JP3464586B2 - Method for manufacturing high-strength steel pipe with excellent hydroformability - Google Patents

Method for manufacturing high-strength steel pipe with excellent hydroformability

Info

Publication number
JP3464586B2
JP3464586B2 JP33865896A JP33865896A JP3464586B2 JP 3464586 B2 JP3464586 B2 JP 3464586B2 JP 33865896 A JP33865896 A JP 33865896A JP 33865896 A JP33865896 A JP 33865896A JP 3464586 B2 JP3464586 B2 JP 3464586B2
Authority
JP
Japan
Prior art keywords
steel pipe
pipe
strength
less
strength steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33865896A
Other languages
Japanese (ja)
Other versions
JPH10176220A (en
Inventor
朗弘 上西
幸久 栗山
美昭 伊丹
武尚 長尾
浩之 棚橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP33865896A priority Critical patent/JP3464586B2/en
Publication of JPH10176220A publication Critical patent/JPH10176220A/en
Application granted granted Critical
Publication of JP3464586B2 publication Critical patent/JP3464586B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、金属管を割り型に
入れ、管内に内圧をかけ管軸方向に押込んで所定形状に
成形するハイドロフォーム法における、加工性の優れた
高強度鋼管の製造方法に関するものである。 【0002】 【従来の技術】自動車部品等において、鋼管等の金属管
をハイドロフォーム法により成形した製品が採用され始
めている。その成形法は、図3のT字管の例に示すよう
に、素管1を割り型4,5に入れ、液導入孔8から素管
1内に液を導入して内圧をかけ、両側から押し込み用の
シリンダー6,7で管軸方向に圧縮荷重を負荷して押込
み、T成形高さhの所定形状に成形する方法である。 【0003】成形例としては、このほか、素管1の径を
部分的に拡大するもの、径を拡大して種々の断面形状に
するもの等がある。得られた成形品3は軽量で、しかも
複雑な形状のものまで成形可能である。素管1には肉厚
の均一なものが要求され、素材の鋼管としては電縫鋼管
が多く採用されている。電縫鋼管は、熱間圧延で製造さ
れた帯板をケージロール等により管状に成形し、突合わ
せ溶接して製造される。 【0004】 【発明が解決しようとする課題】ハイドロフォーム法に
より成形された製品は、自動車部品等の各種用途におけ
る使用環境で破損や変形が生じないような強度および靭
性を有していなければならない。一方、加工性の面から
は、押込み力および内圧により成形しやすい薄肉鋼管が
要求される。 【0005】しかし、従来の電縫鋼管の製造法において
帯板を薄手化すると、管状に成形した際、帯板のエッジ
伸びにより、突合わせ溶接ができなくなるという問題が
あり、ハイドロフォーム法に適した薄肉電縫鋼管は得ら
れていない。そして、成形後に十分な強度および靭性を
有する薄肉電縫鋼管も得られていない。したがって今後
ますます、高強度でかつ成形性に優れたハイドロフォー
ム用鋼管が必要とされる。 【0006】本発明は、金属管を割り型に入れ、管内に
内圧をかけ管軸方向に押込んで所定形状に成形するハイ
ドロフォーム法において、加工性に優れ、十分な強度お
よび靭性を有し、かつハイドロフォーム加工に適したt
/D(t:肉厚、D:外径)の薄肉鋼管を提供すること
を目的とする。 【0007】 【課題を解決するための手段】上記目的を達成するため
の本発明は、金属管を割り型に入れ、管内に内圧をかけ
管軸方向に押込んで所定形状に成形するハイドロフォー
ム法により加工される鋼管の製造法であって、重量%に
て C:0.02〜0.12%、 Si:1.
5%以下、 Mn:1.0〜2.5%、 P:0.
1%以下、 S:0.01%以下 を含み、残部がFeおよび不可避的不純物からなる組成
の電縫鋼管を、冷間加工によりt/D(t:肉厚、D:
外径)が0.7〜1.2%の薄肉管とし、Ac1以上か
つ(Ac1+75℃)以下の温度範囲で15秒以上保持
した後、10℃/秒以上の冷却速度で200℃以下の温
度まで冷却することを特徴とするハイドロフォーム加工
性に優れた高強度鋼管の製造方法である。 【0008】 【発明の実施の形態】本発明法により製造された鋼管
は、マルテンサイトおよびその他の低温生成相が5〜3
0%で、残りがフェライト相からなる組織を有し、かつ
ハイドロフォーム加工に適した、t/D(t:肉厚、
D:外径)が0.7〜1.2%の高強度薄肉鋼管であ
る。このため、ハイドロフォーム加工性に優れていると
ともに、加工後の製品も十分な強度および靭性を有して
いる。 【0009】本発明における鋼成分の限定理由はつぎの
とおりである。Cは、鋼の組織に強く影響を与える元素
であり、0.02%未満では、上記量のマルテンサイト
およびその他の低温生成相を得るのが困難になり、また
0.12%を超えると、強度が高くなりすぎ成形性が劣
化する。したがって、0.02〜0.12%とした。 【0010】Siは、固溶強化元素であり鋼の強度の調
整を可能とするだけでなく、炭化物形成を抑えることや
フェライト中の固溶Cをオーステナイト中へ吐き出すこ
とでマルテンサイト組織形成を容易にすることから添加
する。しかし、後述のようにAc1 以上かつ(Ac1
75℃)以下の温度範囲での焼鈍中にフェライト中の固
溶Cはオーステナイト中へと容易に吐き出されるため、
特に添加量を多くする必要はない。また、1.5%を超
えて添加すると強度が高くなりすぎ、成形性が劣化す
る。したがって、1.5%以下とした。 【0011】Mnは、Siと同様に固溶強化元素であり
強度調整に有効である。また、オーステナイト安定化元
素であり、マルテンサイトの生成を容易にすることや、
強度向上に寄与することから1.0%以上添加する。し
かし、2.5%を超えて添加すると成形性の低下を招
く。したがって、1.0〜2.5%とした。 【0012】Pは、マルテンサイト生成にあまり大きな
影響を与えずに強度調整をするために添加するが、0.
1%を超えて添加すると成形性が劣化するため、0.1
%以下とした。Sは、0.01%を超えて添加すると成
形性が劣化するため、0.01%以下とした。 【0013】このような成分の鋼を鋳造し、得られた熱
片スラブを直接または加熱した後、あるいは冷片を再加
熱して熱間圧延を施す。熱間圧延は通常の熱延工程、あ
るいは仕上圧延前にシートバーを接合して圧延する連続
化熱延工程のどちらでも可能である。また熱間圧延の条
件は特に限定していないが、これは熱間圧延の条件が最
終の材質にほとんど影響を及ぼさないためである。ま
た、熱間圧延の終了温度は、オーステナイト域であって
もフェライト域であっても最終的に得られる材質の変化
はほとんどない。 【0014】熱間圧延で得られた帯鋼板を通常の方法で
管状に成形し電縫溶接する。そして、冷間加工により薄
肉鋼管とする。冷間加工手段としては、冷間引抜きやピ
ルガー圧延などが知られているが、その手段は問わず、
一般的に行われている冷間引抜きでよい。偏肉のない電
縫鋼管を冷間加工するので、やはり偏肉のない肉厚均一
な鋼管が得られる。 【0015】上記成分の材料からなる電縫鋼管は、通常
の製造技術ではt/D=2.5%程度が薄肉化の限度で
あるが、冷間引抜きなどの冷間加工により、ハイドロフ
ォーム法による加工に適したt/D=0.7〜1.2%
程度に薄肉化する。その際、冷間加工率としては、後工
程の熱処理によって十分な強度および靭性を得るため、
50%以上とするのが好ましい。ここで、冷間加工率は
{(加工前の断面積)−(加工後の断面積)}/(加工
前の断面積)×100(%)で表す。 【0016】冷間加工後の焼鈍をAc1 以上かつ(Ac
1 +75℃)以下の温度範囲で行うのは、Ac1 未満の
温度では、得られるマルテンサイトおよびその他の低温
生成相の量が5%未満となり、Ac1 +75℃を超える
温度では、得られるマルテンサイトおよびその他の低温
生成相の量が30%を超えるためである。 【0017】上記温度範囲で15秒以上保持するのは、
これ未満の保持時間ではフェライト相からオーステナイ
ト相への十分な固溶Cの拡散がなく、粒内に析出物、炭
化物、介在物などのないフェライトを得ることができ
ず、目的とするハイドロフォーム加工性と加工後の強度
および靭性が得られないからである。 【0018】焼鈍後の冷却速度を10℃/秒以上とした
のは、この冷却速度より遅い場合、冷却中にパーライト
あるいは炭化物の析出が起こり、必要な量のマルテンサ
イトが得られないためである。また、上記冷却速度で2
00℃以下まで冷却するのは、200℃超の温度で冷却
を終了した場合には強度が不足するからである。 【0019】上記熱処理の温度パターンは、図1に示す
とおりである。このような熱処理は、図2に示す例のよ
うに、冷間加工後の鋼管2を矢印で示す管軸方向に移動
させつつ、誘導コイル9内を通して加熱保持し、冷却装
置10により冷却して行うことができる。 【0020】 【実施例】表1に示す各種化学成分の鋼を鋳造し、熱間
圧延し、高周波電縫溶接により外径60.5mm、肉厚
1.5mm(t/D=2.5%)の電縫鋼管とした。これ
を、冷間引抜き加工により外径60.5mm、肉厚0.6
mm(t/D=1.0%)の薄肉鋼管とした。このときの
冷間加工率は59.4%である。ついで、図2のような
設備により各種条件で熱処理を行い、マルテンサイト量
および最大強度を測定し、ハイドロフォーム加工性とし
て、図3に示すT成形高さhを測定した。結果を表2〜
表7に示す。 【0021】表2〜表6において、鋼種はいずれも本発
明範囲の成分のものであるが、熱処理条件が本発明範囲
をはずれた比較例では、マルテンサイト量が不足するた
め高強度の鋼管が得られず、また降伏比が上昇し加工硬
化特性が劣化するため優れたハイドロフォーム加工性は
得られていない。それに対して、本発明例は熱処理条件
も満足し、いずれも高強度で、かつ優れたハイドロフォ
ーム加工性が得られている。 【0022】表7は、成分が本発明範囲を外れた鋼種に
ついてのものであり、鋼種No. 6はマルテンサイト量が
不足するため高強度が得られず、鋼種No. 7はマルテン
サイト量が過剰で強度が高すぎ、いずれも優れたハイド
ロフォーム加工性は得られていない。鋼種No. 8は、T
i添加による析出強化により高強度化したもので、高強
度は得られているが、延性が劣るため優れたハイドロフ
ォーム加工性は得られていない。 【0023】 【表1】 【0024】 【表2】【0025】 【表3】 【0026】 【表4】 【0027】 【表5】【0028】 【表6】 【0029】 【表7】 【0030】 【発明の効果】本発明法によれば、ハイドロフォーム加
工に適したt/D(t:肉厚、D:外径)の肉厚均一な
高強度薄肉鋼管が得られ、優れたハイドロフォーム加工
性を有するとともに、十分な強度および靭性を有してい
る。したがって、自動車部品など各種成形品のハイドロ
フォーム法による製造に効果を発揮する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydroforming method in which a metal pipe is put into a split mold, an internal pressure is applied to the inside of the pipe, and the pipe is pushed in the axial direction to form the pipe into a predetermined shape. The present invention relates to a method for manufacturing a high-strength steel pipe having excellent workability. 2. Description of the Related Art In automobile parts and the like, products obtained by forming a metal pipe such as a steel pipe by a hydroforming method have begun to be adopted. As shown in the example of the T-shaped tube in FIG. 3, the molding method is as follows. The raw tube 1 is put into the split dies 4 and 5, a liquid is introduced into the raw tube 1 through the liquid introduction hole 8, and internal pressure is applied. This is a method in which a compressive load is applied in the tube axis direction by the pushing cylinders 6 and 7 to push the cylinder into a predetermined shape with a T-forming height h. [0003] In addition, examples of molding include a method in which the diameter of the raw tube 1 is partially enlarged, a method in which the diameter is enlarged to have various cross-sectional shapes, and the like. The obtained molded article 3 is lightweight and can be molded into a complicated shape. The base tube 1 is required to have a uniform thickness, and an electric resistance welded steel tube is often used as a raw steel tube. The ERW steel pipe is manufactured by forming a strip produced by hot rolling into a tubular shape using a cage roll or the like, and performing butt welding. [0004] The product formed by the hydroforming method must have strength and toughness that will not cause breakage or deformation in the use environment in various applications such as automobile parts. . On the other hand, from the viewpoint of workability, a thin-walled steel pipe that is easily formed by the indentation force and the internal pressure is required. [0005] However, if the strip is made thinner in the conventional method of manufacturing an electric resistance welded steel pipe, there is a problem that the butt welding cannot be performed due to the edge extension of the strip when it is formed into a tubular shape. No thin-walled electric resistance welded steel pipe has been obtained. Further, a thin-walled electric resistance welded steel pipe having sufficient strength and toughness after forming has not been obtained. Therefore, there is a need for a hydroforming steel pipe having high strength and excellent formability. The present invention relates to a hydroforming method in which a metal pipe is put into a split mold, an internal pressure is applied to the inside of the pipe, and the metal pipe is pushed in the pipe axis direction to form a predetermined shape. The hydroforming method has excellent workability, sufficient strength and toughness, And t suitable for hydroforming
/ D (t: wall thickness, D: outer diameter) to provide a thin steel pipe. SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a hydroforming method in which a metal pipe is put into a split mold, an internal pressure is applied to the inside of the pipe, and the pipe is pushed in the axial direction to form a predetermined shape. The method for producing a steel pipe processed by the method described in (1) above, wherein C: 0.02 to 0.12% by weight%;
5% or less, Mn: 1.0-2.5%, P: 0.
An ERW steel pipe containing 1% or less, S: 0.01% or less, and the balance consisting of Fe and inevitable impurities is t / D (t: wall thickness, D:
A thin tube having an outer diameter of 0.7 to 1.2% is maintained at a temperature range of Ac 1 or more and (Ac 1 + 75 ° C.) or less for 15 seconds or more, and then 200 ° C. at a cooling rate of 10 ° C./sec or more. This is a method for producing a high-strength steel pipe excellent in hydroform workability, characterized by cooling to the following temperature. DETAILED DESCRIPTION OF THE INVENTION A steel pipe produced by the method of the present invention has a martensite and other low-temperature generated phases of 5 to 3 hours.
At 0%, t / D (t: wall thickness, having a structure consisting of a ferrite phase and suitable for hydroforming)
D: Outer diameter) is a high-strength thin-walled steel pipe having an outer diameter of 0.7 to 1.2%. For this reason, while being excellent in hydroform processability, the product after processing has sufficient strength and toughness. The reasons for limiting the steel components in the present invention are as follows. C is an element that strongly influences the structure of steel. If it is less than 0.02%, it becomes difficult to obtain the above-mentioned amount of martensite and other low-temperature formed phases, and if it exceeds 0.12%, The strength becomes too high and the moldability deteriorates. Therefore, it was set to 0.02 to 0.12%. [0010] Si is a solid solution strengthening element and not only makes it possible to adjust the strength of steel, but also suppresses the formation of carbides and facilitates the formation of a martensite structure by discharging solid solution C in ferrite into austenite. To be added. However, as described later, Ac 1 or more and (Ac 1 +
The solid solution C in ferrite is easily discharged into austenite during annealing in a temperature range of 75 ° C. or less,
It is not particularly necessary to increase the amount added. On the other hand, if it exceeds 1.5%, the strength becomes too high, and the moldability deteriorates. Therefore, it is set to 1.5% or less. Mn, like Si, is a solid solution strengthening element and is effective in adjusting the strength. It is also an austenite stabilizing element that facilitates the formation of martensite,
1.0% or more is added because it contributes to strength improvement. However, if it exceeds 2.5%, the moldability is reduced. Therefore, it was set to 1.0 to 2.5%. P is added in order to adjust the strength without significantly affecting martensite formation.
If added in excess of 1%, the moldability deteriorates.
% Or less. If S is added in excess of 0.01%, the moldability deteriorates, so S is set to 0.01% or less. [0013] Steel of such a composition is cast, and the resulting hot slab is subjected to hot rolling after being directly or heated, or by reheating the cold slab. Hot rolling can be performed in either a normal hot rolling process or a continuous hot rolling process in which sheet bars are joined and rolled before finish rolling. The conditions of the hot rolling are not particularly limited, because the conditions of the hot rolling hardly affect the final material. Further, there is almost no change in the finally obtained material regardless of whether the hot rolling end temperature is in the austenite region or the ferrite region. The strip obtained by hot rolling is formed into a tubular shape by a usual method and subjected to electric resistance welding. Then, a thin steel pipe is formed by cold working. As cold working means, cold drawing and pilger rolling are known, but any means is available.
Cold drawing generally performed may be used. Since the ERW steel pipe without uneven thickness is cold-worked, a steel pipe with uniform thickness without uneven thickness can also be obtained. In the case of an electric resistance welded steel pipe made of the material of the above-mentioned components, the limit of thickness reduction is about t / D = 2.5% in the ordinary production technique, but the hydroforming method is performed by cold working such as cold drawing. /D=0.7-1.2% suitable for processing by
Thin to the extent. At that time, as a cold working rate, in order to obtain sufficient strength and toughness by heat treatment in the subsequent process,
It is preferred to be 50% or more. Here, the cold working rate is represented by {(cross-sectional area before working) − (cross-sectional area after working)} / (cross-sectional area before working) × 100 (%). [0016] The annealing after the cold working is at least Ac 1 and (Ac
(1 + 75 ° C.) or lower, the temperature below Ac 1 results in less than 5% of the resulting martensite and other low temperature formed phases, and the temperature above Ac 1 + 75 ° C. This is because the amount of the site and other low-temperature generated phases exceeds 30%. The reason for holding for 15 seconds or more in the above temperature range is as follows.
If the holding time is shorter than this, there is no sufficient diffusion of solid solution C from the ferrite phase to the austenite phase, and ferrite without precipitates, carbides, inclusions, etc. in the grains cannot be obtained. This is because the properties and the strength and toughness after processing cannot be obtained. The reason why the cooling rate after annealing is set to 10 ° C./second or more is that if the cooling rate is lower than this, pearlite or carbide precipitates during cooling, and a required amount of martensite cannot be obtained. . Also, at the above cooling rate, 2
The reason why the cooling is performed to 00 ° C. or less is that when the cooling is completed at a temperature exceeding 200 ° C., the strength becomes insufficient. The temperature pattern of the heat treatment is as shown in FIG. In such a heat treatment, as in the example shown in FIG. 2, the steel pipe 2 after cold working is moved and held in the induction coil 9 while being moved in the pipe axis direction indicated by the arrow, and cooled by the cooling device 10. It can be carried out. EXAMPLES Steels having various chemical compositions shown in Table 1 were cast, hot-rolled, and subjected to high-frequency electric resistance welding to an outer diameter of 60.5 mm and a wall thickness of 1.5 mm (t / D = 2.5%). ). This was cold drawn to an outer diameter of 60.5 mm and a wall thickness of 0.6
mm (t / D = 1.0%). The cold working ratio at this time is 59.4%. Then, heat treatment was performed under various conditions using the equipment shown in FIG. 2, the amount of martensite and the maximum strength were measured, and the T-forming height h shown in FIG. 3 was measured as hydroform workability. Table 2 shows the results.
It is shown in Table 7. In Tables 2 to 6, the steel types are all components within the range of the present invention. However, in Comparative Examples in which the heat treatment conditions were out of the range of the present invention, a high-strength steel pipe was produced because of insufficient martensite. No excellent hydroform workability is obtained because the yield ratio increases and the work hardening property deteriorates. On the other hand, the examples of the present invention also satisfy the heat treatment conditions, and all have high strength and excellent hydroform workability. Table 7 shows the results for steel types whose components are out of the range of the present invention. Steel type No. 6 has insufficient martensite, so that high strength cannot be obtained. Steel type No. 7 has no martensite. Excessive strength is too high, and none of them has obtained excellent hydroform processability. Steel type No. 8 is T
Although high strength was obtained by precipitation strengthening by adding i, high strength was obtained, but excellent ductility was inferior and excellent hydroform workability was not obtained. [Table 1] [Table 2] [Table 3] [Table 4] [Table 5] [Table 6] [Table 7] According to the method of the present invention, a high-strength thin steel pipe having a uniform thickness of t / D (t: wall thickness, D: outer diameter) suitable for hydroforming is obtained. It has hydroform workability and has sufficient strength and toughness. Therefore, it is effective for the production of various molded articles such as automobile parts by the hydroforming method.

【図面の簡単な説明】 【図1】本発明法における熱処理パターンを示す説明図
である。 【図2】本発明法における熱処理工程の説明図である。 【図3】本発明の対象とするハイドロフォーム加工法の
例を示す断面図である。 【符号の説明】 1…素管 2…鋼管 3…成形品 4,5…割り型 6,7…シリンダー 8…液導入孔 9…誘導コイル 10…冷却装置
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view showing a heat treatment pattern in the method of the present invention. FIG. 2 is an explanatory view of a heat treatment step in the method of the present invention. FIG. 3 is a cross-sectional view showing an example of a hydroforming method to which the present invention is applied. [Description of Signs] 1 ... raw pipe 2 ... steel pipe 3 ... molded product 4, 5 ... split mold 6, 7 ... cylinder 8 ... liquid introduction hole 9 ... induction coil 10 ... cooling device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI // B21D 26/02 B21D 26/02 C (72)発明者 長尾 武尚 東京都千代田区大手町2−6−3 新日 本製鐵株式会社内 (72)発明者 棚橋 浩之 千葉県富津市新富20−1 新日本製鐵株 式会社 技術開発本部内 (56)参考文献 特開 平6−220534(JP,A) 特開 平6−158163(JP,A) 特開 昭64−17820(JP,A) 特開 昭64−4424(JP,A) 特開 平7−188748(JP,A) 特公 昭57−17932(JP,B1) 社団法人日本塑性加工学会編,チュー ブフォーミング−管材の二次加工と製品 設計−,日本,株式会社コロナ社,1992 年10月30日,P.65−80 (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 3/60 C21D 8/00 - 8/10,9/08 B21D 26/02 B21C 37/00 - 37/08 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI // B21D 26/02 B21D 26/02 C (72) Inventor Takeo Nagao 2-6-3 Otemachi, Chiyoda-ku, Tokyo New Japan (72) Inventor Hiroyuki Tanahashi 20-1 Shintomi, Futtsu City, Chiba Prefecture Nippon Steel Corporation Technology Development Division (56) References JP-A-6-220534 (JP, A) JP-A Heihei 6-158163 (JP, A) JP-A-64-17820 (JP, A) JP-A-64-4424 (JP, A) JP-A-7-188748 (JP, A) JP-B-57-17932 (JP, A) B1) Tube forming-secondary processing of tube material and product design-edited by Japan Society for Technology of Plasticity, Japan, Corona Co., Ltd., October 30, 1992, p. 65-80 (58) Field surveyed (Int.Cl. 7 , DB name) C22C 38/00-3/60 C21D 8/00-8/10, 9/08 B21D 26/02 B21C 37/00-37 / 08

Claims (1)

(57)【特許請求の範囲】 【請求項1】 金属管を割り型に入れ、管内に内圧をか
け管軸方向に押込んで所定形状に成形するハイドロフォ
ーム法により加工される鋼管の製造法であって、重量%
にて C:0.02〜0.12%、 Si:1.5%
以下、 Mn:1.0〜2.5%、 P:0.1%
以下、 S:0.01%以下 を含み、残部がFeおよび不可避的不純物からなる組成
の電縫鋼管を、冷間加工によりt/D(t:肉厚、D:
外径)が0.7〜1.2%の薄肉管とし、Ac1以上か
つ(Ac1+75℃)以下の温度範囲で15秒以上保持
した後、10℃/秒以上の冷却速度で200℃以下の温
度まで冷却することを特徴とするハイドロフォーム加工
性に優れた高強度鋼管の製造方法。
(1) A method for manufacturing a steel pipe processed by a hydroforming method in which a metal pipe is put into a split mold, an internal pressure is applied to the inside of the pipe, and the pipe is pushed in the axial direction to form a predetermined shape. Oh, weight%
C: 0.02 to 0.12%, Si: 1.5%
Hereinafter, Mn: 1.0 to 2.5%, P: 0.1%
Hereafter, an ERW steel pipe containing S: 0.01% or less, with the balance being Fe and unavoidable impurities, is t / D (t: wall thickness, D:
A thin tube having an outer diameter of 0.7 to 1.2% is maintained at a temperature range of Ac 1 or more and (Ac 1 + 75 ° C.) or less for 15 seconds or more, and then 200 ° C. at a cooling rate of 10 ° C./sec or more. A method for producing a high-strength steel pipe excellent in hydroform workability, characterized by cooling to the following temperature.
JP33865896A 1996-12-18 1996-12-18 Method for manufacturing high-strength steel pipe with excellent hydroformability Expired - Fee Related JP3464586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33865896A JP3464586B2 (en) 1996-12-18 1996-12-18 Method for manufacturing high-strength steel pipe with excellent hydroformability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33865896A JP3464586B2 (en) 1996-12-18 1996-12-18 Method for manufacturing high-strength steel pipe with excellent hydroformability

Publications (2)

Publication Number Publication Date
JPH10176220A JPH10176220A (en) 1998-06-30
JP3464586B2 true JP3464586B2 (en) 2003-11-10

Family

ID=18320252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33865896A Expired - Fee Related JP3464586B2 (en) 1996-12-18 1996-12-18 Method for manufacturing high-strength steel pipe with excellent hydroformability

Country Status (1)

Country Link
JP (1) JP3464586B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4529307B2 (en) * 2001-03-29 2010-08-25 Jfeスチール株式会社 High-strength and high-workability steel pipe and method for producing the same
JP5771918B2 (en) * 2010-08-06 2015-09-02 Jfeスチール株式会社 Manufacturing method of steel pipe for oil well with excellent pipe expandability

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
社団法人日本塑性加工学会編,チューブフォーミング−管材の二次加工と製品設計−,日本,株式会社コロナ社,1992年10月30日,P.65−80

Also Published As

Publication number Publication date
JPH10176220A (en) 1998-06-30

Similar Documents

Publication Publication Date Title
CA2414138C (en) Highly stable, steel and steel strips or steel sheets cold-formed, method for the production of steel strips and uses of said steel
JPH04259325A (en) Production of hot rolled high strength steel sheet excellent in workability
WO2001096624A1 (en) High carbon steel pipe excellent in cold formability and high frequency hardenability and method for producing the same
JP2003201543A (en) Steel pipe having excellent workability and production method therefor
JP3864663B2 (en) Manufacturing method of high strength steel sheet
JP2001254138A (en) High strength steel sheet excellent in formability after preworking, and its producing method
JP2004315927A (en) Steel sheet for hot forming having excellent hardenability after high temperature forming and method of using the same
JP3464586B2 (en) Method for manufacturing high-strength steel pipe with excellent hydroformability
JP2001131704A (en) Steel tube for hydroforming, hot rolled stock for steel tube and producing method therefor
JP2003105441A (en) METHOD FOR MANUFACTURING SEAMLESS TUBE OF 13 Cr MARTENSITIC STAINLESS STEEL HAVING HIGH STRENGTH AND HIGH TOUGHNESS
JP2000096143A (en) Manufacture of steel tube
JP2001247931A (en) Non-heattreated high strength seamless steel pipe and its production method
JP2001262275A (en) High tensile strength seamless steel pipe excellent in toughness, ductility and weldability and its producing method
JP3552322B2 (en) Method of manufacturing pipe with excellent workability
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JP2000096142A (en) Method for reducing steel tube
JP2003286544A (en) Thin-walled steel pipe showing excellent hydroforming property and its manufacturing process
JP2001089814A (en) Method of manufacturing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JP3533844B2 (en) ERW steel pipe excellent in hydraulic bulge formability and manufacturing method thereof
JPS6052551A (en) Steel having high ductility and high workability and its production
JP4239247B2 (en) Method for producing Ti-containing ferritic stainless steel sheet with excellent workability
TWI711706B (en) Automobile steel material with high yield strength and method of manufacturing the same
JP3043901B2 (en) Method for producing high-strength cold-rolled steel sheet and galvanized steel sheet with excellent deep drawability
JP3263348B2 (en) Method of manufacturing non-heat treated high workability electric resistance welded steel pipe
JP2001138066A (en) Method for producing high workability carbon steel pipe for hydroforming

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030729

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees