DK172341B1 - Process for preparing hydrotreating catalyst from a hydrogel and catalyst prepared by the process - Google Patents

Process for preparing hydrotreating catalyst from a hydrogel and catalyst prepared by the process Download PDF

Info

Publication number
DK172341B1
DK172341B1 DK525888A DK525888A DK172341B1 DK 172341 B1 DK172341 B1 DK 172341B1 DK 525888 A DK525888 A DK 525888A DK 525888 A DK525888 A DK 525888A DK 172341 B1 DK172341 B1 DK 172341B1
Authority
DK
Denmark
Prior art keywords
range
nickel
cobalt
molybdenum
precipitate
Prior art date
Application number
DK525888A
Other languages
Danish (da)
Other versions
DK525888D0 (en
DK525888A (en
Inventor
Richard Alan Kemp
Original Assignee
Shell Int Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Int Research filed Critical Shell Int Research
Publication of DK525888D0 publication Critical patent/DK525888D0/en
Publication of DK525888A publication Critical patent/DK525888A/en
Application granted granted Critical
Publication of DK172341B1 publication Critical patent/DK172341B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Process for preparing highly active hydrotreating catalysts by incorporating a compound selected from the group consisting of nickel, cobalt and mixtures thereof, a heavy metal selected from the group consisting of molybdenum, tungsten and mixtures thereof, and a stabilizing amount of phosphorus into an alumina hydrogel. The final calcined catalysts have surface areas of at least 300 m<2>/g, at least 20% of the pore volume in pores having diameters greater than 35 nm and at least 20% of the pore volume in pores having diameters less than 7 nm.

Description

DK 172341 B1DK 172341 B1

Den foreliggende opfindelse angår en fremgangsmåde til fremstilling af højaktive hydrobehandlingskatalysa-torer indeholdende en katalytisk effektiv mængde kobolt, nikkel og blandinger deraf og en katalytisk ef-5 fektiv mængde af et tungmetal udvalgt blandt molybdæn, wolfram og blandinger deraf og en fosforforbindelse, på en aluminabærer, hvilke katalysatorer har overfladeare-aler på mindst 300 m /g, mindst 20% af porevolumenet i porer med diameter over 35 nm og mindst 20% af porevo-10 lumenet i porer med diameter under 7 nm. Opfindelsen angår endvidere ved en sådan fremgangsmåde fremstillede katalysatorer af nævnte type.The present invention relates to a process for producing highly active hydrotreating catalysts containing a catalytically effective amount of cobalt, nickel and mixtures thereof and a catalytically effective amount of a heavy metal selected from molybdenum, tungsten and mixtures thereof and a phosphorus compound, on an alumina compound. catalysts having surface areas of at least 300 m / g, at least 20% of the pore volume in pores with a diameter above 35 nm, and at least 20% of the pore volume in pores with a diameter below 7 nm. The invention further relates to catalysts prepared by such a method of said type.

Ved den katalytiske behandling af jordolieråma-terialer er det ofte ønskeligt at ændre porestrukturen 15 i katalysatoren for at tilpasse forskellige typer føde-materialer. Når man fx behandler fødematerialer uden metaller eller med et lavt metalindhold, kan det være teknisk og økonomisk ønskeligt at anvende katalysatorer med snævre porer. På den anden side har metallerne, 20 når man behandler fødematerialer med høje metalindhold, en evne til at afsættes på katalysatoroverfladen og tilstoppe porerne på konventionelle hydrobehandlingskata-lysatorer, hvilket medfører et tab af katalytisk aktivitet for fjernelse af svovl og nitrogen. For at opret-25 holde hydrobehandlingsaktiviteten er det nødvendigt, at katalysatoren har et stort overfladeareal. For at lette diffusionen af store komponenter ind i og ud af katalysatorerne og for at modvirke overfladeafsætninger af koks og metaller, er det nødvendigt med store poredia-30 metre. Disse krav nødvendiggør anvendelse af bimodale katalysatorer, som har store overfladearealer og en betragtelig andel af porevolumenet i store porer. De store porer tillader forøget diffusion af store molekyler ind i katalysatoren, mens de mindre porer, som tilvejebrin-35 ger det meste af overfladearealet, tillader hydrobe-handling af fødematerialet. Katalysatorer af denne type kan anvendes som hydrobehandlingskatalysatorer navnlig DK 172341 B1 2 til remanens-/demetalliseringsanvendelser.In the catalytic treatment of petroleum raw materials, it is often desirable to change the pore structure 15 of the catalyst to accommodate different types of feed materials. For example, when treating feed materials without metals or with a low metal content, it may be technically and economically desirable to use catalysts with narrow pores. On the other hand, when treating high-metal feed materials, the metals have the ability to deposit on the catalyst surface and clog pores on conventional hydrotreating catalysts, resulting in a loss of catalytic activity for the removal of sulfur and nitrogen. In order to maintain the hydrotreating activity, it is necessary that the catalyst has a large surface area. To facilitate the diffusion of large components into and out of the catalysts and to counteract surface deposits of coke and metals, large pore diameters are required. These requirements necessitate the use of bimodal catalysts which have large surface areas and a considerable proportion of the pore volume in large pores. The large pores allow increased diffusion of large molecules into the catalyst, while the smaller pores that provide most of the surface area permit hydrotreating of the feedstock. Catalysts of this type can be used as hydrotreating catalysts, in particular DK 172341 B1 2 for residue / demetallization applications.

Det har overraskende vist sig at man ved en fremgangsmåde af ovennævnte · art kan fremstille hydrogel-afledte katalysatorer med aktiviteter som svarer til 5 eller er bedre end for katalysatorer fremstillet på basis af konventionel teknik, når man sammenligner på basis af metaleffektiviteten, mens de har betragtelig lavere densiteter end de konventionelt fremstillede katalysatorer. To af hovedfordelene ved hydrogelvejen er 10 højere metaludnyttelse og lavere omkostning for fremstilling af katalysatorer i forhold til konventionelt fremstillede katalysatorer. De omhandlede hydrogel-af-ledte katalysatorer har store overfladearealer, mindst 300 m /g; mindst 20% af porerumfanget i porer med dia-15 meter større end 35 nm; og mindst 20% af porerumfanget i porer med diameter mindre end 7 nm. Sådanne katalysatorer er særlig velegnede til remanens/demetallise-ringsanvendelser.Surprisingly, it has been found that by a process of the above kind, one can produce hydrogel-derived catalysts with activities equal to or better than those of conventional techniques when compared on the basis of metal efficiency while having considerably lower densities than the conventionally produced catalysts. Two of the main advantages of the hydrogel pathway are 10 higher metal utilization and lower cost of producing catalysts compared to conventionally produced catalysts. The present hydrogel-derived catalysts have large surface areas, at least 300 m / g; at least 20% of the pore volume in pores with a diameter of 15 meters greater than 35 nm; and at least 20% of the pore volume in pores with a diameter less than 7 nm. Such catalysts are particularly suitable for residue / demetallization applications.

I overenstemmeIse hermed er fremgangsmåden ifølge 20 opfindelsen ejendommelig ved at man (a) fælder en vandig opløsning af et eller flere aluminiumsalte ved at regulere pH-værdien af opløsningen til området 5,5-10 ved en temperatur mellem 20 og 90°C i mindst 20 minutter, hvorved der 25 dannes et bundfald, (b) ælder bundfaldet ved en temperatur i området 20-90°C i mindst 0,1 time ved en pH-værdi i området 8,0-12,0, (c) vasker bundfaldet, 30 (d) blander bundfaldet med en eller flere forbindel ser af et grundstof udvalgt blandt nikkel, kobolt og blandinger deraf, af et tungmetal udvalgt blandt molybdæn, wolfram og blandinger deraf og en fosforholdig forbindelse i en mængde på 0,2-35 1,5 mol fosfor pr. mol tungmetal ved en pH-værdi i området 4,0-10,0 og en temperatur i området 25-100°C, indtil metalforbindelsernes adsorption til DK 172341 B1 3 gelen er tilstrækkelig til at føre til en færdig katalysator indeholdende 1-5 vægt% kobolt og/eller nikkel og 8-32 vægt% tungmetal, (e) homogeniserer produktet fra trin (d) , 5 (f) ekstruderer produktet fra trin (e), og (g) tørrer og kalcinerer produktet fra trin (f) ved en temperatur i området 300-900°C; idet foretrukne udførelsesformer for den omhandlede fremgangsmåde ses i underkravene 2-12; og katalysatoren 10 ifølge opfindelsen er ejendommelig ved, at den er blevet fremstillet ved den omhandlede fremgangsmåde.Accordingly, the process of the invention is characterized by (a) precipitating an aqueous solution of one or more aluminum salts by adjusting the pH of the solution to the range of 5.5-10 at a temperature between 20 and 90 ° C for at least 20 minutes, thereby forming a precipitate, (b) aging the precipitate at a temperature in the range 20-90 ° C for at least 0.1 hour at a pH in the range 8.0-12.0, (c) washing (d) mixing the precipitate with one or more compounds of an element selected from nickel, cobalt and mixtures thereof, of a heavy metal selected from molybdenum, tungsten and mixtures thereof and a phosphorus-containing compound in an amount of 0.2-35 1.5 moles of phosphorus per mole of heavy metal at a pH in the range of 4.0-10.0 and a temperature in the range of 25-100 ° C until the adsorption of the metal compounds to the DK 172341 B1 gel is sufficient to lead to a final catalyst containing 1-5 wt. % cobalt and / or nickel and 8-32% by weight heavy metal, (e) homogenizes the product of step (d), (5) extrudes the product of step (e), and (g) dries and calcines the product of step (f) at a temperature in the range of 300-900 ° C; Preferred embodiments of the present process are shown in subclaims 2-12; and the catalyst 10 of the invention is characterized in that it has been prepared by the process of the present invention.

Ved fremgangsmåden ifølge den foreliggende opfindelse fremstilles højaktive hydrobehandlingskataly-satorer passende ved at inkorporere en eller flere 15 forbindelser af et grundstof udvalgt blandt nikkel, kobolt og blandinger deraf, et tungmetal udvalgt blandt molybdæn, wolfram og blandinger deraf, og en fosfor-holdig forbindelse i en alumina-hydrogel-afledt bærer, der fremstilles ved at titrere en vandig opløsning af 20 en sur aluminiumforbindelse og en vandig opløsning af en basisk aluminiumforbindelse.In the process of the present invention, highly active hydrotreating catalysts are suitably prepared by incorporating one or more compounds of an element selected from nickel, cobalt and mixtures thereof, a heavy metal selected from molybdenum, tungsten and mixtures thereof, and a phosphorus-containing compound. an alumina-hydrogel-derived carrier prepared by titrating an aqueous solution of an acidic aluminum compound and an aqueous solution of a basic aluminum compound.

Alumina-hydrogelen kan fremstilles, ved at man titrerer en vandig opløsning af et eller flere aluminiumsalte med et passende surt eller basisk materiale eller 25 opløsning til fremkaldelse af udfældning af alumina-ge-len. Det er kendt for fagfolk inden for området, at alu-minagelen kan fremstilles ved at titrere et surt aluminiumsalt såsom aluminiumsulfat, aluminiumnitrat eller aluminiumklorid i vandig opløsning med et basisk udfæld-30 ningsmedium såsom natriumhydroxid eller ammoniumhydroxid eller ved at titrere et alkalimetalaluminat såsom na-triumaluminat eller kaliumaluminat i vandig opløsning med et surt udfældningsmedium såsom saltsyre eller salpetersyre. Det er indlysende for fagfolk inden for om-35 rådet, at indstilling af pH-værdien af den aluminium-holdige opløsning til 5,5-10,0 bevirker udfældning af aluminiumresten som aluminiumhydroxid eller hydratise- ret aluminiumoxid.The alumina hydrogel can be prepared by titrating an aqueous solution of one or more aluminum salts with a suitable acidic or basic material or solution to induce precipitation of the alumina gel. It is known to those skilled in the art that the alumina gel can be prepared by titrating an acidic aluminum salt such as aluminum sulfate, aluminum nitrate or aluminum chloride in aqueous solution with a basic precipitation medium such as sodium hydroxide or ammonium hydroxide or by titrating an alkali metal aluminate such as aqueous solution of potassium aluminate or potassium aluminate with an acid precipitating medium such as hydrochloric or nitric acid. It will be obvious to those skilled in the art that setting the pH of the aluminum-containing solution to 5.5-10.0 causes precipitation of the aluminum residue as aluminum hydroxide or hydrated alumina.

Ifølge en foretrukken udførelsesform fremstilles aluminahydrogelen ved at titrere en vandig opløsning af DK 172341 B1 4 et alkalimetalaluminat og en vandig opløsning af et surt 5 aluminiumsalt, hvorved der udfældes en aluminagel. Egnede sure aluminiumsalte er fx aluminiumsulfat, aluminiumnitrat og aluminiumklorid. Et foretrukket reagens er aluminiumsulfat. Egnede alkalimetalaluminater er natri-umaluminat og kaliumaluminat. Udfældningen kan udføres 10 ved at tilsætte en vandig opløsning af det basiske aluminiumreagens til en vandig opløsning af det sure aluminiumreagens, eller fremgangsmåden kan vendes om, således at man sætter en vandig opløsning af det sure aluminiumreagens til en vandig opløsning af det basiske 15 aluminiumreagens (hvilket betegnes som "sekventiel udfældning"). Udfældningen ved fremgangsmåden i henhold til den foreliggende opfindelse udføres fortrinsvis simultant ved tilsætning af det sure aluminiumreagens og det basiske aluminiumreagens, hvorved der udfældes en 20 hydrogel (hvilket betegnes som "simultan udfældning").According to a preferred embodiment, the alumina hydrogel is prepared by titrating an aqueous solution of DK172341 B1 4 an alkali metal aluminate and an aqueous solution of an acidic 5 aluminum salt, thereby precipitating an alumina gel. Suitable acidic aluminum salts are, for example, aluminum sulfate, aluminum nitrate and aluminum chloride. A preferred reagent is aluminum sulfate. Suitable alkali metal aluminates are sodium aluminate and potassium aluminate. The precipitation can be accomplished by adding an aqueous solution of the basic aluminum reagent to an aqueous solution of the acidic aluminum reagent, or the process can be reversed to add an aqueous solution of the acidic aluminum reagent to an aqueous solution of the basic aluminum reagent ( which is referred to as "sequential precipitation"). The precipitation by the process of the present invention is preferably carried out simultaneously by the addition of the acidic aluminum reagent and the basic aluminum reagent, thereby precipitating a hydrogel (referred to as "simultaneous precipitation").

Intervallerne og begrænsningerne, som er angivet i den foreliggende beskrivelse og krav er sådanne, som anses i særlig grad at markere den foreliggende opfindelse .The ranges and limitations set forth in the present disclosure and claims are those which are considered to be particularly marked by the present invention.

25 Temperatur og pH-værdi for udfældningen er vig tige variable ved udfældning af aluminamaterialerne, hvori metallerne kan inkorporeres til dannelse af katalysatorer med ønskede fysiske kvaliteter. Sagkyndige inden for området vil forstå, at ændringer i udfældnings-30 temperaturer og pH-værdier bevirker ændringer i porøsiteterne. De optimale temperaturer og pH-værdier for udfældningen af aluminamaterialerne kan bestemmes med et minimalt rutinemæssigt forsøgsarbejde. Ved fremgangsmåden i henhold til den foreliggende opfindelse er 35 udfældningstemperaturen 20-90°C, fortrinsvis 50-85°C; navnlig 55-65°C, og udfældningens pH-værdi er i DK 172341 B1 5 området 5,5-10,0, fortrinsvis 5,5-8,0, navnlig 6,0-7,5.25 The temperature and pH of the precipitate are very variable in precipitation of the alumina materials in which the metals can be incorporated to form catalysts of desired physical qualities. Those of skill in the art will appreciate that changes in precipitation temperatures and pHs cause changes in the porosities. The optimal temperatures and pH values for the precipitation of the alumina materials can be determined with minimal routine experimental work. In the process of the present invention, the precipitation temperature is 20-90 ° C, preferably 50-85 ° C; in particular, 55-65 ° C, and the pH of the precipitate is in the range 5.5-10.0, preferably 5.5-8.0, especially 6.0-7.5.

Det tidsrum, som kræves til udfældningstrinnet, synes at være kritisk for dannelsen af en katalysator med den ønskede bimodale porestørrelsesfordeling. Det nødvendige 5 tidsrum for udfældningstrinnet er mindst 20 minutter, fortrinsvis mindst 30 minutter, navnlig mindst 40 minutter. Den øvre grænse for det nødvendige tidsrum til udfældningstrinnet er ikke kritisk, men styres af økonomiske hensyn.The time required for the precipitation step appears to be critical for the formation of a catalyst with the desired bimodal pore size distribution. The required time period for the precipitation step is at least 20 minutes, preferably at least 30 minutes, especially at least 40 minutes. The upper limit of the time required for the precipitation step is not critical but is governed by financial considerations.

10 Efter udfældning justeres pH-værdien for opslæm ningen til en pH-værdi i området 8,0-12,0, fortrinvis 9,0-11,0, navnlig 9,5-10,5, og den fremkomne masse ældes ved en temperatur i området 20-90°C, fortrinsvis 50-85°C i mindst 15 minutter. Den øvre grænse for ældningstids-15 rummet er ikke kritisk og bestemmes sædvanligvis ud fra økonomiske overvejelser. Ældningstider er typisk i området 0,1-10 timer, fortrinsvis 0,25-5 timer, navnlig 0,25-1 time. Normalt fremstilles aluminamaterialer med acceptable egenskaber ved at holde ældningstemperaturen 2o i det væsentlige lig med udfældningstemperaturen.After precipitation, the pH of the slurry is adjusted to a pH in the range 8.0 to 12.0, preferably 9.0 to 11.0, in particular 9.5 to 10.5, and the resulting mass is aged at temperature in the range 20-90 ° C, preferably 50-85 ° C for at least 15 minutes. The upper limit of the aging time space is not critical and is usually determined based on economic considerations. Aging times are typically in the range of 0.1-10 hours, preferably 0.25-5 hours, especially 0.25-1 hours. Generally, alumina materials having acceptable properties are produced by keeping the aging temperature 20o substantially equal to the precipitation temperature.

Efter ældning vaskes opslæmningen og filtreres på rutinemæssig måde for i det væsentlige at fjerne alt, hvad der kan fjernes af vandopløselige salte, som er dannet under udfældningen af hydrogelen. Det foretrukne 25 opløsningsmiddel til vaskning er vand, selv om andre opløsningsmidler såsom lavere alkanoler kan anvendes.After aging, the slurry is washed and routinely filtered to remove substantially anything that can be removed by water-soluble salts formed during the hydrogel precipitation. The preferred solvent for washing is water, although other solvents such as lower alkanols can be used.

Efter vaskningen inkorporeres metalforbindelserne i hydrogelen. En metode for tilsætning af metalforbindelserne til hydrogelen er genopslæmning, hvorved hydro-30 gelen genopslæmmes med en opløsning indeholdende solu-biliserede salte af et grundstof udvalgt blandt nikkel, kobolt og blandinger deraf og et tungmetal udvalgt blandt molybdæn, wolfram og blandinger deraf og en fosforholdig forbindelse, tilstrækkelig til på den færdige katalysa-35 tor at afsætte 1-5 vægt% nikkel og/eller kobolt og 8-18 vægt% molybdæn eller 10-32 vægt% wolfram. Når der anvendes blandinger af molybdæn og wolfram, indeholder den DK 172341 B1 6 færdige katalysator sædvanligvis 8-32 vægt% molybdæn og wolfram. Opløsningen kan imidlertid indeholde mængder af nikkel og/eller kobolt og molybdæn eller wolfram i overskud i forhold til den mængde, som kræves til afsætning 5 af førnævnte mængder af metal, hvilket overskud kan fjernes ved vaskning eller en anden teknik efter genopslæmningstrinnet. En typisk opløsning indeholdende metalforbindelser kan fremstilles ved at kombinere en molybdæn- og/eller wolframholdig opløsning med en nikkel-10 og/eller koboltholdig opløsning. Den metalholdige opløsning indeholder ligeledes en stabiliserende mængde fosfor. Typisk indeholder den metalholdige opløsning en fos-forholdig forbindelse i en mængde på 0,2-1,5 mol fosfor pr. mol molybdæn eller wolfram.After washing, the metal compounds are incorporated into the hydrogel. One method of adding the metal compounds to the hydrogel is resuspending, whereby the hydrogel is resuspended with a solution containing solubilized salts of a element selected from nickel, cobalt and mixtures thereof, and a heavy metal selected from molybdenum, tungsten and mixtures thereof and a phosphorus content. compound sufficient to deposit on the final catalyst 1-5 wt.% nickel and / or cobalt and 8-18 wt.% molybdenum or 10-32 wt.% tungsten. When mixtures of molybdenum and tungsten are used, the final catalyst typically contains 8-32% by weight of molybdenum and tungsten. However, the solution may contain amounts of nickel and / or cobalt and molybdenum or tungsten in excess of the amount required for deposition 5 of the aforementioned amounts of metal, which excess can be removed by washing or other technique after the resuspending step. A typical solution containing metal compounds can be prepared by combining a molybdenum and / or tungsten-containing solution with a nickel-10 and / or cobalt-containing solution. The metal-containing solution also contains a stabilizing amount of phosphorus. Typically, the metal-containing solution contains a phosphorus-containing compound in an amount of 0.2-1.5 moles of phosphorus per liter. moles of molybdenum or tungsten.

15 I nærværende beskrivelse er termen "en fosforhol- dig forbindelse" generisk og betegner så vel en fosfor-holdig forbindelse som flere fosforholdige forbindelser. Egnede fosforholdige forbindelser er syrer af fosfor og disses salte. Typiske syrer af fosfor er fosforsyre, 20 fosfonsyre, fosfinsyre og fosforsyrling. Den fosforholdige forbindelse er normalt udvalgt blandt fosforsyre, et fosfatsalt og blandinger deraf. Egnede fosfatsalte er alkalimetal-fosfater, alkalimetalhydrogenfosfater, ammoniumfosfat og ammoniumhydrogenfos fat.In this specification, the term "a phosphorus-containing compound" is generic and denotes both a phosphorus-containing compound and several phosphorus-containing compounds. Suitable phosphorous compounds are acids of phosphorus and their salts. Typical acids of phosphorus are phosphoric acid, phosphonic acid, phosphinic acid and phosphoric acid. The phosphorous compound is usually selected from phosphoric acid, a phosphate salt and mixtures thereof. Suitable phosphate salts are alkali metal phosphates, alkali metal hydrogen phosphates, ammonium phosphate and ammonium hydrogen phosph.

25 Molybdænopløsningen indeholder en vandopløselig kilde til molybdænoxid såsom ammoniumheptamolybdat eller ammoniumdimolybdat opløst i vand og eventuelt en fosfor-holdig forbindelse. Der kan også anvendes hydrogenper-oxid til at hjælpe med til at fremstille opløsning i 30 visse tilfælde. Ved en foretrukken fremgangsmåde til fremstilling af en molybdænopløsning sætter man hydro-, genperoxid til opløsningen i en mængde i et området 0,1- 1,0 mol hydrogenperoxid pr. mol molybdæn. Eventuelt kan der sættes en egnet opløselig aminforbindelse såsom mo-35 noætanolamin, propanolamin eller aetylendiamin til den molybdænholdige opløsning for at hjælpe med til at stabilisere opløsningen.The molybdenum solution contains a water-soluble source of molybdenum oxide such as ammonium heptamolybdate or ammonium dimolybdate dissolved in water and optionally a phosphorus-containing compound. Hydrogen peroxide can also be used to help prepare solution in 30 certain cases. In a preferred method of preparing a molybdenum solution, hydro, gene peroxide is added to the solution in an amount in the range 0.1 to 1.0 mol of hydrogen peroxide per liter. mol molybdenum. Optionally, a suitable soluble amine compound such as monoethanolamine, propanolamine or ethylenediamine may be added to the molybdenum-containing solution to aid in stabilizing the solution.

DK 172341 B1 7DK 172341 B1 7

Den wolframholdige opløsning indeholder typisk ammoniummetalwolframat opløst i vand samt eventuelt en fosforholdig forbindelse. Ved en foretrukken fremgangsmåde til fremstilling af en wolframholdig opløsning sæt- 5 ter man hydrogenperoxid til opløsningen i en mængde i området 0,1-1,0 mol hydrogenperoxid pr. mol wolfram.The tungsten-containing solution typically contains ammonium metal tungsten dissolved in water and optionally a phosphorus-containing compound. In a preferred process for preparing a tungsten-containing solution, hydrogen peroxide is added to the solution in an amount in the range of 0.1-1.0 moles of hydrogen peroxide per liter. mole of tungsten.

Desuden kan der sættes en egnet opløselig aminforbindel-se såsom monoætanolamin, propanolamin eller ætylendiamin til den wolframholdige opløsning for at hjælpe med til 10 at stabilisere opløsningen.In addition, a suitable soluble amine compound such as monoethanolamine, propanolamine or ethylenediamine may be added to the tungsten-containing solution to help stabilize the solution.

Den nikkelholdige opløsning indeholder nikkelsalte opløst i vand samt eventuelt en fosforholdig forbindelse. Flere forskellige nikkelforbindelser er egnede såsom nikkelnitrat, nikkelacetat, nikkelformiat, nik-15 kelsulfat, nikkeloxid, nikkelfosfat, nikkelkarbonat, nikkelklorid og nikkelhydroxid. To særligt egnede forbindelser er nikkelnitrat og nikkelkarbonat.The nickel-containing solution contains nickel salts dissolved in water and optionally a phosphorus-containing compound. Several different nickel compounds are suitable such as nickel nitrate, nickel acetate, nickel formate, nickel sulfate, nickel oxide, nickel phosphate, nickel carbonate, nickel chloride and nickel hydroxide. Two particularly suitable compounds are nickel nitrate and nickel carbonate.

Den koboltholdige opløsning indeholder koboltsalte opløst i vand samt eventuelt en fosforholdig for-20 bindelse. Flere forskellige koboltforbindelser er egnede såsom koboltnitrat, kobolthydroxid, koboltacetat, koboltoxalat og koboltoxid. Den foretrukne koboltforbindelse er koboltnitrat.The cobalt-containing solution contains cobalt salts dissolved in water and optionally a phosphorus-containing compound. Several different cobalt compounds are suitable such as cobalt nitrate, cobalt hydroxide, cobalt acetate, cobalt oxalate and cobalt oxide. The preferred cobalt compound is cobalt nitrate.

Ved en anden fremgangsmåde til inkorporering af 25 metalforbindelser i hydrogelen tilsætter man tørre, vandopløselige metalforbindelser af et grundstof udvalgt blandt nikkel, kobolt og blandinger deraf, tørre, vandopløselige forbindelser af et tungmetal udvalgt blandt molybdæn, wolfram og blandinger deraf og en fosforholdig 30 forbindelse til hydrogelen og blander, indtil opløsning og adsorption af metalforbindelserne og fosforet til gelen er i det væsentlige komplet. Metalforbindelserne af nikkel og/eller kobolt og molybdæn og/eller wolfram sættes til hydrogelen i mængder, som er tilstrækkelige til 35 i den færdige katalysator at inkorporere 1-5 vægt% nikkel og/eller kobolt og 8-18 vægt% molybdæn eller 10-32 vægt% wolfram. Når der anvendes blandinger af DK 172341 B1 8 molybdæn og wolfram, indeholder den færdige katalysator 8-32 vægt% molybdæn og wolfram.In another method of incorporating 25 metal compounds into the hydrogel, dry, water-soluble metal compounds of an element selected from nickel, cobalt and mixtures thereof are added, dry, water-soluble compounds of a heavy metal selected from molybdenum, tungsten and mixtures thereof, and a phosphorous compound. the hydrogel and mixes until dissolution and adsorption of the metal compounds and the phosphorus to the gel are substantially complete. The metal compounds of nickel and / or cobalt and molybdenum and / or tungsten are added to the hydrogel in amounts sufficient to incorporate in the finished catalyst 1-5 wt.% Nickel and / or cobalt and 8-18 wt.% Molybdenum or 10- 32 wt% tungsten. When mixtures of DK 172341 B1 8 molybdenum and tungsten are used, the finished catalyst contains 8-32% by weight molybdenum and tungsten.

Molybdæn sættes sædvanligvis til hydrogelen som en tør, vandopløselig kilde til molybdæn såsom ammonium-5 heptamolybdat eller ammoniumdimolybdat. Wolfram sættes typisk til hydrogelen som ammoniummetawolframat. Nikkel sættes fortrinsvis til hydrogelen i form af tørt, vandopløseligt nikkelnitrat, nikkelacetat, nikkelformiat, nikkelsulfat, nikkeloxid, nikkelfosfat, nikkelkarbonat, 10 nikkelklorid eller nikkelhydroxid, idet nikkelnitrat og nikkelkarbonat foretrækkes. Kobolt sættes typisk til hydrogelen i form af tørt, vandopløseligt koboltnitrat, kobolthydroxid, koboltacetat, koboltoxalat eller koboltoxid, idet koboltnitrat foretrækkes. Den fosforholdige 15 forbindelse sættes typisk, enten våd eller tør, til hydrogelen i en mængde i området 0,2-1,5 mol fosfor pr. mol molybdæn eller wolfram. Den fosforholdige forbindelse sættes fortrinsvis direkte til hydrogelen som fosforsyre, et fosfatsalt eller blandinger deraf. Egnede 20 fosfatsalte er alkalimetalfosfat, alkalimetalhydrogen-fosfat, ammoniumfosfat og ammoniumhydrogenfosfat. Den fosforholdige forbindelse og det tørre nikkel- og/eller koboltsalt kan også blandes forud for tilsætning af hydrogelen.Molybdenum is usually added to the hydrogel as a dry, water-soluble source of molybdenum such as ammonium heptamolybdate or ammonium dimolybdate. Tungsten is typically added to the hydrogel as ammonium meta tungstate. Nickel is preferably added to the hydrogel in the form of dry, water-soluble nickel nitrate, nickel acetate, nickel formate, nickel sulphate, nickel oxide, nickel phosphate, nickel carbonate, nickel chloride or nickel hydroxide, nickel nitrate and nickel carbonate. Cobalt is typically added to the hydrogel in the form of dry, water-soluble cobalt nitrate, cobalt hydroxide, cobalt acetate, cobalt oxalate or cobalt oxide, with cobalt nitrate being preferred. The phosphorus-containing compound is typically added, either wet or dry, to the hydrogel in an amount in the range of 0.2-1.5 moles of phosphorus per day. moles of molybdenum or tungsten. The phosphorus-containing compound is preferably added directly to the hydrogel as phosphoric acid, a phosphate salt or mixtures thereof. Suitable 20 phosphate salts are alkali metal phosphate, alkali metal hydrogen phosphate, ammonium phosphate and ammonium hydrogen phosphate. The phosphorus-containing compound and the dry nickel and / or cobalt salt can also be mixed prior to addition of the hydrogel.

25 Ved en foretrukken fremgangsmåde til blanding af de tørre metalsalte af nikkel og/eller kobolt og molybdæn og/eller wolfram med hydrogelen tilsætter man hydro-genperoxid til blandingen af tørre metalsalte og hydrogel i en mængde på 0,1-1,0 mol hydrogenperoxid pr. mol 30 molybdæn og/eller wolfram. Eventuelt kan der tilsættes en passende aminforbindelse såsom monoætanolamin, propa-nolamin eller ætylendiamin til blandingen af tørre metalsalte og hydrogel for at hjælpe med til at stabilisere blandingen af metalsalte og hydrogel.In a preferred method of mixing the dry metal salts of nickel and / or cobalt and molybdenum and / or tungsten with the hydrogel, hydrogen peroxide is added to the mixture of dry metal salts and hydrogel in an amount of 0.1-1.0 moles of hydrogen peroxide. per. mol 30 molybdenum and / or tungsten. Optionally, a suitable amine compound such as monoethanolamine, propanolol or ethylenediamine may be added to the dry metal salt and hydrogel mixture to assist in stabilizing the metal salt and hydrogel mixture.

35 De tørre metalsalte af nikkel og/eller kobolt, molybdæn og/eller wolfram og den fosforholdige forbindelse (hvis den tilsættes tør) sættes typisk til hydro- DK 172341 B1 9 gelen i form af findeite partikler, sædvanligvis med en størrelse på 0,15 mm eller mindre. Selv om partikelstørrelsen ikke er kritisk, og der kan anvendes større partikelstørrelser, er det økonomisk fordelagtigt at anven-5 de partikler, som har en størrelse på 0,15 mm eller mindre.The dry metal salts of nickel and / or cobalt, molybdenum and / or tungsten and the phosphorus-containing compound (if added dry) are typically added to the hydrogel in the form of finite particles, usually of a size of 0.15. mm or less. Although particle size is not critical and larger particle sizes can be used, it is economically advantageous to use particles having a size of 0.15 mm or less.

Det er ligeledes inden for sigtet med den foreliggende opfindelse at kombinere de to fremgangsmåder, som er beskrevet ovenfor, for tilsætning af metaller til 10 hydrogelen. Fx kan det ene metal tilsættes hydrogelen » som et tørt salt og det andet kan tilsættes i form af en opløsning. Flere perimjtationer af denne kombination af tilsætning af tørre Sclte og tilsætning af metalopløsninger er indlysende for sagkyndige inden for området.It is also within the scope of the present invention to combine the two methods described above for the addition of metals to the hydrogel. For example, one metal may be added to the hydrogel as a dry salt and the other may be added in the form of a solution. Several perimts of this combination of the addition of dry Sclte and the addition of metal solutions are obvious to those skilled in the art.

15 Temperatur og pH-værdi ved det trin, hvor de me talholdige opløsninger og/eller de tørre metalsalte blandes med hydrogelen, er vigtige variable ved fremstilling af hydrogelafledte katalysatorer, der har tilfredsstillende densiteter og porøsiteter. Normalt giver hø-20 jere temperaturer katalysatorer med lavere densitet. Blandingen af hydrogenen med de metalholdige opløsninger eller de tørre metalsalte udføres ved en pH-værdi i området 4,0-10,0, fortrinsvis 4,0-9,0, navnlig 4,0-8,0, og ved en temperatur j området 25-100°C, fortrinsvis 25 25-80°C, indtil inkorporeringen af metalforbindelserne i gelen er tilstrækkelig til at føre til en færdig kal-cineret katalysator indeholdende 1-5 vægt% nikkel og/ eller kobolt og 8-32 vægt% tungmetal udvalgt blandt molybdæn, wolfram og blandinger deraf. Typisk vil blan-3q dingstider for hydrogel og metalforbindelser ligge i området 0,5-2 timer. Eventuelt kan det fremkomne materiale vaskes for at fjerne uadsorberede metaller og filtre- < res på rutinemæssig made.Temperature and pH at the stage where the metal-containing solutions and / or the dry metal salts are mixed with the hydrogel are important variables in the preparation of hydrogel-derived catalysts having satisfactory densities and porosities. Normally, higher temperatures provide lower density catalysts. The mixing of the hydrogen with the metal-containing solutions or the dry metal salts is carried out at a pH in the range of 4.0-10.0, preferably 4.0-9.0, especially 4.0-8.0, and at a temperature of the range 25-100 ° C, preferably 25 25-80 ° C, until the incorporation of the metal compounds into the gel is sufficient to result in a final calcined catalyst containing 1-5% by weight nickel and / or cobalt and 8-32% by weight heavy metal selected from molybdenum, tungsten and mixtures thereof. Typically, mixing times for hydrogel and metal compounds will be in the range of 0.5-2 hours. Optionally, the resulting material can be washed to remove unadsorbed metals and routinely filtered.

Efter tilsætningen af metalforbindelserne til hy-35 drogelen underkastes det fremkomne materiale forskydningspåvirkning for aj: frembringe et afstivet hydrogel-præparat. Forskydningnpåvirkningen af hydrogelpartik- DK 172341 B1 10 lerne sker ved at led’s hydrogelen gennem en homogenisa-tor såsom fx en fjedecbelastet homogeniseringsventil.After the addition of the metal compounds to the hydrogel, the resulting material is subjected to shear to produce a stiffened hydrogel composition. The displacement effect of the hydrogel particles is effected by passing the hydrogel through a homogenizer such as, for example, a spring-loaded homogenization valve.

Graden af forskydningspåvirkning kan fastsættes numerisk ved at lede hydrsgelen gennem en fjederbelastet ho- 5 mogeniseringsventil. En passende forskydningspåvirkningsgrad frembringes sædvanligvis ved et tryktab i området 34-550 bar, fortrinvis 138-482 bar i en sædvanlig fjederbelastet homogenisator såsom en "Gaulin" 57 liter pr. time, 550 bar laboratorie-homogenisator. Forskydnings- 10 påvirkning kan ligeledes effektueres på anden måde som * fx ved anvendelse af en blender med høj hastighed, men der foretrækkes en hdmogenisator til kontinuert oparbejdning. En passende grad af forskydningspåvirkning er i alle tilfælde en påvirkning, som frembringer et ek-15 strudat af hydrogelen, som ikke deformeres væsentligt under sin egen vægt, når det er dannet. Ekstrudatet dannet forud for tørring og kalcinering vil således bevare sin form og muliggør, at tørrings- og kalcineringstrin udføres uden væsentlig ændring i form.The degree of shear stress can be determined numerically by passing the hydrogel through a spring loaded homogenization valve. A suitable degree of shear stress is usually produced at a pressure drop in the range of 34-550 bar, preferably 138-482 bar in a conventional spring loaded homogenizer such as a "Gaulin" 57 liters per liter. hour, 550 bar laboratory homogenizer. Shear action may also be effected by other means such as * e.g., using a high speed blender, but a hdmogenizer for continuous reprocessing is preferred. A suitable degree of shear stress is in all cases an effect which produces an extrudate of the hydrogel which does not deform substantially under its own weight when formed. Thus, the extrudate formed prior to drying and calcining will retain its shape and enable drying and calcining steps to be performed without any significant change in shape.

20 Efter forskydningspåvirkning af hydrogelen kan det fremkomne materiale nemt ekstruderes gennem et mundstykke med en diametér på 12,7-127 mm. Det foretrækkes sædvanligvis at ekstrudere udløbet fra homogenisatoren direkte gennem mundstykket ved anvendelse af homogenisa- 25 torens modtryk som d,rivende kraft ved ekstruderingen.After shearing the hydrogel, the resulting material can be easily extruded through a nozzle having a diameter of 12.7-127 mm. It is usually preferred to extrude the outlet from the homogenizer directly through the nozzle using the counterpressure of the homogenizer as a driving force during extrusion.

i Når der anvendes andrls midler til forskydningspåvirk- t ningen, kan der anvenles passende pumpeorganer til at ekstrudere materialet gennem ekstruderingshovedet.When other means of shear influence are used, suitable pumping means may be used to extrude the material through the extrusion head.

Efter ekstruderingen tørres ekstrudaterne og 30 kalcineres. Skønt det er muligt at tørre ekstrudaterne i et enkelt trin, forstrækkes det at ekstrudaterne tørres i flere trin. Ved tørring i flere trin udføres et første tørringstrin, 'såkaldt "skindtørring" ("skin drying") for at fjerne ei væsentlige mængde af vandet og 35 danne et tørret skind på overfladen af ekstrudatet.After the extrusion, the extrudates are dried and calcined. Although it is possible to dry the extrudates in a single step, it is preferred that the extrudates be dried in several steps. In multi-stage drying, a first drying step, so-called "skin drying", is performed to remove a substantial amount of the water and form a dried skin on the surface of the extrudate.

Skindtørring udføres (passende ved en temperatur i områ^ det 100-300°C, fortriTsvis 120-200°C. Sådanne skindtør- DK 172341 B1 11 rede ekstrudater kan håndteres og/eller lagres om ønsket uden alvorlig nedbrydning af deres struktur inden det endelige tørringstrin. Den endelige tørring udføres på konventionel måde. Den kan udføres ved tvunget stræk-5 tørring, vakuumtørring, lufttørring eller på lignende måde. Tørringstemperaturer en ikke kritiske og afhænger af de særlige organer, der anvendes ved tørringen. Tørringstemperaturerne ligger sædvanligvis i området 50-200°C.Skin drying is carried out (suitably at a temperature in the range of 100-300 ° C, preferably 120-200 ° C. Such skin drying extrudates can be handled and / or stored if desired without serious degradation of their structure prior to final processing. The final drying is carried out in a conventional manner, it can be carried out by forced stretch drying, vacuum drying, air drying or the like. Drying temperatures are not critical and depend on the particular means used in the drying. Drying temperatures are usually in the range of 50 -200 ° C.

10 Efter tørringen kalcineres materialet til frem komst af den færdige katalysator. Materialet kan kalcineres i en oxiderende eller neutral atmosfære, selv om en luftatmosfære foretrækkes. Hvis der anvendes bindemidler og/eller smøremidler opvarmes materialet imidler-15 tid i en oxygenholdig atmosfære, fortrinsvis luft for at udbrænde bindemidlerne og smøremidlerne. Kalcinerings-temperaturerne er 300-900°C. Tørring, kalcinering og udbrænding kan kombineres i et eller to trin. Ofte kombineres kalcinerings- og/eller udbrændingstrinnene 20 ved anvendelse af en oxygenholdig atmosfære.After drying, the material is calcined to give the final catalyst. The material can be calcined in an oxidizing or neutral atmosphere, although an air atmosphere is preferred. However, if binders and / or lubricants are used, the material is heated in an oxygen-containing atmosphere, preferably air, to burn out the binders and lubricants. The calcination temperatures are 300-900 ° C. Drying, calcining and burnout can be combined in one or two steps. Often, the calcination and / or burn-out stages 20 are combined using an oxygen-containing atmosphere.

De færdige katalysatorer viste sig at have over- 2 fladearealer større end 300 m /g, nitrogenporerumfang på 0,4-1,2 ml/g og med mindst 20% af deres kviksølvpore-rumfang i porer med diameter større end 35 nm og mindst 25 20%, fortrinsvis 35%, af deres kviksølvporerumfang i porer med diameter mindre end 7 nm. Metalindholdenen i de færdige katalysatorer ligger i området 1-5 vægt% nikkel og/eller kobolt, fortrinsvis 2,5-4 vægt% nikkel og/eller kobolt og 8-18 vægt%, fortrinsvis 10-14 vægt% 30 molybdæn eller 10-32 vægt%, fortrinsvis 18-26 vsegt% wolfram.The finished catalysts were found to have surface area greater than 300 m / g, nitrogen pore volume of 0.4-1.2 ml / g and with at least 20% of their mercury pore volume in pores larger than 35 nm and at least About 20%, preferably 35%, of their mercury pore volume in pores less than 7 nm in diameter. The metal content of the finished catalysts is in the range of 1-5 wt% nickel and / or cobalt, preferably 2.5-4 wt% nickel and / or cobalt and 8-18 wt%, preferably 10-14 wt% 30 molybdenum or 10- 32 wt%, preferably 18-26 wt% tungsten.

Katalysatorerne fremstillet i overensstemmelse med den foreliggende opfindelse kan passende anvendes til kulbrinteomdannelsesprocesser såsom hydrokrakning, 35 hydrobehandling, isomerisering, hydrogenering, dehydro-genering, oligomerisering, alkylering, dealkylering og lignende.The catalysts prepared in accordance with the present invention may suitably be used for hydrocarbon conversion processes such as hydrocracking, hydro-treatment, isomerization, hydrogenation, dehydrogenation, oligomerization, alkylation, dealkylation and the like.

DK 172341 B1 12DK 172341 B1 12

Katalysatorerne fremstillet i henhold til den foreliggende opfindelse anvendes almindeligvis til hy-drobehandling og/eller hydrokrakning af råmaterialer med indhold af flygtigt materiale fra petroleumsæter til 5 jordolieremanenser, inkl. materialer afledt af tjæresand, skiferolie og lignende. Reaktionstemperaturer er typisk i området 150-480°C, fortrinsvis 260-455°C. Reaktionstryk er sædvanligvis i området 14-240 bar, fortrinsvis 40-174 bar. Reaktionerne udføres sædvanligvis 10 med rumhastigheder i området 0,05-15 reciprokke timer.The catalysts prepared in accordance with the present invention are generally used for the hydrotreating and / or hydrocracking of crude materials containing volatile material from petroleum ether for 5 petroleum residues, incl. materials derived from tar sands, shale oil and the like. Reaction temperatures are typically in the range of 150-480 ° C, preferably 260-455 ° C. Reaction pressures are usually in the range of 14-240 bar, preferably 40-174 bar. The reactions are usually carried out at room rates in the range of 0.05 to 15 reciprocal hours.

Der findes mange anvendelsesmuligheder for disse råmaterialer efter behandling med katalysatorerne fremstillet i henhold til den foreliggende opfindelse. Afhængig af det særlige fødemateriale, som er behandlet, 15 er passende anvendelsesmuligheder konversionsenheds- fødematerialer såsom termisk krakning og hydrokrakning, eller færdige produkter såsom benzin, dieselolie, turbinebrændstof til flyvemaskiner, ovnolie, opløsningsmidler, brændselsolier og asfalt.There are many uses for these raw materials after treatment with the catalysts prepared in accordance with the present invention. Depending on the particular feed material treated, suitable applications are conversion unit feed materials such as thermal cracking and hydrocracking, or finished products such as gasoline, diesel fuel, airplane turbine fuel, furnace oil, solvents, fuel oils and asphalt.

20 Fremgangsmåden til fremstilling af katalysatorer i overensstemmelse med den foreliggende opfindelse be-lysers nærmere af de følgende eksempler, idet sammenligningseksemplerne belyser katalysatorfremstilling ved kendt teknik.The process for preparing catalysts in accordance with the present invention is elucidated by the following examples, the comparative examples illustrating catalyst preparation by the prior art.

2525

Eksempel 1 99,0 kg aluminiumsulfatopløsning fremstilledes ved at solubilisere 11,3 kg gibbsit (a-alumina-trihy-30 drat, 34% LOI) i 87,7 kg 27% svovlsyre ved en temperatur en smule over 100°C. Opløsningen fik lov at afkøle til 60°C forud for anvendelse. 76,4 kg natriumaluminat-opløsning fremstilledes ved at solubilisere 28,2 kg gibbsit (a-alumina-trihydrat, 34% LOI) i 48,2 kg 36% 35 natriumhydroxid ved en temperatur en smule over 115°C.Example 1 99.0 kg of aluminum sulfate solution was prepared by solubilizing 11.3 kg of gibsite (α-alumina trihydrate, 34% LOI) in 87.7 kg of 27% sulfuric acid at a temperature slightly above 100 ° C. The solution was allowed to cool to 60 ° C prior to use. 76.4 kg of sodium aluminate solution was prepared by solubilizing 28.2 kg of gibsite (α-alumina trihydrate, 34% LOI) in 48.2 kg of 36% sodium hydroxide at a temperature slightly above 115 ° C.

Denne opløsning fik lov at afkøle til 60°C forud for anvendelse. Disse to opløsninger måltes under computer- DK 172341 B1 13 kontrol i et udfældningskar indeholdende 140 kg deioni-seret vand holdt ved 60°C, idet der opretholdtes konstant pH-værdi på 7,0 og en temperatur på 60°C. Udfældningens varighed blev fastsat til 45 minutter. Efter at 5 udfældningstrinnet var færdigt sattes der overskud af natriumaluminatopløsning (13,5 kg) til opslæmningen for at hæve pH-værdien til den ønskede ældnings-pH på 10,3. Der anvendtes i alt 66,7 kg syre og 54,9 kg base. Opslæmningen ældedes i 1 time ved forhøjet pH-værdi. Op-10 slæmningen filtreredes derpå i et enkelt trin på et vandret bæltevakuumfilter (0,3 x 3 m) og vaskedes med deio-niseret vand. Den fremkomne aluminahydrogel havde sædvanligvis et vandindhold på 75-90% på basis af tørvægten af alumina.This solution was allowed to cool to 60 ° C prior to use. These two solutions were measured under computer control in a precipitation vessel containing 140 kg of deionized water maintained at 60 ° C, maintaining a constant pH of 7.0 and a temperature of 60 ° C. The duration of precipitation was set at 45 minutes. After the precipitation step was completed, excess sodium aluminate solution (13.5 kg) was added to the slurry to raise the pH to the desired aging pH of 10.3. A total of 66.7 kg of acid and 54.9 kg of base were used. The slurry was aged for 1 hour at elevated pH. The slurry was then filtered in a single step on a horizontal belt vacuum filter (0.3 x 3 m) and washed with deionized water. The resulting alumina hydrogel usually had a water content of 75-90% based on the dry weight of alumina.

15 Til en beholder udstyret med en omrører med høj hastighed sattes der en portion af alumina-hydrogel fremstillet i løbet af 45 minutters udfældning (2500 g, 84,0% LOI, på basis af 400 g tør vægt), 360 g vand, 99,92 g koboltnitrat-hexahydrat, 85% fosforsyre (100,73 20 g), 161,78 g ammoniumheptamolybdat, 48 ml 30% hydrogen- peroxid og 27,1 g monoætanolamin. pH-værdien indstilledes til 6,5 ved hjælp af NH^OH. Blandingen omrørtes kraftigt for at "smelte" ("liquefy") hydrogelen. Efter 2 timers omsætning ved 25°C ledtes katalysatorhydrogel-25 opslæmningen gennem en "Gaulin"-model 15M Lab homogeni-sator med et tryktab på 413 bar. Det størknede materiale fra dette homogenisationstrin ekstruderedes ved anvendelse af et lille, hånd-ekstruderingsapparat. Tørring af ekstrudatet ved 120°C efterfulgtes af kalcinering 30 ved 510°C i 2 timer. Katalysatorens egenskaber fremgår af tabel I og II.To a container equipped with a high-speed stirrer was added a portion of alumina hydrogel prepared in 45 minutes of precipitation (2500 g, 84.0% LOI, based on 400 g dry weight), 360 g water, 99 , 92 g of cobalt nitrate hexahydrate, 85% phosphoric acid (100.73 20 g), 161.78 g of ammonium heptamolybdate, 48 ml of 30% hydrogen peroxide and 27.1 g of monoethanolamine. The pH was adjusted to 6.5 by NH 2 OH. The mixture was stirred vigorously to "liquefy" the hydrogel. After 2 hours of reaction at 25 ° C, the catalyst hydrogel slurry was passed through a "Gaulin" model 15M Lab homogenizer with a pressure drop of 413 bar. The solidified material from this homogenization step was extruded using a small hand extruder. Drying of the extrudate at 120 ° C was followed by calcination 30 at 510 ° C for 2 hours. The properties of the catalyst are shown in Tables I and II.

Eksempel 2 35 99,0 kg aluminiumsulfatopløsning fremstilledes ved at opløseliggøre 11,3 kg gibbsit (a-alumina-trihy-drat, 34% LOI) i 87,7 kg 27% svovlsyre ved en tempera- DK 172341 B1 14 tur en smule over 100°C. Opløsningen fik lov at afkøle til 60°C inden anvendelse. 76,4 kg natriumaluminatppløs-ning fremstilledes ved at solubilisere 28,2 kg gibbsit (α-alumina-trihydrat, 34% LOI) i 48,2 kg 36% natrium-5 hydroxid ved en temperatur en smule over 115°C. Denne opløsning fik ligeledes lov til at afkøle til 60°C inden anvendelse. Disse to opløsninger måltes under computerkontrol i et udfældningskar indeholdende 140 kg deio-niseret vand, som holdtes ved 60°C, idet der oprethold-10 tes en konstant pH-værdi på 7,0 og en temperatur på 60°C. Udfældningens varighed blev fastsat til 45 minutter. Efter at udfældningstrinnet var afsluttet sattes der overskud af en natriumaluminatopløsning (7,1 kg) til opslæmningen for at hæve pH til den ønskede ældnings-pH på 9,9.Example 2 35 99.0 kg of aluminum sulfate solution was prepared by solubilizing 11.3 kg of gibsite (α-alumina trihydrate, 34% LOI) in 87.7 kg of 27% sulfuric acid at a temperature slightly above 100 ° C. The solution was allowed to cool to 60 ° C before use. 76.4 kg of sodium aluminate solution was prepared by solubilizing 28.2 kg of gibsite (α-alumina trihydrate, 34% LOI) in 48.2 kg of 36% sodium hydroxide at a temperature slightly above 115 ° C. This solution was also allowed to cool to 60 ° C before use. These two solutions were measured under computer control in a precipitation vessel containing 140 kg of deionized water maintained at 60 ° C, maintaining a constant pH of 7.0 and a temperature of 60 ° C. The duration of precipitation was set at 45 minutes. After the precipitation step was completed, excess sodium aluminate solution (7.1 kg) was added to the slurry to raise the pH to the desired aging pH of 9.9.

15 Der anvendtes i alt 71,0 kg syre og 50,9 kg base. Opslæmningen ældedes i 1 time ved forhøjet pH. Opslæmningen filtreredes derpå i et enkelt trin på et vandret bæltevakuumfilter (0,3 x 3 m) og vaskedes med deionise-ret vand. Den fremkomne alumina-hydrogel havde sædvan-20 ligvis et vandindhold på 75-90% på basis af aluminaens tørvægt.A total of 71.0 kg of acid and 50.9 kg of base were used. The slurry was aged for 1 hour at elevated pH. The slurry was then filtered in a single step on a horizontal belt vacuum filter (0.3 x 3 m) and washed with deionized water. The resulting alumina hydrogel usually had a water content of 75-90% on the basis of the alumina dry weight.

Til en beholder udstyret med en omrører med høj hastighed sattes der en portion aluminahydrogel fremstillet i løbet af 45 minutters udfældning (4000 g, 25 80,77% LOI, på basis af en tørvægt på 769 g), 100 g vand, 133,76 g nikkelnitrat-hexahydrat, 120,57 g 85% fosforsyre, 238,49 g ammoniumheptamolybdat, 76 ml 30% hydrogenperoxid og 43,23 g monoætanolamin. pH-værdien af blandingen var 5,9. Blandingen omrørtes kraftigt for at 30 "smelte" hydrogelen. Efter 2 timers omsætning ved 25°C ledtes katalysatorhydrogelopslæmningen gennem en "Mantin Gaulin" model 15M Lab homogenisator ved anvendelse af et tryktab på 413 bar. Det størknede materiale fra homogenisatoren ekstruderedes ved anvendelse af et til 35 formålet frembragt lille manifold- og dysesystem til homogenisatoren. Tørring af ekstrudatet ved 120°C efterfulgtes DK 172341 B1 15 af kalcinering ved 510°C i 2 timer. Katalysatorens egenskaber fremgår af tabel I og II.To a container equipped with a high-speed stirrer was added a portion of alumina hydrogel prepared over 45 minutes of precipitation (4000 g, 25.77% LOI, based on a dry weight of 769 g), 100 g water, 133.76 g nickel nitrate hexahydrate, 120.57 g 85% phosphoric acid, 238.49 g ammonium heptamolybdate, 76 ml 30% hydrogen peroxide and 43.23 g monoethanolamine. The pH of the mixture was 5.9. The mixture was stirred vigorously to "melt" the hydrogel. After 2 hours of reaction at 25 ° C, the catalyst hydro slurry was passed through a "Mantin Gaulin" model 15M Lab homogenizer using a pressure drop of 413 bar. The solidified material from the homogenizer was extruded using a small manifold and nozzle system produced for the purpose for the homogenizer. Drying of the extrudate at 120 ° C was followed by calcination at 510 ° C for 2 hours. The properties of the catalyst are shown in Tables I and II.

Sammenligningseksempel AComparative Example A

5 ------------------------ 99,0 kg aluminiumsulfatopløsning fremstilledes ved at solubilisere 11,3 kg gibbsit (a-alumina-trihy-drat, 34% LOI) i 87,7 kg 27% svovlsyre ved en temperatur en smule over 100°C. Opløsningen fik lov at afkøle 10 til 60°C inden anvendelse. 76,4 kg natriumaluminatop-løsning fremstilledes ved at solubilisere 28,2 kg gibbsit (a-alumina-trihydrat, 34% LOI) i 48,2 kg 36% natriumhydroxid ved en temperatur en smule over 115°C. Denne opløsning fik ligeledes lov at afkøles til 60°C inden 15 anvendelse. Disse to opløsninger måltes under computerkontrol i et udfældningskar indeholdende 121 kg deioni-seret vand, som holdtes ved 60°C, idet der opretholdtes en konstant pH-vaerdi på 7,0 og en temperatur på 60°C. Udfældningens varighed blev fastsat til 15 minutter. Ef-20 ter afslutning af udfældningen sattes overskud af natri-umaluminatopløsning (13,5 kg) til opslæmningen for at hæve pH til den ønskede ældnings-pH på 10,3. De totale opløsningsmængder der anvendtes, var 45,0 kg syre og 33,7 kg base. Opslæmningen ældedes i 1 time ved forhøjet 25 pH-værdi. Opslæmningen filtreredes derpå i et enkelt trin på et vandret bæltevakuumfilter (0,3 x 3 m) og vaskedes med deioniseret vand. Den fremkomne aluminahydro-gel havde almindeligvis et vandindhold på 75-90% på basis af tørvægten af alumina.99.0 kg of aluminum sulfate solution was prepared by solubilizing 11.3 kg of gibsite (α-alumina trihydrate, 34% LOI) in 87.7 kg of 27% sulfuric acid at a temperature slightly above 100 ° C. The solution was allowed to cool 10 to 60 ° C before use. 76.4 kg of sodium aluminate solution was prepared by solubilizing 28.2 kg of gibsite (α-alumina trihydrate, 34% LOI) in 48.2 kg of 36% sodium hydroxide at a temperature slightly above 115 ° C. This solution was also allowed to cool to 60 ° C before use. These two solutions were measured under computer control in a precipitation vessel containing 121 kg of deionized water maintained at 60 ° C, maintaining a constant pH of 7.0 and a temperature of 60 ° C. The duration of precipitation was set at 15 minutes. After completion of the precipitate, excess sodium aluminate solution (13.5 kg) was added to the slurry to raise the pH to the desired aging pH of 10.3. The total dissolution amounts used were 45.0 kg of acid and 33.7 kg of base. The slurry was aged for 1 hour at elevated 25 pH. The slurry was then filtered in a single step on a horizontal belt vacuum filter (0.3 x 3 m) and washed with deionized water. The resulting alumina hydrogel generally had a water content of 75-90% based on the dry weight of alumina.

30 Til en beholder udstyret med en omrører med høj hastighed sattes der en portion aluminahydrogelen fremstillet i løbet af 15 minutters udfældning (4000 g, 84,98% LOI, på basis af en tørvægt på 600 g), 103,12 g koboltnitrat-hexahydrat, 93,05 g 85% svovlsyre, 176,67 35 g ammoniumheptamolybdat, 59 ml 30% hydrogenperoxid ogTo a container equipped with a high speed stirrer was added a portion of the alumina hydrogel prepared during 15 minutes of precipitation (4000 g, 84.98% LOI, based on a dry weight of 600 g), 103.12 g of cobalt nitrate hexahydrate , 93.05 g of 85% sulfuric acid, 176.67 g of ammonium heptamolybdate, 59 ml of 30% hydrogen peroxide and

33,4 g monoætanolamin. pH-værdien indstilledes til pH33.4 g of monoethanolamine. The pH was adjusted to pH

7,3 med NH^OH. Blandingen omrørtes voldsomt for at DK 172341 B1 16 "smelte” hydrogelen. Efter 2 timers omsætning ved 25°C ledtes katalysatorhydrogelopslæmningen gennem en "Gau-lin"-model 15M Lab homogenisator ved et tryktab på 413 bar. Det størknede materiale fra homogenisatoren ek-5 struderedes derpå ved hjælp af et til formålet fremstillet lille manifold- og dysesystem til homogenisatoren. Tørring af ekstrudatet ved 120°C efterfulgtes af kalci-nering ved 510°C i 2 timer. Katalysatorens egenskaber fremgår af tabel I og II.7.3 with NH 3 OH. The mixture was stirred vigorously to "melt" the hydrogel. After 2 hours of reaction at 25 ° C, the catalyst hydro slurry was passed through a "Gaulin" model 15M Lab homogenizer at a pressure drop of 413 bar. 5 was then extruded using a small manifold and nozzle system for the homogenizer, drying the extrudate at 120 ° C followed by calcination at 510 ° C for 2 hours The properties of the catalyst are shown in Tables I and II.

1010

Sammenligningseksempel BComparative Example B

99,0 kg aluminiumsulfatopløsning fremstilledes ved at solubilisere 11,3 kg gibbsit (a-alumina-trihy-drat, 34% LOI) i 87,7 kg 27% svovlsyre ved en temperatur lidt over 100°C. Opløsningen fik lov at afkøles til 60°C inden brug. 76,4 kg natriumaluminatopløsning fremstilledes ved at solubilisere 28,2 kg gibbsit (ot-alumina-trihydrat, 34% LOI) i 48,2 kg 36% natriumhydroxid ved en temperatur lidt over 115°C. Denne opløsning & U _ fik ligeledes lov at afkøles til 60°C før brug. De to opløsninger måltes under computerkontrol i et udfældningskar indeholdende 121 kg deioniseret vand holdt ved 60°C, idet der opretholdtes en konstant pH-værdi på 7,0 __ og en temperatur på 60°C. Udfældningens varighed blev 2 5 fastsat til 15 minutter. Efter afslutning af udfældningen sattes overskud af natriumaluminatopløsning (8,2 kg) til opslæmningen for at hæve pH-værdien til den ønskede ældnings-pH på 10,0. De totale opløsningsmængder, som anvendtes, var 47,5 kg syre og 33,7 kg base. Opslæmningen ældedes i 1 time ved forhøjet pH-værdi. Opslæmningen filtreredes derpå i et enkelt trin på et vandret bæltevakuumfilter (0,3 x 3 m) og vaskedes med deioniseret vand. Den fremkomne aluminahydrogel havde sædvanlig-vis et vandindhold på 75-90% på basis af aluminaens tørvægt .99.0 kg of aluminum sulfate solution was prepared by solubilizing 11.3 kg of gibsite (α-alumina trihydrate, 34% LOI) in 87.7 kg of 27% sulfuric acid at a temperature slightly above 100 ° C. The solution was allowed to cool to 60 ° C before use. 76.4 kg of sodium aluminate solution was prepared by solubilizing 28.2 kg of gibsite (ot-alumina trihydrate, 34% LOI) in 48.2 kg of 36% sodium hydroxide at a temperature slightly above 115 ° C. This solution was also allowed to cool to 60 ° C before use. The two solutions were measured under computer control in a precipitation vessel containing 121 kg of deionized water maintained at 60 ° C, maintaining a constant pH of 7.0 and a temperature of 60 ° C. The duration of precipitation was fixed at 15 minutes. After completion of the precipitation, excess sodium aluminate solution (8.2 kg) was added to the slurry to raise the pH to the desired aging pH of 10.0. The total dissolution amounts used were 47.5 kg of acid and 33.7 kg of base. The slurry was aged for 1 hour at elevated pH. The slurry was then filtered in a single step on a horizontal belt vacuum filter (0.3 x 3 m) and washed with deionized water. The resulting alumina hydrogel usually had a water content of 75-90% based on the alumina dry weight.

DK 172341 B1 17DK 172341 B1 17

Til en beholder udstyret med en omrører med høj hastighed sattes der en portion aluminahydrogel fremstillet i løbet af 15 minutters udfældning (4000 g, 85,34% LOI, på basis af en tørvægt på 586 g), 126,27 g 5 nikkelnitrat-hexahydrat, 94,60 g 85% fosforsyre, 203,10 g ammoniumheptamolybdat og 33,98 g monoætanolamin. pH-værdien justeredes til 6,3 med NH^OH. Blandingen omrør-tes kraftigt for at "smelte" hydrogelen. Efter 1,5 timers omsætning ved 25°C ledtes katalysatorhydrogelop-10 slæmningen gennem en "Gaulin" model 15M Lab homogenisa-tor ved et tryktab på 413 bar. Det størknede materiale fra homogeniseringen ekstruderedes derpå ved anvendelse af et til formålet fremstillet lille manifold- og dysesystem til homogenisatoren. Tørring af ekstrudatet ved 15 120°C efterfulgtes af kalcinering ved 510°C i 2 timer.To a container equipped with a high-speed stirrer was added a portion of alumina hydrogel prepared over 15 minutes of precipitation (4000 g, 85.34% LOI, based on a dry weight of 586 g), 126.27 g of nickel nitrate hexahydrate. , 94.60 g of 85% phosphoric acid, 203.10 g of ammonium heptamolybdate and 33.98 g of monoethanolamine. The pH was adjusted to 6.3 with NH 2 OH. The mixture is stirred vigorously to "melt" the hydrogel. After 1.5 hours of reaction at 25 ° C, the catalyst hydrogel slurry was passed through a "Gaulin" model 15M Lab homogenizer at a pressure drop of 413 bar. The solidified material from the homogenization was then extruded using a small manifold and nozzle system made for the purpose for the homogenizer. Drying of the extrudate at 120 ° C was followed by calcination at 510 ° C for 2 hours.

Katalysatorens egenskaber fremgår af tabel I og II.The properties of the catalyst are shown in Tables I and II.

En sammenligning af ovennævnte katalysatorfremstillinger viser, at katalysatorfremstillingsteknikkerne beskrevet i eksempel 1 og 2 er meget lig de teknikker, 20 som er beskrevet i sammenligningseksempel A og B med den undtagelse, at varigheden af udfældningstrinnene i eksempel 1 og 2 var 45 minutter, mens varigheden af udfældningstrinnene i sammenligningseksempel A og B var 15 minutter. Som tidligere nævnt er varigheden af udfæld-25 ningstrinnet kritisk for dannelsen af en katalysator med mindst 20% af sit porerumfang i porer med diameter større end 35 nm og mindst 20% af sit porerumfang i porer med diameter mindre end 7 nm. Dette godtgøres af porestørrelsesfordelingerne angivet i tabel II. Som det 30 ses af tabel II har katalysatorerne fremstillet som angivet i eksempel 1 og 2 mindst 20% af deres porerumfang i porer med diameter større end 35 nm og mindst 20% af deres porerumfang i porer med diameter mindre end 7 nm, dvs. en bimodal porestørrelsesfordeling, mens katalysa-35 torerne fremstillet som beskrevet i sammenligningseksempel A og B har 80% af deres porerumfang i porer med dia- DK 172341 B1 18 meter mindre end 7 nm, dvs. en unimodal porestørrelsesfordeling.A comparison of the above catalyst preparations shows that the catalyst preparation techniques described in Examples 1 and 2 are very similar to the techniques described in Comparative Examples A and B except that the duration of the precipitation steps of Examples 1 and 2 was 45 minutes while the duration of the the precipitation steps of Comparative Examples A and B were 15 minutes. As previously mentioned, the duration of the precipitation step is critical for the formation of a catalyst with at least 20% of its pore volume in pores with a diameter greater than 35 nm and at least 20% of its pore volume in pores with a diameter less than 7 nm. This is evidenced by the pore size distributions given in Table II. As seen from Table II, the catalysts prepared as set forth in Examples 1 and 2 have at least 20% of their pore volume in pores with a diameter greater than 35 nm and at least 20% of their pore volume in pores with a diameter less than 7 nm, i. a bimodal pore size distribution, while the catalysts prepared as described in Comparative Examples A and B have 80% of their pore volume in pores with dia 18 meters less than 7 nm, ie. a unimodal pore size distribution.

5 Sammenligningseksempel CComparative Example C

Der fremstilledes en katalysator ved anvendelse af en ikke-hydrogelteknik. Egenskaberne af den kommercielt tilgængelige katalysator fremgår af tabel I og II.A catalyst was prepared using a non-hydrogel technique. The properties of the commercially available catalyst are shown in Tables I and II.

10 Katalysatorafprøvning10 Catalyst Testing

Der anvendtes katalysatorprøver til at hydrobe-handle en katalytisk krakket tung gasolie (catalytically-cracked heavy gas oil, CCHGO) i en reaktor méd sivest rømning. 10 ml 15 den passende ekstruderede katalysator knustes og sigte-des til 0,3-1 mm (16-45 masker), fortyndedes med sili-ciumkarbid og anbragtes i et typisk reaktorrør med sive-strømning. Katalysatoren forsulfideredes med en 5%s ^S/ H20 (v/v) gasblanding ved 371°C i 2 timer inden afprøv-20 ning. Der ledtes en CCHGO over katalysatoren ved 357°C og et partielt hydrogentryk på 58,6 bar med et H2/olie-forhold lig med 4,0. Målte hastighedskonstanter omfatter hydrogenering, denitrifikation og desulfurisering og er angivet i forhold til ikke-hydrogelkatalysatoren 25 (sammenligningseksempel C) og er beregnet på basis af det totale metalindhold i katalysatoren. De specifikke katalysatorydelsesegenskaber fremgår af tabel III.Catalyst samples were used to hydro-treat a catalytically-cracked heavy gas oil (CCHGO) in a reactor with the worst escape. 10 ml of the appropriately extruded catalyst was crushed and sieved to 0.3-1 mm (16-45 mesh), diluted with silicon carbide and placed in a typical seepage flow reactor. The catalyst was pre-sulphated with a 5% S 2 S / H 2 O (v / v) gas mixture at 371 ° C for 2 hours before testing. A CCHGO was passed over the catalyst at 357 ° C and a partial hydrogen pressure of 58.6 bar with a H 2 / oil ratio equal to 4.0. Measured rate constants include hydrogenation, denitrification and desulfurization and are given relative to the non-hydrogel catalyst 25 (Comparative Example C) and are calculated on the basis of the total metal content of the catalyst. The specific catalyst performance characteristics are shown in Table III.

30 35 DK 172341 B1 19 <<<<zznaE5ic ft ft a; as to to ro ro i— &.30 35 DK 172341 B1 19 <<<< zznaE5ic ft ft a; as to ro ro i— &.

03 03 03 03 I I 3 3 D ru rtr+r+rtOOOcnDftj o»P cfP oK> ctP O <Ό t-*· p* I—1 •-t ro w r+ a Dj i-hSisraroi-fi-’roiQa OOOH-htrhffirtcnH- cn m ty ;*r c r-· 3 id03 03 03 03 II 3 3 D ru rtr + r + rtOOOcnDftj o »P cfP oK> ctP O <Ό t- * · p * I — 1 • -t ro w r + a Dj i-hSisraroi-fi-'roiQa OOOH -htrhffirtcnH- cn m ty; * rc r- · 3 id

1-h ·< O 3 0) aiQOiO1-h · <O 3 0) aiQOiO

O CTMCD t-hDH-\æcn i-iajf+Miuroas crr+ H-ffi 03 03 3 (I iQ I-· — l-· — 3 —' —- UD f-ί tn o Dl d* ro i — — 3 tu ^ 3 i—* i—1 aa η· X Dj 3 03-3- rh to Dj — \ — 03 ro «O CTMCD t-hDH- \ æcn i-iajf + Miuroas crr + H-ffi 03 03 3 (I iQ I- · - l- · - 3 - '--- UD f-ί tn o Dl d * ro i - - 3 tu ^ 3 i— * i — 1 aa η · X Dj 3 03-3- rh to Dj - \ - 03 ro «

DJDJ

ft u> ό m tu -> -o —* ·£» ro ?v i—1 it^toto OJ^CnoOCnMCn < '•»•»l·.·.·.'.-. ro cn t3ft u> ό m tu -> -o - * · £ »ro? v i — 1 it ^ toto OJ ^ CnoOCnMCn <'•» • »l ·. ·. · .'.-. ro cn t3

ooO i ~ο o cn ,t* cj —»g djDJooO i ~ ο o cn, t * cj - »g djDJ

cn σ> I r+ CTcn σ> I r + CT

o ro tt ΙΟ)o ro tt ΙΟ)

03 H03 H

co Ό w ro -» -j ^ ro ?r a co to roovocnococni—>cn cn - - 1------ ro x o o i cnOOvncj'X) to 3 0) -» oo i cr ro tt cn 3 cn co ro η· dj -* σ\ —* —* 3 3 3co Ό w ro - »-j ^ ro? ra co to roovocnococni—> cn cn - - 1 ------ ro xooi cnOOvncj'X) to 3 0) -» oo i cr ro tt cn 3 cn co ro η · dj - * σ \ - * - * 3 3 3

CO—‘tO OJ^OOOC/ltOODSCO- 'TO OJ ^ OOOC / ltOODS

-- - i - - - - - ro cn ro ocncn i cn o co σ\ cj h (i) 3- - i - - - - - ro cn ro ocncn i cn o co σ \ cj h (i) 3

co CJco CJ

> I H· 03 cn 3 cn co φ H· Di -* oo -* -» 3 3 3 coco coocootoocnT3033 - - i ----- - roenro o o i o σ\ o co cn o m ro 3 en cn ^ m 03 I η· 03 i cn 3 cn> IH · 03 cn 3 cn co φ H · Di - * oo - * - »3 3 3 coco coocootoocnT3033 - - i ----- - roenro ooio σ \ o co cn om ro 3 and cn ^ m 03 I η · 03 in cn 3 cn

to ro h· DJto ro h · DJ

-* *»· 3 3 3 o to to o o Ό iQ 3 - - i - i - i - i iroenro o o i cn i o i o i i m ro 3- * * »· 3 3 3 o to two o Ό iQ 3 - - i - i - i - i iroenro o o i cn i o i o i i m ro 3

to o Pdefrost

O I H- 03 i DK 172341 B1 20O I H-03 in DK 172341 B1 20

-» -> M ·-( 'X- »-> M · - {'X

U1 O UJ W· (D lDU1 O UJ W · (D lD

3 Μ I3 Μ I

V I I I I Λ iQ BUV I I I I Λ iQ BU

>—ifD O> —IfD O

in lo —» -» '-tn t~ta lo - »-» '-tn t ~ t

cn cn cn o Ό Ln t-tifDcn cn cn o Ό Ln t-tifD

0 cn 3 3 3 3 3 3 H r+0 cn 3 3 3 3 3 3 H r +

333333 Qj S333333 Qj S

CD MCD M

1 I1 I

w cnw cn

LO —» KJ —» CDLO - »KJ -» CD

ui σ\ o lo oo g U1 O O 4i O -» CD ?5 M P) f+ -» P>ui σ \ o lo oo g U1 O O 4i O - »CD? 5 M P) f + -» P>

MM

cn P) W rtcn P) W rt

X OX O

cn i-tcn i-t

lo —»—*—> (D (Dlo - »- * -> {D {D

45» CO -J O OO LO 3 3 - ' - - ' ^ T3 cn i-3 LO CTL —> 00 LO CD 0) i—1 ό σ o a>45 »CO -J O OO LO 3 3 - '- -' ^ T3 cn i-3 LO CTL -> 00 LO CD 0) i — 1 ό σ o a>

KJ μ MKJ µM

cd cn mcd cn m

rt Hrt H

S ·-< cn 3 cn i-tS · - <cn 3 cn i-t

CD H· pi (DCD H · pi (D

kj CTi 3 3 3 H-* -> Co -» K) cn σι Ό lQ 3 cn » » - - » ro cn cd cd ^olo^ol^jmcds cn I—1 r-tikj CTi 3 3 3 H- * -> Co - »K) cn σι Ό lQ 3 cn» »- -» ro cn cd cd ^ olo ^ ol ^ jmcds cn I — 1 r-ti

> I H- O> I H- O

lQ Μ I Dj fD I—' H- 3 cn 3 cn lq CD h· p; cn to 3 3 3 K) 45» lo oo 4» m DD 3 - -> - - - -» cd cn cdlQ Μ I Dj fD I— 'H- 3 cn 3 cn lq CD h · p; cn to 3 3 3 K) 45 »lo oo 4» m DD 3 - -> - - - - »cd cn cd

LO cn -) -» LO 4»· H (!) DLO cn -) - »LO 4» · H (!) D

** H*** H *

CO I H-lQ ICO I H-lQ I

cn 3 cn CD H- P) —* —» to lo —» 3 3 3 lo —> 4» ~» —* lo OD 3cn 3 cn CD H- P) - * - »to lo -» 3 3 3 lo -> 4 »~» - * lo OD 3

- - ' - - -» CD cn CD- - '- - - »CD and CD

lo o 4=. KJ o CTN MCDDlo o 4 =. KJ o CTN MCDD

?r i—1 o i H-is i-1 o in H-

lDlD

i DK 172341 B1 21 a) Den tid, hvor ,de sure og basiske reagenser blandedes .in DK 172341 B1 21 a) The time at which the acidic and basic reagents were mixed.

b) Målt ved hjælp af et "Orion"® 231 pH-meter og "Orion"®-elektroder.b) Measured using an "Orion" ® 231 pH meter and "Orion" ® electrodes.

5 c) Et rumfang på 209 ml fuldt ud fældet i et måle bæger og vejet.5 c) A volume of 209 ml fully precipitated in a measuring beaker and weighed.

d) Målt ved hjælp af et "Orion"® 231 pH-meter oq "Or ion,MV-elektroder.d) Measured using an "Orion" ® 231 pH meter and "Or ion, MV electrodes.

e) BET (S. Brunauer, P.Y. Emmet og E. Teller, J.Am.e) BET (S. Brunauer, P.Y. Emmet and E. Teller, J.Am.

10 Chem.Soc., 6_0, 309-316 (1938)) ved nitrogenad- sorption/desorption, "Micromeritics" Digisorb 2500 instrument.10 Chem.Soc., 6_0, 309-316 (1938)) by nitrogen adsorption / desorption, "Micromeritics" Digisorb 2500 instrument.

i f) Med nitrogenadsorption, "Micromeritics" Digisorb 2500 instrument.i f) With nitrogen adsorption, "Micromeritics" Digisorb 2500 instrument.

15 g) Vægt% bestemt ved neutronaktiveringsanalyse el ler atomabsorptionsspektroskopi.G) Weight% determined by neutron activation analysis or atomic absorption spectroscopy.

h) Vægt% bestemt ved neutronaktiveringsanalyse eller atomabsorptionsspektroskopi.h) Weight% determined by neutron activation analysis or atomic absorption spectroscopy.

i) Vægt% bestemt ved neutronaktiveringsanalyse el- 20 ler atomabsorptionsspektroskopi.i) Weight% determined by neutron activation assay or atomic absorption spectroscopy.

j) Bestemt ved kviksølvindtrængning til 4136 bar under anvendelse af et "Micromeritics" Autopore 9210 og med brug af en kontaktvinkel på 130° og 0,473 N/m overfladespænding af kviksølv, de an- 25 førte tal er procent porerumfang.j) Determined by mercury penetration to 4136 bar using a "Micromeritics" Autopore 9210 and using a contact angle of 130 ° and 0.473 N / m surface tension of mercury, the figures quoted are percent pore volume.

i i 30 i 35 i ] i 22 DK 172341 B1 cn z æ 1 ό 3 cn w w ro η- tu ;v x II II II M 3 3 cn cni i 30 i 35 i] i 22 DK 172341 B1 cn z æ 1 ό 3 cn w w ro η-tu; v x II II II M 3 3 cn cn

03 3 CD CD03 3 CD CD

» Qj rr o cn CD 3 3 ι-h tD CD 3 Τ3 Ό»Qj rr o cn CD 3 3 ι-h tD CD 3 Τ3 Ό

cn 3 Oj X M CD CDcn 3 Oj X M CD CD

< Η· H Cfl Η· I—1 I—1 O rt O CD 03 Μ H 03 3 I CO —1<Η · H Cfl Η · I — 1 I — 1 O rt O CD 03 Μ H 03 3 I CO —1

< H- CD I<H-CD I

3 Hl 33 Hl 3

H· H· (DH · H · (D

3 X H3 X H

03 (D H- rt 3 η- 03 -» -> —> n o » ' ’ a n 3 o u> o æ O Ό5 o o > - ' Z 303 (D H- rt 3 η- 03 - »-> -> n o» '' a n 3 o u> o æ O Ό5 o o> - 'Z 3

. o ro to CD. o ro to CD

o vo oo r+ , 0) j i—1 cn —* -» -» σ ti · '«[/id cd o iC» ~j cd o O -O —] H· (-* cn i-h ^ H· is is' 0) 1-3 -*3 0 rt 0) o CD H DJ σo vo oo r +, 0) ji — 1 cn - * - »-» σ ti · '«[/ id cd o iC» ~ j cd o O -O -] H · (- * cn ih ^ H · is is '0) 1-3 - * 3 0 rt 0) o CD H DJ σ

o o O rt jd m CDo o O rt jd m CD

- 3^3^1-- 00 Ln H H cn- 3 ^ 3 ^ 1-- 00 Ln H H cn

Ό 0Π oo QJ MQ 0Π oo QJ M

o -* σ\ ?s* p. rt ho - * σ \? s * p. rt h

> OM> OM

>3 H> 3 H

• <• <

Qj CD I—1 1 cnQj CD I — 1 1 cn

1 D CD1 D CD

I CDIn CD

I o o o 03 3 i > - - \ cn 1 σ\ to 3 η· o oo m m rtI o o o 03 3 i> - - \ cn 1 σ \ to 3 η · o oo m m rt

CDCD

rt i i irt i i i

ro ro Zro ro Z

* ' I Ηθη on i < a 03 ro n rt I i - O df> I I Ό -» -* -> s* 'I Ηθη on i <a 03 ro n rt I i - O df> I I Ό - »- * -> s

to CO CO Oto CO CO O

I o o o i iI o o o i i

Claims (13)

1. Fremgangsmåde til fremstilling af højaktive hydro-behandlingskatalysatorer indeholdende en katalytisk effektiv mængde kobolt, nikkel og blandinger deraf 5 og en katalytisk effektiv mængde af et tungmetal udvalgt blandt molybdæn, wolfram og blandinger deraf og en fosforforbindelse, på en aluminabærer, hvilke katalysatorer har overfladearealer på mindst 300 m /g, mindst 20% af porevolumenet i porer med diameter over 10 35 nm og mindst 20% af porevolumenet i porer med diameter under 7 nm, kendetegnet ved at man (a) fælder en vandig opløsning af et eller flere aluminiumsalte ved at regulere pH-værdien af opløsningen til området 5,5-10 ved en temperatur mel- 15 lem 20 og 90°C i mindst 20 minutter, hvorved der dannes et bundfald, (b) ælder bundfaldet ved en temperatur i området 20-90°C i mindst 0,1 time ved en pH-værdi i området 8,0-12,0, 20 (c) vasker bundfaldet, (d) blander bundfaldet med en eller flere forbindelser af et grundstof udvalgt blandt nikkel, kobolt og blandinger deraf, af et tungmetal udvalgt blandt molybdæn, wolfram og blandinger deraf og 25 en fosforholdig forbindelse i en mængde på 0,2- 1,5 mol fosfor pr. mol tungmetal ved en pH-værdi i området 4,0-10,0 og en temperatur i området 25-100°C, indtil metalforbindelsernes adsorption til gelen er tilstrækkelig til at føre til en færdig 30 katalysator indeholdende 1-5 vægt% kobolt og/el- ler nikkel og 8-32 vægt% tungmetal, (e) homogeniserer produktet fra trin (d), (f) ekstruderer produktet fra trin (e), og (g) tørrer og kalcinerer produktet fra trin (f) ved 35 en temperatur i området 300-900°C. DK 172341 B1A process for producing highly active hydrotreating catalysts containing a catalytically effective amount of cobalt, nickel and mixtures thereof, and a catalytically effective amount of a heavy metal selected from molybdenum, tungsten and mixtures thereof, and a phosphorus compound, on an alumina carrier having surface catalysts. at least 300 m / g, at least 20% of the pore volume in pores with a diameter above 10 35 nm and at least 20% of the pore volume in pores with a diameter below 7 nm, characterized in that (a) an aqueous solution of one or more aluminum salts is precipitated by adjusting the pH of the solution to the range of 5.5-10 at a temperature between 20 and 90 ° C for at least 20 minutes, thereby forming a precipitate, (b) aging the precipitate at a temperature in the range 20- (C) washes the precipitate with one or more compounds of an element selected from nickel, cobalt and g of mixtures thereof, of a heavy metal selected from molybdenum, tungsten and mixtures thereof, and a phosphorus-containing compound in an amount of 0.2 to 1.5 moles of phosphorus per gram. mole of heavy metal at a pH in the range of 4.0-10.0 and a temperature in the range of 25-100 ° C until the adsorption of the metal compounds to the gel is sufficient to lead to a final catalyst containing 1-5% by weight of cobalt and / or nickel and 8-32% by weight of heavy metal, (e) homogenizes the product of step (d), (f) extrudes the product of step (e), and (g) dries and calcines the product of step (f) at 35 a temperature in the range of 300-900 ° C. DK 172341 B1 2. Fremgangsmåde ifølge krav ^kendetegnet ved, at man i trin (a) titrerer en vandig opløsning af et surt aluminiumsalt med en vandig opløsning af en basisk aluminiumforbindelse ved en pH- 5 værdi i området mellem 5,5 og 10,0 og en temperatur i området 20-90°C i mindst 20 minutter, hvorved der dannes et bundfald, og i trin (d) blander bundfaldet med en eller flere opløsninger indeholdende solubili-serede salte af et tungmetal udvalgt blandt molybdæn, 10 wolfram og blandinger deraf, et grundstof udvalgt blandt nikkel, kobolt og blandinger deraf, og en fosforholdig forbindelse i en mængde på 0,2-1,5 mol fosfor pr. mol tungmetal ved en pH-værdi i området 4,0- 9,0 og en temperatur i området 25-100°C, indtil adsorp-15 tion af metalsaltene til gelen er tilstrækkelig til at føre til en færdig katalysator indeholdende 1-5 vægt% nikkel og/eller kobolt og 8-32 vægt% tungmetal.Process according to claim 1, characterized in that in step (a), an aqueous solution of an acidic aluminum salt is titrated with an aqueous solution of a basic aluminum compound at a pH in the range between 5.5 and 10.0 to a temperature in the range of 20-90 ° C for at least 20 minutes, thereby forming a precipitate, and in step (d) mixing the precipitate with one or more solutions containing solubilized salts of a heavy metal selected from molybdenum, 10 tungsten and mixtures thereof. a element selected from nickel, cobalt and mixtures thereof, and a phosphorus-containing compound in an amount of 0.2-1.5 moles of phosphorus per mole of heavy metal at a pH in the range of 4.0 to 9.0 and a temperature in the range of 25-100 ° C until adsorption of the metal salts to the gel is sufficient to result in a final catalyst containing 1-5 wt. % nickel and / or cobalt and 8-32% by weight heavy metal. 3. Fremgangsmåde ifølge krav 2, kendetegne t ved, at man i trin (d) i stedet for med de 20 nævnte opløsninger blander bundfaldet med tørre, vandopløselige salte af et grundstof udvalgt blandt nikkel, kobolt og blandinger deraf, et tungmetal udvalgt blandt molybdæn, wolfram og blandinger deraf, og en fosforholdig forbindelse i en mængde på 0,2-1,5 25 mol fosfor pr, mol tungmetal ved en pH-værdi i området 4,0-9,0 og en temperatur i området 25-100°C til fremkomst af en færdig katalysator indeholdende 1-5 vægt% nikkel og/eller kobolt og 8-32 vægt% tungmetal.Process according to claim 2, characterized in that in step (d), instead of with the said solutions, the precipitate is mixed with dry, water-soluble salts of a element selected from nickel, cobalt and mixtures thereof, a heavy metal selected from molybdenum , tungsten and mixtures thereof, and a phosphorus-containing compound in an amount of 0.2-1.5 moles of phosphorus per mole of heavy metal at a pH in the range of 4.0-9.0 and a temperature in the range of 25-100 ° C to give a finished catalyst containing 1-5% by weight nickel and / or cobalt and 8-32% by weight heavy metal. 4. Fremgangsmåde ifølge krav 2, kendetegn 30 e t ved, at man i trin (d) i stedet for de nævnte opløsninger blander et tørt, vandopløseligt salt af et tungmetal udvalgt blandt molybdæn, wolfram og blandinger deraf, en blanding af et tørt, vandopløseligt salt udvalgt blandt nikkel, kobolt og blandinger deraf og en 35 fosforholdig forbindelse i en mængden på 0,2-1,5 mol DK 172341 B1 fosfor pr. mol tungmetal med bundfaldet ved en pH-værdi i området 4,0-9,0 og en temperatur i området 25-100°C til dannelse af en færdig katalysator indeholdende 1-5 vægt% nikkel og/eller kobolt og 8-32 vægt% tungmetal.Process according to claim 2, characterized in that, in step (d), instead of said solutions, a dry, water-soluble salt of a heavy metal selected from molybdenum, tungsten and mixtures thereof is mixed with a mixture of a dry, water-soluble salt selected from nickel, cobalt and mixtures thereof, and a phosphorus-containing compound in an amount of 0.2-1.5 moles of phosphorus per phosphorus. moles of heavy metal with the precipitate at a pH in the range of 4.0-9.0 and a temperature in the range of 25-100 ° C to form a final catalyst containing 1-5% by weight of nickel and / or cobalt and 8-32% by weight % heavy metal. 5. Fremgangsmåde ifølge krav 1, kendeteg net ved, at man i trin (a) titrerer en vandig opløsning af et surt aluminiumsalt udvalgt blandt aluminiumsulfat, aluminiumnitrat og aluminiumklorid med en vandig opløsning af en basisk aluminiumforbindelse 10 udvalgt blandt natriumaluminat og kaliumaluminat ved en pH-værdi i området 5,5-8,0 og en temperatur i området 20-90°C i mindst 30 minutter, hvorved der dannes et bundfald, og i trin (d) blander bundfaldet med en eller flere opløsninger indeholdende solubiliserede molybdat-15 eller dimolybdatsalte og nikkel- eller koboltsalte samt fosforsyre i en mængde på 0,2-1,5 mol fosfor pr. mol molybdæn ved en pH-værdi i området 4,0-8,0 og en temperatur i området 25-100°C, indtil metalsaltenes adsorption til gelen er tilstrækkelig til at føre til 20 en færdig katalysator indeholdende 2,5-4 vægt% nikkel eller kobolt og 10-14 vægt% molybdæn.Process according to claim 1, characterized in that in step (a), an aqueous solution of an acidic aluminum salt selected from aluminum sulfate, aluminum nitrate and aluminum chloride is titrated with an aqueous solution of a basic aluminum compound 10 selected from sodium aluminate and potassium aluminate at a pH. -value in the range 5.5-8.0 and a temperature in the range 20-90 ° C for at least 30 minutes to form a precipitate, and in step (d) mix the precipitate with one or more solutions containing solubilized molybdate-15 or dimolybdate salts and nickel or cobalt salts as well as phosphoric acid in an amount of 0.2-1.5 mole phosphorus per mole of molybdenum at a pH in the range of 4.0-8.0 and a temperature in the range of 25-100 ° C until the adsorption of the metal salts to the gel is sufficient to give a final catalyst containing 2.5-4% by weight nickel or cobalt and 10-14 wt.% molybdenum. 6. Fremgangsmåde ifølge krav 5, kendetegne t ved, at man i trin (d) i stedet for de nævnte opløsninger blander et tørt, vandopløseligt molybdat- 25 eller dimolybdatsalt, en blanding af et tørt, vandopløseligt nikkel- eller koboltsalt og fosforsyre i en mængde på 0,2-1,5 mol fosfor pr, mol molybdæn med bundfaldet ved en pH-værdi i området 4,0-8,0 og en temperatur i området 25-100°C til dannelse af en færdig 30 katalysator indeholdende 2,5-4 vægt% nikkel eller kobolt og 10-14 vægt% molybdæn.Process according to claim 5, characterized in that in step (d), instead of said solutions, a dry, water-soluble molybdate or dimolybdate salt is mixed, a mixture of a dry, water-soluble nickel or cobalt salt and phosphoric acid in a amount of 0.2-1.5 moles of phosphorus per mole of molybdenum with the precipitate at a pH in the range of 4.0-8.0 and a temperature in the range of 25-100 ° C to form a final catalyst containing 2 , 5-4 wt% nickel or cobalt and 10-14 wt% molybdenum. 7. Fremgangsmåde ifølge krav 1, kendetegnet ved, at man i trin (d) blander bundfaldet med tørre, vandopløselige salte af et grundstof udvalgt 35 blandt nikkel, kobolt og blandinger deraf, et tungmetal DK 172341 B1 udvalgt blandt molybdæn, wolfram og blandinger deraf og en fosforholdig forbindelse i en mængde på 0,2-1,5 mol fosfor pr. mol tungmetal ved en pH-værdi i området 4,0- 9,0 og en temperatur i området 25-100°C til dannelse af 5 en færdig katalysator indeholdende 1-5 vægt% nikkel og/eller kobolt og 8-32 vægt% tungmetal.Process according to claim 1, characterized in that in step (d), the precipitate is mixed with dry, water-soluble salts of a element selected from nickel, cobalt and mixtures thereof, a heavy metal DK 172341 B1 selected from molybdenum, tungsten and mixtures thereof. and a phosphorus-containing compound in an amount of 0.2-1.5 moles of phosphorus per mole of heavy metal at a pH in the range of 4.0 to 9.0 and a temperature in the range of 25-100 ° C to form a final catalyst containing 1-5% by weight nickel and / or cobalt and 8-32% by weight heavy metal. 8. Fremgangsmåde ifølge krav 1, kendetegne t ved, at man i trin (d) blander et tørt, vandopløseligt salt af et tungmetal udvalgt blandt molyb- 10 dæn, wolfram og blandinger deraf, en blanding af et tørt, vandopløseligt salt udvalgt blandt nikkel, kobolt og blandinger deraf og en fosforholdig forbindelse i en mængde på 0,2-1,5 mol fosfor pr. mol tungmetal med bundfaldet ved en pH-værdi i området 4,0-9,0 og en 15 temperatur i området 25-100°C til dannelse af en færdig katalysator indeholdende 1-5 vægt% nikkel og/eller kobolt og 8-32 vægt% tungmetal.Process according to claim 1, characterized in that in step (d) a dry, water-soluble salt of a heavy metal selected from molybdenum, tungsten and mixtures thereof is mixed, a mixture of a dry, water-soluble salt selected from nickel. , cobalt and mixtures thereof and a phosphorus-containing compound in an amount of 0.2-1.5 moles of phosphorus per liter. moles of heavy metal with the precipitate at a pH in the range 4.0-9.0 and a temperature in the range 25-100 ° C to form a final catalyst containing 1-5% by weight of nickel and / or cobalt and 8-32 weight% heavy metal. 9. Fremgangsmåde ifølge krav 1, kendeteg -net ved, at man i trin (a) udfælder i en vandig 20 opløsning af et surt aluminiumsalt udvalgt blandt aluminiumsulfat, aluminiumnitrat og aluminiumklorid med en vandig opløsning af en base ved en pH-værdi i området 5,5-8,0 og en temperatur i området 20-90°C i mindst 30 minutter, hvorved der dannes et bundfald, og 25 i trin (d) blander bundfaldet med en eller flere opløsninger indeholdende solubi li serede molybdat- eller dimolybdatsalte og nikkel- eller koboltsalte og fosforsyre i en mængde på 0,2-1,5 mol fosfor pr. mol molybdæn ved en pH-værdi i området 4,0-8,0 og en temperatur i 30 området 25-100°C, indtil metalsaltenes adsorption til gelen er tilstrækkelig til at føre til en færdig katalysator indeholdende 2,5-4 vægt% nikkel eller kobolt og 10-14 vægt% molybdæn.Process according to claim 1, characterized in that in step (a), an aqueous solution of an acidic aluminum salt selected from aluminum sulfate, aluminum nitrate and aluminum chloride is precipitated with an aqueous solution of a base at a pH in the range. 5.5 to 8.0 and a temperature in the range of 20-90 ° C for at least 30 minutes to form a precipitate, and in step (d) mix the precipitate with one or more solutions containing solubilized molybdate or dimolybdate salts and nickel or cobalt salts and phosphoric acid in an amount of 0.2-1.5 moles of phosphorus per liter. moles of molybdenum at a pH in the range of 4.0 to 8.0 and a temperature in the range of 25 to 100 ° C until the adsorption of the metal salts to the gel is sufficient to result in a final catalyst containing from 2.5 to 4% by weight nickel or cobalt and 10-14 wt.% molybdenum. 10. Fremgangsmåde ifølge krav 9,kendeteg-35 n e t ved, at man i trin (d) i stedet for de nævnte DK 172341 B1 opløsninger blandet et tørt, vandopløseligt molybdat-eller dimolybdatsalt, en blanding af et tørt, vandopløseligt nikkel- eller koboltsalt og fosforsyre i en mængde af 0,2-1,5 mol fosfor pr. mol molybdæn med 5 bundfaldet ved en pH-værdi i området 4,9-8,0 og en temperatur i området 25-100°C til dannelse af en færdig katalysator indeholdende 2,5-4 vægt% nikkel eller kobolt og 10-14 vægt% molybdæn.Process according to claim 9, characterized in that in step (d), instead of said DK 172341 B1 solutions, a dry, water-soluble molybdate or dimolybdate salt is mixed, a mixture of a dry, water-soluble nickel or cobalt salt. and phosphoric acid in an amount of 0.2-1.5 moles of phosphorus per liter. moles of molybdenum having the precipitate at a pH in the range 4.9-8.0 and a temperature in the range 25-100 ° C to form a final catalyst containing 2.5-4% by weight nickel or cobalt and 10-14 wt% molybdenum. 11. Fremgangsmåde ifølge krav 1, kendet eg -10 n e t ved, at man i trin (a) titrerer en vandig opløsning af en syre med en vandig opløsning af en basisk aluminiumforbindelse udvalgt blandt natriumalu-minat og kaliumaluminat ved en pH-værdi i området 5,5- 8,0 ved en temperatur i området 20-90°C i mindst 30 15 minutter, hvorved der dannes et bundfald, og i trin (d) blandet bundfaldet med en eller flere opløsninger indeholdende solubiliserede molybdat- eller dimolyb-datsalte og nikkel- eller koboltsalte og fosforsyre i en mængde på 0,2-1,5 mol fosfor pr. mol molybdæn ved en 20 pH-værdi i området 4,0-8,0 og en temperatur i området 25-100°C, indtil metalsaltenes adsorption til gelen er tilstrækkelig til at føre til en færdig katalysator indeholdende 2,5-4 vægt% nikkel eller kobolt og 10-14 vægt% molybdæn.Process according to claim 1, characterized in that in step (a), an aqueous solution of an acid is titrated with an aqueous solution of a basic aluminum compound selected from sodium aluminate and potassium aluminate at a pH in the range. 5.5 to 8.0 at a temperature in the range of 20-90 ° C for at least 30 minutes to form a precipitate and in step (d) mix the precipitate with one or more solutions containing solubilized molybdate or dimolybdate salts and nickel or cobalt salts and phosphoric acid in an amount of 0.2-1.5 mol of phosphorus per moles of molybdenum at a pH in the range of 4.0-8.0 and a temperature in the range of 25-100 ° C until the adsorption of the metal salts to the gel is sufficient to lead to a final catalyst containing 2.5-4% by weight nickel or cobalt and 10-14 wt.% molybdenum. 12. Fremgangsmåde ifølge krav l, kendeteg ne t ved, at man i trin (a) danner bundfald i en vandig opløsning af en syre med en vandig opløsning af en basisk aluminiumforbindelse udvalgt blandt natriuma-luminat og kaliumaluminat ved en pH-værdi i området 30 5,5-8,0 ved en temperatur i området 20-90°C i mindst 30 minutter, hvorved der dannes et bundfald, og i trin (d) blander et tørt, vandopløseligt molybdat- eller dimolybdatsalt og en blanding af et tørt, vandopløseligt nikkel- eller koboltsalt og fosforsyre i en mængde på 35 0,2-1,5 mol fosfor pr. mol molybdæn med bundfaldet ved DK 172341 B1 en pH-værdi i området 4,0-8,0 og en temperatur i området 25-100°C til dannelse af en færdig katalysator indeholdende 2,5-4 vægt% nikkel eller kobolt og 10-14 vægt% molybdæn.Process according to claim 1, characterized in that in step (a), precipitate is formed in an aqueous solution of an acid with an aqueous solution of a basic aluminum compound selected from sodium luminate and potassium aluminate at a pH in the range. 5.5 to 8.0 at a temperature in the range of 20-90 ° C for at least 30 minutes to form a precipitate and in step (d) mix a dry, water-soluble molybdate or dimolybdate salt and a mixture of a dry , water-soluble nickel or cobalt salt and phosphoric acid in an amount of 0.2-1.5 moles of phosphorus per mole molybdenum with the precipitate at DK 172341 B1 a pH in the range 4.0-8.0 and a temperature in the range 25-100 ° C to form a finished catalyst containing 2.5-4% by weight nickel or cobalt and 10 -14% by weight molybdenum. 13. Katalysator, indeholdende en katalytisk effek tiv mængde kobolt, nikkel og blandinger deraf og en katalytisk effektiv mængde af et tungmetal udvalgt blandt molybdæn, wolfram og blandinger deraf og en fosforforbindelse, på en aluminabærer, hvilken kataly-10 sator har et overfladeareal på mindst 300 m /g, mindst 20% af pore-volumenet i porer med diameter over 35 nm og mindst 20% af porevolumenet i porer med diameter under 7 nm, kendetegnet ved at katalysatoren er blevet fremstillet ved en fremgangsmåde ifølge et 15 eller flere af kravene 1-12.A catalyst containing a catalytically effective amount of cobalt, nickel and mixtures thereof, and a catalytically effective amount of a heavy metal selected from molybdenum, tungsten and mixtures thereof, and a phosphorus compound, on an alumina support, said catalyst having a surface area of at least 300 m / g, at least 20% of the pore volume in pores with a diameter over 35 nm and at least 20% of the pore volume in pores with a diameter below 7 nm, characterized in that the catalyst has been prepared by a process according to one or more of the claims 1-12.
DK525888A 1987-09-24 1988-09-22 Process for preparing hydrotreating catalyst from a hydrogel and catalyst prepared by the process DK172341B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/100,663 US4810686A (en) 1987-09-24 1987-09-24 Hydrotreating catalysts prepared from hydrogels
US10066387 1987-09-24

Publications (3)

Publication Number Publication Date
DK525888D0 DK525888D0 (en) 1988-09-22
DK525888A DK525888A (en) 1989-03-25
DK172341B1 true DK172341B1 (en) 1998-04-06

Family

ID=22280893

Family Applications (1)

Application Number Title Priority Date Filing Date
DK525888A DK172341B1 (en) 1987-09-24 1988-09-22 Process for preparing hydrotreating catalyst from a hydrogel and catalyst prepared by the process

Country Status (10)

Country Link
US (1) US4810686A (en)
EP (1) EP0309046B1 (en)
JP (1) JP2949346B2 (en)
AT (1) ATE68723T1 (en)
AU (1) AU602795B2 (en)
CA (1) CA1317276C (en)
DE (1) DE3865795D1 (en)
DK (1) DK172341B1 (en)
ES (1) ES2025769T3 (en)
ZA (1) ZA887092B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4880523A (en) * 1987-09-24 1989-11-14 Shell Oil Company Process for hydrotreating hydrocarbon feeds
EP0469675B1 (en) * 1990-08-03 1996-05-08 Akzo Nobel N.V. Hydrodesulphurization process
US5227353A (en) * 1991-07-24 1993-07-13 Mobil Oil Corporation Hydroprocessing catalyst composition
US5462651A (en) * 1994-08-09 1995-10-31 Texaco Inc. Hydrodearomatization of hydrocarbon oils using novel "phosphorus treated carbon" supported metal sulfide catalysts
AU701761B2 (en) * 1994-05-13 1999-02-04 Shell Oil Company High activity catalysts
US6015485A (en) * 1994-05-13 2000-01-18 Cytec Technology Corporation High activity catalysts having a bimodal mesopore structure
MX213690B (en) * 1994-05-13 2003-04-11 Cytec Tech Corp High activity catalysts.
US5472595A (en) * 1994-08-09 1995-12-05 Texaco Inc. Process for hydrodearomatization of hydrocarbon oils using carbon supported metal sulfide catalysts promoted by phosphate
US6508999B1 (en) 2000-11-21 2003-01-21 Shell Oil Company Aluminum trihydroxide phase
FR2862548B1 (en) * 2003-11-20 2007-11-09 Eurecat Europ Retrait Catalys OFF-SITE REGENERATION OF REFORMING CATALYSTS
CZ305662B6 (en) * 2014-06-30 2016-01-27 Unipetrol Výzkumně Vzdělávací Centrum, A. S. Process for preparing molybdenum catalyst with another active metal
BR102016022467B1 (en) * 2016-09-28 2022-02-01 Petróleo Brasileiro S.A. - Petrobras Process for preparing a nickel-based catalyst, nickel-based catalyst, and its use in a steam reforming process
CN114602483B (en) * 2022-03-10 2023-08-18 福州大学 Hydrodesulfurization catalyst for catalytically cracked gasoline and preparation method thereof

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3390100A (en) * 1964-02-14 1968-06-25 American Cyanamid Co Process for the preparation of extrudates from hydrogels
US4019978A (en) * 1972-08-29 1977-04-26 Laporte Industries Limited Process for the production of alumina
US3864461A (en) * 1972-08-29 1975-02-04 Laporte Industries Ltd Process for the production of alumina
JPS50123588A (en) * 1974-02-07 1975-09-29
US4082695A (en) * 1975-01-20 1978-04-04 Mobil Oil Corporation Catalyst for residua demetalation and desulfurization
US4036784A (en) * 1975-05-30 1977-07-19 Uop Inc. Method of producing an extruded catalyst composition
GB1550684A (en) * 1975-08-28 1979-08-15 Mobil Oil Corp Demetalation-desulphurisation catalyst and the preparation and use thereof
US4094820A (en) * 1977-03-11 1978-06-13 Union Oil Company Of California Manufacture of cobalt and/or nickel-molybdenum-alumina catalysts
US4124537A (en) * 1977-09-12 1978-11-07 Uop Inc. Coextruded catalytic composite
US4192736A (en) * 1978-11-29 1980-03-11 Chevron Research Company Removal of indigenous metal impurities from an oil with phosphorus oxide-promoted alumina
US4328127A (en) * 1980-09-16 1982-05-04 Mobil Oil Corporation Residua demetalation/desulfurization catalyst
US4404097A (en) * 1980-09-16 1983-09-13 Mobil Oil Corporation Residua demetalation/desulfurization catalyst and methods for its use
US4456699A (en) * 1981-06-17 1984-06-26 Standard Oil Company (Indiana) Catalyst and support, and their methods of preparation
JPS61138537A (en) * 1984-12-11 1986-06-26 Nikki Universal Co Ltd Production of hydrogenated desulfurizing catalyst
US4717705A (en) * 1986-10-28 1988-01-05 Shell Oil Company Hydrotreating catalysts prepared from hydrogels
CA1312595C (en) * 1986-10-28 1993-01-12 Richard Alan Kemp Process for the preparation of hydrotreating catalysts from hydrogels
US4717704A (en) * 1986-10-28 1988-01-05 Shell Oil Company Hydrotreating catalysts prepared from hydrogels
US4717706A (en) * 1986-10-28 1988-01-05 Shell Oil Company Wide-pore hydrogel-derived catalysts
DE3865794D1 (en) * 1987-09-24 1991-11-28 Shell Int Research HYDRORAFFINATION CATALYST, FROM HYDROGELS, METHOD FOR THE PRODUCTION AND USE.

Also Published As

Publication number Publication date
US4810686A (en) 1989-03-07
JPH01115456A (en) 1989-05-08
AU602795B2 (en) 1990-10-25
ATE68723T1 (en) 1991-11-15
DK525888D0 (en) 1988-09-22
EP0309046B1 (en) 1991-10-23
ES2025769T3 (en) 1992-04-01
EP0309046A1 (en) 1989-03-29
DE3865795D1 (en) 1991-11-28
JP2949346B2 (en) 1999-09-13
DK525888A (en) 1989-03-25
AU2273388A (en) 1989-04-06
ZA887092B (en) 1989-09-27
CA1317276C (en) 1993-05-04

Similar Documents

Publication Publication Date Title
JP4405148B2 (en) Alumina having novel pore structure, method for producing the same, and catalyst prepared from alumina
DK172341B1 (en) Process for preparing hydrotreating catalyst from a hydrogel and catalyst prepared by the process
KR102197525B1 (en) Preparation of a hydrocarbon conversion catalyst
DK171345B1 (en) Process for producing hydrotreating catalysts from hydrogels as well as catalysts prepared by the process
EP0309045B1 (en) Hydrotreating catalysts from hydrogels, process for the preparation and use thereof
EP0266012B1 (en) Process for preparing hydrotreating catalysts from hydrogels
US4716141A (en) Hydrotreating catalysts prepared from hydrogels
US5001101A (en) Sulfiding of hydrogel derived catalysts
US4786403A (en) Process for hydrotreating hydro carbon feeds
US4716140A (en) Hydrotreating catalysts prepared from hydrogels
EP0317034A1 (en) Process for the preparation of hydrotreating catalysts from hydrogels
DK171142B1 (en) Preparation of Hydrocarbon Catalysts from Hydrogels, Catalyst Prepared by the Process and Hydrocarbon Hydrocarbon Feed Materials Process
US5062947A (en) Sulfiding of hydrogel derived catalysts
DK171141B1 (en) Process for preparing a hydrotreating catalyst from a hydrogel and catalyst prepared by the process
US4880523A (en) Process for hydrotreating hydrocarbon feeds
US4880526A (en) Hydrotreating catalysts prepared from hydrogels
US4738945A (en) Hydrotreating catalysts prepared from hydrogels
US4810687A (en) Hydrotreating catalysts prepared from hydrogels
US4810684A (en) Hydrotreating catalysts prepared from hydrogels
US4880525A (en) Process for hydrotreating hydrocarbon feeds
US4820680A (en) Hydrotreating catalysts prepared from hydrogels
US4880522A (en) Process for hydrotreating hydrocarbon feeds

Legal Events

Date Code Title Description
B1 Patent granted (law 1993)
PBP Patent lapsed

Country of ref document: DK