JP3764009B2 - Adsorbent and water treatment method - Google Patents

Adsorbent and water treatment method Download PDF

Info

Publication number
JP3764009B2
JP3764009B2 JP30761399A JP30761399A JP3764009B2 JP 3764009 B2 JP3764009 B2 JP 3764009B2 JP 30761399 A JP30761399 A JP 30761399A JP 30761399 A JP30761399 A JP 30761399A JP 3764009 B2 JP3764009 B2 JP 3764009B2
Authority
JP
Japan
Prior art keywords
water treatment
phosphorus
adsorbent
tank
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30761399A
Other languages
Japanese (ja)
Other versions
JP2001121140A (en
Inventor
厚史 小林
雄 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP30761399A priority Critical patent/JP3764009B2/en
Publication of JP2001121140A publication Critical patent/JP2001121140A/en
Application granted granted Critical
Publication of JP3764009B2 publication Critical patent/JP3764009B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、吸着剤、水処理剤及び水処理方法に関する。
【0002】
【従来の技術及び発明の解決しようとする課題】
工業排水等の有機性物質などの種々の汚染物質により汚染された汚染水を、浄化する汚染水の処理方法は、種々提案されている。
【0003】
例えば、特開昭55−39281号公報には、有機性排水の生物学的処理水に水酸化第2鉄を添加して有機物を吸着させた後、得られた処理水に鉄塩触媒を添加して有機物を酸化分解し、さらにアルカリを添加して鉄塩触媒を水酸化第2鉄スラッジとして析出分離させる有機性排水の処理方法が提案されている。
【0004】
しかし、このような従来提案されている処理方法で汚染物質の吸着に用いられる吸着剤は、ハンドリング性が悪く、また、保存安定性も悪いという問題があった。
【0005】
一方、排水中には、リン、砒素、フミン酸等が含まれている場合も多い。そして、リンは湖沼、海等で富栄養化の原因になるので除外することが望まれる。また、排水から除外されたリン、砒素等はリサイクルして再利用することが可能である。フミン酸は水中の色度成分であり、フミン酸に吸着された重金属等もリサイクル可能である。
【0006】
従って、本発明の目的は、ハンドリングが容易で、保存性にも優れた吸着剤を提供することにある。
また、本発明の他の目的は、各種の汚染物質により汚染された汚染水から簡易に且つ良好に汚染物質を除去できる水処理剤及び水処理方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明の一側面では、ヒドロオキシ硫酸鉄を有効成分とする吸着剤が提供される。
【0008】
本発明において、2価の鉄イオンと硫酸イオンとを含む水溶液に過酸化物を添加して得られた沈澱物であって非結晶質ヒドロキシ硫酸鉄を主な成分とするものを有効成分とすることが好ましい。
【0009】
本発明の他の側面では、上記吸着剤を主成分とする水処理剤が提供される。
本発明の他の側面では、前記吸着剤及び/または前記水処理剤と、水と、を接触させる吸着工程と;前記吸着剤を含む水に、凝集剤を添加する凝集工程と;
を有する水処理方法が提供される。
【0010】
【発明の実施の形態】
以下、本発明の好ましい一実施形態について説明する。
本発明の吸着剤は、ヒドロオキシ硫酸鉄を有効成分とすることを特徴とする。
ヒドロオキシ硫酸鉄には、3価鉄のヒドロオキシ硫酸塩が含まれる。ヒドロオキシ硫酸鉄には、例えば、2Fe2O3・5SO3、Fe2O3・2SO3、Fe2O3・2SO3、3Fe2O3・4SO3、Fe2O3・SO3、2Fe2O3・SO3が含まれる。これらについては、下記に述べる。ヒドロオキシ硫酸鉄については、更に、7Fe2O3・18SO3・nH2O,7Fe2O3・15SO3,3Fe2O・SO3,7Fe2O3・SO3・10.5H2O,10Fe2O3・SO3・H2O なども報告されている。
【0011】
2Fe2O3・5SO3について述べる。十七水化物は、Fe2O3-SO3-H2O 系で約90°以下で存在する。十八水化物は、Fe2O3-SO3-H2O 系で25°で存在する。あるいは、SO3:Fe2O3 の比が2.5よりも大きい濃硫酸鉄(III)溶液を煮沸して、得られる。
【0012】
Fe2O3・2SO3について述べる。無水物は、硫酸鉄(II)を乾燥空気気流中で約300°に加熱して得られる。十五水化物は、工業用鉄媒染液を長時間放置すると析出する。無水物は、茶褐色の粉末であり、潮解性がある。一水化物は、Fe2O3-SO3-H2O系で約80℃以上で安定である。七水化物は天然にアマランタイトとして産する。八水化物は天然にキャスタナイトとして産する。九〜十一水化物は、天然にfibroferriteとして産する。十五水化物は風解性があり、加熱すると結晶水中に溶ける。
【0013】
2Fe2O3・3SO3について述べる。無水物は、硫酸鉄(III)を強熱して得られる。七水化物は、天然にraimonditeとして産する。八水化物は、硫酸鉄(II)溶液が空気中で酸化されて得られる。なお、硫酸鉄(II)溶液に酸化水銀(II)を長時間作用させると含水量不明の水化物が得られる。
3Fe2O3・4SO3について述べる。九水化物は天然にワラテッ鉱およびborgstromitとして産する。約20%の硫酸鉄(III)溶液を封管中で150°に加熱して得られる。
【0014】
Fe2O3・SO3について述べる。4/3〜二水化物は天然にユターアイトとして産する。三水化物は硫酸鉄(III)溶液に炭酸カリウムを加えて得られる。十五水化物は天然にplanoferriteとして産する。
【0015】
2Fe2O3・SO3について述べる。六水化物は天然にグロッカーライトとして産する。硫酸鉄(II)溶液を空気中で酸化して得られる。七水化物は、Fe2O3・2SO3・15H2Oを冷水で処理して得られる。八水化物は天然にhydroglockeriteとして産する。硫酸鉄(II)溶液に過酸化水素を加えて得られる。
なお,硫酸鉄(III)溶液を加熱するか,希釈するか,あるいは炭酸ナトリウムを加えると含水量不明の水化物を得る。
【0016】
本発明の吸着剤には、50重量%以上のヒドロオキシ硫酸鉄が含まれていることが好ましく、70重量%以上のヒドロオキシ硫酸鉄が含まれていることが更に好ましく、80重量%以上のヒドロオキシ硫酸鉄が含まれていることが更になお好ましく、90重量%以上のヒドロオキシ硫酸鉄が含まれていることが特に好ましい。
【0017】
ヒドロオキシ硫酸鉄は、例えば、2価の鉄イオンを含む鉄化合物と硫酸イオンを含む硫酸化合物とを含む水溶液、例えば、硫酸鉄(II)を含む水溶液に、過酸化水素等の過酸化物を加えて反応させて、沈殿物として得られる。この非結晶質のヒドロキシ硫酸鉄は、吸着能力が高く、且つ沈降分離性等の取り扱い性も良好であるので、特に好ましい。
【0018】
この合成方法では、鉄と硫酸イオンとの配合割合(モル比)は、鉄:硫酸イオン=2:1〜1:2とするのが好ましい。
また、前記水溶液における鉄の含有量は、10〜50モル/リットルとするのが好ましい。
【0019】
さらに、過酸化水素溶液は、過酸化水素の含有量が、好ましくは1〜5重量%であり、その使用量は、2価の鉄イオン1モルに対して、0.5〜2モルとするのが好ましい。
【0020】
また、反応条件は、15〜60℃で、2〜5時間とするのが好ましい。
また、本発明の吸着剤は、前記ヒドロオキシ硫酸鉄を有効成分として含有すれば他の成分は特に制限されず、通常この種の吸着剤に用いられるものを特に制限なく添加しても良い。あるいは、本発明においては、前記ヒドロオキシ硫酸鉄を単独で吸着剤としてもよい。
【0021】
本発明の吸着剤は、各種汚染物質により汚染された工業排水等の浄化に用いることができる。特に、リン、砒素等を含有する工業排水等の処理に適し、洗剤中のリンを含有する生活排水の処理にも用いることができる。
【0022】
また、本発明の吸着剤は、1)スラリー状、2)粉末等の粒状物、3)担体に吸着させた形態の何れの使用形態で使用することができる。例えば、ヒドロオキシ硫酸鉄を調製する際にスポンジや粒状活性アルミナなどの担体を共存させて、ヒドロオキシ硫酸鉄を担体に吸着させてもよい。
【0023】
そして、本発明の吸着剤は、予め調製して得られた前記ヒドロオキシ硫酸鉄を有効成分とするので、汚染物質の除去効果が高く、しかもハンドリングが容易で、保存安定性も高いものである。
【0024】
次に、本発明の水処理剤について説明する。
本発明の水処理剤は、前記の本発明の吸着剤を主成分とすることを特徴とする。
【0025】
本発明においては、前記吸着剤のみで水処理剤を構成しても良い。あるいは、水処理剤には、前記の吸着剤以外の成分として、更に、活性炭、活性アルミナ等の他の吸着物質が含まれていても良い。これらの添加成分とヒドロキシ硫酸鉄とは相互の作用を阻害しない。
【0026】
前記吸着剤は、前述した使用形態のいずれの形態で用いてもよい。
そして、本発明の水処理剤又は吸着剤は、リン、砒素、重金属イオン等の成分を除去することができる。被処理水及び本発明の水処理剤と反応槽に投入して反応させた後、反応溶液を凝集剤と共に凝集槽に投入して凝集させ、次いで、沈殿槽にて凝集物を沈殿させて、沈殿物と処理水とに分離してもよい。あるいは、被処理物及び本発明の水処理剤が封入された吸着塔に投入して、吸着塔を通過した後の被処理物を濾過槽に投入して濾過してもよい。
【0027】
砒素の場合には、前処理として、砒素を酸化し、次いで、本発明の処理剤を用いることが好ましい。重金属イオンの場合には、エチレンジアミン四酢酸(EDTA)、フミン酸などの重金属イオンと配位結合を起こすキレート剤等を添加する前処理を行い、次いで、本発明の処理剤を用いることが好ましい。
【0028】
図1は、反応槽と、凝集槽と、沈殿槽とを具備する処理装置を示す。なお、各槽は、それぞれ、公知のものを特に制限なく用いることができ、好ましくは、各槽は、それぞれ公知の連結管を介して連結されている。
【0029】
まず、本発明の水処理剤が投入されている反応槽に被処理物を投入して、リン等を吸着させる。水処理剤の使用量は、被処理物の汚染状況により任意であるが、通常は、被処理成分に対して20倍〜200倍とするのが好ましい。
【0030】
また、反応条件は、水溶液の常温域で行われることが好ましい。常温域とは、特に限定がない限り、10〜35℃であり、好ましくは15〜25℃である。
次いで、反応終了後、反応溶液を凝集剤と共に凝集槽に投入して凝集させる。
【0031】
この際用いることができる凝集剤としては、ポリ塩化アルミニウム(PAC)、硫酸ベンド塩化鉄(III)、アニオン性高分子凝集剤、カチオン性高分子凝集剤、両性高分子凝集剤等が挙げられる。高分子は、天然高分子でもよいし、合成高分子でもよい。次いで、公知の手法により、沈殿槽にて凝集物を沈殿させて、沈殿物としての汚泥と処理水とに分離する。
【0032】
なお、本方式により処理をする場合には、当該吸着剤が核となることにより極めて沈降性のよい凝集フロックが得られる。通常の凝集沈殿装置にて、当該吸着剤を用いた場合には、数倍の沈降分離速度が得られ、設備の小型化又は既存の設備では処理水量の増大化が図れる。あるいは、凝集フロックを沈降分離する方法として造粒沈殿装置を利用した場合などでは、通常の沈降分離速度(200mm/min.)よりも速い沈降分離速度(300mm/min.〜400mm/min.程度)での設計が可能になる。なお、造粒沈殿装置とは、凝集剤を添加しつつ攪拌して、ペレット状ないし団粒状の凝集汚泥を形成する装置をいう。
【0033】
図2は、吸着塔と濾過槽とを具備する処理装置を示す。なお、吸着塔及び濾過槽としては、それぞれ、公知のものを特に制限なく用いることができ、好ましくは、各槽は、それぞれ公知の連結管を介して連結されている。
【0034】
まず、被処理物を本発明の水処理剤が充填された吸着塔に投入して、被処理物中のリンを吸着させる。
充填塔で用いられる吸着剤は、粒状物であることが好ましい。粒状物は、球形、楕円形、多角形、リング形状、ラシヒリング等であってもよい。
【0035】
また、吸着塔に被処理物を投入する際の条件は、被処理物により異なるが、好ましくは下記の通りである。温度としては、水溶液の常温域、例えば、10〜35℃で行われるのが好ましく、15〜25℃で行われることが更に好ましい。
【0036】
次いで、吸着塔を通過した後の被処理物を微多孔質(microporous)膜(MF膜)、限外ろ過(ultrafine)膜(UF膜)等の膜濾過や砂等の充てん濾過その他公知の手法により濾過槽に投入して濾過して処理水を得る。
【0037】
図3は反応槽と濾過槽とを具備する処理装置を示す。なお、各槽は、それぞれ、公知のものを特に制限なく用いることが出来、好ましくは、各槽は、それぞれ公知の連結管を介して連結されている。
【0038】
まず、本発明の水処理剤が投入されている反応槽に被処理物を投入して、リン等を吸着させる。水処理剤の使用量は、被処理物の汚染状況により任意であるが、通常は、被処理成分に対して20倍〜200倍量とするのが好ましい。
【0039】
また、反応は、水溶液の常温域で行われるのが好ましく、反応時間は0.5〜2時間とするのが好ましい。
次いで、反応終了後、公知の手法により、ろ過槽にて反応液を濾過し、水処理剤を中心とした汚泥と濾過液(処理水)とに分離する。ろ過槽としては、図2で説明したろ過槽を用いることができる。
【0040】
図4は、溶解槽と第1反応槽と第1沈殿槽と第2反応槽と第2沈殿槽と、第1沈殿槽で得られる沈殿物を乾燥する第1乾燥器と、第2沈殿槽で得られる沈殿物を乾燥する第2乾燥器とを有する再生装置を示す。汚泥又は使用後の吸着剤を、塩酸等の強酸と共に溶解槽に投入して溶解する。次いで、溶解された溶液を第1反応槽に投入してpH3〜5等の酸性条件下で反応させる。得られた反応溶液を沈殿槽に移送して沈殿させてFeOOH等を主とする第1沈殿物と処理水とに分離する。さらに、処理水を水酸化カルシウム等の強塩基と共に第2反応槽に投入してpH8〜9等の塩基性条件下で反応させる。次いで、反応溶液を沈殿槽に移送して沈殿させてヒドロキシアパタイト等を主とする第2沈殿物と処理水とに分離する。こうして得られた第1沈殿物及び第2沈殿物をそれぞれ第1乾燥器及び第2乾燥器に移送して、乾燥し、再利用に供する。
【0041】
強酸としては、塩酸、硫酸、リン酸等の無機酸、トリフルオロ酢酸等の有機酸が用いられる。後処理等を考慮すると、無機酸が好ましい。
強塩基としては、水酸化カルシウム、水酸化バリウム、水酸化ナトリウム、水酸化カリウム等の無機塩基が好ましく用いられる。
【0042】
第2反応槽における水酸化カルシウム等の強塩基の使用量は、溶液中に含有されているリン濃度1重量%に対して20〜500重量%とするのが好ましく、50〜200重量%とすることが好ましく、80〜150重量%とすることが更に好ましい。
【0043】
図5は、砒素を含む水を処理する装置を示す。即ち、砒素酸化槽と、反応槽と、凝集槽と、沈殿槽とを具備する処理装置を示す。なお、各槽は、それぞれ、公知のものを特に制限なく用いることができ、好ましくは、各槽は、それぞれ公知の連結管を介して連結されている。
【0044】
そして、まず、被処理物を酸化剤と共に砒素酸化槽に投入して砒素を酸化させる。酸化剤としては、塩素等が用いられる。
この際の酸化剤の使用量は、被処理物の汚染状況により任意であるが、被処理成分100重量部に対して、200〜500重量部とするのが好ましい。
【0045】
次いで、砒素が酸化された被処理物を本発明の水処理剤が投入されている反応槽に投入して反応させる。吸着剤は、通常は、被処理成分の10倍〜200倍とするのが好ましく、20〜100倍とすることが更に好ましい。また、反応条件は、水溶液の常温域で0.5〜2時間とするのが好ましい。
【0046】
次いで、反応終了後の反応溶液を凝集剤と共に凝集槽に投入して凝集させる。この際に用いることができる凝集剤としては、前記の凝集剤が挙げられる。
次いで、公知の手法により、沈殿槽にて凝集物を沈殿させて、沈殿物としての汚泥と処理水とに分離する。
【0047】
図6は、砒素酸化槽と吸着塔と濾過槽とを具備する処理装置を示す。なお、砒素酸化槽、吸着塔及び濾過槽としては、それぞれ、公知のものを特に制限なく用いることができ、好ましくは、各槽は、それぞれ公知の連結管を介して連結されている。
【0048】
まず、図5の処理方法と同様に砒素を酸化した後、被処理物を本発明の水処理剤が封入された吸着塔に投入して、被処理物中の砒素を吸着させる。
吸着塔、吸着剤、吸着塔に被処理物を投入する際の条件については上述した通りである。次いで、図2の処理法方と同様に、ろ過を行う。
【0049】
図7は、重金属配位化合物生成槽と、反応槽と、凝集槽と、沈殿槽とを具備する処理装置を示す。なお、各槽は、それぞれ、公知のものを特に制限なく用いることができ、好ましくは、各槽は、それぞれ公知の連結管を介して連結されている。
【0050】
まず、被処理物に、前記重金属処理剤を添加して、重金属イオンが配位結合されるように反応させる。
前記重金属処理剤としては、エチレンジアミン四酢酸(EDTA)等のキレート化剤、フミン酸等が挙げられる。
【0051】
この際の重金属処理剤の使用量は、被処理物の汚染状況により任意であるが、被処理物100重量部に対して、1000〜5000重量部とするのが好ましい。反応条件は、水溶液の常温域で0.5〜2時間とするのが好ましい。
【0052】
次いで、重金属配位化合物を含有する被処理物を本発明の水処理剤が投入されている反応槽に投入して反応させる。吸着剤、凝集剤については、前述の通りである。
【0053】
次いで、公知の手法により、沈殿槽にて凝集物を沈殿させて、沈殿物としての汚泥と処理水とに分離する。
図8は、重金属配位化合物生成槽と吸着塔と濾過槽とを具備する処理装置を示す。なお、重金属配位化合物生成槽、吸着塔及び濾過槽としては、それぞれ、公知のものを特に制限なく用いることができ、好ましくは、各槽は、それぞれ公知の連結管を介して連結されている。
【0054】
まず、図7の処理方法と同様に重金属配位化合物を生成させる。次いで、被処理物を本発明の水処理剤が封入された吸着塔に投入して、被処理物中の重金属配位化合物を吸着させる。
【0055】
吸着塔、吸着剤、吸着塔に被処理物を投入する際の条件については上述した通りである。
次いで、吸着塔を通過した後の被処理物を濾過槽に投入して濾過して処理水を得る。ろ過の条件は、上述の通りである。
【0056】
【発明の効果】
本発明の吸着剤は、ハンドリングが容易で、保存性にも優れたものである。
また、本発明の水処理剤及び水処理方法によれば、各種の汚染物質により汚染された汚染水から簡易に且つ良好に汚染物質を除去できる。
【0057】
特にリンを含む被処理物を処理する場合には、使用後の吸着剤から、容易に、リン含有濃度の高い回収溶液を得ることもできる。また、処理後の吸着剤から鉄分を容易に分離・回収することも可能で、回収した鉄分を再利用して吸着剤を調整することもできる。
【図面の簡単な説明】
【図1】図1は、リンを含む被処理物の処理装置及び処理方法の概要を示す概略図である。
【図2】図2は、リンを含む被処理物の処理装置及び処理方法の概要を示す概略図である。
【図3】図3は、リン吸着工程の概要を示す概略図である。
【図4】図4は、リンを処理した後の水処理剤における吸着剤の再生処理装置及び再生処理方法の概要を示す概略図である。
【図5】図5は、砒素を含む被処理物の処理装置及び処理方法の概要を示す概略図である。
【図6】図6は、砒素を含む被処理物の処理装置及び処理方法の概要を示す概略図である。
【図7】図7は、重金属イオンを含む被処理物の処理装置及び処理方法の概要を示す概略図である。
【図8】図8は、重金属イオンを含む被処理物の処理装置及び処理方法の概要を示す概略図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an adsorbent, a water treatment agent, and a water treatment method.
[0002]
[Background Art and Problems to be Solved by the Invention]
Various methods for treating contaminated water for purifying contaminated water contaminated with various pollutants such as organic substances such as industrial wastewater have been proposed.
[0003]
For example, in Japanese Patent Application Laid-Open No. 55-39281, ferric hydroxide is added to biologically treated water of organic waste water to adsorb organic substances, and then an iron salt catalyst is added to the obtained treated water. Then, an organic wastewater treatment method has been proposed in which an organic substance is oxidized and decomposed, and an alkali is further added to precipitate and separate an iron salt catalyst as ferric hydroxide sludge.
[0004]
However, the adsorbent used for adsorbing contaminants in such a conventionally proposed processing method has a problem of poor handling and storage stability.
[0005]
On the other hand, wastewater often contains phosphorus, arsenic, humic acid, and the like. Since phosphorus causes eutrophication in lakes, seas, etc., it is desirable to exclude phosphorus. In addition, phosphorus, arsenic, etc. excluded from the wastewater can be recycled and reused. Humic acid is a chromaticity component in water, and heavy metals adsorbed on humic acid can also be recycled.
[0006]
Therefore, an object of the present invention is to provide an adsorbent that is easy to handle and excellent in storage stability.
Another object of the present invention is to provide a water treatment agent and a water treatment method capable of easily and satisfactorily removing contaminants from contaminated water contaminated with various contaminants.
[0007]
[Means for Solving the Problems]
In one aspect of the present invention, an adsorbent containing iron hydroxysulfate as an active ingredient is provided.
[0008]
In the present invention, a precipitate obtained by adding a peroxide to an aqueous solution containing divalent iron ions and sulfate ions, the main component of which is amorphous iron hydroxysulfate is used as an active ingredient. It is preferable.
[0009]
In another aspect of the present invention, a water treatment agent containing the adsorbent as a main component is provided.
In another aspect of the present invention, an adsorption step of bringing the adsorbent and / or the water treatment agent into contact with water; an aggregation step of adding a flocculant to the water containing the adsorbent;
A water treatment method is provided.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described.
The adsorbent of the present invention is characterized by using iron hydroxysulfate as an active ingredient.
Hydroxysulfate includes trivalent iron hydroxysulfate. The hydroxycarbonate iron sulfate, for example, 2Fe 2 O 3 · 5SO 3 , Fe 2 O 3 · 2SO 3, Fe 2 O 3 · 2SO 3, 3Fe 2 O 3 · 4SO 3, Fe 2 O 3 · SO 3, 2Fe 2 O 3 and SO 3 are included. These are described below. For iron hydroxysulfate, 7Fe 2 O 3 · 18SO 3 · nH 2 O, 7Fe 2 O 3 · 15SO 3 , 3Fe 2 O · SO 3 , 7Fe 2 O 3 · SO 3 · 10.5H 2 O, 10Fe 2 O 3 · SO 3 · H 2 O have also been reported.
[0011]
2Fe 2 O 3 · 5SO 3 is described. Seventeen hydrates exist in the Fe 2 O 3 —SO 3 —H 2 O system at about 90 ° or less. Eighteen hydrates are present at 25 ° in the Fe 2 O 3 —SO 3 —H 2 O system. Alternatively, it is obtained by boiling a concentrated iron (III) sulfate solution having a ratio of SO 3 : Fe 2 O 3 larger than 2.5.
[0012]
The following describes Fe 2 O 3 · 2SO 3 . The anhydride is obtained by heating iron (II) sulfate to about 300 ° in a dry air stream. Fifteen hydrates precipitate when an industrial iron mordant is left for a long time. Anhydride is a brownish powder and has deliquescence. The monohydrate is stable at about 80 ° C. or higher in the Fe 2 O 3 —SO 3 —H 2 O system. The heptahydrate is naturally produced as amaranthite. Octahydrate is naturally produced as castanite. Nine to eleven hydrates are naturally produced as fibroferrite. Fifteen hydrates are defusible and dissolve in crystal water when heated.
[0013]
2Fe 2 O 3 · 3SO 3 is described. The anhydride is obtained by igniting iron (III) sulfate. The heptahydrate is naturally produced as raimondite. The octahydrate is obtained by oxidizing an iron (II) sulfate solution in air. In addition, when mercury (II) oxide is allowed to act on an iron (II) sulfate solution for a long time, a hydrate having an unknown water content is obtained.
3Fe 2 O 3 · 4SO 3 is described. Nine hydrates are naturally produced as waratite and borgstromit. About 20% iron (III) sulfate solution is obtained by heating to 150 ° in a sealed tube.
[0014]
The following describes Fe 2 O 3 · SO 3 . 4/3 ~ Dihydrate is naturally produced as Uterite. The trihydrate is obtained by adding potassium carbonate to an iron (III) sulfate solution. Fifteen hydrates are naturally produced as planoferrite.
[0015]
2Fe 2 O 3 · SO 3 is described. Hexahydrate is naturally produced as a blocker light. It is obtained by oxidizing an iron (II) sulfate solution in air. The heptahydrate is obtained by treating Fe 2 O 3 .2SO 3 .15H 2 O with cold water. Octahydrate is naturally produced as hydroglockerite. It is obtained by adding hydrogen peroxide to an iron (II) sulfate solution.
In addition, when an iron (III) sulfate solution is heated, diluted, or sodium carbonate is added, a hydrate having an unknown water content is obtained.
[0016]
The adsorbent of the present invention preferably contains 50% by weight or more of iron iron hydroxysulfate, more preferably 70% by weight or more of iron iron hydroxysulfate, and 80% by weight or more of iron hydroxysulfate. It is still more preferable that iron is contained, and it is particularly preferable that 90% by weight or more of iron hydroxysulfate is contained.
[0017]
For example, the iron oxide iron sulfate is obtained by adding a peroxide such as hydrogen peroxide to an aqueous solution containing an iron compound containing divalent iron ions and a sulfuric acid compound containing sulfate ions, for example, an aqueous solution containing iron (II) sulfate. To obtain a precipitate. This amorphous iron hydroxysulfate is particularly preferable because of its high adsorption capacity and good handling properties such as sedimentation separation.
[0018]
In this synthesis method, the blending ratio (molar ratio) of iron and sulfate ions is preferably iron: sulfate ions = 2: 1 to 1: 2.
The iron content in the aqueous solution is preferably 10 to 50 mol / liter.
[0019]
Further, in the hydrogen peroxide solution, the content of hydrogen peroxide is preferably 1 to 5% by weight, and the amount used is 0.5 to 2 mol with respect to 1 mol of divalent iron ions. Is preferred.
[0020]
The reaction conditions are preferably 15 to 60 ° C. and 2 to 5 hours.
Further, the adsorbent of the present invention is not particularly limited as long as it contains the iron iron sulfate as an active ingredient, and those usually used for this type of adsorbent may be added without particular limitation. Alternatively, in the present invention, the iron iron hydroxysulfate may be used alone as an adsorbent.
[0021]
The adsorbent of the present invention can be used for purification of industrial wastewater contaminated with various pollutants. In particular, it is suitable for the treatment of industrial wastewater containing phosphorus, arsenic and the like, and can also be used for the treatment of domestic wastewater containing phosphorus in detergents.
[0022]
Further, the adsorbent of the present invention can be used in any usage form 1) in the form of a slurry, 2) granular material such as a powder, or 3) adsorbed on a carrier. For example, when preparing iron iron sulfate, a carrier such as sponge or granular activated alumina may be present to adsorb iron iron sulfate.
[0023]
The adsorbent of the present invention uses the iron hydroxysulfate prepared in advance as an active ingredient, and therefore has a high effect of removing contaminants, is easy to handle, and has high storage stability.
[0024]
Next, the water treatment agent of the present invention will be described.
The water treatment agent of the present invention is characterized by containing the adsorbent of the present invention as a main component.
[0025]
In the present invention, the water treatment agent may be composed only of the adsorbent. Alternatively, the water treatment agent may further contain other adsorbents such as activated carbon and activated alumina as components other than the adsorbent. These additive components and iron hydroxysulfate do not inhibit the interaction.
[0026]
The adsorbent may be used in any of the usage forms described above.
And the water treatment agent or adsorbent of the present invention can remove components such as phosphorus, arsenic, and heavy metal ions. After the reaction water and the water treatment agent of the present invention were added to the reaction tank and reacted, the reaction solution was added to the coagulation tank together with the coagulant to cause aggregation, and then the aggregate was precipitated in the precipitation tank, You may isolate | separate into a deposit and treated water. Or you may throw into the adsorption tower in which the to-be-processed object and the water treatment agent of this invention were enclosed, and you may throw into the filtration tank and filter the to-be-processed object after passing an adsorption tower.
[0027]
In the case of arsenic, it is preferable to oxidize arsenic as a pretreatment and then use the treatment agent of the present invention. In the case of heavy metal ions, it is preferable to perform a pretreatment by adding a chelating agent or the like that causes a coordinate bond with heavy metal ions such as ethylenediaminetetraacetic acid (EDTA) and humic acid, and then use the treatment agent of the present invention.
[0028]
FIG. 1 shows a processing apparatus comprising a reaction tank, a coagulation tank, and a precipitation tank. In addition, each tank can use a well-known thing without a restriction | limiting in particular, respectively, Preferably, each tank is each connected via the well-known connection pipe | tube.
[0029]
First, an object to be treated is introduced into a reaction tank in which the water treatment agent of the present invention has been introduced to adsorb phosphorus or the like. Although the usage-amount of a water treatment agent is arbitrary by the contamination condition of a to-be-processed object, it is preferable normally to set it as 20 to 200 times with respect to a to-be-processed component.
[0030]
Moreover, it is preferable that reaction conditions are performed in the normal temperature range of aqueous solution. The room temperature region is 10 to 35 ° C, preferably 15 to 25 ° C, unless otherwise specified.
Next, after completion of the reaction, the reaction solution is put together with a flocculant into a coagulation tank to be aggregated.
[0031]
Examples of the flocculant that can be used at this time include polyaluminum chloride (PAC), iron (III) sulfate bend chloride, anionic polymer flocculants, cationic polymer flocculants, and amphoteric polymer flocculants. The polymer may be a natural polymer or a synthetic polymer. Next, the aggregate is precipitated in a sedimentation tank by a known method, and separated into sludge as a precipitate and treated water.
[0032]
In addition, when processing by this system, the said adsorbent becomes a nucleus, and the aggregation floc with very good sedimentation is obtained. When the adsorbent is used in an ordinary coagulating sedimentation apparatus, the sedimentation rate is several times higher, and the size of the equipment can be reduced or the amount of treated water can be increased in existing equipment. Alternatively, when a granulation settling apparatus is used as a method for settling and separating the aggregated floc, the settling separation rate (about 300 mm / min. To 400 mm / min.) Faster than the normal settling separation rate (200 mm / min.). Design with is possible. In addition, a granulation precipitation apparatus means the apparatus which stirs, adding a flocculant, and forms a pellet form or a aggregated aggregate sludge.
[0033]
FIG. 2 shows a processing apparatus comprising an adsorption tower and a filtration tank. In addition, as an adsorption tower and a filtration tank, respectively, a well-known thing can be especially used without a restriction | limiting, Preferably, each tank is connected through the well-known connection pipe, respectively.
[0034]
First, an object to be treated is put into an adsorption tower filled with the water treatment agent of the present invention to adsorb phosphorus in the object to be treated.
The adsorbent used in the packed tower is preferably a granular material. The granular material may be a sphere, an ellipse, a polygon, a ring shape, a Raschig ring, or the like.
[0035]
Further, the conditions for introducing the object to be processed into the adsorption tower vary depending on the object to be processed, but are preferably as follows. As temperature, it is preferable to carry out at the normal temperature range of aqueous solution, for example, 10-35 degreeC, and it is still more preferable to carry out at 15-25 degreeC.
[0036]
Next, the processed material after passing through the adsorption tower is filtered through membrane filtration such as microporous membrane (MF membrane), ultrafine membrane (UF membrane), etc. And put into a filtration tank and filter to obtain treated water.
[0037]
FIG. 3 shows a processing apparatus comprising a reaction tank and a filtration tank. In addition, each tank can use a well-known thing without a restriction | limiting in particular, respectively, Preferably, each tank is connected through the well-known connection pipe, respectively.
[0038]
First, an object to be treated is introduced into a reaction tank in which the water treatment agent of the present invention has been introduced to adsorb phosphorus or the like. The amount of the water treatment agent used is arbitrary depending on the state of contamination of the object to be treated, but it is usually preferably 20 to 200 times the amount to be treated.
[0039]
The reaction is preferably carried out in the normal temperature range of the aqueous solution, and the reaction time is preferably 0.5 to 2 hours.
Next, after completion of the reaction, the reaction solution is filtered in a filtration tank by a known method, and separated into sludge mainly composed of a water treatment agent and filtrate (treated water). As the filtration tank, the filtration tank described in FIG. 2 can be used.
[0040]
FIG. 4 shows a dissolution tank, a first reaction tank, a first precipitation tank, a second reaction tank, a second precipitation tank, a first dryer for drying the precipitate obtained in the first precipitation tank, and a second precipitation tank. The reproduction | regeneration apparatus which has a 2nd dryer which dries the precipitate obtained by this. Sludge or used adsorbent is charged into a dissolution tank together with a strong acid such as hydrochloric acid and dissolved. Next, the dissolved solution is charged into the first reaction vessel and reacted under acidic conditions such as pH 3-5. The obtained reaction solution is transferred to a precipitation tank to be precipitated and separated into a first precipitate mainly composed of FeOOH and the like and treated water. Furthermore, treated water is thrown into a 2nd reaction tank with strong bases, such as calcium hydroxide, and it is made to react on basic conditions, such as pH 8-9. Next, the reaction solution is transferred to a precipitation tank and precipitated to separate into a second precipitate mainly composed of hydroxyapatite and the like and treated water. The first precipitate and the second precipitate thus obtained are transferred to the first dryer and the second dryer, dried, and used for reuse.
[0041]
As the strong acid, inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid, and organic acids such as trifluoroacetic acid are used. In view of post-treatment and the like, inorganic acids are preferable.
As the strong base, inorganic bases such as calcium hydroxide, barium hydroxide, sodium hydroxide and potassium hydroxide are preferably used.
[0042]
The amount of strong base such as calcium hydroxide used in the second reaction tank is preferably 20 to 500% by weight, preferably 50 to 200% by weight, with respect to 1% by weight of phosphorus contained in the solution. It is preferably 80 to 150% by weight.
[0043]
FIG. 5 shows an apparatus for treating water containing arsenic. That is, the treatment apparatus includes an arsenic oxidation tank, a reaction tank, a coagulation tank, and a precipitation tank. In addition, each tank can use a well-known thing without a restriction | limiting in particular, respectively, Preferably, each tank is each connected via the well-known connection pipe | tube.
[0044]
First, the object to be treated is put into an arsenic oxidation tank together with an oxidizing agent to oxidize arsenic. As the oxidizing agent, chlorine or the like is used.
The amount of the oxidizing agent used at this time is arbitrary depending on the contamination status of the object to be processed, but is preferably 200 to 500 parts by weight with respect to 100 parts by weight of the component to be processed.
[0045]
Next, the object to be treated in which arsenic has been oxidized is introduced into a reaction vessel in which the water treatment agent of the present invention has been introduced for reaction. Usually, the adsorbent is preferably 10 to 200 times the component to be treated, more preferably 20 to 100 times. Moreover, it is preferable that reaction conditions shall be 0.5 to 2 hours in the normal temperature range of aqueous solution.
[0046]
Next, the reaction solution after completion of the reaction is put together with a flocculant into a coagulation tank to be aggregated. Examples of the flocculant that can be used in this case include the flocculants described above.
Next, the aggregate is precipitated in a sedimentation tank by a known method, and separated into sludge as a precipitate and treated water.
[0047]
FIG. 6 shows a processing apparatus including an arsenic oxidation tank, an adsorption tower, and a filtration tank. In addition, as an arsenic oxidation tank, an adsorption tower, and a filtration tank, a well-known thing can be used respectively without a restriction | limiting, Preferably, each tank is respectively connected via the well-known connection pipe | tube.
[0048]
First, arsenic is oxidized in the same manner as in the treatment method of FIG. 5, and then the object to be treated is put into an adsorption tower in which the water treatment agent of the present invention is sealed to adsorb arsenic in the object to be treated.
The conditions at the time of putting the workpiece into the adsorption tower, the adsorbent, and the adsorption tower are as described above. Next, filtration is performed in the same manner as the processing method of FIG.
[0049]
FIG. 7 shows a processing apparatus comprising a heavy metal coordination compound production tank, a reaction tank, a coagulation tank, and a precipitation tank. In addition, each tank can use a well-known thing without a restriction | limiting in particular, respectively, Preferably, each tank is each connected via the well-known connection pipe | tube.
[0050]
First, the heavy metal treatment agent is added to the object to be treated, and the reaction is performed so that heavy metal ions are coordinated.
Examples of the heavy metal treating agent include chelating agents such as ethylenediaminetetraacetic acid (EDTA), humic acid, and the like.
[0051]
The amount of heavy metal treating agent used at this time is arbitrary depending on the contamination status of the object to be treated, but is preferably 1000 to 5000 parts by weight with respect to 100 parts by weight of the object to be treated. The reaction conditions are preferably 0.5 to 2 hours in the normal temperature range of the aqueous solution.
[0052]
Subsequently, the to-be-processed object containing a heavy metal coordination compound is thrown into the reaction tank in which the water treatment agent of this invention is thrown, and is made to react. The adsorbent and the flocculant are as described above.
[0053]
Next, the aggregate is precipitated in a sedimentation tank by a known method, and separated into sludge as a precipitate and treated water.
FIG. 8 shows a treatment apparatus comprising a heavy metal coordination compound production tank, an adsorption tower, and a filtration tank. In addition, as a heavy metal coordination compound production | generation tank, an adsorption tower, and a filtration tank, a well-known thing can respectively be used without a restriction | limiting, Preferably, each tank is each connected via the well-known connection pipe | tube. .
[0054]
First, a heavy metal coordination compound is produced in the same manner as in the treatment method of FIG. Next, the object to be treated is put into an adsorption tower in which the water treatment agent of the present invention is enclosed, and the heavy metal coordination compound in the object to be treated is adsorbed.
[0055]
The conditions at the time of putting the workpiece into the adsorption tower, the adsorbent, and the adsorption tower are as described above.
Next, the processed material after passing through the adsorption tower is put into a filtration tank and filtered to obtain treated water. The conditions for filtration are as described above.
[0056]
【The invention's effect】
The adsorbent of the present invention is easy to handle and has excellent storage stability.
Moreover, according to the water treatment agent and the water treatment method of the present invention, contaminants can be easily and satisfactorily removed from contaminated water contaminated with various contaminants.
[0057]
In particular, when processing an object to be processed containing phosphorus, a recovered solution having a high phosphorus-containing concentration can be easily obtained from the adsorbent after use. Further, iron can be easily separated and recovered from the adsorbent after the treatment, and the adsorbent can be adjusted by reusing the recovered iron.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an outline of a processing apparatus and processing method for an object to be processed containing phosphorus.
FIG. 2 is a schematic view showing an outline of a processing apparatus and processing method for an object to be processed containing phosphorus.
FIG. 3 is a schematic view showing an outline of a phosphorus adsorption step.
FIG. 4 is a schematic view showing an outline of an adsorbent regeneration treatment apparatus and a regeneration treatment method in a water treatment agent after treating phosphorus.
FIG. 5 is a schematic diagram showing an outline of a processing apparatus and processing method for an object to be processed containing arsenic.
FIG. 6 is a schematic diagram showing an outline of a processing apparatus and processing method for an object to be processed containing arsenic.
FIG. 7 is a schematic diagram showing an outline of a processing apparatus and processing method for an object to be processed containing heavy metal ions.
FIG. 8 is a schematic view showing an outline of a processing apparatus and processing method for an object to be processed containing heavy metal ions.

Claims (4)

非結晶質ヒドロオキシ硫酸鉄を有効成分とする水処理用リン吸着剤。 Phosphorus adsorbent for water treatment containing amorphous iron hydroxysulfate as an active ingredient. 請求項1に記載の水処理用リン吸着剤を主成分とする水処理剤 The water treatment agent which has the phosphorus adsorption agent for water treatment of Claim 1 as a main component . 請求項1に記載の水処理用リン吸着剤及び/または請求項2に記載の水処理剤と、リン含有排水と、を接触させる吸着工程と;
前記水処理用リン吸着剤を含むリン含有排水に、凝集剤を添加する凝集工程と;
を有するリン含有排水の水処理方法。
An adsorption step of bringing the water treatment phosphorus adsorbent according to claim 1 and / or the water treatment agent according to claim 2 into contact with the phosphorus-containing waste water;
A coagulation step of adding a coagulant to the phosphorus-containing wastewater containing the water treatment phosphorus adsorbent;
A method for treating water containing phosphorus-containing wastewater .
さらに、使用後の水処理用リン吸着剤を強酸と共に溶解させ、Furthermore, the phosphorus adsorbent for water treatment after use is dissolved together with a strong acid,
溶解した溶液をThe dissolved solution pHpH 3〜5の酸性条件下で反応させ、React under 3-5 acidic conditions,
得られた反応溶液から沈殿物を沈殿させ、The precipitate is precipitated from the obtained reaction solution,
該沈殿物を請求項1記載の水処理用リン吸着剤及び/または請求項2に記載の水処理剤の原料として再利用する工程を含む、請求項3に記載のリン含有排水の水処理方法。The method for water treatment of phosphorus-containing wastewater according to claim 3, comprising a step of reusing the precipitate as a raw material for the water treatment phosphorus adsorbent according to claim 1 and / or the water treatment agent according to claim 2. .
JP30761399A 1999-10-28 1999-10-28 Adsorbent and water treatment method Expired - Fee Related JP3764009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30761399A JP3764009B2 (en) 1999-10-28 1999-10-28 Adsorbent and water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30761399A JP3764009B2 (en) 1999-10-28 1999-10-28 Adsorbent and water treatment method

Publications (2)

Publication Number Publication Date
JP2001121140A JP2001121140A (en) 2001-05-08
JP3764009B2 true JP3764009B2 (en) 2006-04-05

Family

ID=17971151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30761399A Expired - Fee Related JP3764009B2 (en) 1999-10-28 1999-10-28 Adsorbent and water treatment method

Country Status (1)

Country Link
JP (1) JP3764009B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004108603A1 (en) * 2003-06-05 2004-12-16 Nippon Steel Chemical Co., Ltd. Treating material for polluted water, method for production thereof and use thereof
AU2005235472C1 (en) 2004-04-26 2009-04-23 Mitsubishi Materials Corporation Reducing water purification material, method for producing reducing water purification material, method for treating wastewater, and wastewater treatment apparatus
JP3740491B1 (en) 2004-07-23 2006-02-01 三井金属鉱業株式会社 Fluorine adsorption / desorption agent capable of adsorbing and desorbing fluorine in electrolyte in zinc electrolytic smelting, and fluorine removal method using the fluorine adsorption / desorption agent
JP2007000743A (en) * 2005-06-22 2007-01-11 Satou Sogyo:Kk System and method for removing dissolved inorganic material
JP4576560B2 (en) * 2005-06-27 2010-11-10 独立行政法人産業技術総合研究所 Phosphorous adsorbent
JP4681384B2 (en) * 2005-07-28 2011-05-11 株式会社アステック Arsenic adsorbent manufacturing method and arsenic adsorbent
JP2013088278A (en) * 2011-10-18 2013-05-13 Noatech Corp Radiation contamination wastewater treatment method, treatment system and mobile processor
KR101489136B1 (en) 2013-01-04 2015-02-03 쿠리타 고교 가부시키가이샤 Flocculation treatment method and apparatus for water containing silt
CN113385138A (en) * 2021-06-21 2021-09-14 南京贝克特环保科技有限公司 Preparation method and application of Schneider mineral

Also Published As

Publication number Publication date
JP2001121140A (en) 2001-05-08

Similar Documents

Publication Publication Date Title
JP5792664B2 (en) Method for regenerating used activated carbon, activated activated carbon and method for producing the same
CN112169748B (en) Adsorbent and preparation method and application thereof
JP3764009B2 (en) Adsorbent and water treatment method
JPH1190165A (en) Treatment of waste water from flue gas desulfurization
JP2014020916A (en) METHOD FOR PROCESSING RADIOACTIVE Cs CONTAMINATED WATER
JP2005193167A (en) Drainage purification method and purification method
JP5915834B2 (en) Method for producing purification treatment material
JP2006341139A (en) Harmful inorganic anion fixing and removing method, and fixing agent used therefor
JP2004066161A (en) Water treatment method
JP4631425B2 (en) Method and apparatus for treating fluorine-containing wastewater containing phosphoric acid
JPH10128313A (en) Method for removing heavy metal from photographic waste solution
CN116444099A (en) Method for ultralow emission of fluorine content of external drainage water in titanium white production
JP2002205077A (en) Method and apparatus for treating organic sewage
JP2002177963A (en) Water cleaning treatment system and water cleaning method
JP3373033B2 (en) How to remove phosphorus from water
JPH11235595A (en) Treatment of boron-containing waste water
JPS61227840A (en) Preparation of inorganic adsorbent using sludge of water purifying plant as raw material
WO2004096433A1 (en) Adsorbent and process for producing the same
JP2003260472A (en) Treatment method for fluorine-containing water
JPH10146589A (en) Method for recovery of iron in photographic discharge liquid
JP2008200599A (en) Method for cleaning waste water containing ammonia nitrogen
CN115837270B (en) Defluorination adsorbent, preparation method thereof and method for defluorination of acidic wastewater
JP2737610B2 (en) Treatment of flue gas desulfurization wastewater
JP3981318B2 (en) Treatment method of electroless nickel plating aging solution
JP2015108606A (en) METHOD FOR TREATING RADIOACTIVE Cs-CONTAMINATED WATER

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3764009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140127

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees