JP3763628B2 - Sulfur-containing hydrocarbon hydrogenation catalyst and hydrodesulfurization method using the same - Google Patents

Sulfur-containing hydrocarbon hydrogenation catalyst and hydrodesulfurization method using the same Download PDF

Info

Publication number
JP3763628B2
JP3763628B2 JP00798797A JP798797A JP3763628B2 JP 3763628 B2 JP3763628 B2 JP 3763628B2 JP 00798797 A JP00798797 A JP 00798797A JP 798797 A JP798797 A JP 798797A JP 3763628 B2 JP3763628 B2 JP 3763628B2
Authority
JP
Japan
Prior art keywords
catalyst
hydrodesulfurization
saponite
cobalt
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00798797A
Other languages
Japanese (ja)
Other versions
JPH10202100A (en
Inventor
栄治 岩松
英治 林
雄三 真田
ザイド,アハムド,アリ
ハリム,ハミッド,レドウィ
オーガスチン,リー
Original Assignee
財団法人 国際石油交流センター
キング ファハド ユニバーシティ オブ ペトゥロー リアム アンドゥ ミネラルズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人 国際石油交流センター, キング ファハド ユニバーシティ オブ ペトゥロー リアム アンドゥ ミネラルズ filed Critical 財団法人 国際石油交流センター
Priority to JP00798797A priority Critical patent/JP3763628B2/en
Publication of JPH10202100A publication Critical patent/JPH10202100A/en
Application granted granted Critical
Publication of JP3763628B2 publication Critical patent/JP3763628B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、含硫黄炭化水素の水素化脱硫法に関し、さらに詳しくは、含硫黄炭化水素類から硫黄分を効率良く除去し、脱硫率が高い有用な炭化水素類を生産性良く,効率的に製造するための水素化脱硫触媒及び水素化脱硫方法に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
含硫黄炭化水素類の水素化脱硫技術として、従来、数多くの技術が開発されてきている。これら従来の技術においては、水素化脱硫反応に高活性を有する触媒として多くのものが提案されており、特に、周期律表第6族(VIA 族)金属と周期律表第8,9,10族(VIII族)金属をアルミナに担持したものをベースとして、これを種々改良したものが、代表的なものとして知られており、広く使用されている。
例えば、硝酸コバルト水溶液と、モリブデン酸アンモニウム水溶液をアルミナ担体に含浸させて、高活性水素化脱硫触媒を得る方法が、J.Catal., 158,411(1996)あるいは、J.Catal., 159,212(1996)などの多くの文献に開示されている。
また、特開平4−166232号公報には、アルミナ等の耐火性酸化物担体に、周期律表第6族金属の塩と周期律表第8,9,10族金属の塩とを担持してなる触媒前駆体に、多価アルコールを添加してから200℃以下の温度で乾燥することによって水素化脱硫触媒を得るという方法が提案されている。
【0003】
しかしながら、これらの方法にて調製した触媒は、低温での脱硫活性が充分でなく、また、2種類(周期律表第6族及び周期律表第8,9,10族) の金属が担持されており、調製工程が煩雑になるという欠点を有している。さらに加えて、周期律表第6族としてモリブデンを含んだ場合、触媒自体が高価であり経済性に劣るという欠点がある。
一方、これら周期律表第6族の金属と周期律表第8,9,10族の金属とをアルミナに担持した触媒以外に、粘土鉱物を用いたものも、水素化脱硫反応触媒として提案されている。
例えば、特開平8−182930号公報には、サポナイト及び/又はラポナイトに周期律表第6族金属及び第8,9,10族金属を担持したものと、シリカ含有アルミナとからなる複合体が、水素化脱硫触媒として提案されている。しかしながら、この触媒系は、金属を2種類担持しており、また、複数の粘土鉱物を担体として用いているため、調製工程が煩雑となるという欠点を有している。さらに、周期律表第6族の金属としてモリブデンを含んだ場合、高価になり経済性に劣る。
また、Appl.Catal.,97,77(1993)には、アルミナを架橋したモンモリロナイトに、ニッケルを含浸したものを、水素化脱硫触媒として使用した結果が開示されている。しかしながら、この触媒は、アルミナをモンモリロナイトに固定化した後に、ニッケルを担持しているため、調製工程が煩雑となる欠点を有している。
【0004】
かかる状況下、本発明者らは上記従来技術の課題を解決し、含硫黄炭化水素類から硫黄分を効率よく除去し、脱硫率が高い有用な炭化水素類を、生産性良く効率的に製造するための水素化脱硫触媒及び水素化脱硫方法を開発すべく鋭意検討を行った。
【0005】
【課題を解決するための手段】
その結果、水素化脱硫活性を発現する金属種として周期律表第8,9,10族の金属の中よりコバルト(Co)のみを選択し、且つ、高比表面積担体としてスメクタイト系粘土鉱物の一種であるサポナイトを選択し、コバルトを当該高比表面積サポナイト上へ担持させることにより、上記課題が解決できることを見い出した。
本発明は、かかる知見に基づいて完成したものである。
【0006】
すなわち、本発明は、比表面積が400m2/g以上のサポナイトに、コバルトを担持し、コバルトを担持してなる、含硫黄炭化水素の水素化脱硫触媒を提供するものである。また、本発明は、比表面積が400m2/g以上のサポナイトに、コバルトを担持した水素化脱硫触媒の存在下、含硫黄炭化水素を脱硫することを特徴とする水素化脱硫方法をも提供するものである。
以下、本発明の水素化脱硫触媒及び水素化脱硫方法について説明する。
【0007】
【発明の実施の形態】
本発明の触媒の調製をするにあたって用いられるコバルト原料としては、特に制限はなく、種々のものが用いられる。しかし、通常はコバルト原料、即ちコバルトの前駆体として用いられる化合物は、硝酸コバルト(II)6水和物(Co(NO3)2-6H20) ,塩化コバルト(II)6水和物 (CoCl2-6H2O) などが挙げられ、好ましくは、硝酸コバルト(II)6水和物 (Co(NO3)2-6H2O)が用いられる。
本発明に用いられるサポナイトは、以下の一般式(I)で表される化合物である。
[(Si6-x Alx)(Mg6-y Aly) ・O2O・(OH)4]-(x-y)Na+(x-y) ・・・(I)
〔式中、x及びyはそれぞれ1〜6の整数を示し、x−y>0である。〕
【0008】
本発明の触媒において、コバルトの担持量は用途等に応じて適宜選定すればよいが、一般には触媒1gあたり10〜120mg、好ましくは30〜100mgである。また、サポナイトの比表面積は上記のように400m2/g以上であるが、好ましくは400m2/g以上、さらに好ましくは500〜600m2/gである。ここで比表面積が400m2/g未満のものでは、反応場である触媒表面の活性点数減少による反応率低下という不都合が生じ、本発明の目的を達成できない。なお、ここで比表面積はBETの方法により測定した値である。
【0009】
触媒として用いられるコバルトを担持したサポナイト(本発明の触媒)は、各種の方法により調製できるが、例えば以下の(イ)〜(ロ)工程を経て調製される。
(イ)先ず、コバルトの硝酸塩、または塩化物に水を加えて混合し、室温〜100℃の温度で0時間から数時間、好ましくは60〜100℃の温度で1〜2時間)熟成する。ここで熟成時間が0時間とは、熟成しなくても良いことを意味する(以下同様)。
(ロ)次に、粉末またはスリラー状のサポナイトを加えて、室温〜100℃の温度で5分〜数週間、好ましくは60〜100℃の温度で1〜2時間攪拌処理した後、ろ過,水,アルコールなどで洗浄し、次いで水中で50〜100℃の温度で0時間〜数週間熟成した後、ろ過,凍結乾燥あるいはアルコール洗浄後の空気乾燥を行う。
上記工程を経ることで、サポナイトにコバルトを担持した本発明に係る水素化脱硫触媒が得られる。
ここで、取り込まれるコバルトとしては、酸化コバルト,水酸化コバルト,部分的に脱水した水酸化コバルトおよびこれらの混合物などが挙げられる。
【0010】
本発明の水素化脱硫方法においては、原料である含硫黄炭化水素類としては、原油をはじめ各種の石油留分,各種残渣油を用いることができるが、そのうち、灯油留分又は軽油留分あるいはこれらの混合物が好適である。本発明の方法では、この原料炭化水素類を水素ガスの存在下、上記のようにして調製した水素化脱硫触媒に接触させて水素化脱硫し、これによって該原料炭化水素類から硫黄分を効率よく除去し、その結果、脱硫度が高く、性状のよい有用な炭化水素油(脱硫灯油や脱硫軽油)を生産性よく、効率的に製造することができる。
【0011】
本発明の水素化脱硫方法を実施するに際して、前記水素化脱硫触媒は、そのまま反応に用いてもよいが、必要に応じて、水素等による還元処理や硫化水素等による予備硫化等の前処理を適宜行ってから反応に供してもよい。なお、本発明の脱硫方法の際の条件については、特に制限はなく、状況に応じて適宜選定すればよいが、一般には温度210〜440℃,好ましくは260〜370℃、水素圧10〜100kg/cm2,好ましくは30〜70kg/cm2である。また、水素/原料(含硫黄炭化水素類)比については、通常0.5〜200モル/g,好ましくは1〜180モル/gである。
さらに、脱硫反応の型式はバッチ式,流通式のいずれでもよいが、流通式の場合、液時空間速度(触媒単位量あたりの原料の流量;LHSV)は、1〜10hr-1,好ましくは2〜5hr-1の範囲で定めるべきである。
以上のように、前記水素化脱硫触媒を用いて水素化脱硫することによって、含硫黄炭化水素類を効率よく脱硫することができ、硫黄分の極めて少ない炭化水素類が得られる。
【0012】
【実施例】
以下に、本発明の調製例,実施例及びその比較例を示し、本発明をより具体的に説明するが、本発明はこれらの調製例,実施例に何ら限定されるものではない。
【0013】
調製例1 コバルトイオン交換サポナイト[A']触媒の調製
Co(NO3)2・6H2O を18.3g、純水500mlに溶解した。この溶液を充分に攪拌させた後、80℃にて2時間熟成を行った。次いで、この溶液にサポナイト[A](比表面積514m2/g)10gを粉末として添加し、80℃にて1.5時間攪拌させた後、室温に冷却した。さらに、この溶液をろ過、純水及びアルコールで洗浄した後、120℃で約16時間空気乾燥した後、400℃で約16時間焼成することにより、コバルトイオン交換高比表面積サポナイト触媒[A'](第1表においてCo-サポナイト[A']と表記)を調製した。
【0014】
調製例2 コバルトイオン交換サポナイト[B']触媒の調製
調製例1においてサポナイトAの代わりに、サポナイトB(比表面積224m2/gを用いた以外は、調製例1と同様にしてコバルトイオン交換サポナイト触媒(第1表においてCo-サポナイト[B']と表記)を調製した。
【0015】
調製例3 コバルトモリブデン担持アルミナ触媒の調製
Co(NO3)2・6H2O を0.96g及び(NH4)6Mo7O24・4H2O を1.14g、純水0.5mlに溶解させた。担体である市販アルミナ5gにこの溶液を含浸させ、しかる後120℃で約16時間乾燥し、さらに400℃で約16時間焼成することにより、4.0重量%CoO 及び15.0重量%MoO3を含むコバルトモリブデン担持アルミナ触媒(第1表においてCoMo-Al2O3と表記)を調製した。
【0016】
調製例4 ニッケルモリブデン担持アルミナ触媒の調製
(NH4)6Mo7O24・4H2O を0.14g、純水0.5mlに溶解させた。担体である市販アルミナ5gにこの溶液を含浸させ、しかる後120℃で約16時間乾燥し、さらに400℃で約16時間焼成した。これをモリブデン担持アルミナとする。 Ni(NO3)2・6H2O を0.96g、純水0.5mlに溶解させた。上記の方法で得られたモリブデン担持アルミナにこの溶液を含浸させ、しかる後120℃で約16時間乾燥し、さらに400℃で約16時間焼成することにより、4.0重量%NiO 及び15.0重量%MoO3を含むニッケルモリブデン担持アルミナ触媒(第1表においてNiMo-Al2O3と表記)を調製した。
【0017】
実施例1
調製例1で得られたCo- サポナイト[A']触媒について、パルス型反応装置を用いたチオフェンの分解反応による下記の水素化脱硫活性評価を行った。この触媒は水素化脱硫活性評価を行う前に、下記の予備硫化処理が施された。
[予備硫化処理]
触媒0.1g(粒径600〜850ミクロン) を反応管中央部に固定し、2kg/cm2の圧力下、反応管に水素(H2)及び硫化水素(H2S)からなる混合ガス(混合比:水素95%,硫化水素5%) を60ml/minの速度で流通させ、反応管を400℃で2時間加熱した。
[水素化脱硫活性評価]
予備硫化処理の後、2kg/cm2の圧力下、反応管温度を250℃に設定し、反応管に水素(H2)ガスを60ml/minの速度で流通させながら、触媒固定部の上流よりチオフェン0.3μlを注入する。反応生成物をガスクロマトグラフィーにて分析し、チオフェンの転化率から触媒の水素化脱硫活性を評価した。結果を第1表に示す。
【0018】
比較例1
実施例1において、コバルトイオン交換サポナイト[A']触媒の代わりに、調製例3で得られたコバルトモリブデン担持アルミナ触媒を用いた以外は、実施例1と同様にして反応を行った。結果を第1表に示す。
【0019】
比較例2
実施例1において、コバルトイオン交換サポナイト[A']触媒の代わりに、調製例4で得られたニッケルモリブデン担持アルミナ触媒を用いた以外は、実施例1と同様にして反応を行った。結果を第1表に示す。
【0020】
比較例3
実施例1において、コバルトイオン交換サポナイト[A']触媒の代わりに、市販脱硫触媒CDS−R95Tを用いた以外は、実施例1と同様にして反応を行った。結果を第1表に示す。
【0021】
実施例2
実施例1において、反応温度250℃に代えて反応温度275℃とした以外は、実施例1と同様にして反応を行った。結果を第1表に示す。
【0022】
比較例4
実施例2において、コバルトイオン交換サポナイト[A']触媒の代わりに、調製例3で得られたコバルトモリブデン担持アルミナ触媒を用いた以外は、実施例2と同様にして反応を行った。結果を第1表に示す。
【0023】
比較例5
実施例2において、コバルトイオン交換サポナイト[A']触媒の代わりに、調製例4で得られたニッケルモリブデン担持アルミナ触媒を用いた以外は、実施例2と同様にして反応を行った。結果を第1表に示す。
【0024】
比較例6
実施例2において、コバルトイオン交換サポナイト[A']触媒の代わりに、市販脱硫触媒CDS−R95Tを用いた以外は、実施例2と同様にして反応を行った。結果を第1表に示す。
【0025】
実施例3
実施例1において、反応温度250℃に代えて反応温度300℃とした以外は、実施例1と同様にして反応を行った。結果を第1表に示す。
【0026】
比較例7
実施例3において、コバルトイオン交換サポナイト[A']触媒の代わりに、調製例3で得られたコバルトモリブデン担持アルミナ触媒を用いた以外は、実施例3と同様にして反応を行った。結果を第1表に示す。
【0027】
比較例8
実施例3において、コバルトイオン交換サポナイト[A']触媒の代わりに、調製例4で得られたニッケルモリブデン担持アルミナ触媒を用いた以外は、実施例3と同様にして反応を行った。結果を第1表に示す。
【0028】
比較例9
実施例3において、コバルトイオン交換サポナイト[A']触媒の代わりに、市販脱硫触媒CDS−R95Tを用いた以外は、実施例3と同様にして反応を行った。結果を第1表に示す。
【0029】
比較例10
実施例3において、コバルトイオン交換サポナイト[A']触媒の代わりに、調製例2で得られたコバルトイオン交換サポナイト[B']触媒を用いた以外は、実施例3と同様にして反応を行った。結果を第1表に示す。
【0030】
【表1】

Figure 0003763628
【0031】
【発明の効果】
本発明の水素化脱硫触媒を用いれば、特に原料油である灯油留分,軽油留分又はこれらの混合物に接触させて水素化脱硫するに際し、脱硫度が高く、該原料油から硫黄分を効率よく除去することが可能である。
また、本発明の水素化脱硫方法によれば、含硫黄炭化水素類を効率よく脱硫することができ、性状のよい有用な炭化水素油(脱硫灯油や脱硫軽油)を生産性よく、効率的に製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrodesulfurization method for sulfur-containing hydrocarbons, and more specifically, sulfur is efficiently removed from sulfur-containing hydrocarbons, and useful hydrocarbons having a high desulfurization rate are efficiently and efficiently produced. The present invention relates to a hydrodesulfurization catalyst and a hydrodesulfurization method for production.
[0002]
[Prior art and problems to be solved by the invention]
Many technologies have been developed as hydrodesulfurization technologies for sulfur-containing hydrocarbons. In these conventional techniques, many catalysts having high activity in the hydrodesulfurization reaction have been proposed. In particular, periodic group 6 (VIA group) metals and periodic tables 8, 9, 10 have been proposed. Based on a group (Group VIII) metal supported on alumina, various improvements thereof are known as typical ones and are widely used.
For example, a method in which an alumina carrier is impregnated with an aqueous cobalt nitrate solution and an aqueous ammonium molybdate solution to obtain a highly active hydrodesulfurization catalyst is disclosed in J. Org. Catal., 158 , 411 (1996); Catal., 159 , 212 (1996).
JP-A-4-166232 discloses that a refractory oxide carrier such as alumina carries a group 6 metal salt and a group 8, 9, 10 metal salt of the periodic table. There has been proposed a method of obtaining a hydrodesulfurization catalyst by adding a polyhydric alcohol to a catalyst precursor and drying at a temperature of 200 ° C. or lower.
[0003]
However, the catalysts prepared by these methods do not have sufficient desulfurization activity at low temperatures, and two kinds of metals (Group 6 of the periodic table and Groups 8, 9, and 10 of the periodic table) are supported. And the preparation process is complicated. In addition, when molybdenum is included as group 6 of the periodic table, there is a disadvantage that the catalyst itself is expensive and inferior in economic efficiency.
On the other hand, in addition to the catalyst in which the metals of Group 6 of the periodic table and metals of Groups 8, 9, and 10 of the periodic table are supported on alumina, those using clay minerals have also been proposed as hydrodesulfurization reaction catalysts. ing.
For example, in JP-A-8-182930, a composite comprising a saponite and / or laponite carrying a group 6 metal and a group 8, 9, 10 metal of the periodic table and a silica-containing alumina, It has been proposed as a hydrodesulfurization catalyst. However, this catalyst system carries two kinds of metals and has a disadvantage that the preparation process becomes complicated because a plurality of clay minerals are used as a carrier. Furthermore, when molybdenum is included as a metal of Group 6 of the periodic table, it becomes expensive and inferior in economic efficiency.
Appl. Catal., 97 , 77 (1993) discloses the result of using nickel-impregnated montmorillonite crosslinked with alumina as a hydrodesulfurization catalyst. However, since this catalyst supports nickel after immobilizing alumina on montmorillonite, it has a drawback that the preparation process becomes complicated.
[0004]
Under such circumstances, the present inventors solved the above-mentioned problems of the prior art, efficiently removed sulfur from sulfur-containing hydrocarbons, and efficiently produced useful hydrocarbons with a high desulfurization rate with high productivity. In order to develop a hydrodesulfurization catalyst and hydrodesulfurization method for this purpose, an extensive study was conducted.
[0005]
[Means for Solving the Problems]
As a result, only cobalt (Co) is selected from the metals of Groups 8, 9, and 10 of the periodic table as the metal species exhibiting hydrodesulfurization activity, and a kind of smectite clay mineral as a high specific surface area carrier. It was found that the above-mentioned problem can be solved by selecting saponite which is and supporting cobalt on the high specific surface area saponite.
The present invention has been completed based on such findings.
[0006]
That is, the present invention provides a sulfur-containing hydrocarbon hydrodesulfurization catalyst comprising cobalt supported on a saponite having a specific surface area of 400 m 2 / g or more. The present invention also provides a hydrodesulfurization method characterized in that sulfur-containing hydrocarbons are desulfurized in the presence of a cobalt-supported hydrodesulfurization catalyst on a saponite having a specific surface area of 400 m 2 / g or more. Is.
Hereinafter, the hydrodesulfurization catalyst and hydrodesulfurization method of the present invention will be described.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
There is no restriction | limiting in particular as a cobalt raw material used in preparing the catalyst of this invention, A various thing is used. However, cobalt compounds (II) hexahydrate (Co (NO 3 ) 2 -6H 2 0), cobalt chloride (II) hexahydrate ( CoCl 2 -6H 2 O) and the like, and preferably, cobalt (II) nitrate hexahydrate (Co (NO 3 ) 2 -6H 2 O) is used.
The saponite used in the present invention is a compound represented by the following general formula (I).
[(Si 6-x Al x ) (Mg 6-y Al y ) · O 2 O · (OH) 4 ] -(xy) Na + (xy) (I)
[Wherein, x and y each represent an integer of 1 to 6, and xy> 0. ]
[0008]
In the catalyst of the present invention, the supported amount of cobalt may be appropriately selected according to the application and the like, but is generally 10 to 120 mg, preferably 30 to 100 mg per 1 g of the catalyst. Although the specific surface area of saponite is to 400 meters 2 / g or more as described above, preferably 400 meters 2 / g or more, more preferably 500~600m 2 / g. Here, when the specific surface area is less than 400 m 2 / g, there is a disadvantage that the reaction rate is lowered due to the decrease in the number of active sites on the catalyst surface as a reaction field, and the object of the present invention cannot be achieved. Here, the specific surface area is a value measured by the BET method.
[0009]
The cobalt-supported saponite (catalyst of the present invention) used as a catalyst can be prepared by various methods. For example, it is prepared through the following steps (a) to (b).
(I) First, water is added to cobalt nitrate or chloride and mixed, followed by aging at a temperature of room temperature to 100 ° C. for 0 to several hours, preferably 60 to 100 ° C. for 1 to 2 hours. Here, the aging time of 0 hour means that aging is not necessary (the same applies hereinafter).
(B) Next, powder or thriller saponite is added, and after stirring at room temperature to 100 ° C. for 5 minutes to several weeks, preferably at 60 to 100 ° C. for 1 to 2 hours, filtration, water , Washed with alcohol, etc., and then aged in water at a temperature of 50 to 100 ° C. for 0 hour to several weeks, followed by filtration, freeze drying or air drying after alcohol washing.
By passing through the said process, the hydrodesulfurization catalyst which concerns on this invention which carry | supported cobalt in the saponite is obtained.
Here, examples of the incorporated cobalt include cobalt oxide, cobalt hydroxide, partially dehydrated cobalt hydroxide, and a mixture thereof.
[0010]
In the hydrodesulfurization method of the present invention, as the raw material sulfur-containing hydrocarbons, crude oil, various petroleum fractions and various residual oils can be used, of which kerosene fraction or light oil fraction or Mixtures of these are preferred. In the method of the present invention, the raw material hydrocarbons are hydrodesulfurized by contacting them with the hydrodesulfurization catalyst prepared as described above in the presence of hydrogen gas, thereby efficiently removing sulfur from the raw material hydrocarbons. As a result, it is possible to efficiently produce a useful hydrocarbon oil (desulfurized kerosene or desulfurized light oil) having a high desulfurization degree and good properties as a result.
[0011]
In carrying out the hydrodesulfurization method of the present invention, the hydrodesulfurization catalyst may be used for the reaction as it is, but if necessary, pretreatment such as reduction treatment with hydrogen or the like or presulfidation with hydrogen sulfide or the like is performed. You may use for reaction after performing suitably. The conditions for the desulfurization method of the present invention are not particularly limited and may be appropriately selected depending on the situation. In general, the temperature is 210 to 440 ° C, preferably 260 to 370 ° C, and the hydrogen pressure is 10 to 100 kg. / Cm 2 , preferably 30 to 70 kg / cm 2 . The hydrogen / raw material (sulfur-containing hydrocarbons) ratio is usually 0.5 to 200 mol / g, preferably 1 to 180 mol / g.
Furthermore, the type of desulfurization reaction may be either a batch type or a flow type. In the case of the flow type, the liquid hourly space velocity (flow rate of raw material per unit amount of catalyst; LHSV) is 1 to 10 hr −1 , preferably 2 It should be set in the range of ˜5 hr −1 .
As described above, by performing hydrodesulfurization using the hydrodesulfurization catalyst, sulfur-containing hydrocarbons can be efficiently desulfurized, and hydrocarbons with extremely low sulfur content can be obtained.
[0012]
【Example】
The preparation examples, examples and comparative examples of the present invention will be shown below and the present invention will be described more specifically. However, the present invention is not limited to these preparation examples and examples.
[0013]
Preparation Example 1 Preparation of cobalt ion exchange saponite [A '] catalyst
Co (NO 3 ) 2 · 6H 2 O was dissolved in 18.3 g and 500 ml of pure water. This solution was sufficiently stirred and then aged at 80 ° C. for 2 hours. Next, 10 g of saponite [A] (specific surface area of 514 m 2 / g) was added to this solution as a powder, stirred at 80 ° C. for 1.5 hours, and then cooled to room temperature. Further, this solution was filtered, washed with pure water and alcohol, air-dried at 120 ° C. for about 16 hours, and then calcined at 400 ° C. for about 16 hours, whereby a cobalt ion exchange high specific surface area saponite catalyst [A ′] (Denoted as Co-saponite [A ′] in Table 1) was prepared.
[0014]
Preparation Example 2 Preparation of Cobalt Ion Exchange Saponite [B ′] Catalyst In Preparation Example 1, Saponite B was used in the same manner as Preparation Example 1 except that saponite B (specific surface area of 224 m 2 / g) was used instead of saponite A. A catalyst (denoted as Co-saponite [B ′] in Table 1) was prepared.
[0015]
Preparation Example 3 Preparation of cobalt molybdenum supported alumina catalyst
Co (NO 3) 2 · 6H 2 O and 0.96g and (NH 4) 6 Mo 7 O 24 · 4H 2 O and 1.14 g, was dissolved in pure water 0.5 ml. This solution was impregnated into 5 g of a commercial alumina as a carrier, then dried at 120 ° C. for about 16 hours, and further calcined at 400 ° C. for about 16 hours, whereby 4.0 wt% CoO and 15.0 wt% MoO 3 A cobalt-molybdenum-supported alumina catalyst (denoted as CoMo-Al 2 O 3 in Table 1) was prepared.
[0016]
Preparation Example 4 Preparation of nickel molybdenum supported alumina catalyst
(NH 4 ) 6 Mo 7 O 24 · 4H 2 O was dissolved in 0.14 g and 0.5 ml of pure water. This solution was impregnated with 5 g of commercially available alumina as a carrier, then dried at 120 ° C. for about 16 hours, and further calcined at 400 ° C. for about 16 hours. This is molybdenum-supported alumina. Ni (NO 3 ) 2 · 6H 2 O was dissolved in 0.96 g and 0.5 ml of pure water. The molybdenum-supported alumina obtained by the above method was impregnated with this solution, then dried at 120 ° C. for about 16 hours, and further calcined at 400 ° C. for about 16 hours, whereby 4.0 wt% NiO and 15.0 were obtained. A nickel-molybdenum-supported alumina catalyst (expressed as NiMo—Al 2 O 3 in Table 1) containing wt% MoO 3 was prepared.
[0017]
Example 1
The Co-saponite [A ′] catalyst obtained in Preparation Example 1 was evaluated for the following hydrodesulfurization activity by thiophene decomposition using a pulse reactor. This catalyst was subjected to the following presulfidation treatment before the hydrodesulfurization activity evaluation.
[Pre-sulfurization]
0.1 g of catalyst (particle size: 600 to 850 microns) was fixed to the center of the reaction tube, and mixed with hydrogen (H 2 ) and hydrogen sulfide (H 2 S) in the reaction tube under a pressure of 2 kg / cm 2 ( Mixing ratio: 95% hydrogen, 5% hydrogen sulfide) was passed at a rate of 60 ml / min, and the reaction tube was heated at 400 ° C. for 2 hours.
[Evaluation of hydrodesulfurization activity]
After the preliminary sulfidation treatment, the reaction tube temperature is set to 250 ° C. under a pressure of 2 kg / cm 2 , and hydrogen (H 2 ) gas is circulated at a rate of 60 ml / min from the upstream of the catalyst fixing part. Inject 0.3 μl of thiophene. The reaction product was analyzed by gas chromatography, and the hydrodesulfurization activity of the catalyst was evaluated from the conversion rate of thiophene. The results are shown in Table 1.
[0018]
Comparative Example 1
In Example 1, the reaction was performed in the same manner as in Example 1 except that the cobalt molybdenum-supported alumina catalyst obtained in Preparation Example 3 was used instead of the cobalt ion exchange saponite [A ′] catalyst. The results are shown in Table 1.
[0019]
Comparative Example 2
In Example 1, the reaction was performed in the same manner as in Example 1 except that the nickel-molybdenum-supported alumina catalyst obtained in Preparation Example 4 was used instead of the cobalt ion exchange saponite [A ′] catalyst. The results are shown in Table 1.
[0020]
Comparative Example 3
In Example 1, the reaction was performed in the same manner as in Example 1 except that the commercially available desulfurization catalyst CDS-R95T was used instead of the cobalt ion exchange saponite [A ′] catalyst. The results are shown in Table 1.
[0021]
Example 2
In Example 1, the reaction was performed in the same manner as in Example 1 except that the reaction temperature was 275 ° C instead of the reaction temperature of 250 ° C. The results are shown in Table 1.
[0022]
Comparative Example 4
In Example 2, the reaction was conducted in the same manner as in Example 2 except that the cobalt molybdenum-supported alumina catalyst obtained in Preparation Example 3 was used instead of the cobalt ion exchange saponite [A ′] catalyst. The results are shown in Table 1.
[0023]
Comparative Example 5
In Example 2, the reaction was performed in the same manner as in Example 2 except that the nickel-molybdenum-supported alumina catalyst obtained in Preparation Example 4 was used instead of the cobalt ion exchange saponite [A ′] catalyst. The results are shown in Table 1.
[0024]
Comparative Example 6
In Example 2, the reaction was performed in the same manner as in Example 2 except that the commercially available desulfurization catalyst CDS-R95T was used instead of the cobalt ion exchange saponite [A ′] catalyst. The results are shown in Table 1.
[0025]
Example 3
In Example 1, the reaction was performed in the same manner as in Example 1 except that the reaction temperature was 300 ° C instead of the reaction temperature of 250 ° C. The results are shown in Table 1.
[0026]
Comparative Example 7
In Example 3, the reaction was carried out in the same manner as in Example 3 except that the cobalt molybdenum-supported alumina catalyst obtained in Preparation Example 3 was used instead of the cobalt ion exchange saponite [A ′] catalyst. The results are shown in Table 1.
[0027]
Comparative Example 8
In Example 3, the reaction was performed in the same manner as in Example 3 except that the nickel-molybdenum-supported alumina catalyst obtained in Preparation Example 4 was used instead of the cobalt ion exchange saponite [A ′] catalyst. The results are shown in Table 1.
[0028]
Comparative Example 9
In Example 3, the reaction was performed in the same manner as in Example 3 except that the commercial desulfurization catalyst CDS-R95T was used instead of the cobalt ion exchange saponite [A ′] catalyst. The results are shown in Table 1.
[0029]
Comparative Example 10
In Example 3, the reaction was conducted in the same manner as in Example 3 except that the cobalt ion exchange saponite [B ′] catalyst obtained in Preparation Example 2 was used instead of the cobalt ion exchange saponite [A ′] catalyst. It was. The results are shown in Table 1.
[0030]
[Table 1]
Figure 0003763628
[0031]
【The invention's effect】
When the hydrodesulfurization catalyst of the present invention is used, particularly when hydrodesulfurization is carried out by bringing it into contact with a kerosene fraction, a light oil fraction or a mixture thereof, which is a raw material oil, the degree of desulfurization is high, and the sulfur content is efficiently obtained from the raw oil. It can be removed well.
Further, according to the hydrodesulfurization method of the present invention, sulfur-containing hydrocarbons can be efficiently desulfurized, and useful hydrocarbon oils having good properties (desulfurized kerosene and desulfurized light oil) can be efficiently and efficiently produced. Can be manufactured.

Claims (2)

比表面積が400m2/g以上のサポナイトに、コバルトを担持してなる、含硫黄炭化水素の水素化脱硫触媒。A sulfur-containing hydrocarbon hydrodesulfurization catalyst comprising cobalt supported on a saponite having a specific surface area of 400 m 2 / g or more. 含硫黄炭化水素を請求項1記載の触媒の存在下、脱硫することを特徴とする水素化脱硫方法。  A hydrodesulfurization method comprising desulfurizing a sulfur-containing hydrocarbon in the presence of the catalyst according to claim 1.
JP00798797A 1997-01-20 1997-01-20 Sulfur-containing hydrocarbon hydrogenation catalyst and hydrodesulfurization method using the same Expired - Lifetime JP3763628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00798797A JP3763628B2 (en) 1997-01-20 1997-01-20 Sulfur-containing hydrocarbon hydrogenation catalyst and hydrodesulfurization method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00798797A JP3763628B2 (en) 1997-01-20 1997-01-20 Sulfur-containing hydrocarbon hydrogenation catalyst and hydrodesulfurization method using the same

Publications (2)

Publication Number Publication Date
JPH10202100A JPH10202100A (en) 1998-08-04
JP3763628B2 true JP3763628B2 (en) 2006-04-05

Family

ID=11680784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00798797A Expired - Lifetime JP3763628B2 (en) 1997-01-20 1997-01-20 Sulfur-containing hydrocarbon hydrogenation catalyst and hydrodesulfurization method using the same

Country Status (1)

Country Link
JP (1) JP3763628B2 (en)

Also Published As

Publication number Publication date
JPH10202100A (en) 1998-08-04

Similar Documents

Publication Publication Date Title
JP4638610B2 (en) Hydrotreating catalyst and hydrotreating method
JP4303820B2 (en) Hydrotreating catalyst and hydrotreating method
RU2569682C2 (en) Composition and method for preparation of carrier and catalyst of deep hydrofining of hydrocarbon stock
US9669396B2 (en) Hydrocracking catalyst and process using a magnesium aluminosilicate clay
JP4369871B2 (en) Heavy material HPC process using a mixture of catalysts
JP4612229B2 (en) Catalyst for hydrotreating heavy hydrocarbon oil and hydrotreating method
CN103157482A (en) Hydrotreatment catalyst with silicon oxide-alumina as carrier and preparation and application thereof
JP2000313890A (en) Method for use in reforming ultradeep hds of hydrocarbon feedstock
CA1131199A (en) Catalyst for hydrotreatment of heavy hydrocarbon oils and process for preparing the catalysts
US4447556A (en) Hydrocarbon conversion catalyst and use thereof
DK172341B1 (en) Process for preparing hydrotreating catalyst from a hydrogel and catalyst prepared by the process
US3860532A (en) Method for preparing silica-alumina catalysts for the conversion of hydrocarbon
US3810830A (en) Hydocracking and hydrodesulfurization processes utilizing a salt-containing neutralized silica-alumina support calcined at different temperature ranges
JP3763628B2 (en) Sulfur-containing hydrocarbon hydrogenation catalyst and hydrodesulfurization method using the same
EP0266012B1 (en) Process for preparing hydrotreating catalysts from hydrogels
JP2711871B2 (en) Method for producing hydrotreating catalyst from hydrogel
CN111420670B (en) Hydrogenation catalyst and preparation method and application thereof
JP3784852B2 (en) Refractory inorganic oxide catalyst carrier and hydrotreating catalyst using the carrier
JPS5820232A (en) Hydrocracking catalyst composition
JP3106761B2 (en) Catalyst for hydrodesulfurization and denitrification of hydrocarbon oil and method for producing the same
JPS5933020B2 (en) catalyst composition
JP3143673B2 (en) Unsupported nickel-tungsten sulfide tungsten catalyst, method for producing the same, and method for hydrogenating hydrocarbons
JP3538887B2 (en) Catalyst for hydrotreating hydrocarbon oil and method for producing the same
EP0266011B2 (en) Process for the preparation of hydrotreating catalysts form hydrogels
JP2817622B2 (en) Catalyst for hydrodesulfurization and denitrification and production method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140127

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term