JP3767528B2 - 地絡点標定方法および装置 - Google Patents

地絡点標定方法および装置 Download PDF

Info

Publication number
JP3767528B2
JP3767528B2 JP2002215968A JP2002215968A JP3767528B2 JP 3767528 B2 JP3767528 B2 JP 3767528B2 JP 2002215968 A JP2002215968 A JP 2002215968A JP 2002215968 A JP2002215968 A JP 2002215968A JP 3767528 B2 JP3767528 B2 JP 3767528B2
Authority
JP
Japan
Prior art keywords
ground fault
current
point
ground
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002215968A
Other languages
English (en)
Other versions
JP2004061142A (ja
Inventor
優 楯身
達朗 加藤
康則 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002215968A priority Critical patent/JP3767528B2/ja
Publication of JP2004061142A publication Critical patent/JP2004061142A/ja
Application granted granted Critical
Publication of JP3767528B2 publication Critical patent/JP3767528B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Locating Faults (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は地絡点標定方法および装置に係り、特に、配電線路における地絡点を標定するものに好適な地絡点標定方法および装置に関する。
【0002】
【従来の技術】
配電線路内に地絡事故が発生した際には、事故区間を早期に切り離す時限順送故障区間区分方式が広く適用されている。そして、配電用変電所の母線に設たGPDと各フィーダに設けたZCTにより地絡を検知すると、事故フィーダを特定して、変電所の事故フィーダに繋がる遮断器とそのフィーダ上の開閉器をトリップさせる。事故点を含む開閉器区間(事故区間)検出するために、通常は配電用変電所に近い方から開閉器を投入していく。地絡点を含む配電線路に給電させると遮断器と開閉器は再トリップする。このため、最後に投入して変電所に近いほうから順に開閉器を自動投入させ事故区間の直前の区間まで復電させる。時限順送方式は故障区間を特定しても地絡箇所までを特定できない。そのため、作業者は事故区間中の地絡点を探索することになる。しかし、一般的に開閉器間の距離は長いので、作業範囲が広くなり、作業者の労力は多大である。また、地絡区間は復旧するまで停電になるので、電力品質の面からも好ましい状況ではない。
【0003】
作業労力を軽減し復旧時間を短縮するには、事故点標定技術が必要である。地絡点を区間ではなく点で標定することにより、復旧作業者の作業範囲を狭め、復旧時間を短縮できる。現在までに考えられている有力な事故点標定方法として、地絡時のサージ電流を2地点で測定してサージ電流の到達時間差から地絡点標定する方法(以下、サージ法と呼ぶ)がある。例えば、特開昭63−206668号公報参照
【0004】
【発明が解決しようとする課題】
しかし、上記したサージ法は、サージの伝播速度が既知量であることを前提としているが、実際にはサージの速度は明確ではなく、配電線路の種類や温度で変化する。その結果、標定誤差が拡大してしまう。また、サージ電流は高速に線路上を伝播するので到達時間を評価するためには測定地点に備える測定器のサンプリング周波数を非常に高く設定する必要がある。サージ速度が200m/μsとすると、1μsの時間差が100mに対応する。さらに、地絡に伴うサージ電流の到達時間差から地絡点を評価するので、測定地点から地絡点を外挿することは原理的に不可能である。
本発明は上述の点に鑑みなされたもので、その目的は、低いサンプリング周波数で高精度に地絡点標定することのできる地絡点標定装置およびその方法を提供するにある。
【0005】
【課題を解決するための手段】
上記の目的を達成するために、本発明の地絡点標定装置は、電力線路と対地間に配置された2つ以上のコンデンサと、該コンデンサに流れる電流波形を計測するための電流センサとを備え、前記電流センサの電流波形の立ち上がり部分の傾きを求めて地絡点を標定することを特徴とする
【0006】
また、本発明の地絡点標定装置は、電力線路中に事故区間を判定する事故区間判定装置と、該事故区間判定装置の近傍の前記電力線路と対地間に配置された2つ以上のコンデンサに流れる電流波形を測定する手段と、前記コンデンサに流れる電流波形の立ち上がり部分の傾きを求めて地絡点を標定する手段とを備えていることを特徴とする。
【0007】
更に、本発明の地絡点標定方法は、電力線路と対地間に配置された2つ以上のコンデンサに流れる電流波形を検出し、該電流波形の立ち上がり部分の傾きを求めて地絡点を標定することを特徴とする。
【0008】
【発明の実施の形態】
以下、図示した実施例に基づいて本発明の地絡点標定について説明する。
【0009】
図1は本発明の地絡点標定装置を示すもので、該図において、5Gおよび5Lは地絡点検出装置であり、これらは配電線路1a,1b,1cに接続されている地絡点検出装置5Gおよび5Lは同一の構成となっている地絡点検出装置5G,5Lは配電線路1a,1b,1cと対地間に繋がる静電容量としてコンデンサ2a,2b,2cと、地絡時にコンデンサ2a,2b,2cに流れる電流Ia,Ib,Ic1,Ia2,Ib2,Ic2を測定する電流センサ3と、電流センサ3が検出した電流を記録する波形記録装置4から概略構成されている。また、地絡時に地絡点検出装置5G,5Lの波形検出装置4が記録する波形またはその特徴量を1箇所に収集するための通信線10と、そのデータが送信され地絡点標定する中央処理装置11が備えられている。
【0010】
次に図1と図2に基づき地絡点標定方法について説明する。地絡点検出装置5G,5L常時配電線路1a,1b,1cに繋がるコンデンサ2a,2b,2cに流れる電流Ia,Ib,Ic1,Ia2,Ib2,Ic2を測定し、波形記録装置4に入力する(図2の符号21)。
【0011】
波形記録装置4は規定値より小さな電流値は無視し、規定電流値より大きな電流が流れた場合に動作して、その時の電流I,Ib,Ic1,Ia2,Ib2,Ic2の波形を記録する。いま、図1の地絡点検出装置5Gから距離d1離れた配電線路1a上の点Pで地絡が発生したとする。その時、地絡点検出装置5Gおよび5Lのコンデンサ2a,2b,2cには、地絡前より大きなピーク値をもつ過渡的電流が流れるので、波形記録装置に地絡直後の過渡的波形が記録される。波形記録装置4は記録した波形データと地絡点検出装置5G,5LのID、地絡検出時刻などを通信線10を介して中央処理装置11に送信する(図2の符号22)。ここで、送信する波形は通信設備の負担を軽くするために地絡点標定に必要な波形の特徴量(波形のピーク値、波形の立ち上がりの傾き、波形の周波数、地絡発生の検出時刻)だけでもよいが、以下では、簡単のためリアルタイムの波形データを送信する例を用いて説明する。
【0012】
地絡相を判定するために、中央処理装置11では電流Ia1,Ib1,Ib2のピーク値を比較する。そして、最も大きいピーク値を持つ電流が流れ込む配電線路を故障相と判定する。図3は、配電線路1aにて地絡が発生した時に地絡点検出装置5Gで計測される各相の電流波形を示したものである。この図から地絡点検出装置5Gでは電流Ia1が最も大きなピークを持つので、電流Ia1が流れ込む配電線路1aを地絡相と判定する。地絡点検出装置5Lも同様な方法で地絡相を判定する。地絡点検出装置5Lでは、電流Ia2のピーク電流値が最大になるので、配電線路1aを故障相と判定する。地絡点検出装置5G,5Lのどちらで地絡相を判定しても同一の結果になるので、地絡相を判定するためにどちらか一方の電流波形を評価するだけでもよい。また、地絡相を判別するために健全相を判定してもよい。地絡によって健全相には同相の充電電圧が印加される。地絡点検出装置5G,5Lのコンデンサ2a,2b,2cの容量が同一ならば、健全相に繋がるコンデンサに流れる過渡電流波形はほぼ一致する。特に地絡直後はその傾向が強い。そのため、地絡相に繋がるコンデンサに流れる電流波形だけ波形の位相が違うので、その差異を判別しても地絡相を特定できる(図2の符号23)。
【0013】
地絡点を標定するために、地絡点検出装置5G5Lの地絡相に繋がるコンデンサ2aに流れる電流Ia1とIa2から地絡点標定するに必要な特徴量を抽出する。図4は地絡点検出装置5G5Lの波形記録装置4が記録した電流Ia1とIa2を表すグラフである。例えば、特徴量を波形の立ち上がりの傾きと考え、電流Ia1の立ち上がりの傾きg1、電流Ia2の立ち上がりの傾きg2を求める(図2の符号24)。
【0014】
地絡点検出装置5G,5Lから事故点Pまでの配電線路1a,1b,1cの静電容量はコンデンサ2a,2b,2cに比べてはるかに小さいので無視できる。そのため、地絡直後に地絡した配電線路1aに繋がるコンデンサ2aに流れる電流Ia1,Ia2は、「アース→地絡相のコンデンサ→配電線路1aのインピーダンス(地絡点検出装置5G,5Lから地絡点Pまで)→地絡抵抗Rg→アース」というループ中の線路定数に支配されるので、他の線路定数の影響を考えなくてよい。地絡点検出装置5G5Lから地絡点Pまでの配電線路のインピーダンスをインダクタンスL(単位長さ当たり)とするならば、このループは地絡直後は独立したRLC回路となる。
【0015】
図5(a),(b)はそれらの回路を示している。図5(a)が地絡点検出装置5Gのコンデンサ2aを含む回路モデルで、図5(b)が地絡点検出装置5Lのコンデンサ2aを含む回路モデルである。このモデルにおいて、地絡前にコンデンサ2aに充電されている電圧をEとすると、電流Ia1,Ia2の立ち上がりの傾きg1,g2はそれぞれ次のように表せる。
【0016】
g1=E/(L×d1),g2=E/(L×d2) …(式1−1)
従って、これらの比をとれば、
g1/g2=d2/d1 …(式1−2)
と表せる。
そのため、地絡点検出装置5Gから5Lの距離をdとすると図1からd=d1+d2なので、d1/d=d1/(d1+d2)=1/(1+(d2/d1))=1/(1+(g1/g2))が成立する。それ故、地絡点検出装置5Gから地絡点までの距離d1は電流波形の特徴量として抽出した傾きg1,g2を用いて次式で表せる(図2の符号25)。
【0017】
d1=d/(1+(g1/g2)) …(式1−3)
配電線路1に接続させるコンデンサ2に流れる電流が図5の回路で評価できるので、電流波形の特徴量として電流の立が上がりの傾きの代わりに周波数を用いる別の方法もある。例えば、地絡相に繋がるコンデンサ2の通電電流をFFT(高速フーリエ変換)をすると、そのスペクトルの最大ピークに於ける周波数(以下最大ピーク周波数と呼ぶ)が求まる。線路と対地間の単位長さ当たりの浮遊容量C′とする時、d≪C′/Cが成立するので、図1の地絡点検出装置5Gの地絡相に繋がるコンデンサに流れる電流Ia1の電流の周波数はω=1/√(C×L×d1)となる。従ってωの2乗は地絡点までの距離に逆比例の関係にある。そのため、各測定地点の最大ピーク周波数の2乗の比から地絡点標定することも可能である。図1の場合に於いて、Ia1の基本角周波数をω1,Ia2の基本角周波数をω2とすると、(ω1/ω2)^2=L2/L1と表せるので、d1は波形の特徴量ω1およびω2を用いて次のように書き表せる。
【0018】
d1=d/(1+(ω1/ω2)^2) …(式1−4)
以上が地絡点d1を導出する第一の実施例の方法である。
【0019】
上記の地絡点標定方法に依ると標準的な線路定数を有する分岐のない系統に於いて、500kHzのサンプリング周波数で、地絡点検出装置の間の距離dが1000mのとき33m以内の誤差で地絡点標定が可能である。一方、サージ法で同一の精度を求める場合、サージ電流の伝播速度を200m/μsとすると、3MHz以上のサンプリング周波数が必要であり、本手法の約6倍のサンプリング周波数が必要である。したがって、本実施例によれば、従来よりも低いサンプリング周波数で高精度の地絡点標定が可能である。
【0020】
地絡抵抗は一般的には未知だが、本手法では(式1−3)から分かるように地絡抵抗と無関係に地絡点が標定できる。さらに、配電線路の線路定数または配電線路に接続させたコンデンサの容量に依存しないで、地絡点を標定できる。そのため、系統構成の変更時に伴う煩雑な手続きは必要でない。また、分岐が複雑な系統であっても、本手法は系統全体に対してローカルな現象を利用して地絡点標定できるので、地絡点検出装置を分岐部に備えることにより、地絡点標定が可能である。同様の理由により地絡点標定の精度を高くできる。また、地絡点検出装置に備える静電容量の大きさを大きくすると、地絡時に地絡相に繋がるコンデンサに流れる電流のピーク電流値が大きくなる。そのため、長い時間スパンで電流の傾きを評価できるので、電流波形の記録を低いサンプリング周波数で実現できる。また、地絡点検出装置の設置間隔を長くしても、立ち上がりの傾きが小さくなり、長い時間スパンで電流の傾きを評価できるようになるので、低いサンプリング周波数でも高精度に地絡点標定が可能となる。
【0021】
次に本発明の第二の実施例を説明する。図1の地絡点検出装置5G,5Lでは、配電線路1a,1b,1cに接続されるコンデンサ2a,2b,2cの通電電流を測定するために、地絡点検出装置5G,5L毎に電流センサ3が3つ必要である。これに対して、本実施例では電流センサを1つにする方法について図6に基づいて説明する。
図6は電流センサを1つにするために、図1の電流センサ3の代わりに、それぞれの電流センサ7によって電流Ia1,Ib1及び電流Ic1,Ia2,Ib2,Ic2の総和を測定している。その他の構成要素は図1と同様であるため説明を省略する。
【0022】
地絡点標定のために電流波形の傾きを評価する部分は地絡直後の電流値であるが、図3から分かるように地絡直後の健全相に繋がるコンデンサに流れる電流Ic1,Ib1は地絡相に繋がるコンデンサに流れる電流Ia1に比べて無視できるほど小さい。そのため、電流センサ7で測定した電流を近似的にIa1と見なせる。2地点で測定した電流の傾きを用いて、(式1−3)に依り地絡点標定できる。この方法では地絡相を判定する必要がないので、地絡点標定の手続きを簡素化できる。
【0023】
次に本発明の第三の実施例を説明する。第一の実施例では地絡点検出装置5Gおよび5Lの間に地絡点がある場合の地絡点標定を説明した。本実施例には地絡点検出装置5Gおよび5Lからの外挿による地絡点標定について図7に基づき説明する。図7の構成は図1に於ける地絡点Pの位置のみが変化しており、それ以外は同様の構成を備えている。
【0024】
この実施例における地絡点の標定方法を説明する。いま、地絡点Pで地絡が発生したとする。コンデンサ2a,2b,2cには地絡前より大きなピーク値を有する地絡電流が流れるので、波形記録装置4はコンデンサ2a , 2b , 2cに流れる電流Ia1,Ib1及び電流Ic1,Ia2,Ib2,Ic2を電流センサ3に依って測定し記録する。
【0025】
地絡相を見出すために、波形記録装置4に記録された電流波形のピーク値を比較する。ピーク値が一番大きな電流が流れたコンデンサに繋がる配電線路を地絡相と判定する。図7の場合だと地絡点検出装置5Gでは電流Ia1、地絡点検出装置5Lでは電流Ia2が一番大きなピーク値を有するので、配電線路1aが地絡していると判定できる。
【0026】
地絡点標定するために、地絡相に繋がるコンデンサに流れる電流Ia1,Ia2の立ち上がりの傾きを求める。Ia1の立ち上がりの傾きをg1,Ia2の立ち上がりの傾きをg2とする。第一の実施例と同様にコンデンサ2aから配電線路1aに流れる電流Iaの波形がコンデンサ2aと、配電線路1aと、地絡抵抗Rgで決まると仮定すると、再び図5のような等価回路で表せる。
【0027】
したがって、
g1=E/(L×d1)、g2=E/(L×d2) …(式2−1)
と表せる。これらの比をとると、g1/g2=d2/d1となる。そのため、図7からd=d1−d2なので、d2/d=d2/(d1−d2)=1/((d1/d2)−1)=1/((g2/g1)−1)が成立する。それ故、地絡点検出装置5Lから地絡点までの距離d2は次式で表せる。
【0028】
d2=d/((g2/g1)−1) …(式2−2)
以上が地絡点Pからの距離d2を導出する第三の実施例の方法である。第三の実施例では地絡点検出装置5Lより負荷側に地絡点を設けたが、地絡点検出装置5Gより電源側に地絡点を設けても、同様の方法で地絡点標定が可能である。本手法では、地絡標定に用いる地絡点検出装置5G,5Lの間の距離dに対して25%以内の誤差で地絡点を標定可能である。
【0029】
次にこの実施例の効果について述べる。波形の計測地点と地絡点が図7の関係にあるとき、従来法であるサージ法は使えない。サージ電流の地絡点検出装置5Gおよび5Lへの到達時間差が地絡点を変化させても変わらないからである。
本実施例では、配電線路1a,1b,1c上に地絡点検出装置5G,5Lを2つ以上設けると、地絡点検出装置5G,5Lを配電線路1a,1b,1cの末端に設けなくても、その配電線路1a,1b,1cすべての領域における地絡点の標定ができる。そのため、サージ法に比べて地絡点検出装置5G,5Lの設置台数を少なくできる。
本実施例においても、地絡抵抗やその他の回路定数に依存せずに地絡点を標定できるので、標定精度が良くなる。
【0030】
また、内挿と外挿を組み合わせることによりさらに標定精度を向上できる可能性がある。図8は配電線路1を一括して単線で表し、地絡点検出装置を簡略化して記号◎で表した系統を示している。地絡点検出装置5および5の間で地絡が発生した場合、地絡点検出装置および5からの内挿による地絡点標定の結果と、地絡点検出装置および5の外挿による地絡点標定を平均して精度を高くする方法が実現できる。
【0031】
次に本発明の第四の実施例を説明する。本実施例は分岐がある場合の地絡点評定方法について図9に基づき説明する。図9では配電線路1を簡単のため単線で表している。通信線は配電線路と平行に配置させ中央処理装置と接続されているが、実施例1と同様の役割なので簡単のためここでは図示しない。
【0032】
配電線路1は0点で分岐している。0点から分岐するすべての配電線路1上に地絡点検出装置5a,5b,5cが備えられている。地絡点検出装置5a,5b,5cの構成は図1で説明した地絡点検出装置と同様の構成であるが、ここでは簡略化して記号◎で表示している。0点から地絡点検出装置5aまでの距離をa、0点から地絡点検出装置5bまでの距離をb、0点から地絡点検出装置5cまでの距離をcと定義する。
【0033】
O点から地絡点検出装置5に至る経路の何処かで地絡が発生したとする。一般性を損なわずにO点から5a上の配電線路上に、O点からΔaの距離の位置に地絡点があると考えてよい。地絡相を判別するために、地絡点検出装置5の中に備えた波形記録装置4を参照して、配電線路に接続させたコンデンサ2に流れる各相に流れ込む電流波形を比較する。ピーク値の一番大きな電流が流れるコンデンサ2が繋がる相を地絡相と判定する。地絡点標定するためには、O点からどの経路に故障があるのか判定し、O点から事故点までの距離を求める必要がある。そのため、地絡点検出装置5a,5b,5cの各地絡相に繋がるコンデンサに流れる電流の立ち上がりの傾きを求める。いま、それらの傾きがそれぞれga,gb,gcであるとする。ここで、
b/a<ga/gbかつc/a<ga/gc …(式3−1)
ならば、O点と5aの間に地絡点があると判定できる。そのため、
a−Δa:b+Δa:c+Δa=1/ga:1/gb:1/gc…(式3−2)
が成り立つので、Δaが次式により求められる。
【0034】
Δa=(aga−bgb)/(ga+gb) …(式3−3)
Δa=(cgc−bgb)/(gb−gc) …(式3−4)
Δa=(aga−cgc)/(ga+gc) …(式3−5)
(式3−3),(式3−4),(式3−5)の何れでΔaを求めてもよい。
(式3−1)が成立しない時は、「5a,5b,5c」を「5b,5c,5a」または「5c,5a,5b」に置き換えて、(3−1)からの処理に従いΔaを求める。
【0035】
次にこの実施例の効果について述べる。本実施例の方法に従うことにより、図9のように分岐点Oを囲むように地絡点検出装置がある場合には分岐した配電線路を含めて地絡点評定できる。分岐点近傍に地絡点検出装置を配置しないで地絡点標定可能なので、分岐を含めて地絡点標定する場合にも地絡点検出装置の数を減らすことが可能になる。
【0036】
第一の実施例から第四の実施例は2地点以上の測定地点からの地絡点標定方法について説明した。次に、1つの測定地点から地絡点標定する実施例について説明する。
【0037】
図10は第五の実施例の構成図である。地絡点標定装置5はコンデンサ2a,2b,2cと、電流センサ3と、波形記録装置4から構成される。コンデンサ2a,2b,2cは、配電線路1a,1b,1cと対地間に接続される。コンデンサ2a,2b,2cに流れる電流を測定する電流センサ3は、波形記録装置4に接続される。また、地絡点標定装置5の近傍には零相電流を測定するために電流センサ6配電線路1a,1b,1cに設けられる。電流センサ6も波形記録装置4に接続される。また、図示しないが、配電用変電所では、電圧センサを備えて配電線路1a,1b,1cの各配電線路の対地電圧を測定しているものとする。
【0038】
次に地絡点標定方法について述べる。いま、配電線路1aのP点で地絡が発生したとする。コンデンサ2a,2b,2cにはピーク値の大きな電流が流れるので波形記録装置4は電流センサ3が検出する電流Ia,Ib,Icおよび電流センサ3が検出する波形を記録する。また、配電用変電所では地絡時の対地電圧波形を記録する。
【0039】
地絡相を判定するために、電流Ia,Ib,Icのピーク値を比較して、最も大きなピーク値をもつ電流が流れるコンデンサに繋がる配電線路を地絡相と判定する。図10の場合であると電流Iaが最も大きなピーク値をもつので、配電線路1aを地絡相と判定する。
【0040】
地絡の方向判定をするためには、電流センサ3の波形を評価する。地絡が地絡点検出装置5より負荷側で発生した場合、電流センサ6が検出する零相電流は図示しない変電所に繋がる他の配電線路が有する静電容量による充電電流および放電電流の和である。一方、電源側に地絡点がある場合、電流センサ6が検出する零相電流は配電線路1の事故点より負荷側の線路が有する静電容量の放電電流を検出する。静電容量が大きいほど零相電流が大きくなるので、地絡検出装置より負荷側で地絡が発生した場合は電源側で地絡が発生した場合に比べて、はるかに大きなピーク値を有する電流を検出する。また、静電容量が大きいと波形の周期が長くなる。したがって、例えばピーク電流値または周波数成分を評価することにより地絡方向を判定できる。図10の場合、電流センサ6では高速フーリエ変換した時の最大ピーク周波数が低くピーク値の大きい過渡的電流波形が観測されるので、地絡点検出装置5より負荷側で地絡が発生していると判定する。
【0041】
地絡点検出装置5から地絡点Pまでの距離を測定するためには、地絡相に繋がるコンデンサ2aに流れる電流波形Iaの立が上がりの傾きgと、配電用変電所で測定される地絡相の地絡直前の対地瞬時電圧の絶対値Eと、配電線路の単位長さ当たりのインダクタンスLを用いる。
【0042】
Iaの電流の立が上がりの傾きgは地絡点検出装置5から地絡点Pまでの距離をdとするとg=E/(L×d)で表せる。従って、地絡点Pは
d=E/(L×g) …(式4−1)
として標定できる。
【0043】
上述した方法では地絡の方向判定をするために、電流センサ6を用いているが、地絡の方向が明らかな場合電流センサ6は必要でない。例えば、地絡点検出装置5を配電線路の端点に備える場合がそうである。また、地絡距離を検出するために図示しない配電用変電所に対地電圧を測定する電圧センサを備えることとしたが、地絡は電圧がピークの時に発生すると仮定すれば、E=定格電圧/√2として地絡点標定すればよいので、電圧センサも省略できる。
【0044】
次に、地絡相に繋がるコンデンサに流れる電流の周波数に着目して地絡点を求める他の方法を説明する。図10の場合Iaをフーリエ変換すると、スペクトルのピーク周波数fは共振周波数に等しいので、f=1/{2π√(C×L×d)}と表せる。従って地絡点dは既知量である配電線路と対地に繋げるCおよび配電線路の単位長さ当たりのインダクタンスLを用いて
d=(2πf)^2/(L×C) …(式4−2)
として評定できる。
【0045】
次にこの実施例の効果について説明する。サージ法では少なくとも2地点でサージを検出する必要があったが、本実施例では単一の測定地点から地絡点を標定できるので、装置を低コストで構成することができる。
【0046】
【発明の効果】
本発明の地絡点標定方法によれば地絡時の地絡相に繋がるコンデンサに流れる電流の立ち上がりの傾きを評価するので、コンデンサの大きさまたは測定地点間隔を長くすることにより、サンプリング周波数を低くすることができる。
【0047】
また、測定地点から地絡点までの距離の比が分かるので、地絡点の内挿だけでなく外挿も可能である。
【0048】
更に地絡抵抗,回路定数,線路に接続させる静電容量などの回路定数の情報が原理的に必要ないので、高精度に地絡点標定できる。さらに、地絡点標定がローカルに処理できるので、分岐のある系統も精度の良い標定が可能である。
【図面の簡単な説明】
【図1】本発明の第一の実施例の地絡点を内挿で標定する方法を表す図である。
【図2】本発明の第一の実施例における処理の流れを示すフローチャートである。
【図3】本発明の第一の実施例に於ける地絡点検出装置のコンデンサに流れる電流波形を表すグラフである。
【図4】本発明の第一の実施例に於いて異なる2地点の地絡点検出装置の地絡相に繋がるコンデンサに流れる電流波形を表すグラフである。
【図5】本発明の第一の実施例の地絡時に測定電流が感じる回路モデルである。
【図6】本発明の第二の実施例の地絡点を内挿で標定する方法を表す図である。
【図7】本発明の第三の実施例である地絡点を外挿で評定する方法を表す図である。
【図8】本発明の外挿と内挿による地絡点標定方法を表す実施例である。
【図9】本発明の第四の実施例である分岐がある場合の地絡点標定方法を表す図である。
【図10】本発明の第五の実施例である1地点からの地絡点標定方法を表す図である。
【符号の説明】
,1a,1b,1c…配電線路、2a,2b,2c…コンデンサ、3…電流センサ、4…波形記録装置、5a,5b,5c,5d,5e,5f,5G,5L…地絡点検出装置、10…通信線、11…中央処理装置。

Claims (3)

  1. 電力線路と対地間に配置された2つ以上のコンデンサと、該コンデンサに流れる電流波形を計測するための電流センサとを備え、
    前記電流センサが検出した電流波形の立ち上がり部分の傾きを求めて地絡点標定することを特徴とする地絡点標定装置。
  2. 電力線路と対地間に配置された2つ以上のコンデンサに流れる電流の波形を検出し、該電流波形の立ち上がり部分の傾きを求めて地絡点を標定することを特徴とする地絡点標定方法。
  3. 電力線路中に事故区間を判定する事故区間判定装置と、該事故区間判定装置の近傍の前記電力線路と対地間に配置された2つ以上のコンデンサに流れる電流波形を測定する手段と、前記コンデンサに流れる電流波形の立ち上がり部分の傾きを求めて地絡点を標定する手段とを備えていることを特徴とする地絡点標定装置。
JP2002215968A 2002-07-25 2002-07-25 地絡点標定方法および装置 Expired - Fee Related JP3767528B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002215968A JP3767528B2 (ja) 2002-07-25 2002-07-25 地絡点標定方法および装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002215968A JP3767528B2 (ja) 2002-07-25 2002-07-25 地絡点標定方法および装置

Publications (2)

Publication Number Publication Date
JP2004061142A JP2004061142A (ja) 2004-02-26
JP3767528B2 true JP3767528B2 (ja) 2006-04-19

Family

ID=31937848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002215968A Expired - Fee Related JP3767528B2 (ja) 2002-07-25 2002-07-25 地絡点標定方法および装置

Country Status (1)

Country Link
JP (1) JP3767528B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104391221A (zh) * 2014-11-05 2015-03-04 昆明理工大学 一种利用相电流梯度和的故障选相方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4550464B2 (ja) * 2004-04-07 2010-09-22 株式会社日立製作所 地絡点標定方法および装置
JP4404717B2 (ja) * 2004-08-02 2010-01-27 株式会社高岳製作所 光電流センサ
US8941387B2 (en) * 2010-10-12 2015-01-27 Howard University Apparatus and method for fault detection and location determination
JP6459518B2 (ja) * 2014-02-04 2019-01-30 東京電力ホールディングス株式会社 事故点標定装置
WO2017141327A1 (ja) * 2016-02-15 2017-08-24 中国電力株式会社 地絡点標定システム及び計測装置
CN106841925B (zh) * 2017-03-09 2019-12-03 昆明理工大学 一种基于滤波器支路电流梯度和的直流输电线路故障选极方法
FR3083322B1 (fr) * 2018-06-28 2021-06-25 Electricite De France Systeme et procede de localisation de defaut sur un reseau electrique poliphase utilisant l'evolution de tension directe et inverse
CN109507531B (zh) * 2018-11-21 2021-01-22 杭州电力设备制造有限公司 一种配电网单相接地选线方法、系统、装置及可读存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104391221A (zh) * 2014-11-05 2015-03-04 昆明理工大学 一种利用相电流梯度和的故障选相方法
CN104391221B (zh) * 2014-11-05 2017-06-13 昆明理工大学 一种利用相电流梯度和的故障选相方法

Also Published As

Publication number Publication date
JP2004061142A (ja) 2004-02-26

Similar Documents

Publication Publication Date Title
US9851390B2 (en) Method for locating distribution network circuit fault based on full waveform information
JP6711844B2 (ja) 故障位置検出および距離保護装置ならびに関連方法
Saha et al. Fault location on power networks
US7728600B2 (en) System and method for determining location of phase-to-earth fault
CA2613764C (en) Multi-ended fault location system
CN103852691B (zh) 在补偿或绝缘中性点的接地系统的网络中故障的定向检测
CN102645613B (zh) 一种基于非接触式磁场测量的输电线路故障定位方法
WO1998029752A1 (en) System for locating faults and estimating fault resistance in distribution networks with tapped loads
WO1998029752A9 (en) System for locating faults and estimating fault resistance in distribution networks with tapped loads
EP1870717B1 (en) System and method for determining phase-to-earth admittances of a three-phase electric line
CN102590703B (zh) 基于零序暂态电荷的谐振接地系统单相接地故障选线方法
EP0876620B1 (en) Method of detecting and locating a high-resistance earth fault in an electric power network
CN108700631A (zh) 用于电力传输系统的线路保护中的故障检测的方法、系统和设备
CN106093714A (zh) 小电流接地系统单相接地故障线路的选线方法
CN101943737A (zh) 单相接地故障诊断方法和装置
JP3767528B2 (ja) 地絡点標定方法および装置
Loos et al. Fault direction method in compensated network using the zero sequence active energy signal
CN103616615A (zh) 一种配电网单相接地故障定位方法
JP4865436B2 (ja) 地絡点標定方法および装置
Wang et al. A faulty line detection method for single phase-to-ground fault in resonant grounding system with CTs reversely connected
CN102540019B (zh) 一种测后模拟识别母线区内外故障的方法
CN103454561B (zh) 一种配电网单相接地故障定位方法
CN103487724A (zh) 一种配电网单相接地故障定位方法
JP4842675B2 (ja) 地絡点標定方法および装置
CN109669093A (zh) 一种非有效接地系统线路接地故障检测方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees