JP3764588B2 - Manufacturing method of high-strength steel pipe with excellent hydraulic formability with shaft push-in - Google Patents

Manufacturing method of high-strength steel pipe with excellent hydraulic formability with shaft push-in Download PDF

Info

Publication number
JP3764588B2
JP3764588B2 JP19649598A JP19649598A JP3764588B2 JP 3764588 B2 JP3764588 B2 JP 3764588B2 JP 19649598 A JP19649598 A JP 19649598A JP 19649598 A JP19649598 A JP 19649598A JP 3764588 B2 JP3764588 B2 JP 3764588B2
Authority
JP
Japan
Prior art keywords
less
steel
steel pipe
rolling
strength steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19649598A
Other languages
Japanese (ja)
Other versions
JP2000017329A (en
Inventor
浩之 棚橋
宏司 岸田
龍雄 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19649598A priority Critical patent/JP3764588B2/en
Publication of JP2000017329A publication Critical patent/JP2000017329A/en
Application granted granted Critical
Publication of JP3764588B2 publication Critical patent/JP3764588B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、軸押し込みを伴う液圧成形に用いた場合に優れた成形性を示す高強度鋼管に関するものである。
【0002】
【従来の技術】
金属製の管を所定の金型にて保持した後、内部に液体を満たし、その液体の圧力を必要な値に制御しつつ、かつ、管の端面を押し込んで行くことによって所望の形状に膨出成形する加工方法が、液圧バルジ加工、または、ハイドロフォーム加工として知られている。
【0003】
従来この加工方法は、配管用突き合わせ溶接継手や自転車のフレームの接続部材などの製造に専ら用いられていたが、最近、板材を曲げ加工などした複数部品を組み合わせて閉断面を有する形状に作られている部品などを、該加工方法によって管材から作製した部品に置換しようとする試みを中心に、自動車部品への適用が検討されるようになってきた。
【0004】
その結果、溶接用継手や自転車のフレーム部材では、被接続管と同材質管を用いることが一般的であったため、ほとんど検討されて来なかった素管の材質が問題とされるようになって来た。例えば、特開平10−88278号公報には、熱間圧延後の冷却と巻取条件および造管条件を規定することにより液圧バルジ成形性に優れた電縫鋼管を得る方法が記載されている。
【0005】
また、特開平10−137863号公報には、液圧バルジ加工用に表面処理を施した鋼管が記載されている。
【0006】
【発明が解決しようとする課題】
自動車部品に求められる代表的要素は軽量かつ高剛性であり、これを適えるには、部品用素材、すなわち加工用素管は、高強度鋼から成る薄肉管であることが望ましい。しかし、一般に、鋼管の薄肉化は軸押し込み時の座屈の発生を生じ易くし、また一方で、高強度素材を用いることは、膨出成形性を劣化させることが多い。すなわち、自動車部品への適用を前提にした該加工方法に適する高強度鋼管には適切な強度と成形性が必要であるが、このような高強度薄肉鋼管についてその成形性を軸押し込みを伴う液圧成形について検討した例は見当たらない。
【0007】
特開平10−88278号公報に記載されている発明は、熱間圧延鋼板を素材とした鋼管であるので薄肉管を得るには不向きであるとともに、その表面は冷間圧延鋼板を素材とした鋼管に比べてはるかに粗いため成形不良が高い確率で発生する恐れがあるという問題がある。また特開平10−137863号公報に記載されている発明は、成形金型と素管の間の焼付き防止や、潤滑性を高めるために表面処理を施した鋼管に関するものであるが、鋼管の材質に関する検討は全く為されておらず、成形性に優れた鋼管を得るという目的には十分ではないという問題がある。
【0008】
本発明は、こうした課題を解決すべく、座屈の発生を抑制しつつ薄肉化が可能で、かつ、優れた成形性を有する鋼管を製造する方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、
(1)質量%にて、
C:0.01%以下、
Mn: 0.01〜0.5%、
Si:0.005〜1.0%、
S:0.03%以下、
P:0.05%以下、
N:0.005%以下、
sol.Al:0.005〜0.1%、
Cu:0.8〜2.2%を含み、
残部がFeおよび不可避的不純物から構成される鋼の熱間仕上圧延をAr3点以上で終了し、巻取、酸洗、冷間圧延の後、750℃〜Ac3点で再結晶焼鈍し、引き続いて450〜700℃で0.1〜30分の熱処理を施し、その後の調質圧延の最終パスを、算術平均粗さRaが10μm以下のワークロールによって行い、その後、板厚tと外径Dとの比である肉厚直径比t/Dを0.005〜0.02として造管することを特徴とする軸押し込みを伴う液圧成形性に優れた高強度鋼管の製造方法。
【0010】
(2)質量%にて、
C:0.01%以下、
Mn:0.01〜0.5%、
Si:0.005〜1.0%、
S:0.03%以下、
P:0.05%以下、
N:0.005%以下、
sol.Al:0.005〜0.1%、
Cu:0.8〜2.2%を含み、
残部がFeおよび不可避的不純物から構成される鋼の熱間仕上圧延をAr3点以上で終了し、巻取、酸洗、冷間圧延の後、750℃〜Ac3点で再結晶焼鈍し、その後の調質圧延の最終パスを、算術平均粗さRaが10μm以下のワークロールによって行い、その後、板厚tと外径Dとの比である肉厚直径比t/Dを0.005〜0.02として造管し、その後、450〜700℃で0.1〜30分熱処理を施すことを特徴とする軸押し込みを伴う液圧成形性に優れた高強度鋼管の製造方法。
【0011】
(3) 更に、鋼に、質量%にて、Ti:0.01〜0.2%及びNb:0.005〜0.2%の一方又は双方を含有させたことを特徴とする(1)又は(2)記載の製造方法。
【0012】
(4) 更に、質量%にて、Ni:0.15〜0.45%を含有させたことを特徴とする(1)〜(3)のいずれか1項に記載の製造方法。
を要旨とするものである。
【0013】
【発明の実施の形態】
本発明者らは、鋼板として適切な強度と加工性を有すれば、それを用いて製造された鋼管も該加工方法に適しているものと考えて、特開昭64−4429号公報にて開示されているCuの析出強化を利用した高加工性冷延鋼板に注目した。そして、まず、質量%でC:0.01、Mn:0.20、Si:0.60、S:0.005、P:0.09、N:0.0020、sol.Al:0.035、Cu:1.2を含み、残部がFeおよび不可避的不純物から成る鋼片を加熱してAr3点以上の温度域で圧延し、750℃で巻き取った後、酸洗し、80%の冷間圧延を施した。この際、熱延板の仕上げ板厚を変化させることによって板厚の異なる冷間圧延材を複数製造した。
【0014】
その後、表1に示す製造条件で熱処理、調質圧延と造管とを行い成形用の素管を得た。造管はレーザービーム溶接により行った。
【0015】
熱処理は、Cuの析出が適切に成されることが期待される条件A及びBと、比較のため、Cuの析出処理が不適切であると考えられる条件C及びDとした。素管の直径(外径)、および、長さはそれぞれ60.5mm、および、300mmである。また、板厚の違いに対応した異なる肉厚直径比t/D(以下、単にt/Dという)を有する鋼管を作製した。
【0016】
【表1】

Figure 0003764588
次に、図1にその主要部分を模式的に示す軸押し込みを伴う液圧成形装置を用いて、T型継手の成形試験に供した。軸押し込み量を片側35mmとし、軸押し込み量の変化に比例させて負荷する内圧を増加させる条件で予備試験を行い、試験体が破裂する圧力PBを各製造条件の各t/D毎について求めた。次に本試験として、成形時の最終内圧をPBの90%、その他の条件は予備試験と同じとし、一つの種類の素管について各々50体の成形を行った。
【0017】
試験後、成形が問題なく為されたか否かを判定し、成形の成功率、すなわち(50−成形不良数)/50×100(%)を求めた。本試験での成形不良の形態は、全て、非膨出部における小さなしわの発生、または、座屈の発生であった。各製造条件毎の成功率をt/Dに対してプロットしたグラフが図2である。
【0018】
このように上記の化学成分を有する鋼を適切な製造条件で造管すれば、t/Dが0.02程度まではほぼ問題なく成形可能であるが、それよりt/Dの小さい極薄肉管になると、そのほとんどが成形不良となるCuの析出処理が不適切と考えられる鋼管に比べれば高い成功率が得られるものの、その値は高々50%程度であり、工業的な使用には不向きであると判断される水準に留まっている。
【0019】
そこで、本発明者らは、こうした極薄肉管であっても更に高い成功率で問題なく成形出来る鋼管の開発を目指し、数々の冷間圧延鋼板を用いた鋼管についてこうした試験を繰り返し行い、如何なる場合に成形不良、すなわち座屈またはしわの発生が生じるのかを究明した。その結果、極薄肉管の場合には、成形前の鋼管外面の表面粗さが劣るほど成功率が低くなることを見出した。
【0020】
従って成形前に鋼管外面を厳しく管理すれば成形の成功率を高め得ることが明らかとなった。
【0021】
しかしながら、鋼管外面全体を全ての素管について管理することは自動車部品のような大量生産工程には不向きであり、徒に製造コストを引き上げるのみであるから、より低いコストで効果のある方法を見出すため更に検討を進めた。そして、調質圧延に用いるワークロールの表面粗さ(調質圧延を複数パスで行う場合にはその最終パスで用いるワークロールの表面粗さ)を適切に管理しておけば極めて高い成功率で極薄肉管の成形が可能であるとの結論を得るに至った。
【0022】
図3は、先に述べたものと同一の化学成分を有する鋼を、同じく先に述べた製造条件Aを用いて素管とする過程のうち、調質圧延に用いるワークロールの表面粗度のみを変化させ、その後それらについて同一の成形試験にて成功率を調べた結果である。
【0023】
この図から、調質圧延の最終パスに用いるワークロール表面の算術平均粗さRa(以下、単にRaという)が10μm以下であれば極めて高い成功率で極薄肉管の成形が可能であることが明らかとなった。
【0024】
本発明はこのような過程を経て成されたものであり、更に鋭意検討を行って本発明を完成した。
【0025】
まず鋼材の化学成分について述べる。
【0026】
Cは、鋼板の成形性と密接に関わる元素であり、0.01%を越えると成形性を劣化させるので、その上限を0.01%とする。
【0027】
Mnは、0.01%以上添加することにより鋼を強化する作用があり、所望の強度に応じて添加量を調整すればよいが、0.5%を越えると成形性に悪影響を及ぼすので、その上限を0.5%とする。
【0028】
Siは、0.005%以上添加することにより鋼を強化する作用があり、所望の強度に応じて添加量を調整すればよいが、1.0%を越えると成形性に悪影響を及ぼすので、その上限を1.0%とする。
【0029】
Sは、少ない程成形性を高めるが、0.03%以下(0%を含む)であれば特段問題とならないので0.03%を上限とする。
【0030】
Pは、不純物であり、粒界に偏析して粒界脆化を起こし二次加工割れに対する懸念を生じさせるので少ない程好ましい。ただし0.05%以下(0%を含む)であれば許容出来るのでその上限を0.05%とする。
【0031】
Nは、少ない程成形性を高めるが、0.005%以下(0%を含む)であればさほど悪影響を及ぼさないのでその上限を0.005%とする。
【0032】
Alは、鋼の脱酸、脱窒を目的に添加するものであるが、sol.Alの含有量が0.005%未満ではその効果が得られず、また、0.1%を越えて含有させると延性の劣化をもたらすので、0.005%以上0.1%以下とする。
【0033】
Cuは、本発明上最も重要な元素であり、適切な熱処理によって析出させることにより成形性を劣化させることなく強度を高める効果を有する。該効果は0.8%未満では十分発現されないので、0.8%を下限とする。一方、2.2%を越えて含有させてもその効果は飽和してしまうだけでなく、鋼板の表面品位を劣化させるので2.2%をその上限とする。
【0034】
Tiは、固溶C、および、固溶Nを低減させる働きを有し、成形性を高めるのに有利な元素である。しかし、0.01%未満では効果がなく、一方0.2%を越えて含有させてもそれ以上の効果は得られず、鋼のコストを高めてしまう。そのため含有量を0.01%以上、0.2%以下とする。
【0035】
Nbは、固溶Nを低減させ、また、熱間圧延の仕上げ圧延前の結晶粒径を微細化する働きを有し、成形性を高めるのに有効であるが、0.005%未満では効果がなく、0.2%を越えて含有させてもそれ以上の効果が得られないばかりでなく、再結晶温度を上昇させてしまうので0.005%以上0.2%以下とする。
【0036】
Niは、Cuが添加され、かつ、スケールが生成する条件下で加熱される場合には、鋼板の表面品位を保ち熱間脆化を防止するのに有効な元素である。必要に応じて0.15%以上0.45%以下の範囲で添加してもよい。
【0037】
次に熱間圧延等の条件について述べる。
【0038】
本発明に用いる鋼の熱間圧延は、連続鋳造後直接、または、冷却再加熱後のいずれで為されてもよい。その仕上圧延の終了温度がAr3点未満になると表層近傍を中心に剪断変形を受けた組織がそのまま冷延原板にもたらされるため高い成形性を有する鋼板を得ることが出来ない。このため仕上圧延はAr3点以上で終了する必要がある。仕上圧延の開始温度は特に限定する必要はなく、それに先立つ粗圧延を1000℃前後で終了し、続いて仕上圧延を開始すればよい。
【0039】
熱間圧延後の巻き取りを500〜650℃で行うとCuの析出が起こり、これが冷間圧延板の再結晶を遅延させる。これを避けるために巻き取り温度は450℃以下もしくは700℃以上が望ましい。
【0040】
冷間圧延の合計圧延率は良好な成形性を得るためには50%以上、90%以下が望ましい。
【0041】
冷間圧延材の熱処理と調質圧延、および、造管工程について述べる。
【0042】
冷間圧延された鋼板は加工組織を有しているため再結晶させると共にCuを固溶させる。温度は750℃以上Ac3点以下とする。Ac3点を越えて加熱されると成形性に好ましい集合組織の形成が為されないからである。この熱処理に引き続き、450〜700℃に冷却後、その温度域で0.1分以上熱処理しCuの析出を図る。熱処理が30分を超えると析出したCuが粗大化し、更には母相との結晶学的整合性を失って鋼を強化する効果が減少するという問題が生じるので、上限を30分とする。これらの熱処理は連続焼鈍により行うものとする。その後、該帯鋼に調質圧延を施す。その際どのような表面粗さのワークロールを用いるかが極めて重要であり、Raが10μm以下であることが必要である。調質圧延を複数パスで行う場合に、最終以前のパスに使用するワークロールについては特に規定しないが、同程度の粗さであることが望ましい。
【0043】
調質圧延で加えられる伸び率は、鋼材の機械的性質や平坦度の修正などの必要量によって適宜決定されればよく、0.3〜5%の範囲とする。
【0044】
aの下限は、本発明の目的上は特に設けない。なおRaはJIS B 0610−1994の規定に基づき、ロールの軸方向の等間隔の10箇所を全周に渡って測定し、それらのうちの最大値を採用した。
【0045】
かくして得られた帯鋼を造管して所定の寸法の鋼管と為す。鋼管の製造方法はどのようなものでもよく、シーム溶接の方法も特に限定しない。
【0046】
また、Cuの析出を図るための熱処理を造管後に行ってもよい。この方式によれば、造管時の鋼板は低強度であるため造管機の負荷を軽減することが出来るとともに、Cuの析出処理と造管後の歪除去処理を一つの工程で済ませることが出来る。
【0047】
【実施例】
本発明の実施例を比較例とともに説明する。
【0048】
表2に化学成分を示す鋼片を加熱して圧延し、902〜917℃で仕上げた。巻き取り温度は751〜760℃であった。これらの熱間圧延板を酸洗した後、80%の冷間圧延を施した。次いで、表3の製造条件にて鋼管とした。造管はレーザービーム溶接により行った。そのうち調質圧延工程は、複数の、Raの異なるワークロールを使用して行った。管の外径は60.5mm、成形に用いる素管の長さは300mm、軸押し込み量は片側35mmとした。複数のt/D毎に50体のT型成形試験を行った結果を表4に示す。
【0049】
【表2】
Figure 0003764588
【0050】
【表3】
Figure 0003764588
【0051】
【表4】
Figure 0003764588
表2において、a〜dは本発明の範囲内の鋼であるが、eはCu量が本発明の範囲外の鋼である。
【0052】
また、表3において、P1〜P6は本発明の範囲内の製造条件であるが、P7およびP8はCuの析出条件が本発明の範囲外である。
【0053】
更に表4において、No.8はRaが本発明の範囲外である。
【0054】
成形試験の結果、表4に見られるように、本発明の範囲内で製造された鋼管を用いれば、t/Dが0.005程度の極薄肉管であってもかなり高い成功率で成形可能であるのに対して、いずれかの条件でも本発明の範囲を外れる場合、成形の成功率ははるかに低くなり、工業的な生産には不適切であることが明らかとなった。
【0055】
【発明の効果】
本発明の製造方法を用いれば、特段のコスト増もなく、軸押し込みを伴う液圧成形性に優れた高強度鋼管を得ることが出来る。
【図面の簡単な説明】
【図1】T型継手の成形試験に用いた軸押し込みを伴う液圧成形装置の主要部分を示す模式図である。
【図2】製造条件毎の、t/Dと成形の成功率の関係を示すグラフである。
【図3】Ra毎の、t/Dと成形の成功率の関係を示すグラフである。
【符号の説明】
1 上金型
2 成形前の鋼管の断面
3 成形後の鋼管の断面
4 下金型
5 軸押し込み用シリンダー[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength steel pipe that exhibits excellent formability when used for hydraulic forming with axial pushing.
[0002]
[Prior art]
After holding a metal tube with a predetermined mold, the inside is filled with a liquid, the pressure of the liquid is controlled to a required value, and the end surface of the pipe is pushed in to expand to a desired shape. A processing method for extrusion molding is known as hydraulic bulging or hydroforming.
[0003]
Conventionally, this processing method has been used exclusively for the production of butt-welded joints for piping and connecting members for bicycle frames, but recently, it has been made into a shape with a closed cross-section by combining multiple parts such as bending a plate material. The application to automobile parts has been studied focusing on attempts to replace existing parts with parts produced from pipes by the processing method.
[0004]
As a result, since it is common to use the same material tube as the pipe to be connected in welding joints and bicycle frame members, the material of the bare pipe, which has hardly been studied, has become a problem. I came. For example, Japanese Patent Application Laid-Open No. 10-88278 describes a method of obtaining an electric-welded steel pipe excellent in hydraulic bulge formability by defining cooling after hot rolling and winding conditions and pipe making conditions. .
[0005]
Japanese Patent Application Laid-Open No. 10-137863 describes a steel pipe that has been surface-treated for hydraulic bulge processing.
[0006]
[Problems to be solved by the invention]
Typical elements required for automobile parts are light weight and high rigidity, and in order to meet these requirements, it is desirable that the material for parts, that is, the processing raw pipe, is a thin-walled pipe made of high-strength steel. However, in general, the thinning of the steel pipe tends to cause buckling when the shaft is pushed in. On the other hand, the use of a high-strength material often deteriorates the bulge formability. In other words, high strength steel pipes suitable for the processing method premised on application to automobile parts must have appropriate strength and formability. There is no example that examined pressure forming.
[0007]
The invention described in Japanese Patent Laid-Open No. 10-88278 is a steel pipe made from a hot-rolled steel sheet, and is not suitable for obtaining a thin-walled pipe, and its surface is a steel pipe made from a cold-rolled steel sheet. There is a problem that a molding defect may occur with a high probability because it is much rougher than the above. The invention described in JP-A-10-137863 relates to a steel pipe that has been surface-treated to prevent seizure between the molding die and the raw pipe and to improve lubricity. There has been no problem regarding the material, and there is a problem that it is not sufficient for the purpose of obtaining a steel pipe excellent in formability.
[0008]
In order to solve these problems, an object of the present invention is to provide a method of manufacturing a steel pipe that can be thinned while suppressing the occurrence of buckling and has excellent formability.
[0009]
[Means for Solving the Problems]
The present invention
(1) In mass%,
C: 0.01% or less,
Mn: 0.01 to 0.5%,
Si: 0.005 to 1.0%,
S: 0.03% or less,
P: 0.05% or less,
N: 0.005% or less,
sol. Al: 0.005 to 0.1%,
Cu: 0.8 to 2.2% included,
Hot finish rolling of steel composed of Fe and unavoidable impurities is finished at Ar3 point or higher, and after rewinding, pickling and cold rolling, recrystallization annealing is performed from 750 ° C to Ac3 point, followed by 450-700 heat-treated at 0.1 to 30 min at ° C., the final pass of the subsequent temper rolling performed arithmetic average roughness Ra of the following work rolls 10 [mu] m, then the thickness t and the outer diameter D A method for producing a high-strength steel pipe excellent in hydroformability accompanied by axial pressing, characterized in that pipe making is performed with a thickness-diameter ratio t / D being 0.005 to 0.02.
[0010]
(2) In mass%,
C: 0.01% or less,
Mn: 0.01 to 0.5%,
Si: 0.005 to 1.0%,
S: 0.03% or less,
P: 0.05% or less,
N: 0.005% or less,
sol. Al: 0.005 to 0.1%,
Cu: 0.8 to 2.2% included,
Finish the hot finish rolling of the steel composed of Fe and inevitable impurities at Ar 3 point or higher, and after rewinding, pickling and cold rolling, recrystallization annealing at 750 ° C. to Ac 3 point, The final pass of the subsequent temper rolling is performed with a work roll having an arithmetic average roughness Ra of 10 μm or less, and then the thickness-diameter ratio t / D, which is the ratio of the plate thickness t to the outer diameter D, is 0.005. A method for producing a high-strength steel pipe excellent in hydroformability with axial pressing, characterized in that the pipe is formed as .about.0.02 and then heat-treated at 450 to 700.degree. C. for 0.1 to 30 minutes.
[0011]
(3) Further, the steel contains one or both of Ti: 0.01 to 0.2% and Nb: 0.005 to 0.2% by mass% (1). Or the manufacturing method of (2) description.
[0012]
(4) The manufacturing method according to any one of (1) to (3), further including Ni: 0.15 to 0.45% by mass%.
Is a summary.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors consider that a steel pipe manufactured using a steel plate having appropriate strength and workability is also suitable for the processing method, and disclosed in JP-A No. 64-4429. The high workability cold-rolled steel sheet using the disclosed precipitation strengthening of Cu was noticed. First, C: 0.01, Mn: 0.20, Si: 0.60, S: 0.005, P: 0.09, N: 0.0020, sol. A steel piece containing Al: 0.035, Cu: 1.2, the balance being Fe and inevitable impurities is heated and rolled at a temperature range of Ar 3 or higher, wound at 750 ° C., and then pickled. 80% cold rolling was performed. At this time, a plurality of cold rolled materials having different plate thicknesses were produced by changing the finished thickness of the hot rolled plate.
[0014]
Thereafter, heat treatment, temper rolling and pipe making were performed under the production conditions shown in Table 1 to obtain a forming pipe. Pipe making was performed by laser beam welding.
[0015]
The heat treatment was performed under conditions A and B, where Cu precipitation is expected to be appropriately performed, and conditions C and D, where the Cu precipitation process is considered inappropriate for comparison. The diameter (outer diameter) and length of the raw tube are 60.5 mm and 300 mm, respectively. In addition, steel pipes having different thickness-diameter ratios t / D (hereinafter simply referred to as t / D) corresponding to the difference in plate thickness were produced.
[0016]
[Table 1]
Figure 0003764588
Next, it used for the shaping | molding test of the T type | mold joint using the hydraulic forming apparatus with axial pushing which shows the principal part typically in FIG. Preliminary test is performed under the condition that the shaft push-in amount is 35 mm on one side and the internal pressure to be applied is increased in proportion to the change in the shaft push-in amount, and the pressure P B at which the test body bursts is obtained for each t / D of each manufacturing condition. It was. Next, as a final test, the final internal pressure at the time of molding was 90% of P B , the other conditions were the same as in the preliminary test, and 50 bodies were molded for each kind of raw pipe.
[0017]
After the test, it was determined whether or not molding was performed without any problem, and a success rate of molding, that is, (50−number of molding defects) / 50 × 100 (%) was obtained. Forms of molding defects in this test were all occurrences of small wrinkles in the non-bulged portions or occurrence of buckling. FIG. 2 is a graph in which the success rate for each manufacturing condition is plotted against t / D.
[0018]
In this way, if steel having the above chemical components is formed under appropriate manufacturing conditions, it can be formed with almost no problem until t / D is about 0.02, but an ultrathin tube having a smaller t / D than that. Then, although the success rate is higher than that of steel pipes that are considered to be improper for the Cu precipitation treatment, most of which are poorly formed, the value is about 50% at most, which is not suitable for industrial use. It remains at a level that is judged to be.
[0019]
Therefore, the present inventors have repeatedly conducted these tests on steel pipes using a number of cold-rolled steel sheets, aiming to develop steel pipes that can be formed without problems even with such ultra-thin wall pipes. It was investigated whether molding defects occurred, that is, occurrence of buckling or wrinkles. As a result, it was found that in the case of an ultrathin wall tube, the success rate decreases as the surface roughness of the outer surface of the steel tube before forming decreases.
[0020]
Therefore, it became clear that if the outer surface of the steel pipe is strictly controlled before forming, the success rate of forming can be increased.
[0021]
However, managing the entire outer surface of the steel pipe for all the raw pipes is not suitable for mass production processes such as automobile parts, and only increases the manufacturing cost. Therefore, further examination was advanced. And if the surface roughness of the work roll used for temper rolling is properly controlled (if the temper rolling is performed in multiple passes, the surface roughness of the work roll used in the final pass), the success rate will be extremely high. We came to the conclusion that ultra-thin wall pipes can be formed.
[0022]
FIG. 3 shows only the surface roughness of the work roll used for the temper rolling in the process of making the steel having the same chemical composition as described above into the raw tube using the manufacturing condition A described above. , And then the success rate was examined in the same molding test for them.
[0023]
From this figure, temper arithmetic mean roughness R a of the work roll surface for use in the final pass rolling (hereinafter, simply referred to as R a) is capable of very thin pipe forming an extremely high success rate equal to or less than 10μm is It became clear.
[0024]
The present invention has been made through such a process, and the present invention was completed through further intensive studies.
[0025]
First, the chemical composition of steel will be described.
[0026]
C is an element closely related to the formability of the steel sheet, and if it exceeds 0.01%, the formability deteriorates, so the upper limit is made 0.01%.
[0027]
Mn has the effect of strengthening steel by adding 0.01% or more, and the addition amount may be adjusted according to the desired strength, but if it exceeds 0.5%, the formability is adversely affected. The upper limit is 0.5%.
[0028]
Si has the effect of strengthening steel by adding 0.005% or more, and the addition amount may be adjusted according to the desired strength, but if it exceeds 1.0%, the formability is adversely affected. The upper limit is 1.0%.
[0029]
The smaller the S, the higher the moldability, but if it is 0.03% or less (including 0%), there is no particular problem, so 0.03% is made the upper limit.
[0030]
P is an impurity, and is preferably as small as possible because it segregates at the grain boundary to cause grain boundary embrittlement and raises concerns about secondary processing cracks. However, since 0.05% or less (including 0%) is acceptable, the upper limit is made 0.05%.
[0031]
N increases the formability as it is less, but if it is 0.005% or less (including 0%), it does not have a bad influence, so the upper limit is made 0.005%.
[0032]
Al is added for the purpose of deoxidation and denitrification of steel. If the Al content is less than 0.005%, the effect cannot be obtained. If the Al content exceeds 0.1%, ductility is deteriorated, so the content is made 0.005% to 0.1%.
[0033]
Cu is the most important element in the present invention, and has the effect of increasing the strength without deteriorating the formability by being precipitated by an appropriate heat treatment. The effect is not sufficiently exhibited when the content is less than 0.8%, so 0.8% is set as the lower limit. On the other hand, the content exceeding 2.2% not only saturates the effect, but also deteriorates the surface quality of the steel sheet, so 2.2% is made the upper limit.
[0034]
Ti has a function of reducing the solid solution C and the solid solution N, and is an element advantageous for improving the moldability. However, if it is less than 0.01%, there is no effect. On the other hand, if it exceeds 0.2%, no further effect is obtained and the cost of steel is increased. Therefore, the content is made 0.01% to 0.2%.
[0035]
Nb has a function of reducing the solid solution N and reducing the crystal grain size before the hot rolling finish rolling, and is effective in improving the formability, but it is effective at less than 0.005%. However, if the content exceeds 0.2%, not only the effect is not obtained, but also the recrystallization temperature is raised, so 0.005% or more and 0.2% or less.
[0036]
Ni is an element effective for maintaining the surface quality of a steel sheet and preventing hot embrittlement when Cu is added and heating is performed under conditions where scale is generated. You may add in 0.15% or more and 0.45% or less as needed.
[0037]
Next, conditions such as hot rolling will be described.
[0038]
The steel used in the present invention may be hot-rolled either directly after continuous casting or after cooling and reheating. When the finishing temperature of the finish rolling is less than the Ar 3 point, a structure subjected to shear deformation centering on the vicinity of the surface layer is brought directly to the cold-rolled original sheet, so that a steel sheet having high formability cannot be obtained. For this reason, finishing rolling needs to be completed at Ar 3 point or more. The start temperature of finish rolling is not particularly limited, and the rough rolling preceding that may be finished at around 1000 ° C., and then finish rolling may be started.
[0039]
When winding after hot rolling is performed at 500 to 650 ° C., precipitation of Cu occurs, which delays recrystallization of the cold rolled sheet. In order to avoid this, the winding temperature is preferably 450 ° C. or lower or 700 ° C. or higher.
[0040]
The total rolling ratio of cold rolling is preferably 50% or more and 90% or less in order to obtain good formability.
[0041]
The heat treatment and temper rolling of the cold rolled material and the pipe making process will be described.
[0042]
Since the cold-rolled steel sheet has a processed structure, it is recrystallized and Cu is dissolved. The temperature is 750 ° C. or higher and Ac 3 points or lower. This is because if the structure is heated beyond the Ac 3 point, formation of a texture preferable for moldability is not performed. Subsequent to this heat treatment, after cooling to 450 to 700 ° C., heat treatment is performed for 0.1 minutes or more in that temperature range to precipitate Cu. If the heat treatment exceeds 30 minutes, the deposited Cu becomes coarse, and further, the problem of losing the crystallographic consistency with the parent phase and reducing the effect of strengthening the steel arises, so the upper limit is made 30 minutes. These heat treatments are performed by continuous annealing. Thereafter, the strip steel is subjected to temper rolling. At that time or using any surface roughness of the work rolls is extremely important, it is necessary that R a is 10μm or less. When temper rolling is performed in a plurality of passes, the work roll used for the pass before the final is not particularly specified, but it is desirable that the rolls have the same degree of roughness.
[0043]
The elongation applied by temper rolling may be determined as appropriate depending on the necessary amount such as correction of mechanical properties and flatness of the steel material, and is in the range of 0.3 to 5%.
[0044]
The lower limit of Ra is not particularly provided for the purpose of the present invention. Note that Ra was measured over the entire circumference at 10 equally spaced intervals in the axial direction of the roll based on the provisions of JIS B 0610-1994, and the maximum value among them was adopted.
[0045]
The strip steel obtained in this way is piped into a steel pipe of a predetermined size. Any method of manufacturing the steel pipe may be used, and the method of seam welding is not particularly limited.
[0046]
Moreover, you may perform the heat processing for aiming at precipitation of Cu after pipe forming. According to this method, since the steel plate at the time of pipe making has low strength, the load on the pipe making machine can be reduced, and the Cu precipitation treatment and the strain removal treatment after the pipe making can be completed in one step. I can do it.
[0047]
【Example】
Examples of the present invention will be described together with comparative examples.
[0048]
Steel pieces having chemical components shown in Table 2 were heated and rolled, and finished at 902 to 917 ° C. The winding temperature was 751 to 760 ° C. These hot-rolled sheets were pickled and then 80% cold-rolled. Subsequently, it was set as the steel pipe on the manufacturing conditions of Table 3. Pipe making was performed by laser beam welding. Among them, the temper rolling process was performed using a plurality of work rolls having different Ra . The outer diameter of the tube was 60.5 mm, the length of the raw tube used for forming was 300 mm, and the amount of axial pushing was 35 mm on one side. Table 4 shows the results of 50 T-shaped molding tests performed for each of a plurality of t / Ds.
[0049]
[Table 2]
Figure 0003764588
[0050]
[Table 3]
Figure 0003764588
[0051]
[Table 4]
Figure 0003764588
In Table 2, a to d are steels within the scope of the present invention, but e is steel whose Cu content is outside the scope of the present invention.
[0052]
In Table 3, P1 to P6 are production conditions within the scope of the present invention, but P7 and P8 have Cu deposition conditions outside the scope of the present invention.
[0053]
Furthermore, in Table 4, No. 8, R a is outside the scope of the present invention.
[0054]
As shown in Table 4, as a result of the forming test, if a steel pipe manufactured within the scope of the present invention is used, it can be formed with a very high success rate even if it is an ultra-thin pipe having a t / D of about 0.005. On the other hand, if any of the conditions is out of the scope of the present invention, the success rate of the molding becomes much lower, and it has become clear that it is not suitable for industrial production.
[0055]
【The invention's effect】
By using the production method of the present invention, it is possible to obtain a high-strength steel pipe excellent in hydroformability accompanied by axial pushing without any particular increase in cost.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a main part of a hydraulic forming apparatus with shaft pushing used for a molding test of a T-shaped joint.
FIG. 2 is a graph showing the relationship between t / D and molding success rate for each manufacturing condition.
FIG. 3 is a graph showing the relationship between t / D and molding success rate for each Ra .
[Explanation of symbols]
1 Upper mold 2 Cross section of steel pipe before forming 3 Cross section of steel pipe after forming 4 Lower mold 5 Cylinder for pushing shaft

Claims (4)

質量%にて、
C:0.01%以下、
Mn:0.01〜0.5%、
Si:0.005〜1.0%、
S:0.03%以下、
P:0.05%以下、
N:0.005%以下、
sol.Al:0.005〜0.1%、
Cu:0.8〜2.2%を含み、
残部がFeおよび不可避的不純物から構成される鋼の熱間仕上圧延をAr3点以上で終了し、巻取、酸洗、冷間圧延の後、750℃〜Ac3点で再結晶焼鈍し、引き続いて450〜700℃で0.1〜30分熱処理を施し、その後の調質圧延の最終パスを、算術平均粗さRaが10μm以下のワークロールによって行い、その後、板厚tと外径Dとの比である肉厚直径比t/Dを0.005〜0.02として造管することを特徴とする軸押し込みを伴う液圧成形性に優れた高強度鋼管の製造方法。
In mass%
C: 0.01% or less,
Mn: 0.01 to 0.5%,
Si: 0.005 to 1.0%,
S: 0.03% or less,
P: 0.05% or less,
N: 0.005% or less,
sol. Al: 0.005 to 0.1%,
Cu: 0.8 to 2.2% included,
Finish the hot finish rolling of the steel composed of Fe and inevitable impurities at Ar 3 point or higher, and after rewinding, pickling and cold rolling, recrystallization annealing at 750 ° C. to Ac 3 point, Subsequently, heat treatment is performed at 450 to 700 ° C. for 0.1 to 30 minutes, and the final pass of the subsequent temper rolling is performed by a work roll having an arithmetic average roughness Ra of 10 μm or less, and then the sheet thickness t and the outer diameter A method for producing a high-strength steel pipe excellent in hydroformability with axial pushing, characterized in that pipe making is performed with a thickness-diameter ratio t / D as a ratio to D of 0.005 to 0.02.
質量%にて、
C:0.01%以下、
Mn:0.01〜0.5%、
Si:0.005〜1.0%、
S:0.03%以下、
P:0.05%以下、
N:0.005%以下、
sol.Al:0.005〜0.1%、
Cu:0.8〜2.2%を含み、
残部がFeおよび不可避的不純物から構成される鋼の熱間仕上圧延をAr 3 点以上で終了し、巻取、酸洗、冷間圧延の後、750℃〜Ac 3 点で再結晶焼鈍し、その後の調質圧延の最終パスを、算術平均粗さR a が10μm以下のワークロールによって行い、その後、板厚tと外径Dとの比である肉厚直径比t/Dを0.005〜0.02として造管し、引き続いて450〜700℃で0.1〜30分熱処理を施すことを特徴とする軸押し込みを伴う液圧成形性に優れた高強度鋼管の製造方法。
In mass%
C: 0.01% or less,
Mn: 0.01 to 0.5%,
Si: 0.005 to 1.0%,
S: 0.03% or less,
P: 0.05% or less,
N: 0.005% or less,
sol. Al: 0.005 to 0.1%,
Cu: 0.8 to 2.2% included,
Finish the hot finish rolling of the steel composed of Fe and unavoidable impurities at Ar 3 point or higher, and after rewinding, pickling and cold rolling, recrystallization annealing at 750 ° C. to Ac 3 point, The final pass of the subsequent temper rolling is performed with a work roll having an arithmetic average roughness Ra of 10 μm or less, and then the thickness-diameter ratio t / D, which is the ratio of the sheet thickness t to the outer diameter D, is 0.005. and forming tube as 0.02, followed by 450-700 high-strength steel pipe manufacturing method with excellent hydroformed be accompanied by axial pushing you characterized by applying 0.1 to 30 minutes heat treatment at ° C..
更に鋼が、質量%にて、Ti:0.01〜0.2%及びNb:0.005〜0.2%の一方又は双方を含有することを特徴とする請求項1又は請求項2に記載の軸押し込みを伴う液圧成形性に優れた高強度鋼管の製造方法。Furthermore, steel contains one or both of Ti: 0.01-0.2% and Nb: 0.005-0.2% in the mass%, The Claim 1 or Claim 2 characterized by the above-mentioned. A method for producing a high-strength steel pipe excellent in hydroformability with axial push-in described. 更に鋼が、質量%にて、Ni:0.15〜0.45%を含有することを特徴とする請求項1〜3の何れか1項に記載の軸押し込みを伴う液圧成形性に優れた高強度鋼管の製造方法。Furthermore, steel contains Ni: 0.15-0.45% in the mass%, It is excellent in the hydraulic formability with the axial pushing of any one of Claims 1-3 characterized by the above-mentioned. A method for manufacturing high strength steel pipes.
JP19649598A 1998-06-29 1998-06-29 Manufacturing method of high-strength steel pipe with excellent hydraulic formability with shaft push-in Expired - Fee Related JP3764588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19649598A JP3764588B2 (en) 1998-06-29 1998-06-29 Manufacturing method of high-strength steel pipe with excellent hydraulic formability with shaft push-in

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19649598A JP3764588B2 (en) 1998-06-29 1998-06-29 Manufacturing method of high-strength steel pipe with excellent hydraulic formability with shaft push-in

Publications (2)

Publication Number Publication Date
JP2000017329A JP2000017329A (en) 2000-01-18
JP3764588B2 true JP3764588B2 (en) 2006-04-12

Family

ID=16358729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19649598A Expired - Fee Related JP3764588B2 (en) 1998-06-29 1998-06-29 Manufacturing method of high-strength steel pipe with excellent hydraulic formability with shaft push-in

Country Status (1)

Country Link
JP (1) JP3764588B2 (en)

Also Published As

Publication number Publication date
JP2000017329A (en) 2000-01-18

Similar Documents

Publication Publication Date Title
EP1431407B1 (en) Steel plate exhibiting excellent workability and method for producing the same
US5201457A (en) Process for manufacturing corrosion-resistant welded titanium alloy tubes and pipes
KR20020092237A (en) Welded steel pipe having excellent hydroformability and method for making the same
JPH08246060A (en) Production of steel sheet for can
US7591914B2 (en) High-workability steel pipe and method of producing same
JP2001181798A (en) Hot rolled ferritic stainless steel sheet excellent in bendability, its manufacturing method, and method of manufacturing for cold rolled steel sheet
JPH10280089A (en) Steel sheet for two-piece modified can, two-piece modified can body, and their manufacture
KR102533809B1 (en) Steel sheet for cans and method of producing same
JP4193228B2 (en) Steel plate for can and manufacturing method thereof
JPH10245655A (en) Steel sheet for deformed three piece can and its production
JP3764588B2 (en) Manufacturing method of high-strength steel pipe with excellent hydraulic formability with shaft push-in
JP3915146B2 (en) Method for producing a steel plate for a two-piece can with excellent non-earring properties and rough skin resistance
CN111511949A (en) Hot-rolled steel sheet having excellent expansibility and method for producing same
JP4171296B2 (en) Steel sheet excellent in deep drawability, manufacturing method thereof and steel pipe manufacturing method excellent in workability
JP2003286544A (en) Thin-walled steel pipe showing excellent hydroforming property and its manufacturing process
JP2003041345A (en) Steel pipe of welded thin sheet and manufacturing method therefor
JP3596037B2 (en) Manufacturing method of steel plate for can-making
JP3563988B2 (en) High-strength steel pipe with excellent hydraulic formability
JPH08325644A (en) Production of high strength hot rolled steel sheet
JP2004217992A (en) Electric resistance welded tube and production method therefor
JP3108615B2 (en) Method for producing steel sheet for welded can with excellent flanging and neck formability
EP1437422A1 (en) Steel pipe having high formability and method for production thereof
KR102587650B1 (en) Steel sheet for cans and method of producing same
JP3464586B2 (en) Method for manufacturing high-strength steel pipe with excellent hydroformability
JP3596036B2 (en) Manufacturing method of steel plate for can-making

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees