 47, and the water level detection stop unit 48 shown in each of the above embodiments are omitted.
[0073]
The time measuring unit 51 is configured to take in the information of the hot water supply single operation monitoring unit 44 and measure the hot water supply single operation time from the start of the hot water supply single operation to the end of the hot water supply single operation based on this information.
[0074]
In the data storage unit 46, retained heat amount data for determining the retained heat amount of the reheating heat exchanger 4 given to the reheating heat exchanger 4 by the combustion of the burner 2 is obtained and stored in advance by experiments or calculations. As shown in FIG. 5, the stored heat quantity data is provided with the retained heat quantity of the reheating heat exchanger 4 corresponding to the hot water supply single operation time for each combustion heat quantity. At the start of operation, the amount of heat retained by the reheating heat exchanger 4 increases with time, and thereafter, the amount of heat retained by the reheating heat exchanger 4 is saturated.
[0075]
The stored heat quantity detection unit 52 takes in the monitoring information of the hot water supply single operation monitoring unit 44, and when it detects that the hot water supply single operation is being performed based on this information, the combustion operation control unit 43 obtains information on the combustion heat quantity of the burner 2 alone. It is taken in as combustion heat quantity information for operation, and data corresponding to the combustion heat quantity of the burner 2 is selected from the heat quantity data held in the data storage unit 46 and read. And if it detects that the hot water supply independent operation was complete | finished by the information of the hot water supply independent operation monitoring part 44, the hot water supply independent operation time which the said time measurement part 51 measured was taken in, and this hot water supply independent operation time was read into the said stored heat amount data The retained heat amount of the reheating heat exchanger 4 by the hot water supply single operation is obtained in light of the above, and a signal corresponding to the obtained retained heat amount is output to the extension time setting unit 50.
[0076]
The data storage unit 46 further stores fan drive extension time data as shown in FIGS. 6A and 6B. The fan driving extension time data is data for variably setting the fan driving extension time after the hot water supply single operation according to the stored heat amount given to the reheating heat exchanger 4 by the hot water supply single operation, and corresponding to the stored heat amount. Fan drive extension time is given. In this embodiment, when the heat retention amount Pc shown in FIGS. 6A and 6B obtained in advance by experiment, calculation, etc. is less than the retained heat amount Pc, the fan drive extension time is constant in the post-purging period, When it is equal to or greater than the retained heat amount Pc, the fan drive extension time becomes longer continuously or stepwise from the post purge period as the retained heat amount of the reheating heat exchanger 4 increases.
[0077]
This is because when the reheating heat exchanger 4 has a large amount of heat, it takes time for the reheating heat exchanger 4 to be cooled by the ventilation by driving the combustion fan 7, and the reheating heat exchanger 4. Therefore, it is necessary to spend a long time until the hot water temperature at the position where the water level sensor 28 is disposed is lowered to the guaranteed temperature, and on the contrary, the amount of heat held in the reheating heat exchanger 4 is small. In this case, since the reheating heat exchanger 4 is cooled quickly, the convection phenomenon of hot and cold water is suppressed, and the hot water temperature at the position where the water level sensor 28 is disposed becomes the guaranteed temperature, and the sensor output of the water level sensor 28 is This is because it takes less time to stabilize.
[0078]
However, since it is considered that the combustion fan 7 needs to be continuously driven during the post-purge period after the combustion of the burner 2 is stopped in order to exhaust the exhaust gas generated by the combustion of the burner 2 from the combustion chamber 1 to the outside, this embodiment example Then, the fan drive extension time is not shorter than the post-purge period.
[0079]
The extended time setting unit 50 takes in the monitoring information of the hot water supply independent operation monitoring unit 44, reads the fan drive extended time data from the data storage unit 46 when the hot water supply independent operation is finished, and the retained heat amount detection unit 52 detects it. The fan drive extension time is obtained and set by referring to the fan drive extension time data with respect to the output heat amount of the reheating heat exchanger 4 that has been output. The set fan drive extension time is overwritten with the fan drive extension time of the data storage unit 46 (fan drive extension time stored separately from the post-purge period after the combustion of the burner 2 other than hot water supply independent operation). . The combustion operation control unit 43 continues to drive the combustion fan 7 until the fan drive extension time of the data storage unit 46 ends after the hot water supply single operation.
[0080]
Of course, also in this embodiment, the water level detection stop unit 48 stops the water level detection until the drive of the combustion fan 7 is stopped after the hot water supply single operation is started, that is, until the sensor output of the water level sensor 28 is stabilized. The water level detection operation by the water level sensor 28 is stopped by the operation.
[0081]
According to this embodiment, since the time measuring unit 51 and the retained heat amount detecting unit 52 are provided, it is possible to obtain the retained heat amount given to the reheating heat exchanger 4 by the hot water supply single operation. In this embodiment, since the fan drive extension time is variably set according to the obtained stored heat amount, if the retained heat amount of the reheating heat exchanger 4 by the hot water supply single operation is large, after the hot water supply single operation The fan drive extension time can be extended longer than the post-purge period.
[0082]
For this reason, for example, when the reheating heat exchanger 4 has a large amount of heat, the sensor output of the water level sensor 28 is stable when the sensor output of the water level sensor 28 is not stable even after the post-purge period after the hot water supply single operation. It is possible to drive the combustion fan 7 continuously until this occurs.
[0083]
Further, since the water level detection operation by the water level sensor 28 is stopped until the driving of the combustion fan 7 is stopped, the water level sensor is determined until it is determined that the sensor output of the water level sensor 28 is stable and the driving of the combustion fan 7 is stopped. The water level detection operation by the water level sensor 28 is stopped, and when the sensor output of the water level sensor 28 fluctuates irregularly, the appliance operation based on the sensor output of the water level sensor 28 is not performed, and the sensor output of the water level sensor 28 is detected. It is possible to avoid the malfunction of the appliance operation due to the irregular fluctuation of the.
[0084]
The fifth embodiment will be described below. What is characteristic in this embodiment is that the combustion operation control unit 43 has a fan drive unit so that the amount of air in the combustion chamber 1 is larger after the hot water supply single operation than the post purge period after the combustion operation other than the hot water supply single operation. The rotation control of the combustion fan 7 is performed via 47. Other configurations are the same as those in each of the above-described embodiments, and a duplicate description thereof is omitted.
[0085]
When the combustion fan 7 is continuously driven during the post-purge period after the combustion operation, the rotation control of the combustion fan 7 is performed so that the air volume is much smaller than the air volume generated in the combustion chamber 1 during the combustion operation of the burner 2. There are many cases. In this embodiment, as described above, the rotational drive of the combustion fan 7 is controlled so that the air volume in the combustion chamber 1 is larger after the hot water supply single operation than the post purge period after the combustion operation other than the hot water supply single operation. The forced cooling of the reheating heat exchanger 4 after the hot water supply single operation is further promoted.
[0086]
According to this embodiment, the same effects as those of the above embodiments can be obtained, and the air volume in the combustion chamber 1 after the hot water single operation is longer than the post-purge period after the combustion operation other than the single hot water operation. Since the rotation of the combustion fan 7 is controlled so as to increase, the amount of air in the combustion chamber 1 after the hot water supply single operation becomes larger than that during the post-purge period, and the recuperation heat is generated by the air supply ventilation after the hot water supply single operation. The exchanger 4 can be cooled more effectively.
[0087]
When the rotation control of the combustion fan 7 is performed so that the air volume in the combustion chamber 1 is larger than the post-purge period after the combustion operation other than the hot water supply single operation after the single hot water supply operation as in this embodiment. Since the exhaust gas generated by the combustion of the burner 2 is discharged earlier than during the post-purge period, the fan drive extension time can be set shorter than the post-purge period.
[0088]
The sixth embodiment will be described below. This embodiment is different from the first embodiment in that the hot water temperature at the position where the water level sensor 28 is disposed is not directly detected by the bath temperature sensor 37 after the hot water supply single operation. The hot water temperature at the position where the water level sensor 28 is disposed is estimated and detected based on the air temperature, and the water level detection stop operation is terminated when the estimated detection value reaches a predetermined threshold value. The rest of the configuration is the same as that of the first embodiment, and redundant description of common parts is omitted.
[0089]
In this embodiment, as shown by the dotted line in FIG. 1, an air temperature sensor 27 serving as an air temperature detecting means is provided. As described above, when the combustion fan 7 is continuously driven after the hot water supply single operation, the supply air ventilation is generated in the combustion chamber 1 by the driving of the combustion fan 7 after the hot water supply single operation. The heat amount of the exchanger 4 is deprived and the reheating heat exchanger 4 is cooled as time passes, and the cooling water of the reheating heat exchanger 4 lowers the hot water temperature at the position where the water level sensor 28 is disposed. As the air supply temperature is lowered, the reheating heat exchanger 4 is cooled more quickly, and the hot water temperature at the position where the water level sensor 28 is disposed is rapidly lowered. On the contrary, as the supply air temperature increases, the cooling of the reheating heat exchanger 4 is delayed, and the decrease in the hot water temperature at the position where the water level sensor 28 is disposed is delayed.
[0090]
As described above, the decreasing tendency of the hot water temperature at the position where the water level sensor 28 is disposed differs depending on the supply air temperature. Therefore, the elapsed time after the hot water single operation is stopped and the decrease in the hot water temperature at the position where the water level sensor 28 is disposed. The temperature relationship can be obtained for each supply air temperature, which makes it possible to estimate and detect the hot water temperature at the position where the water level sensor 28 is disposed based on the elapsed time since the hot water supply single operation stopped and the supply air temperature. It is.
[0091]
In view of the above, in this embodiment, the threshold time until the hot water temperature at the position where the water level sensor 28 is disposed decreases to the threshold temperature Tsp shown in the first embodiment after the single operation of hot water supply. tα is obtained in advance by experiment, calculation, or the like for each supply air temperature, and stored in the data storage unit 46 as water temperature estimation detection data. The water temperature estimation detection data is stored in the data storage unit 46 in a data format such as graph data, table data, and arithmetic expression data indicating the relationship between the supply air temperature and the threshold time tα.
[0092]
The water level detection stop unit 48 takes in the sensor output of the air temperature sensor 27 as the detected air supply temperature after the hot water supply single operation, refers to this detected air supply temperature to the water temperature estimation detection data in the data storage unit 46, and arranges the water level sensor 28. A threshold time tα until the hot water temperature at the installation position decreases to the threshold temperature Tsp is obtained.
[0093]
Further, the water level detection stop unit 48 resets and drives the timer 53 indicated by the dotted line in FIG. 1 when the hot water supply independent operation is completed, and starts measuring the elapsed time after the hot water supply independent operation is stopped. When the estimated detection value reaches the threshold time tα, it is determined that the hot water temperature at the position where the water level sensor 28 is arranged has reached the threshold temperature Tsp. Then, it is determined that the sensor output of the water level sensor 28 is stable, and the water level detection stop operation is terminated.
[0094]
According to this embodiment example, since the hot water temperature at the position where the water level sensor 28 is disposed is estimated and detected based on the elapsed time after the hot water single operation and the supply air temperature, the end timing of the water level detection stop operation is determined. As in the above embodiments, the water level detection stop unit 48 can stop the water level detection until the sensor output of the water level sensor 28 is stabilized after the hot water supply single operation, and the water level sensor 28 caused by the hot water supply single operation can be stopped. It is possible to avoid the problem that the instrument malfunctions due to unstable sensor output.
[0095]
Further, in this embodiment, the hot water temperature at the position where the water level sensor 28 is disposed is estimated and detected to determine the end timing of the water level detection stop operation. Therefore, as described above, the combustion fan 7 is continuously driven after the hot water supply single operation. When the hot water temperature at the position where the water level sensor 28 is disposed can be cooled earlier and the sensor output of the water level sensor 28 stabilizes quickly, the water level detection stop operation is performed in a short time before the end of the post-purge period. Can be terminated.
[0096]
The seventh embodiment will be described below. This embodiment is different from the first embodiment in that the hot water temperature at the position where the water level sensor 28 is disposed is estimated and detected based on the amount of heat held in the reheating heat exchanger 4 after the hot water supply single operation. In other words, the end timing of the water level detection stop operation is determined. The other configuration is the same as that of the first embodiment, and a duplicate description thereof is omitted.
[0097]
As described above, as the amount of heat retained in the reheating heat exchanger 4 increases, it takes time until the hot water temperature at the position where the water level sensor 28 is disposed decreases to the predetermined threshold temperature Tsp after the hot water supply single operation. On the contrary, as the amount of heat retained in the reheating heat exchanger 4 decreases, the time required for the hot water temperature at the position where the water level sensor 28 is disposed to decrease to the threshold temperature Tsp after the hot water supply single operation is reduced. In this way, the relationship between the elapsed time since the hot water supply single operation has stopped and the temperature at which the water level sensor 28 is lowered can be determined for each amount of heat retained by the heat exchanger 4. Thus, it is possible to estimate and detect the hot water temperature at the position where the water level sensor 28 is disposed based on the amount of heat held by the reheating heat exchanger 4 and the elapsed time after the hot water supply single operation.
[0098]
From the above, the control device 40 shown in this embodiment example has the stored heat amount detection means shown by the chain line in FIG. 1, which includes the time measuring unit 51 and the stored heat amount detection unit 52 shown in the fourth embodiment example. 54 is configured in addition to the control configuration of the solid line in FIG. The retained heat amount detecting means 54 obtains the retained heat amount of the reheating heat exchanger 4 after the hot water supply single operation as in the fourth embodiment.
[0099]
In the data storage unit 46, the time until the hot water temperature at the position where the water level sensor 28 is disposed decreases to a predetermined threshold temperature Tsp after the hot water supply single operation is tracked. The temperature is obtained in advance and stored as water temperature estimation detection data. The water level detection stop unit 48 refers to the stored heat amount obtained by the stored heat amount detection means 54 with reference to the water temperature estimation detection data in the data storage unit 46, and the hot water temperature at the position where the water level sensor 28 is disposed becomes the threshold temperature Tsp. The threshold time required to decrease is obtained.
[0100]
In addition, the water level detection stop unit 48 resets and drives the timer 53 when the hot water supply independent operation stops, starts measurement of the elapsed time after the hot water supply independent operation stops, and estimates and detects the measurement time of the timer 53 When the measured time of the timer 53 reaches the threshold time, it is determined that the hot water temperature at the position where the water level sensor 28 is disposed has dropped to the threshold temperature Tsp. It is determined that the sensor output is stable, and the water level detection stop operation is terminated.
[0101]
According to this embodiment, the hot water temperature at the position where the water level sensor 28 is disposed is estimated and detected based on the elapsed time after the hot water supply single operation and the amount of heat retained in the reheating heat exchanger 4, and the water level detection stop after the hot water supply single operation is performed. Since the operation end timing is determined, the water level detection stop unit 48 stops the water level detection operation during a period until the sensor output of the water level sensor 28 is stabilized after the hot water supply single operation, as in the above embodiments. It is possible to avoid the problem that the appliance malfunctions due to the unstable sensor output of the water level sensor 28 caused by the hot water supply single operation.
[0102]
The eighth embodiment will be described below. A characteristic of this embodiment different from the first embodiment is that the hot water temperature at the position where the water level sensor 28 is disposed is estimated and detected by combining the supply air temperature and the amount of heat retained in the reheating heat exchanger 4. It is set as the structure which determines the completion | finish timing of the water level detection stop operation after hot water supply independent operation. The rest of the configuration is the same as that of the first embodiment, and redundant description of common parts is omitted.
[0103]
In this embodiment, in addition to the control configuration shown by the solid line in FIG. 1, the retained heat amount / air temperature detection means 55 shown by the two-dot chain line in FIG. 1 is provided. The stored heat quantity / air supply temperature detecting means 55 includes the time measurement unit 51 and the stored heat quantity detection unit 52 shown in the fourth embodiment, and the stored heat quantity detection unit 52 is a time measurement unit. Based on the hot water supply single operation time and the supply air temperature measured by 51, the retained heat amount of the reheating heat exchanger 4 is obtained after the hot water supply single operation.
[0104]
The data storage unit 46 requires the water temperature estimation detection data shown in the seventh embodiment, that is, the hot water temperature at the position where the water level sensor 28 is disposed after the hot water supply single operation is lowered to the threshold temperature Tsp. The data given for each amount of heat retained in the heat exchanger 4 is stored.
[0105]
The water level detection stop unit 48 uses the stored heat amount of the reheating heat exchanger 4 detected by the stored heat amount detection unit 52 of the stored heat amount / heating temperature detection means 55 after the hot water supply single operation, as the water temperature estimation detection data of the data storage unit 46. To obtain the threshold time. Further, the water level detection stop unit 48 resets and drives the timer 53 when the hot water supply individual operation is stopped to measure the measurement time after the hot water supply single operation is stopped, and the measured time of the timer 53 is estimated as the detected value. When the measurement time of the timer 53 reaches the threshold time, it is determined that the hot water temperature at the position where the water level sensor 28 is disposed has dropped to the threshold temperature Tsp, and the sensor of the water level sensor 28 It is determined that the output is stable, and the water level detection stop operation is terminated.
[0106]
According to this embodiment example, the end timing of the water level detection stop operation after the hot water supply single operation is determined based on the amount of heat retained in the reheating heat exchanger 4 in consideration of the supply air temperature. In addition, during the period until the sensor output of the water level sensor 28 is stabilized after the hot water supply single operation, the water level detection stop unit 48 can stop the water level detection operation, and the unstable sensor output of the water level sensor 28 due to the hot water supply single operation. Therefore, it is possible to avoid the problem that the instrument malfunctions.
[0107]
The present invention is not limited to the above embodiments, and various embodiments can be adopted. For example, in the first embodiment, the threshold temperature is set to the upper limit value of the guaranteed temperature range of the water level sensor 28, but the threshold temperature is limited to the upper limit value of the guaranteed temperature range of the water level sensor 28. Is not to be done. For example, when the hot water temperature detected by the bath temperature sensor 37 after the hot water supply single operation is lower than the hot water temperature at the position where the water level sensor 28 is disposed, the threshold temperature is lower than the upper limit value of the guaranteed temperature of the water level sensor 28. Is set.
[0108]
Further, when the bath temperature sensor 37 is provided near the reheating heat exchanger 4 closer to the reheating heat exchanger 4 than the position where the water level sensor 28 is disposed, the bath temperature sensor 37 is provided during the hot water supply single operation. Since the detected hot water temperature to be detected is higher than the hot water temperature at the position where the water level sensor 28 is disposed, the hot water temperature at the position where the water level sensor 28 is disposed decreases to the upper limit value of the guaranteed temperature of the water level sensor 28 after the hot water supply single operation. The detected hot water temperature of the bath temperature sensor 37 is higher than the upper limit value of the guaranteed temperature of the water level sensor 28. In such a case, the threshold temperature may be set higher than the upper limit value of the guaranteed temperature of the water level sensor 28. Of course, the threshold temperature may be set lower than the upper limit value of the guaranteed temperature of the water level sensor 28.
[0109]
Further, in the third and fourth embodiment examples, the fan drive extension time during which the combustion fan 7 is continuously driven after the combustion of the hot water supply independent operation is stopped, and the burner for the operation other than the hot water supply independent operation. 2 is provided separately from the post-purge period in which the combustion fan 7 is continuously driven after the combustion stop of 2, but only the fan drive extension time is given to stop the combustion of the burner 2 in an operation other than the hot water supply single operation. The combustion fan 7 may be continuously driven during the fan drive extension time later.
[0110]
In the third and fourth embodiment examples, the fan drive extension time data is stored in the graph data format as shown in FIGS. 3 and 6, but the air supply temperature (fourth embodiment example) is used. Then, graph data, such as table data in which the fan drive extension time is given in correspondence with the amount of heat held in the reheating heat exchanger 4), arithmetic expression data for obtaining the fan drive extension time using the air supply temperature (holding heat amount) as a parameter The fan drive extension time data may be configured in a data format other than that and stored in the data storage unit 46.
[0111]
Furthermore, in the fourth embodiment described above, the retained heat amount data is composed of graph data as shown in FIG. 5, but is composed in a data format other than graph data such as table data and arithmetic expression data. You may store in the data storage part 46. FIG.
[0112]
Further, in the fourth embodiment, the stored heat quantity detection unit 52 takes in the information of the combustion heat amount of the burner 2 from the combustion operation control unit 43, but takes in the following information as the combustion heat amount information of the burner 2. But you can. For example, since the drive amount of the combustion fan 7 is variably controlled according to the combustion heat amount of the burner 2, the drive amount of the combustion fan 7 corresponds to the combustion heat amount of the burner 2. Accordingly, the retained heat amount detection unit 52 may capture the drive amount of the combustion fan 7 as the combustion heat amount information of the burner 2.
[0113]
Further, the combustion heat amount of the burner 2 is controlled by the supply amount of the fuel gas supplied to the burner 2, and the supply amount of the combustion gas is controlled by the valve opening amount of the proportional valve 12, so that the retained heat amount detection unit 52 may take in the proportional valve drive current that controls the valve opening amount of the proportional valve 12 as combustion heat amount information of the burner 2, or the fuel gas that flows through the gas supply passage 8 according to the valve opening amount of the proportional valve 12. Since the flow rate is variable, a flow sensor for detecting the fuel gas flow rate is provided in the gas supply passage 8, and the stored heat quantity detection unit 52 takes in the flow rate of the combustion gas detected by the flow sensor as combustion heat quantity information of the burner 2. But you can.
[0114]
Further, during the hot water supply independent operation, the incoming water temperature Tin detected by the incoming water temperature sensor 32, the hot water supply set temperature Ts set in the remote controller 41, the incoming water amount Q detected by the water amount sensor 31, and the hot water temperature sensor 38 are detected. The tapping temperature Tout is taken as the combustion heat amount information of the burner 2 and burner based on the combustion heat amount detection data (for example, P = (Ts−Tin) · Q + (Tout−Tin) · Q) given in advance. The stored heat quantity detection unit 52 may directly obtain the combustion heat quantity P of 2. Further, the retained heat amount detection unit 52 may determine the retained heat amount of the reheating heat exchanger 4 during hot water supply single operation more accurately in consideration of the supply air temperature detected by the supply air temperature sensor 27.
[0115]
Further, in each of the above embodiments, the water level detection stop unit 48 stops the water level detection operation by the water level sensor 28 over the entire period in which the hot water supply single operation is performed. The water level detection operation by the water level sensor 28 may be stopped only during a part of the period during which the water level is determined.
[0116]
For example, a stop threshold temperature Tst for determining the stop of the water level detection operation by the water level sensor 28 is determined in advance, and the water level detection stop unit 48 stops the above-described detection temperature detected by the bath temperature sensor 37 during the hot water supply single operation. When the threshold temperature Tst is compared to determine that the detected temperature of the bath temperature sensor 37 is equal to or higher than the stop threshold temperature Tst, the sensor output of the water level sensor 28 begins to fluctuate irregularly. The water level detection operation by the water level sensor 28 may be stopped by determining that there is a possibility that the instrument may malfunction due to irregular fluctuations in the sensor output.
[0117]
Further, it is considered that the single operation of hot water supply is started, the reheating heat exchanger 4 starts to be heated by the combustion of the burner 2, and the sensor output of the water level sensor 28 starts to fluctuate irregularly. For example, the time tb shown in FIG. Predetermined as the threshold time, the water level detection stopping unit 48 starts to irregularly change the sensor output of the water level sensor 28 when the threshold time has elapsed since the hot water supply single operation was started. The water level detection operation by the water level sensor 28 may be stopped by determining that there is a possibility that the instrument may malfunction due to irregular fluctuations in the sensor output of the water level sensor 28. In addition, since the time until the sensor output of the water level sensor 28 becomes unstable after the hot water supply single operation is started varies depending on the amount of heat retained in the reheating heat exchanger 4, the retained heat amount detection unit 52 described above is changed. It is also possible to variably control the threshold time tb so as to decrease as the retained heat amount of the reheating heat exchanger 4 detected by the retained heat amount detection unit 52 increases.
[0118]
Further, the water level detection stop unit 48 does not perform the water level detection stop operation during the hot water supply single operation, but stops the water level detection operation by the water level sensor 28 only during the period until the predetermined period ends after the hot water supply single operation. May be.
[0119]
Furthermore, the appliance shown in each of the above embodiments is given a post-purge period in which the combustion fan 7 is continuously driven after the burner 2 is combusted. However, the present invention has the post-purge period set. It can also be applied to non-equipment. For example, as shown in the first embodiment, the water level detection stop unit 48 is provided, and the water level sensor 28 uses the hot water detected by the bath temperature sensor 37 to decrease to a predetermined threshold temperature after hot water single operation. By stopping the water level detection operation, it is possible to avoid malfunctions in instrument operation due to irregular fluctuations in the sensor output of the water level sensor 28 as in the above embodiments.
[0120]
Further, as shown in the above embodiments, the fan drive extension time after the hot water supply single operation is determined in advance, and the combustion fan 7 is continuously driven until the fan drive extension time ends after the hot water supply single operation. Thus, the reheating heat exchanger 4 heated by the hot water supply single operation can be forcibly cooled by the ventilation by driving the combustion fan 7. In addition, the water level detection stop unit 48 performs the water level detection operation during the period until the hot water temperature detected by the bath temperature sensor 37 decreases to the threshold temperature after the hot water supply single operation, or during the period when the combustion fan 7 is driven. Since it can be stopped, the malfunction of the instrument resulting from the irregular fluctuation | variation of the water level sensor 28 can be avoided.
[0121]
Further, in each of the above embodiments, the continuous drive of the combustion fan 7 is stopped when a predetermined fan drive extension time has elapsed after the hot water supply single operation, but the hot water temperature detected by the bath temperature sensor 37 is predetermined. When the temperature falls to the threshold temperature, the continuous drive of the combustion fan 7 may be stopped.
[0122]
Furthermore, in each of the first, sixth, seventh, and eighth embodiments, the direct detection value or the estimated detection value of the hot water temperature at the position where the water level sensor 28 is disposed has reached the threshold value after the hot water supply single operation. Sometimes the water level detection stop operation was terminated, but the water level detection stop operation is terminated when a predetermined margin period elapses after the direct detection value or the estimated detection value reaches the threshold value. Also good.
[0123]
Further, in each of the second, third, fourth, and fifth embodiments, the water level detection stop operation is terminated when the continuous drive of the combustion fan 7 is stopped after the hot water supply single operation, but the combustion fan 7 The water level detection stop operation may be terminated when a predetermined margin period elapses after the continuous driving is completed.
[0124]
Further, in each of the above embodiments, the hot water supply single operation monitoring unit 44 is in a state where the pouring control valve 26 is closed, and the water flow sensor 36 does not detect water flow in the recirculation circulation passage 24, In addition, when the water amount sensor 31 detects water flow in the water supply passage 13, it has been detected that the hot water supply single operation is being performed. However, the hot water supply single operation monitoring unit 44 includes the water amount sensor 31 and the hot water supply confirmation switch. When the water flow detection value of the water supply passage 13 detected by the water amount sensor 31 and the flow rate detection value of the hot water supply passage 14 detected by the hot water supply confirmation switch 35 are substantially equal. Moreover, you may make it detect that the hot water supply independent operation is performed. Furthermore, the hot water supply independent operation monitoring unit 44 detects the water flow through the hot water supply passage 14 by the hot water supply confirmation switch 35 and the water pressure (dynamic pressure) of the hot water filling passage 25 determined in advance when the hot water control valve 26 is open. When the water level sensor 28 does not detect the water pump and the circulation pump 20 is not driven, it may be detected that the hot water supply single operation is being performed.
[0125]
Furthermore, although each said embodiment demonstrated and demonstrated the instrument shown in FIG. 7 as an example, this invention is a one-can two water channel type bath water heater, and a recirculation circulation path temperature sensor is provided in a recirculation circulation path, Further, if the water level sensor for detecting the water level of the bathtub by the water pressure is provided in the recirculation circulation passage or the communication passage communicating with the recirculation circulation passage, one can two-way bath hot water supply having a system configuration other than FIG. It can also be applied to vessels. For example, the present invention can also be applied to a single can two water bath hot water heater in which the hot water filling passage 25 shown in FIG. 7 is omitted and the water level sensor 28 is disposed in the recirculation circulation passage 24. Also in this case, the water level detection operation by the water level sensor 28 is stopped in the same manner as the above embodiments, so that the sensor of the water level sensor 28 caused by the high temperature heating of the accumulated hot water of the reheating heat exchanger 4 by the hot water supply single operation. It is possible to prevent malfunction of the instrument due to irregular fluctuations in output.
[0126]
【The invention's effect】
According to the present invention, since the hot water supply single operation monitoring unit and the water level detection stop unit are provided, the direct detection value or the estimated detection value of the water temperature at the position where the water level sensor is disposed is predetermined for a predetermined period after the single hot water supply operation. Until the threshold value is reached, or until the predetermined margin period elapses after the direct detection value or estimated detection value of the water temperature at the position where the water level sensor is arranged reaches the predetermined threshold value, or the combustion fan The water level detection operation can be stopped by the water level detection stop unit until the continuous driving of the combustion fan stops or until the period until the predetermined margin period elapses after the continuous driving of the combustion fan stops. it can.
[0127]
The period during which the water level detection operation is stopped by the water level detection stop unit is a period in which it is determined that the sensor output of the water level sensor fluctuates irregularly due to heating of the reheating heat exchanger during hot water supply single operation. Thus, as described above, by stopping the water level detection operation during that period, an incorrect bath water level is detected based on the irregularly varying water level sensor output, and the appliance operation is performed based on the incorrect bath water level. It is possible to avoid the problem that the instrument is malfunctioning.
[0128]
In the case of a fan drive unit that continuously drives the combustion fan until the fan drive extension time elapses after the hot water supply single operation, the reheating heat exchanger heated by the hot water supply single operation is supplied by the combustion fan drive. Forced cooling can be performed by ventilation. Therefore, it is possible to cool the reheating heat exchanger faster than when the combustion fan is not driven after the hot water supply single operation, and this increases the period until the sensor output of the water level sensor becomes stable after the hot water supply single operation. It can be shortened.
[0129]
In the invention provided with the extended time setting unit for variably setting the fan drive extended time, the period until the sensor output of the water level sensor that has irregularly changed due to the single operation of hot water supply becomes stable after the single operation of hot water supply The fan drive extension time can be variably set according to the supply air temperature or the amount of heat held in the reheating heat exchanger, so the fan drive extension time depends on the period until the sensor output of the water level sensor stabilizes Can be adjusted accurately.
[0130]
As a result, the following problems can be avoided. For example, because the fan drive extension time is set to a long fixed time, the time from the stabilization of the sensor output of the water level sensor to the end of the fan drive extension time after a single hot water supply operation opens, resulting in wasted equipment operation. On the other hand, because the fan drive extension time is set to a short fixed time, the fan drive extension time ends before the sensor output of the water level sensor stabilizes. However, as described above, the fan drive extension time is variably set so as to match the period until the sensor output of the water level sensor is stabilized after the hot water supply single operation as described above. It is possible to avoid waste of instrument operation and malfunction of the instrument.
[Brief description of the drawings]
FIG. 1 is a block configuration diagram showing an embodiment of a single can / two water bath hot water heater that performs a water level detection stop operation based on a directly detected value or an estimated detected value of a water temperature at a position where a water level sensor is disposed.
FIG. 2 is a block diagram showing second and third embodiment examples.
FIG. 3 is a graph showing an example of fan drive extension time data in which a fan drive extension time is given in accordance with the supply air temperature.
FIG. 4 is a block diagram showing a control component characteristic of the fourth embodiment.
FIG. 5 is a graph showing an example of the temporal change in the amount of heat retained in the reheating heat exchanger given to the reheating heat exchanger by the hot water supply single operation for each amount of combustion heat.
FIG. 6 is a graph showing an example of fan drive extension time data in which fan drive extension time is given in accordance with the amount of heat retained by the reheating heat exchanger.
FIG. 7 is an explanatory diagram showing a system configuration example of a single can / two water bath hot water heater.
FIG. 8 is a flowchart showing an example of an automatic driving operation.
FIG. 9 is a graph showing an example of PQ data indicating the relationship between the sensor output of the water level sensor and the amount of bathtub water.
FIG. 10 is an explanatory diagram showing a conventional problem.
[Explanation of symbols]
2 Burner
3 Hot water supply heat exchanger
4 Reheating heat exchanger
7 Combustion fan
13 Water supply passage
14 Hot water passage
24 Recirculation passage
25 Hot water passage
28 Water level sensor
37 Bath temperature sensor
44 Hot water supply independent operation monitoring section
46 Data storage
47 Fan drive
48 Water level detection stop
50 Extension time setting section
51 Time measurement unit

Claims (6)

給水通路から供給される水を加熱して給湯通路へ送出する給湯熱交換器と、浴槽湯水の追い焚き循環通路に組み込まれ追い焚き循環通路を循環する循環湯水の追い焚きを行う追い焚き熱交換器と、追い焚き循環通路に配設され湯水温度を検出する追い焚き循環通路温度センサと、追い焚き循環通路又は追い焚き循環通路に連通する連通通路に配設され浴槽の湯水の水位を水圧により検出する水位センサとを備え、上記給湯熱交換器と追い焚き熱交換器は一体化され、この一体化された給湯熱交換器と追い焚き熱交換器を加熱する共通のバーナーが設けられ、予め定められたタイミングで上記水位センサによる水位検出動作が行われる一缶二水路タイプの風呂給湯器において、一缶二水路風呂給湯器が追い焚き運転を行わず給湯運転だけを行う給湯単独運転を行っているか否かを監視する給湯単独運転監視部と;給湯単独運転の停止後に水位センサの配設位置の水温を直接的に検出した直接検出値あるいは水位センサの配設位置の水温を推定検出した推定検出値が予め定めたしきい値に達するまで、又は、上記しきい値に達してから予め定めた余裕期間が経過するまで水位センサによる水位検出動作を停止させる水位検出停止部と;を設けたことを特徴とする一缶二水路風呂給湯器。A hot water heat exchanger that heats the water supplied from the water supply passage and sends it to the hot water supply passage, and a reheating heat exchange that recirculates the circulating hot water that circulates in the recirculation circulation passage built in the recirculation circulation passage of the bathtub hot water And a recirculation passage temperature sensor disposed in the recirculation circulation passage for detecting hot water temperature, and a recirculation circulation passage or a communication passage communicating with the recirculation circulation passage. A water level sensor for detecting, the hot water heat exchanger and the reheating heat exchanger are integrated, and a common burner for heating the integrated hot water heat exchanger and the reheating heat exchanger is provided in advance. In a single can two water channel type bath water heater in which the water level detection operation by the water level sensor is performed at a predetermined timing, the single can two water channel bath water heater performs only the hot water supply operation without performing the reheating operation. A hot water single operation monitoring unit for monitoring whether or not the hot water single operation is performed; a direct detection value that directly detects the water temperature at the position where the water level sensor is disposed after the hot water single operation is stopped, or the position of the water level sensor. Water level detection stop that stops the water level detection operation by the water level sensor until the estimated detection value estimated by detecting the water temperature reaches a predetermined threshold value or until a predetermined margin period elapses after the threshold value is reached. One can two water bath hot water heater characterized by having provided a part; 給水通路から供給される水を加熱して給湯通路へ送出する給湯熱交換器と、浴槽湯水の追い焚き循環通路に組み込まれ追い焚き循環通路を循環する循環湯水の追い焚きを行う追い焚き熱交換器と、追い焚き循環通路又は追い焚き循環通路に連通する連通通路に配設され浴槽の湯水の水位を水圧により検出する水位センサとを備え、上記給湯熱交換器と追い焚き熱交換器は一体化され、この一体化された給湯熱交換器と追い焚き熱交換器を加熱する共通のバーナーと、該バーナーへの給排気を行う燃焼ファンとが設けられ、予め定められたタイミングで上記水位センサによる水位検出動作が行われる一缶二水路タイプの風呂給湯器において、一缶二水路風呂給湯器が追い焚き運転を行わず給湯運転だけを行う給湯単独運転を行っているか否かを監視する給湯単独運転監視部と;給湯単独運転の停止後に燃焼ファンを継続駆動させて追い焚き熱交換器を冷却するファン駆動部と;給湯単独運転の停止後に水位センサの配設位置の水温を直接的に検出した直接検出値あるいは水位センサの配設位置の水温を推定検出した推定検出値が予め定めたしきい値に達するまで、又は、上記しきい値に達してから予め定めた余裕期間が経過するまで水位センサによる水位検出動作を停止させる水位検出停止部と;を設けたことを特徴とする一缶二水路風呂給湯器。A hot water heat exchanger that heats the water supplied from the water supply passage and sends it to the hot water supply passage, and a reheating heat exchange that recirculates the circulating hot water that circulates in the recirculation circulation passage built in the recirculation circulation passage of the bathtub hot water And a water level sensor that is disposed in the recirculation passage or the communication passage that communicates with the recirculation circulation passage and detects the water level of the hot water in the bathtub by water pressure, and the hot water heat exchanger and the reheating heat exchanger are integrated. And a common burner for heating the integrated hot water supply heat exchanger and the reheating heat exchanger, and a combustion fan for supplying and exhausting the burner, and the water level sensor at a predetermined timing. In the canned and two-fluid type bath water heater in which the water level detection operation is performed, whether or not the canned and two-channel bath water heater performs a hot water supply single operation that does not perform a reheating operation but only a hot water supply operation. A hot water supply isolated operation monitoring unit; a fan drive unit that continuously drives the combustion fan after the hot water supply individual operation is stopped to cool the reheating heat exchanger; and a water temperature at the position where the water level sensor is disposed after the hot water supply individual operation is stopped. The direct detection value detected directly or the estimated detection value estimated by detecting the water temperature at the position where the water level sensor is installed reaches a predetermined threshold value, or a predetermined margin period after reaching the above threshold value And a water level detection stop unit for stopping the water level detection operation by the water level sensor until a period of time elapses. 水位センサの配設位置の水温を直接的に検出する手段は追い焚き循環通路温度センサによって構成され、水位センサの配設位置の水温を推定検出する手段は、給湯単独運転が行われている給湯単独運転時間と、給湯単独運転の燃焼運転情報とを少なくともパラメータにして求められる追い焚き熱交換器の保有熱量に基づき水位センサの配設位置の水温を推定検出する保有熱量検出手段、あるいは、一缶二水路風呂給湯器の給気温に基づき水位センサの配設位置の水温を推定検出する給気温検出手段、あるいは、上記追い焚き熱交換器の保有熱量と給気温を組み合わせて水位センサの配設位置の水温を推定検出する保有熱量・給気温検出手段のうちのいずれか1つの手段により構成されていることを特徴とする請求項1又は請求項2記載の一缶二水路風呂給湯器。The means for directly detecting the water temperature at the position where the water level sensor is disposed is constituted by a recirculation circulation path temperature sensor, and the means for estimating and detecting the water temperature at the position where the water level sensor is disposed is a hot water supply in which the hot water supply is operated alone. Retained heat amount detecting means for estimating and detecting the water temperature at the position where the water level sensor is disposed based on the retained heat amount of the reheating heat exchanger obtained by using at least the parameters of the isolated operation time and the combustion operation information of the hot water supply isolated operation, or Air temperature detection means for estimating and detecting the water temperature at the position of the water level sensor based on the air temperature of the can two water channel bath water heater, or the water level sensor by combining the amount of heat retained by the reheating heat exchanger and the air temperature 3. A can according to claim 1, wherein said can is constituted by any one of a stored heat quantity / supply temperature detecting means for estimating and detecting a water temperature at a position. Waterway bath water heater. 給水通路から供給される水を加熱して給湯通路へ送出する給湯熱交換器と、浴槽湯水の追い焚き循環通路に組み込まれ追い焚き循環通路を循環する循環湯水の追い焚きを行う追い焚き熱交換器と、追い焚き循環通路又は追い焚き循環通路に連通する連通通路に配設され浴槽の湯水の水位を水圧により検出する水位センサとを備え、上記給湯熱交換器と追い焚き熱交換器は一体化され、この一体化された給湯熱交換器と追い焚き熱交換器を加熱する共通のバーナーと、該バーナーへの給排気を行う燃焼ファンとが設けられ、予め定められたタイミングで上記水位センサによる水位検出動作が行われる一缶二水路タイプの風呂給湯器において、一缶二水路風呂給湯器が追い焚き運転を行わず給湯運転だけを行う給湯単独運転を行っているか否かを監視する給湯単独運転監視部と;給湯単独運転の停止後に予め定めたファン駆動延長時間を経過するまで燃焼ファンを継続駆動させるファン駆動部と;給湯単独運転の停止後に燃焼ファンの駆動が停止されるまで、又は、停止されてから予め定めた余裕期間を経過するまで水位センサによる水位検出動作を停止させる水位検出停止部と;を設けたことを特徴とする一缶二水路風呂給湯器。A hot water heat exchanger that heats the water supplied from the water supply passage and sends it to the hot water supply passage, and a reheating heat exchange that recirculates the circulating hot water that circulates in the recirculation circulation passage built in the recirculation circulation passage of the bathtub hot water And a water level sensor that is disposed in the recirculation passage or the communication passage that communicates with the recirculation circulation passage and detects the water level of the hot water in the bathtub by water pressure, and the hot water heat exchanger and the reheating heat exchanger are integrated. And a common burner for heating the integrated hot water supply heat exchanger and the reheating heat exchanger, and a combustion fan for supplying and exhausting the burner, and the water level sensor at a predetermined timing. In the canned and two-fluid type bath water heater in which the water level detection operation is performed, whether or not the canned and two-channel bath water heater performs a hot water supply single operation that does not perform a reheating operation but only a hot water supply operation. A hot water supply isolated operation monitoring unit; a fan drive unit that continuously drives the combustion fan until a predetermined fan drive extension time elapses after the hot water supply isolated operation is stopped; and the combustion fan drive is stopped after the hot water supply isolated operation is stopped. Or a water level detection stop unit for stopping the water level detection operation by the water level sensor until a predetermined margin period elapses after being stopped. 一缶二水路風呂給湯器の給気温を検出する給気温センサが設けられており、給気温センサが検出する給気温に基づいてファン駆動延長時間を設定するファン駆動延長時間データが与えられ、上記給気温センサが検出する給気温に応じてファン駆動延長時間を可変設定する延長時間設定部を設けたことを特徴とする請求項4記載の一缶二水路風呂給湯器。An air temperature sensor for detecting the air temperature of the single can two water bath hot water heater is provided, fan driving extension time data for setting the fan driving extension time based on the air temperature detected by the air temperature sensor is given, and 5. The single can two-way bath water heater according to claim 4, further comprising an extended time setting unit that variably sets the fan drive extended time according to the air temperature detected by the air temperature sensor. 一缶二水路風呂給湯器が給湯単独運転を行っている時間を計測する時間計測手段と;少なくとも給湯単独運転の燃焼熱量情報と給湯単独運転時間をパラメータとして給湯単独運転によるバーナーの燃焼熱により追い焚き熱交換器に与えられる追い焚き熱交換器の保有熱量を求める保有熱量データが与えられ、該保有熱量データを求めるための前記給湯単独運転時のパラメータ情報を取り込んで前記保有熱量データから追い焚き熱交換器の保有熱量を求め、該保有熱量に応じたファン駆動延長時間を可変設定する延長時間設定部を設けたことを特徴とする請求項4記載の一缶二水路風呂給湯器。A time measuring means for measuring the time during which a single can two-way bath water heater is operating the hot water supply alone; at least the combustion heat information of the hot water supply independent operation and the hot water single operation time as parameters are followed by the combustion heat of the burner in the hot water supply independent operation Retained heat amount data for obtaining the retained heat amount of the reheating heat exchanger to be given to the fired heat exchanger is given, and the parameter information at the time of the hot water supply single operation for obtaining the retained heat amount data is taken in and reheated from the retained heat amount data. 5. The single-can two-water bath water heater according to claim 4, further comprising an extended time setting unit that obtains the amount of heat retained by the heat exchanger and variably sets the fan drive extended time according to the amount of retained heat.
JP33499396A 1996-11-29 1996-11-29 One can two water bath hot water heater Expired - Fee Related JP3767959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33499396A JP3767959B2 (en) 1996-11-29 1996-11-29 One can two water bath hot water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33499396A JP3767959B2 (en) 1996-11-29 1996-11-29 One can two water bath hot water heater

Publications (2)

Publication Number Publication Date
JPH10160244A JPH10160244A (en) 1998-06-19
JP3767959B2 true JP3767959B2 (en) 2006-04-19

Family

ID=18283538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33499396A Expired - Fee Related JP3767959B2 (en) 1996-11-29 1996-11-29 One can two water bath hot water heater

Country Status (1)

Country Link
JP (1) JP3767959B2 (en)

Also Published As

Publication number Publication date
JPH10160244A (en) 1998-06-19

Similar Documents

Publication Publication Date Title
KR100598548B1 (en) Complex heat source machine with one fan
JP3767959B2 (en) One can two water bath hot water heater
JPH05149567A (en) Tap-controlled hot water supplying apparatus
JP5797043B2 (en) Hot water heater
JP3777005B2 (en) One can two water bath hot water heater
JP3776997B2 (en) One can two water bath hot water heater
JP3767956B2 (en) One can two water bath hot water heater
JP3880119B2 (en) One can two water bath hot water heater
JP3776998B2 (en) One can two water bath hot water heater
JP3822721B2 (en) One can two water bath hot water heater
JP3754502B2 (en) Bath kettle with water heater
JP3848728B2 (en) One can two water bath hot water heater
JP3834423B2 (en) One can multi-channel combustion equipment
JP3834352B2 (en) Combined water heater
JP3748681B2 (en) One can two water bath hot water heater
JP3776994B2 (en) One can two water bath hot water heater
JPH07180908A (en) Method and apparatus for controlling reoutput hot water temperature of hot water supplying apparatus
JP3777037B2 (en) Remaining water amount calculation method
JPH11193956A (en) Heat insulating device and method for bath
JPH10148397A (en) Hot water supply apparatus
JPH11264607A (en) Hot-water supply machine with reheating function
JP3792338B2 (en) One can two water bath hot water heater
JP3034754B2 (en) Hot water supply temperature control device
JP2010281520A (en) Heat source machine for heating
JPH05118654A (en) Controlling method for water control valve

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees