JP3762708B2 - Multistage rotary compressor - Google Patents

Multistage rotary compressor Download PDF

Info

Publication number
JP3762708B2
JP3762708B2 JP2002021338A JP2002021338A JP3762708B2 JP 3762708 B2 JP3762708 B2 JP 3762708B2 JP 2002021338 A JP2002021338 A JP 2002021338A JP 2002021338 A JP2002021338 A JP 2002021338A JP 3762708 B2 JP3762708 B2 JP 3762708B2
Authority
JP
Japan
Prior art keywords
compression element
discharge
rotary compression
pressure
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002021338A
Other languages
Japanese (ja)
Other versions
JP2003222091A (en
Inventor
兼三 松本
晴久 山崎
昌也 只野
里  和哉
大 松浦
隆泰 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002021338A priority Critical patent/JP3762708B2/en
Priority to CN02142300A priority patent/CN1423055A/en
Priority to CN 200610006025 priority patent/CN1807896B/en
Priority to CN 200610006023 priority patent/CN1807895B/en
Priority to TW91123073A priority patent/TW564289B/en
Priority to EP02257800A priority patent/EP1316730A3/en
Priority to US10/305,775 priority patent/US6892454B2/en
Priority to KR1020020075257A priority patent/KR100893464B1/en
Publication of JP2003222091A publication Critical patent/JP2003222091A/en
Priority to US10/916,273 priority patent/US7008199B2/en
Priority to US10/916,272 priority patent/US7101161B2/en
Priority to US10/916,271 priority patent/US6974314B2/en
Priority to US10/916,200 priority patent/US7168257B2/en
Application granted granted Critical
Publication of JP3762708B2 publication Critical patent/JP3762708B2/en
Priority to KR1020080062188A priority patent/KR20080066905A/en
Priority to KR1020080062250A priority patent/KR100862824B1/en
Priority to KR1020080062256A priority patent/KR100862825B1/en
Priority to KR1020080062187A priority patent/KR100862823B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Description

【0001】
【発明の属する技術分野】
本発明は、第1の回転圧縮要素で圧縮されて吐出された冷媒ガスを第2の回転圧縮要素に吸引し、圧縮して吐出する多段圧縮式ロータリコンプレッサに関するものである。
【0002】
【従来の技術】
従来この種の多段圧縮式ロータリコンプレッサ、特に内部中間圧型多段圧縮式ロータリコンプレッサでは、第1の回転圧縮要素の吸込ポートから冷媒ガスがシリンダ内の低圧室側に吸入され、ローラとベーンの動作により圧縮されて中間圧となりシリンダの高圧室側より吐出ポート、吐出消音室を経て密閉容器内に吐出される。そして、この密閉容器内の中間圧の冷媒ガスは第2の回転圧縮要素の吸込ポートからシリンダの低圧室側に吸入され、ローラとベーンの回転により2段目の圧縮が行われて高温高圧の冷媒ガスとなり、高圧室側より吐出ポート、吐出消音室を経て外部の放熱器に流入する構成とされている。
【0003】
係る多段圧縮式ロータリコンプレッサにおいて、第1及び第2の回転圧縮要素の吐出消音室には、シリンダ内で圧縮されて吐出消音室に吐出された冷媒の逆流を防ぐために吐出弁が設けられており、この吐出弁により吐出ポートが開閉される。
【0004】
ここで、高低圧差の大きい冷媒、例えば二酸化炭素を冷媒として用いた場合、吐出冷媒圧力は図8に示すように高圧HPとなる第2の回転圧縮要素で12MPaGに達し、一方、低段側となる第1の回転圧縮要素で8MPaG(中間圧MP)となる(第1の回転圧縮要素の吸入圧力LPは4MPaG)。その結果、2段目の段差圧(第2の回転圧縮要素の吸入圧力MPと第2の回転圧縮要素の吐出圧力HPの差)は4MPaGと大きくなる。また、外気温が低く冷媒の蒸発温度が低くなると第1の回転圧縮要素の回転圧縮要素の吐出圧力MPが低くなってしまうため、2段目の段差圧(第2の回転圧縮要素の吸入圧力MPと第2の回転圧縮要素の吐出圧力HP)がさらに大きくなる。
【0005】
【発明が解決しようとする課題】
このように2段目の段差圧が大きくなると、第2の回転圧縮要素の吐出弁内外の圧力差が過大となり、この圧力差によって第2の回転圧縮要素の吐出弁等が破損してしまう問題があった。
【0006】
本発明は、係る技術的課題を解決するために成されたものであり、2段目の段差圧によって生じる第2の回転圧縮要素の吐出弁等の破損故障を未然に回避することができる多段圧縮式ロータリコンプレッサを提供することを目的とする。
【0007】
【課題を解決するための手段】
即ち、本発明では密閉容器内に電動要素と、この電動要素にて駆動される第1及び第2の回転圧縮要素を備え、第1の回転圧縮要素で圧縮され、密閉容器内に吐出された中間圧の冷媒ガスを第2の回転圧縮要素に吸引し、圧縮して吐出するものであって、第1の回転圧縮要素で圧縮された中間圧の冷媒ガスの通過経路と第2の回転圧縮要素の冷媒吐出側とを連通する連通路と、この連通路を開閉する弁装置とを備え、当該弁装置は、中間圧の冷媒ガスと第2の回転圧縮要素の冷媒吐出側の冷媒ガスとの圧力差が所定の上限値以上になった場合、連通路を開放するようにしたので、第2の回転圧縮要素の吐出圧力と吸込圧力との圧力差、即ち、2段目の段差圧を所定の上限値より低く抑えることができるようになる。
【0008】
これにより、第2の回転圧縮要素の吐出弁の破損等の故障発生を未然に回避することができるようになるものである。
【0009】
請求項2の発明では上記に加えて、第2の回転圧縮要素を構成するシリンダと、このシリンダ内で圧縮された冷媒ガスを吐出する吐出消音室とを備え、連通路は吐出消音室を画成する壁内に形成して密閉容器内と吐出消音室とを連通し、弁装置は前記壁内に設けているので、第1の回転圧縮要素で圧縮された中間圧の冷媒ガスの通過経路と第2の回転圧縮要素の冷媒吐出側とを連通する連通路、及び、連通路を開閉する弁装置を第2の回転圧縮要素の壁内に集約することができるようになる。
【0010】
これにより、構造の簡素化と全体寸法の小型化を実現することができるようになるものである。
【0011】
【発明の実施の形態】
次に図面に基づき本発明の実施形態を詳述する。図1は本発明の多段圧縮式ロータリコンプレッサの実施例として、第1及び第2の回転圧縮要素32、34を備えた内部中間圧型多段(2段)圧縮式ロータリコンプレッサの縦断面図である。
【0012】
図1において、10は二酸化炭素を冷媒とする内部中間圧型多段圧縮式ロータリコンプレッサで、この多段圧縮式ロータリコンプレッサ10は、鋼板からなる円筒状の容器本体12A、及びこの容器本体12Aの上部開口を閉塞する略椀状のエンドキャップ(蓋体)12Bとで形成される密閉容器12と、この密閉容器12の容器本体12Aの内部空間の上側に配置収納された電動要素14と、この電動要素14の下側に配置され、電動要素14の回転軸16により駆動される第1の回転圧縮要素32(1段目)及び第2の回転圧縮要素34(2段目)からなる回転圧縮機構部18とにより構成されている。尚、密閉容器12は底部をオイル溜めとする。また、前記エンドキャップ12Bの上面中心には円形の取付孔12Dが形成され、この取付孔12Dには電動要素14に電力を供給するためのターミナル(配線を省略)20が取り付けられている。
【0013】
電動要素14は、密閉容器12の上部空間の内周面に沿って環状に取り付けられたステータ22と、このステータ22の内側に若干の間隔を設けて挿入設置されたロータ24とからなる。そして、このロータ24には鉛直方向に延びる回転軸16が固定されている。
【0014】
ステータ22は、ドーナッツ状の電磁鋼板を積層した積層体26と、この積層体26の歯部に直巻き(集中巻き)方式によって巻装されたステータコイル28を有している。また、ロータ24もステータ22と同様に電磁鋼板の積層体30で形成され、この積層体30内に永久磁石MGを挿入して形成されている。
【0015】
前記第1の回転圧縮要素32と第2の回転圧縮要素34との間には中間仕切板36が挟持されている。即ち、第1の回転圧縮要素32と第2の回転圧縮要素34は、中間仕切板36と、この中間仕切板36の上下に配置されたシリンダ38、シリンダ40と、この上下シリンダ38、40内を180度の位相差を有して回転軸16に設けた上下偏心部42、44に嵌合されて偏心回転する上下ローラ46、48と、この上下ローラ46、48に当接して上下シリンダ38、40内をそれぞれ低圧室側と高圧室側に区画する上下ベーン50、52と、上シリンダ38の上側の開口面及び下シリンダ40の下側の開口面を閉塞して回転軸16の軸受けを兼用する支持部材としての上部支持部材54及び下部支持部材56にて構成される。
【0016】
また、図4乃至図7に示す如く、上部支持部材54及び下部支持部材56には、吸込ポート161、162にて上下シリンダ38、40の内部とそれぞれ連通する吸込通路58、60と、上部支持部材54及び下部支持部材56の凹陥部を壁としてのカバーによって閉塞することにより形成された吐出消音室62、64とが設けられている。即ち、吐出消音室62は吐出消音室62を画成する壁としての上部カバー66、吐出消音室64は吐出消音室64を画成する壁としての下部カバー68にて閉塞される。
【0017】
この場合、上部支持部材54の中央には軸受け54Aが起立形成されている。また、下部支持部材56の中央には軸受け56Aが貫通形成されており、回転軸16は上部支持部材54の軸受け54Aと下部支持部材56の軸受け56Aに保持されている。
【0018】
また、下部カバー68はドーナッツ状の円形鋼板から構成されており、第1の回転圧縮要素32の下シリンダ40内部と連通する吐出消音室64を画成するもので、これは周辺部の主ボルト129・・・によって下から下部支持部材56に固定され、この主ボルト129・・・の先端は上部支持部材54に螺合する。図4は下部支持部材56の下面を示しており、128は吐出消音室64内において吐出ポート41を開閉する第1の回転圧縮要素32の吐出弁である。
【0019】
そして、第1の回転圧縮要素32の吐出消音室64と密閉容器12内とは連通路にて連通しており、この連通路は上部カバー66、上下シリンダ38、40、中間仕切板36を貫通する図示しない孔である。この場合、連通路の上端には中間吐出管121が立設されており、この中間吐出管121から密閉容器12内に中間圧の冷媒が吐出される。
【0020】
また、上部カバー66は第2の回転圧縮要素34の上シリンダ38内部と吐出ポート39にて連通する吐出消音室62を画成し、この上部カバー66の上側には、上部カバー66と所定間隔を存して、電動要素14が設けられている。当該上部カバー66は、図5に示す如く前記上部支持部材54の軸受け54Aが貫通する孔が形成された略ドーナッツ状の円形鋼板から構成されており、周辺部が主ボルト78・・・により固定されている。このため、この主ボルト78・・・の先端は下部支持部材56に螺合するものである。尚、図5において127は吐出消音室62内において吐出ポート39を開閉する第2の回転圧縮要素34の吐出弁である。
【0021】
ここで、吐出弁127、128は縦長略矩形状の金属板からなる弾性部材にて構成されており、吐出弁127、128の一側は吐出ポート39、41に当接して密閉すると共に、他側は吐出ポート39、41と所定の間隔を存して設けられた図示しないネジで固定されている。吐出弁127、128は、吐出ポート39、41に一定の付勢力で当接し、弾性力で吐出ポート39、41を開閉可能に閉塞する。
【0022】
また、第2の回転圧縮要素34の上部カバー66内には、本発明の連通路200が設けられている。当該連通路200は、第1の回転圧縮要素32で圧縮された中間圧の冷媒ガスの通過経路である密閉容器12内と第2の回転圧縮要素の冷媒吐出側の吐出消音室62とを連通する通路であり、図2に示すように水平に延在する第1の通路201の一端が密閉容器12内に連通しており、第1の通路201の他端は弁装置収納室202に連通している。この弁装置収納室202は、上部カバー66を鉛直方向に貫通する孔であり、弁装置収納室202の上面は密閉容器12に開口すると共に、下面は吐出消音室62に開口している。また、この弁装置収納室202の上下開口はそれぞれ封止材203、204により塞がれている。
【0023】
そして、弁装置収納室202の下部に設けられた封止材204には、弁装置収納室202と吐出消音室62とを連通する第2の通路205が設けられている。これら第1の通路201、弁装置収納室202及び第2の通路205によって連通路200が構成される。更に、この連通路200の弁装置収納室202内には球状の弁装置207が収納されており、この弁装置207の上面には伸縮自在なスプリング206(付勢部材)の一端が当接して設けられている。このスプリング206の他端は、上側の封止材203に固定され、弁装置207は係るスプリング206により常時下側に向けて付勢され、常には第2の通路205を閉塞している。
【0024】
更に、密閉容器12内の中間圧の冷媒が第1の通路201から弁装置収納室202内に流入し、弁装置207を下側に向けて付勢すると共に、吐出消音室62内の高圧の冷媒が下側の封止材204に設けられた第2の通路205から弁装置収納室202内に流入して弁装置207の下面から弁装置207を上側に向けて付勢する構造とされている。
【0025】
このように弁装置207は、スプリング206が当接する側、即ち上側から中間圧の冷媒ガスとスプリング206により下側に向けて付勢され、反対側からは高圧の冷媒ガスにより上側に向けて付勢される。そして、常には弁装置207の下面は第2の通路205に当接して密閉しており、これによって連通路200は弁装置207により閉塞されている。
【0026】
尚、スプリング206の付勢力は、密閉容器12内の中間圧の冷媒ガスと吐出消音室62内の高圧の冷媒ガスの圧力差が上限値である例えば8MPaGに達した場合に、第1の通路205に当接して密閉していた弁装置207が第2の通路205から流入する高圧の冷媒ガスにより上方に押し上げられるように設定されているものとする。従って、上記圧力差が8MPaG(上限値)以上に開いた場合、弁装置収納室202を介して第1の通路201と第2の通路205が連通し、吐出消音室62内の高圧の冷媒ガスが密閉容器12内に流出する。そして、上記圧力差が8MPaG未満まで縮まると、スプリング206は弁装置207を第2の通路205に当接させて密閉し、第1の通路201と第2の通路205は弁装置207によって塞がれることとなる。これにより、2段目の段差圧が過大となることを未然に回避する。
【0027】
前述の如く冷媒としては地球環境にやさしく、可燃性及び毒性等を考慮して自然冷媒である前記二酸化炭素(CO2)を使用し、潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油等既存のオイルが使用される。
【0028】
以上の構成で次に動作を説明する。ターミナル20及び図示されない配線を介して電動要素14のステータコイル28に通電されると、電動要素14が起動してロータ24が回転する。この回転により回転軸16と一体に設けられた上下偏心部42、44に嵌合されて上下ローラ46、48が上下シリンダ38、40内を偏心回転する。
【0029】
これにより、下部支持部材56に形成された吸込通路60を経由して図5に示すように吸込ポート162から下シリンダ40の低圧室側に吸入された低圧の冷媒は、下ローラ48と下ベーン52の動作により圧縮されて中間圧となり下シリンダ40の高圧室側より吐出ポート41、下部支持部材56に形成された吐出消音室64から図示しない連通路を経て中間吐出管121から密閉容器12内に吐出される。
【0030】
そして、密閉容器12内の中間圧の冷媒ガスは、図示しない冷媒通路を通って、上部支持部材54に形成された吸込通路58を経由して図7に示すように吸込ポート161から上シリンダ38の低圧室側に吸入される。吸入された中間圧の冷媒ガスは、上ローラ46と上べーン52の動作により2段目の圧縮が行われて高温高圧の冷媒ガスとなり、高圧室側から吐出ポート39を通り上部支持部材54に形成された吐出消音室62に吐出される。
【0031】
このとき、密閉容器12内の中間圧の冷媒ガスと吐出消音室62内の高圧の冷媒ガスの圧力差が8MPaG未満であれば、前述の如く弁装置207は弁装置収納室202内の第2の通路205に当接して密閉するため、連通路200は開放されることなく、吐出消音室62に吐出された高圧の冷媒ガスは図示しない冷媒通路を通って全て多段圧縮式ロータリコンプレッサ10の外部に設けられた図示しない放熱器に流入する。
【0032】
放熱器に流入した冷媒はここで放熱して加熱作用を発揮する。放熱器を出た冷媒は図示しない減圧装置で減圧された後、これも図示しない蒸発器に入り、そこで蒸発する。そして、最終的には第1の回転圧縮要素32の吸込通路60に吸い込まれる循環を繰り返す。
【0033】
ここで、外気温が低下して前記蒸発器における冷媒の蒸発温度が低くなると、前述の如く第1の回転圧縮要素32から密閉容器12内に吐出される冷媒の圧力(中間圧)も上がり難くなる。このようにして密閉容器12内の中間圧の冷媒ガスと吐出消音室62内の高圧の冷媒ガスの圧力差が8MPaGに達した場合、吐出消音室62内の圧力により第2の通路205に当接している弁装置207はスプリング206に抗して押し上げられ、第2の通路205から離れるため、第1の通路201と第2の通路205が連通し、高圧の冷媒ガスが中間圧側の密閉容器12内に流れ込む。そして、両者の圧力差が8MPaG未満まで低下すると、弁装置207は第2の通路205に当接して密閉し、これにより第2の通路205は弁装置207により塞がれる。
【0034】
このように、密閉容器12内に電動要素14と、この電動要素14にて駆動される第1及び第2の回転圧縮要素32、34を備え、第1の回転圧縮要素32で圧縮された中間圧の冷媒ガスを第2の回転圧縮要素34に吸引し、圧縮して吐出するものであって、第1の回転圧縮要素32で圧縮された中間圧の冷媒ガスの通過経路と第2の回転圧縮要素34の冷媒吐出側とを連通する連通路200と、この連通路200を開閉する弁装置207とを備え、当該弁装置207は、中間圧の冷媒ガスと第2の回転圧縮要素34の冷媒吐出側の冷媒ガスとの圧力差が所定の上限値である8MPaG以上になった場合、連通路200を開放するものとしているので、2段目の段差圧を上限値より低く抑え、第2の回転圧縮要素34の吐出弁128の破損を未然に回避することができるようになる。
【0035】
また、第2の回転圧縮要素34を構成する上シリンダ38と、この上シリンダ38内で圧縮された冷媒ガスを吐出する吐出消音室62と、この吐出消音室62を画成する壁としての上部カバー66とを備え、連通路200は上部カバー66内に形成され、密閉容器12内と吐出消音室62とを連通すると共に、弁装置207は上部カバー66内に設けているので、連通路200を複雑な構造とすることなく、2段目の段差圧を抑えることができるようになる。
【0036】
実施例はいずれも回転軸16を縦置型とした多段圧縮式ロータリコンプレッサ10について説明したが、この発明は回転軸を横置型とした多段圧縮式ロータリコンプレッサにも適応できることは言うまでもない。
【0037】
また、多段圧縮式ロータリコンプレッサを第1及び第2の回転圧縮要素を備えた2段圧縮式ロータリコンプレッサで説明したが、これに限らず回転圧縮要素を3段、4段或いはそれ以上の回転圧縮要素を備えた多段圧縮式ロータリコンプレッサに適応しても差し支えない。
【0038】
尚、実施例では弁装置207を球状の弁装置としたが、これに限らず、図3に示すような円筒状の弁装置217としても差し支えない。この場合、弁装置217は弁装置収納室202の壁面に当接し密閉するように設けられており、通常、第1の通路201と第2の通路205の間の弁装置収納室202内に位置して、連通路200を閉塞している。そして、圧力差が8MPaGを越えた場合、弁装置217が第1の通路201の上方に押し上げられることにより第1の通路201と第2の通路205が連通し、高圧の冷媒ガスが中間圧の密閉容器12内に流れ込む。そして、両者の圧力差が8MPaG未満になると弁装置217は第1の通路201の下方に戻り、第1の通路201と第2の通路205は弁装置217により塞がれる。
【0039】
【発明の効果】
以上詳述した如く本発明によれば、密閉容器内に電動要素と、この電動要素にて駆動される第1及び第2の回転圧縮要素を備え、第1の回転圧縮要素で圧縮された中間圧の冷媒ガスを第2の回転圧縮要素に吸引し、圧縮して吐出するものであって、第1の回転圧縮要素で圧縮された中間圧の冷媒ガスの通過経路と第2の回転圧縮要素の冷媒吐出側とを連通する連通路と、この連通路を開閉する弁装置とを備え、当該弁装置は、中間圧の冷媒ガスと第2の回転圧縮要素の冷媒吐出側の冷媒ガスとの圧力差が所定の上限値以上になった場合、連通路を開放するようにしたので、第2の回転圧縮要素の吐出圧力と吸込圧力との圧力差、即ち、2段目の段差圧を所定の上限値より低く抑えることができるようになる。
【0040】
これにより、第2の回転圧縮要素の吐出弁の破損等の故障発生を未然に回避することができるようになるものである。
【0041】
請求項2の発明によれば、上記に加えて第2の回転圧縮要素を構成するシリンダと、このシリンダ内で圧縮された冷媒ガスを吐出する吐出消音室とを備え、第1の回転圧縮要素で圧縮された中間圧の冷媒ガスを密閉容器内に吐出し、第2の回転圧縮要素はこの密閉容器内の中間圧の冷媒ガスを吸引すると共に、連通路は吐出消音室を画成する壁内に形成して密閉容器内と吐出消音室とを連通し、弁装置は前記壁内に設けているので、第1の回転圧縮要素で圧縮された中間圧の冷媒ガスの通過経路と第2の回転圧縮要素の冷媒吐出側とを連通する連通路、及び、連通路を開閉する弁装置を第2の回転圧縮要素のカバー内に集約することができるようになる。
【0042】
これにより、構造の簡素化と全体寸法の小型化を実現することができるようになるものである。
【図面の簡単な説明】
【図1】本発明の実施例の多段圧縮式ロータリコンプレッサの縦断面図である。
【図2】図1の多段圧縮式ロータリコンプレッサの第2の回転圧縮要素の連通路部分の拡大断面図である。
【図3】他の実施例の多段圧縮式ロータリコンプレッサの第2の回転圧縮要素の連通路部分の拡大断面図である。
【図4】図1の多段圧縮式ロータリコンプレッサの下部支持部材支持部材の下面図である。
【図5】図1の多段圧縮式ロータリコンプレッサの上部支持部材及び上部カバーの上面図である。
【図6】図1の多段圧縮式ロータリコンプレッサの下シリンダの下面図である。
【図7】図1の多段圧縮式ロータリコンプレッサの下シリンダの下面図である。
【図8】外気温度と各圧力の関係を示す図である。
【符号の説明】
10 多段圧縮式ロータリコンプレッサ
12 密閉容器
14 電動要素
16 回転軸
18 回転圧縮機構部
20 ターミナル
22 ステータ
24 ロータ
26 積層体
28 ステータコイル
30 積層体
32 第1の回転圧縮要素
34 第2の回転圧縮要素
36 中間仕切板
38、40 シリンダ
54 上部支持部材
62、64 吐出消音室
66 上部カバー
127、128 吐出弁
200 連通路
201 第1の通路
202 弁装置収納室
203、204 封止材
205 第2の通路
206 スプリング
207 弁装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multistage compression rotary compressor that draws refrigerant gas compressed and discharged by a first rotary compression element into a second rotary compression element, compresses and discharges the refrigerant gas.
[0002]
[Prior art]
Conventionally, in this type of multi-stage compression type rotary compressor, especially an internal intermediate pressure type multi-stage compression type rotary compressor, refrigerant gas is sucked from the suction port of the first rotary compression element into the low-pressure chamber in the cylinder, and the operation of the rollers and vanes The compressed intermediate pressure is discharged from the high pressure chamber side of the cylinder through the discharge port and discharge silencer chamber into the sealed container. The intermediate-pressure refrigerant gas in the sealed container is sucked into the low-pressure chamber side of the cylinder from the suction port of the second rotary compression element, and the second-stage compression is performed by the rotation of the roller and the vane. The refrigerant gas is configured to flow into the external radiator from the high pressure chamber side through the discharge port and the discharge silencer chamber.
[0003]
In such a multistage compression rotary compressor, the discharge silencer chambers of the first and second rotary compression elements are provided with discharge valves to prevent the backflow of the refrigerant compressed in the cylinder and discharged into the discharge silencer chamber. The discharge port is opened and closed by this discharge valve.
[0004]
Here, when a refrigerant having a large difference between high and low pressure, for example, carbon dioxide is used as the refrigerant, the discharge refrigerant pressure reaches 12 MPaG in the second rotary compression element having a high pressure HP as shown in FIG. The first rotary compression element becomes 8 MPaG (intermediate pressure MP) (the suction pressure LP of the first rotary compression element is 4 MPaG). As a result, the second step pressure (the difference between the suction pressure MP of the second rotary compression element and the discharge pressure HP of the second rotary compression element) becomes as large as 4 MPaG. Further, since the discharge pressure MP of the rotary compression element of the first rotary compression element becomes low when the outside air temperature is low and the evaporation temperature of the refrigerant is low, the second step pressure (the suction pressure of the second rotary compression element) MP and the discharge pressure HP of the second rotary compression element are further increased.
[0005]
[Problems to be solved by the invention]
When the step pressure in the second stage increases in this way, the pressure difference between the inside and outside of the discharge valve of the second rotary compression element becomes excessive, and the discharge valve of the second rotary compression element is damaged by this pressure difference. was there.
[0006]
The present invention has been made in order to solve the technical problem, and is capable of avoiding a breakage failure such as a discharge valve of the second rotary compression element caused by the second step pressure. It aims at providing a compression type rotary compressor.
[0007]
[Means for Solving the Problems]
That is, in the present invention, an electric element and a first and a second rotary compression element driven by the electric element are provided in the sealed container, and the compressed element is compressed by the first rotary compression element and discharged into the closed container. The intermediate pressure refrigerant gas is sucked into the second rotary compression element, compressed and discharged, and the passage path of the intermediate pressure refrigerant gas compressed by the first rotary compression element and the second rotary compression A communication passage that communicates with the refrigerant discharge side of the element, and a valve device that opens and closes the communication passage. The valve device includes an intermediate-pressure refrigerant gas and a refrigerant gas on the refrigerant discharge side of the second rotary compression element. Since the communication path is opened when the pressure difference of the second pressure exceeds the predetermined upper limit value, the pressure difference between the discharge pressure and the suction pressure of the second rotary compression element, that is, the second step pressure It becomes possible to keep it lower than the predetermined upper limit value.
[0008]
As a result, it is possible to avoid the occurrence of failure such as breakage of the discharge valve of the second rotary compression element.
[0009]
In addition to the above, the invention of claim 2 further includes a cylinder constituting the second rotary compression element and a discharge silencer chamber for discharging refrigerant gas compressed in the cylinder, and the communication path defines the discharge silencer chamber. Since the valve device is provided in the wall so that the valve device is provided in the wall, the passage path of the intermediate-pressure refrigerant gas compressed by the first rotary compression element is formed in the formed wall. And a valve device for opening and closing the communication passage can be concentrated in the wall of the second rotary compression element.
[0010]
As a result, the structure can be simplified and the overall size can be reduced.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal sectional view of an internal intermediate pressure type multi-stage (two-stage) compression rotary compressor having first and second rotary compression elements 32 and 34 as an embodiment of the multi-stage compression rotary compressor of the present invention.
[0012]
In FIG. 1, reference numeral 10 denotes an internal intermediate pressure multistage compression rotary compressor using carbon dioxide as a refrigerant. This multistage compression rotary compressor 10 has a cylindrical container body 12A made of a steel plate and an upper opening of the container body 12A. A sealed container 12 formed of a substantially bowl-shaped end cap (lid body) 12B that is closed, an electric element 14 disposed and housed above the internal space of the container body 12A of the sealed container 12, and the electric element 14 The rotary compression mechanism unit 18 that is arranged on the lower side and includes a first rotary compression element 32 (first stage) and a second rotary compression element 34 (second stage) driven by the rotary shaft 16 of the electric element 14. It is comprised by. The closed container 12 has an oil reservoir at the bottom. A circular mounting hole 12D is formed in the center of the upper surface of the end cap 12B, and a terminal (wiring is omitted) 20 for supplying power to the electric element 14 is mounted in the mounting hole 12D.
[0013]
The electric element 14 includes a stator 22 attached in an annular shape along the inner peripheral surface of the upper space of the hermetic container 12, and a rotor 24 inserted and installed inside the stator 22 with a slight gap. A rotating shaft 16 extending in the vertical direction is fixed to the rotor 24.
[0014]
The stator 22 includes a laminate 26 in which donut-shaped electromagnetic steel plates are laminated, and a stator coil 28 wound around the teeth of the laminate 26 by a direct winding (concentrated winding) method. Similarly to the stator 22, the rotor 24 is also formed by a laminated body 30 of electromagnetic steel plates, and is formed by inserting a permanent magnet MG into the laminated body 30.
[0015]
An intermediate partition plate 36 is sandwiched between the first rotary compression element 32 and the second rotary compression element 34. That is, the first rotary compression element 32 and the second rotary compression element 34 include an intermediate partition plate 36, a cylinder 38 and a cylinder 40 disposed above and below the intermediate partition plate 36, and the inside of the upper and lower cylinders 38 and 40. The upper and lower rollers 46 and 48 are fitted to the upper and lower eccentric portions 42 and 44 provided on the rotating shaft 16 with a phase difference of 180 degrees and rotate eccentrically, and the upper and lower cylinders 38 are in contact with the upper and lower rollers 46 and 48. The upper and lower vanes 50 and 52 that divide the inside of the inside 40 into a low-pressure chamber side and a high-pressure chamber side, and the upper opening surface of the upper cylinder 38 and the lower opening surface of the lower cylinder 40 are closed to support the bearing of the rotary shaft 16 An upper support member 54 and a lower support member 56 are used as supporting members.
[0016]
Further, as shown in FIGS. 4 to 7, the upper support member 54 and the lower support member 56 are provided with suction passages 58 and 60 that communicate with the inside of the upper and lower cylinders 38 and 40 through suction ports 161 and 162, respectively. Discharge silencing chambers 62 and 64 formed by closing the concave portions of the member 54 and the lower support member 56 with a cover as a wall are provided. That is, the discharge silencer chamber 62 is closed by an upper cover 66 as a wall defining the discharge silencer chamber 62, and the discharge silencer chamber 64 is closed by a lower cover 68 as a wall defining the discharge silencer chamber 64.
[0017]
In this case, a bearing 54 </ b> A is formed upright at the center of the upper support member 54. A bearing 56A is formed through the center of the lower support member 56, and the rotary shaft 16 is held by the bearing 54A of the upper support member 54 and the bearing 56A of the lower support member 56.
[0018]
The lower cover 68 is made of a donut-shaped circular steel plate, and defines a discharge silencer chamber 64 that communicates with the inside of the lower cylinder 40 of the first rotary compression element 32. 129... Are fixed to the lower support member 56 from below, and the ends of the main bolts 129. FIG. 4 shows the lower surface of the lower support member 56, and 128 is a discharge valve of the first rotary compression element 32 that opens and closes the discharge port 41 in the discharge silencer chamber 64.
[0019]
The discharge silencer chamber 64 of the first rotary compression element 32 and the inside of the sealed container 12 communicate with each other through a communication path. The communication path passes through the upper cover 66, the upper and lower cylinders 38 and 40, and the intermediate partition plate 36. These holes are not shown. In this case, an intermediate discharge pipe 121 is erected at the upper end of the communication path, and an intermediate pressure refrigerant is discharged from the intermediate discharge pipe 121 into the sealed container 12.
[0020]
The upper cover 66 defines a discharge silencing chamber 62 that communicates with the inside of the upper cylinder 38 of the second rotary compression element 34 at the discharge port 39. The electric element 14 is provided. The upper cover 66 is formed of a substantially donut-shaped circular steel plate in which a hole through which the bearing 54A of the upper support member 54 passes is formed as shown in FIG. Has been. For this reason, the front ends of the main bolts 78 are screwed into the lower support member 56. In FIG. 5, 127 is a discharge valve of the second rotary compression element 34 that opens and closes the discharge port 39 in the discharge silencer chamber 62.
[0021]
Here, the discharge valves 127 and 128 are made of an elastic member made of a vertically long substantially rectangular metal plate, and one side of the discharge valves 127 and 128 is in contact with the discharge ports 39 and 41 to be sealed. The side is fixed to the discharge ports 39 and 41 with a screw (not shown) provided at a predetermined interval. The discharge valves 127 and 128 abut against the discharge ports 39 and 41 with a constant urging force, and close the discharge ports 39 and 41 so that they can be opened and closed by an elastic force.
[0022]
Further, the communication path 200 of the present invention is provided in the upper cover 66 of the second rotary compression element 34. The communication passage 200 communicates the inside of the sealed container 12, which is a passage path for the intermediate-pressure refrigerant gas compressed by the first rotary compression element 32, and the discharge silencer chamber 62 on the refrigerant discharge side of the second rotary compression element. As shown in FIG. 2, one end of the first passage 201 extending horizontally communicates with the inside of the sealed container 12, and the other end of the first passage 201 communicates with the valve device storage chamber 202. is doing. The valve device storage chamber 202 is a hole penetrating the upper cover 66 in the vertical direction. The upper surface of the valve device storage chamber 202 opens into the sealed container 12 and the lower surface opens into the discharge silencer chamber 62. Further, the upper and lower openings of the valve device storage chamber 202 are closed by sealing materials 203 and 204, respectively.
[0023]
The sealing member 204 provided in the lower part of the valve device storage chamber 202 is provided with a second passage 205 that communicates the valve device storage chamber 202 and the discharge silencing chamber 62. The first passage 201, the valve device storage chamber 202, and the second passage 205 constitute a communication passage 200. Further, a spherical valve device 207 is stored in the valve device storage chamber 202 of the communication path 200, and one end of an elastic spring 206 (biasing member) is in contact with the upper surface of the valve device 207. Is provided. The other end of the spring 206 is fixed to the upper sealing material 203, and the valve device 207 is always urged downward by the spring 206, and always closes the second passage 205.
[0024]
Further, the intermediate-pressure refrigerant in the sealed container 12 flows into the valve device storage chamber 202 from the first passage 201 to urge the valve device 207 downward, and the high-pressure refrigerant in the discharge silencer chamber 62. The refrigerant flows into the valve device storage chamber 202 from the second passage 205 provided in the lower sealing material 204 and urges the valve device 207 upward from the lower surface of the valve device 207. Yes.
[0025]
In this way, the valve device 207 is biased downward by the intermediate pressure refrigerant gas and the spring 206 from the side where the spring 206 abuts, that is, from the upper side, and from the opposite side by the high pressure refrigerant gas. Be forced. Then, the lower surface of the valve device 207 is always in contact with the second passage 205 and is sealed, whereby the communication passage 200 is closed by the valve device 207.
[0026]
The biasing force of the spring 206 is the first passage when the pressure difference between the intermediate-pressure refrigerant gas in the sealed container 12 and the high-pressure refrigerant gas in the discharge silencer chamber 62 reaches an upper limit of 8 MPaG, for example. It is assumed that the valve device 207 that is in contact with and sealed with 205 is pushed upward by the high-pressure refrigerant gas flowing in from the second passage 205. Therefore, when the pressure difference is opened to 8 MPaG (upper limit) or more, the first passage 201 and the second passage 205 communicate with each other via the valve device storage chamber 202, and the high-pressure refrigerant gas in the discharge silencing chamber 62 Flows out into the sealed container 12. When the pressure difference is reduced to less than 8 MPaG, the spring 206 brings the valve device 207 into contact with the second passage 205 and seals it, and the first passage 201 and the second passage 205 are closed by the valve device 207. Will be. Thereby, it is avoided in advance that the second step pressure is excessive.
[0027]
As described above, the refrigerant is environmentally friendly, uses the carbon dioxide (CO2), which is a natural refrigerant in consideration of flammability and toxicity, and the oil as the lubricating oil is, for example, mineral oil (mineral oil), alkylbenzene Existing oils such as oil, ether oil and ester oil are used.
[0028]
Next, the operation of the above configuration will be described. When the stator coil 28 of the electric element 14 is energized through the terminal 20 and a wiring (not shown), the electric element 14 is activated and the rotor 24 rotates. By this rotation, the upper and lower rollers 46 and 48 are eccentrically rotated in the upper and lower cylinders 38 and 40 by being fitted to the upper and lower eccentric portions 42 and 44 provided integrally with the rotary shaft 16.
[0029]
As a result, the low-pressure refrigerant sucked into the low-pressure chamber side of the lower cylinder 40 from the suction port 162 through the suction passage 60 formed in the lower support member 56 as shown in FIG. The intermediate pressure is compressed by the operation of 52 from the high pressure chamber side of the lower cylinder 40 to the discharge port 41 and the discharge silencer chamber 64 formed in the lower support member 56 through the communication passage (not shown) from the intermediate discharge pipe 121 to the inside of the sealed container 12. Discharged.
[0030]
Then, the intermediate-pressure refrigerant gas in the sealed container 12 passes through a refrigerant passage (not shown), passes through a suction passage 58 formed in the upper support member 54, and then passes from the suction port 161 to the upper cylinder 38 as shown in FIG. Is sucked into the low pressure chamber side. The suctioned intermediate-pressure refrigerant gas is compressed in the second stage by the operation of the upper roller 46 and the upper vane 52 to become a high-temperature and high-pressure refrigerant gas, passes through the discharge port 39 from the high-pressure chamber side, and is supported by the upper support member. The ink is discharged into a discharge silencer chamber 62 formed in 54.
[0031]
At this time, if the pressure difference between the intermediate-pressure refrigerant gas in the sealed container 12 and the high-pressure refrigerant gas in the discharge silencing chamber 62 is less than 8 MPaG, the valve device 207 is the second in the valve device storage chamber 202 as described above. The communication passage 200 is not opened and the high-pressure refrigerant gas discharged into the discharge muffler chamber 62 passes through the refrigerant passage (not shown) to the outside of the multistage compression rotary compressor 10. It flows into a heatsink (not shown) provided in.
[0032]
The refrigerant flowing into the radiator dissipates heat here and exerts a heating action. After the refrigerant exiting the radiator is depressurized by a decompression device (not shown), it also enters an evaporator (not shown) and evaporates there. Finally, the circulation sucked into the suction passage 60 of the first rotary compression element 32 is repeated.
[0033]
Here, when the outside air temperature decreases and the evaporation temperature of the refrigerant in the evaporator decreases, the pressure (intermediate pressure) of the refrigerant discharged from the first rotary compression element 32 into the sealed container 12 does not easily increase as described above. Become. In this way, when the pressure difference between the intermediate pressure refrigerant gas in the sealed container 12 and the high pressure refrigerant gas in the discharge silencer chamber 62 reaches 8 MPaG, the pressure in the discharge silencer chamber 62 is applied to the second passage 205. Since the contacting valve device 207 is pushed up against the spring 206 and is separated from the second passage 205, the first passage 201 and the second passage 205 communicate with each other, and the high-pressure refrigerant gas is sealed in the intermediate pressure side. 12 flows into. When the pressure difference between the two decreases to less than 8 MPaG, the valve device 207 comes into contact with the second passage 205 and is sealed, whereby the second passage 205 is closed by the valve device 207.
[0034]
As described above, the airtight container 12 includes the electric element 14 and the first and second rotary compression elements 32 and 34 driven by the electric element 14, and the intermediate compressed by the first rotary compression element 32. Pressure refrigerant gas is sucked into the second rotary compression element 34, compressed and discharged, and the intermediate-pressure refrigerant gas passage route compressed by the first rotary compression element 32 and the second rotation The communication passage 200 communicates with the refrigerant discharge side of the compression element 34, and a valve device 207 that opens and closes the communication passage 200. The valve device 207 includes an intermediate-pressure refrigerant gas and the second rotary compression element 34. When the pressure difference with the refrigerant gas on the refrigerant discharge side becomes equal to or higher than the predetermined upper limit value of 8 MPaG, the communication path 200 is opened, so the second step pressure is kept lower than the upper limit value, and the second Damage to the discharge valve 128 of the rotary compression element 34 So it is possible to avoid a deer.
[0035]
Further, an upper cylinder 38 constituting the second rotary compression element 34, a discharge silencing chamber 62 for discharging the refrigerant gas compressed in the upper cylinder 38, and an upper portion as a wall defining the discharge silencing chamber 62 The communication path 200 is formed in the upper cover 66, communicates the sealed container 12 and the discharge silencer chamber 62, and the valve device 207 is provided in the upper cover 66. The step pressure in the second stage can be suppressed without making the structure complicated.
[0036]
In any of the embodiments, the multi-stage compression rotary compressor 10 in which the rotary shaft 16 is installed vertically has been described. However, it goes without saying that the present invention can also be applied to a multi-stage compression rotary compressor in which the rotary shaft is installed horizontally.
[0037]
Further, the multi-stage compression rotary compressor has been described with the two-stage compression rotary compressor including the first and second rotary compression elements. However, the rotary compression element is not limited to this, and the rotary compression elements are three-stage, four-stage or more. The present invention can be applied to a multi-stage compression rotary compressor having elements.
[0038]
In the embodiment, the valve device 207 is a spherical valve device. However, the valve device 207 is not limited to this and may be a cylindrical valve device 217 as shown in FIG. In this case, the valve device 217 is provided so as to be in contact with and sealed against the wall surface of the valve device storage chamber 202, and is usually located in the valve device storage chamber 202 between the first passage 201 and the second passage 205. Thus, the communication path 200 is closed. When the pressure difference exceeds 8 MPaG, the valve device 217 is pushed up above the first passage 201 so that the first passage 201 and the second passage 205 communicate with each other, and the high-pressure refrigerant gas has an intermediate pressure. It flows into the sealed container 12. When the pressure difference between the two becomes less than 8 MPaG, the valve device 217 returns to the lower side of the first passage 201, and the first passage 201 and the second passage 205 are closed by the valve device 217.
[0039]
【The invention's effect】
As described above in detail, according to the present invention, an electric element and a first and a second rotary compression element driven by the electric element are provided in the hermetic container, and the intermediate is compressed by the first rotary compression element. Pressure refrigerant gas is sucked into the second rotary compression element, compressed and discharged, and the passage path of the intermediate pressure refrigerant gas compressed by the first rotary compression element and the second rotary compression element And a valve device that opens and closes the communication passage. The valve device includes an intermediate pressure refrigerant gas and a refrigerant gas on a refrigerant discharge side of the second rotary compression element. When the pressure difference exceeds a predetermined upper limit value, the communication path is opened. Therefore, the pressure difference between the discharge pressure and the suction pressure of the second rotary compression element, that is, the second step pressure is predetermined. It becomes possible to keep it lower than the upper limit value.
[0040]
As a result, it is possible to avoid the occurrence of failure such as breakage of the discharge valve of the second rotary compression element.
[0041]
According to the invention of claim 2, in addition to the above, the first rotary compression element includes a cylinder constituting the second rotary compression element, and a discharge silencer chamber for discharging the refrigerant gas compressed in the cylinder. The refrigerant gas having an intermediate pressure compressed in step 2 is discharged into the sealed container, the second rotary compression element sucks the refrigerant gas having the intermediate pressure in the sealed container, and the communication path defines a wall that defines a discharge silencer chamber. Since the valve device is provided in the wall so as to communicate with the inside of the sealed container and the discharge silencing chamber, the passage path for the intermediate-pressure refrigerant gas compressed by the first rotary compression element and the second The communication passage that communicates with the refrigerant discharge side of the rotary compression element and the valve device that opens and closes the communication path can be collected in the cover of the second rotary compression element.
[0042]
As a result, the structure can be simplified and the overall dimensions can be reduced.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a multistage compression rotary compressor according to an embodiment of the present invention.
2 is an enlarged cross-sectional view of a communication path portion of a second rotary compression element of the multistage compression rotary compressor of FIG. 1. FIG.
FIG. 3 is an enlarged cross-sectional view of a communication path portion of a second rotary compression element of a multistage compression rotary compressor according to another embodiment.
4 is a bottom view of a lower support member support member of the multistage compression rotary compressor of FIG. 1. FIG.
5 is a top view of an upper support member and an upper cover of the multistage compression rotary compressor of FIG. 1. FIG.
6 is a bottom view of the lower cylinder of the multi-stage compression rotary compressor of FIG. 1. FIG.
7 is a bottom view of a lower cylinder of the multistage compression rotary compressor of FIG. 1. FIG.
FIG. 8 is a diagram showing the relationship between the outside air temperature and each pressure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Multistage compression rotary compressor 12 Airtight container 14 Electric element 16 Rotating shaft 18 Rotation compression mechanism part 20 Terminal 22 Stator 24 Rotor 26 Laminated body 28 Stator coil 30 Laminated body 32 1st rotation compression element 34 2nd rotation compression element 36 Intermediate partition plate 38, 40 Cylinder 54 Upper support member 62, 64 Discharge silencer chamber 66 Upper cover 127, 128 Discharge valve 200 Communication passage 201 First passage 202 Valve device storage chamber 203, 204 Sealing material 205 Second passage 206 Spring 207 valve device

Claims (2)

密閉容器内に電動要素と、該電動要素にて駆動される第1及び第2の回転圧縮要素を備え、前記第1の回転圧縮要素で圧縮され、密閉容器内に吐出された中間圧の冷媒ガスを前記第2の回転圧縮要素に吸引し、圧縮して吐出する多段圧縮式ロータリコンプレッサにおいて、
前記第1の回転圧縮要素で圧縮された中間圧の冷媒ガスの通過経路と前記第2の回転圧縮要素の冷媒吐出側とを連通する連通路と、該連通路を開閉する弁装置とを備え、
該弁装置は、前記中間圧の冷媒ガスと前記第2の回転圧縮要素の冷媒吐出側の冷媒ガスとの圧力差が所定の上限値以上になった場合、前記連通路を開放することを特徴とする多段圧縮式ロータリコンプレッサ。
An intermediate pressure refrigerant which is provided with an electric element and a first and a second rotary compression element driven by the electric element in the hermetic container, is compressed by the first rotary compression element, and is discharged into the hermetic container In a multi-stage compression rotary compressor that sucks gas into the second rotary compression element, compresses and discharges the gas,
A communication path that connects a passage path of the refrigerant gas of intermediate pressure compressed by the first rotary compression element and a refrigerant discharge side of the second rotary compression element; and a valve device that opens and closes the communication path. ,
The valve device opens the communication passage when a pressure difference between the intermediate-pressure refrigerant gas and the refrigerant gas on the refrigerant discharge side of the second rotary compression element becomes equal to or greater than a predetermined upper limit value. Multi-stage compression rotary compressor.
前記第2の回転圧縮要素を構成するシリンダと、
該シリンダ内で圧縮された冷媒ガスを吐出する吐出消音室とを備え、
前記連通路は前記吐出消音室を画成する壁内に形成され、前記密閉容器内と吐出消音室とを連通し、前記弁装置は前記壁内に設けられることを特徴とする請求項1の多段圧縮式ロータリコンプレッサ。
A cylinder constituting the second rotary compression element;
A discharge silencer chamber for discharging refrigerant gas compressed in the cylinder ,
2. The communication passage according to claim 1, wherein the communication passage is formed in a wall defining the discharge silencing chamber, communicates the inside of the sealed container and the discharge silencing chamber, and the valve device is provided in the wall. Multi-stage compression rotary compressor.
JP2002021338A 2001-11-30 2002-01-30 Multistage rotary compressor Expired - Fee Related JP3762708B2 (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
JP2002021338A JP3762708B2 (en) 2002-01-30 2002-01-30 Multistage rotary compressor
CN02142300A CN1423055A (en) 2001-11-30 2002-08-28 Revolving compressor, its manufacturing method and defrosting device using said compressor
CN 200610006025 CN1807896B (en) 2001-11-30 2002-08-28 Multi-stage compression type rotary compressor
CN 200610006023 CN1807895B (en) 2001-11-30 2002-08-28 Multistage compression type rotary compressor
TW91123073A TW564289B (en) 2001-11-30 2002-10-07 Multiple stage compression type rotary compressor and method for making same
EP02257800A EP1316730A3 (en) 2001-11-30 2002-11-13 Rotary compressor
US10/305,775 US6892454B2 (en) 2001-11-30 2002-11-27 Rotary compressor, method for manufacturing the same, and defroster for refrigerant circuit
KR1020020075257A KR100893464B1 (en) 2001-11-30 2002-11-29 Multi-stage compression type rotary compressor manufacturing method
US10/916,273 US7008199B2 (en) 2001-11-30 2004-08-11 Rotary compressor, method for manufacturing the same, and defroster for refrigerant circuit
US10/916,272 US7101161B2 (en) 2001-11-30 2004-08-11 Rotary compressor, method for manufacturing the same, and defroster for refrigerant circuit
US10/916,271 US6974314B2 (en) 2001-11-30 2004-08-11 Rotary compressor, method for manufacturing the same, and defroster for refrigerant circuit
US10/916,200 US7168257B2 (en) 2001-11-30 2004-08-11 Rotary compressor, method for manufacturing the same, and defroster for refrigerant circuit
KR1020080062188A KR20080066905A (en) 2001-11-30 2008-06-30 Multi-stage compression type rotary compressor manufacturing method
KR1020080062250A KR100862824B1 (en) 2001-11-30 2008-06-30 Multi-stage compression type rotary compressor
KR1020080062256A KR100862825B1 (en) 2001-11-30 2008-06-30 Defroster of refrigerant circuit
KR1020080062187A KR100862823B1 (en) 2001-11-30 2008-06-30 Multi-stage compression type rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002021338A JP3762708B2 (en) 2002-01-30 2002-01-30 Multistage rotary compressor

Publications (2)

Publication Number Publication Date
JP2003222091A JP2003222091A (en) 2003-08-08
JP3762708B2 true JP3762708B2 (en) 2006-04-05

Family

ID=27744608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002021338A Expired - Fee Related JP3762708B2 (en) 2001-11-30 2002-01-30 Multistage rotary compressor

Country Status (1)

Country Link
JP (1) JP3762708B2 (en)

Also Published As

Publication number Publication date
JP2003222091A (en) 2003-08-08

Similar Documents

Publication Publication Date Title
KR100985672B1 (en) Multi-stage compression type rotary compressor and a setting method of displacement volume ratio for the same
JP2007100513A (en) Refrigerant compressor and refrigerant cycle device having the same
JP3762693B2 (en) Multi-stage rotary compressor
JP3370027B2 (en) 2-stage compression type rotary compressor
JP4289975B2 (en) Multi-stage rotary compressor
WO2011125652A1 (en) Rotary compressor
JP3762708B2 (en) Multistage rotary compressor
JP3895976B2 (en) Multistage rotary compressor
JP2004308968A (en) Heat exchanger
JP2004084568A (en) Multistage compression type rotary compressor and displacement capacity ratio setting method therefor
JP3863799B2 (en) Multi-stage rotary compressor
JP4020622B2 (en) Rotary compressor
JP2004251150A (en) Multistage compression type rotary compressor
JP3883837B2 (en) Rotary compressor
JP2004092469A (en) Rotary compressor
JP2006125377A (en) Compressor
JP3778867B2 (en) Horizontal multi-stage rotary compressor
JP4063568B2 (en) Horizontal multistage compression rotary compressor
JP2005256709A (en) Lateral rotary compressor and air conditioner for vehicle
JP2007092738A (en) Compressor
JP3896020B2 (en) Rotary compressor
JP2003293972A (en) Rotary compressor
JP4100969B2 (en) Rotary compressor
JP4169620B2 (en) Refrigerant cycle equipment
JP3819795B2 (en) Internal intermediate pressure type multi-stage compression rotary compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051115

TRDD Decision of grant or rejection written
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees