JP3758955B2 - 電子デバイス - Google Patents

電子デバイス Download PDF

Info

Publication number
JP3758955B2
JP3758955B2 JP2000243840A JP2000243840A JP3758955B2 JP 3758955 B2 JP3758955 B2 JP 3758955B2 JP 2000243840 A JP2000243840 A JP 2000243840A JP 2000243840 A JP2000243840 A JP 2000243840A JP 3758955 B2 JP3758955 B2 JP 3758955B2
Authority
JP
Japan
Prior art keywords
layer
electronic device
electron
electrode
electron transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000243840A
Other languages
English (en)
Other versions
JP2002057322A (ja
Inventor
正洋 出口
雄 上野山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000243840A priority Critical patent/JP3758955B2/ja
Priority to US09/924,920 priority patent/US6566692B2/en
Priority to EP01119353A priority patent/EP1180780A3/en
Publication of JP2002057322A publication Critical patent/JP2002057322A/ja
Application granted granted Critical
Publication of JP3758955B2 publication Critical patent/JP3758955B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子親和力が負又は0に近い材料により構成される表面層を備え、電子放出機能を有する電子デバイスの改良に関するものである。
【0002】
【従来の技術】
以前は、電子放出素子は、タングステン(W)等の高融点金属材料からなる陰極と、空間を隔てて陰極に対向する陽極とを設け、陰極を高温に加熱することにより、熱電子を固体から真空中に放出するという熱陰極方式(電子銃方式)による構造となっていたが、このような熱陰極方式に代わるものとして、本発明者達が提案しているいわゆるNEA放出素子素子といわれるものがある。NEA電子放出素子とは、負の電子親和力(Negative Electron Affinity:NEA)を有する半導体材料又は絶縁体材料を用いた電子放出素子の意味である。以下、電子放出素子として機能する電子デバイス(以下、「NEA電子デバイス」という)の原理について説明する。
【0003】
図1は、NEA材料の例として窒化アルミニウム(AlN)を用いた従来のNEA電子デバイスの構成を示す斜視図である。図1に示すように、このNEA電子デバイスは、電子を供給するための電子供給層101と、電子供給層101から供給される電子を固体表面側に輸送するための電子輸送層102と、NEA材料からなる表面層103と、電子供給層101から表面層103に電子を移動させるように電圧を印加するための表面電極104とを備えている。
【0004】
この例では、電子供給層101をn型のGaN(n−GaN)により構成し、電子供給層101から表面層103まで電子を円滑に移動させる電子輸送層102をノンドープでAl含有比xが連続的に変化する傾斜組成を有するAlxGa1-xN(xは0から1までほぼ連続的に増加する変数)により構成し、表面層103を真のNEA材料であるAlNにより構成し、表面電極を白金(Pt)等の金属により構成した例を示している。
【0005】
以下、この素子の基本的特性にとって重要な性質である電子親和力と、電子を円滑に輸送するために必要な電子輸送層の構造とについて説明する。
【0006】
▲1▼ 電子親和力(Electron Affinity)
半導体材料における”電子親和力”とは、伝導帯端に存在する電子を真空中に取り出すのに要するエネルギー値を示し、材料固有の値を持つ。以下に、”負の電子親和力”(Negative Electron Affinity; NEA)という概念について説明する。
【0007】
図2(a)、(b)は、電子親和力の値が負及び正である半導体材料のエネルギー状態をそれぞれ表すエネルギーバンド図である。図2(b)に示すように、半導体のフェルミ準位をEf、伝導帯端のエネルギー準位をEc、価電子帯端のエネルギー準位をEv、バンドギャップをEgとし、真空準位をEvacとしたとき、一般の半導体における電子親和力χは、χ=Evac−Ec>0である。つまり、正の電子親和力を有する。それに対し、半導体の種類によっては、図2(a)に示すように、χ=Evac−Ec<0となる状態が存在する。つまり、このような半導体材料、例えばAlNは負の電子親和力を有することになる。
【0008】
ここで、図2(b)に示すように、正の電子親和力を有する半導体の場合、伝導帯端に存在する電子を真空中に取り出すためには、χの大きさのエネルギー障壁が存在するため、その分だけエネルギーを与える必要がある。そのため通常、電子放出させるために加熱によって電子にエネルギーを与えたり、高電界を印加してエネルギー障壁をトンネル透過させる必要がある。
【0009】
一方、図2(a)に示すように、負の電子親和力を有する半導体の場合には、表面の伝導帯端に存在する電子にとってエネルギー障壁が存在しないので、電子は容易に真空中に放出されることとなる。すなわち、半導体表面に存在する電子を真空に取り出すための余分なエネルギーを必要としない。
【0010】
▲2▼ 電子輸送層
電子デバイスにおいて電子が放出される表面層に、上記のような電子親和力が負あるいは実質的に0であるような材料を用いることが、効率的な電子放出に有効であると考えられるが、一般的に平衡状態においてNEA材料の伝導帯に電子は存在していない。故に、何らかの方法で電子放出が容易な材料から構成される表面層に効率的に電子を供給する必要がある。
【0011】
その一構成例として、本発明者達により、図1に示すように、電子が多数存在する電子供給層101(正の電子親和力)からNEA状態の表面層103(負の電子親和力)に有効に電子を供給するために、電子親和力値が徐々に小さくなるような中間層(電子輸送層102)を介した構造が提案されている。
【0012】
図3(a),(b)は、電子供給層101、電子輸送層102、表面層103及び表面電極104とからなる図1の構成例において、電子供給層101−表面電極104間に電圧を印加していない状態(平衡状態)及び電圧Vの順バイアスを印加した時のエネルギーバンド図である。上述のように、電子輸送層102は、表面に向かって徐々に電子親和力χが小さくなるような材料から選択されている。
【0013】
ここで、図3(a)に示したような平衡状態では、電子供給層101の伝導帯には多数の電子が存在しているが、表面層103の伝導帯端のエネルギーレベルが高いため、電子が最表面に到達することはない。一方、このような構造に順バイアス(表面電極側に正電圧)を印加すると、図3(b)に示すようにエネルギーバンドが曲がる。その結果、電子供給層101に存在する電子は濃度勾配及び電位勾配によって、表面層103側への移動が生じる。つまり電子電流が流れる。また、電子輸送層102であるAlxGa1-xNや表面層103であるAlNはノンドープであることから、電子供給層101から電子輸送層102、表面層103に注入された電子は、正孔等との再結合によって捕捉されることなく移動することができる。また電子輸送層102での組成傾斜を連続的に行なうことで、電子移動の障害となるエネルギー障壁が伝導帯端には形成されないため、効率的に電子を表面まで送るという点で有利である。
【0014】
以上のように、組成傾斜が施されたAlxGa1-xN層を電子輸送層102として適用することにより、正の電子親和力であるn−GaN層から負の電子親和力である表面層103(AlN層)まで、効率よく移動させることが可能になる。そして、電子輸送層102及び表面層103に注入された電子は、表面層がNEA状態であることから、容易に表面電極104を通過して真空中などの外部に放出させることができるようになる。
【0015】
【発明が解決しようとする課題】
ところが、上記図1に示す構造を利用したNEA電子デバイスにおいて、表面電極104に所定の電圧を印加しても、期待した量の電子が放出されないという現象が見られた。
【0016】
そこで、この現象の原因の究明を図った結果、電子輸送層102や表面層103を構成するAlxGa1-xN層に微細なクラックなどの欠陥が発生していることがわかった。つまり、電子輸送層102のバンドギャップを大きく変化させるべく、AlxGa1-xN層の組成を大きく変化させていくので、格子定数の変化などに起因する応力が発生し、微少なクラックを生じさせているものと思われる。そして、クラックなどの欠陥部を流れる電子は、表面層のうちNEA状態にある部分には供給されることなく、リーク電流として表面電極104に流れる。その結果、表面電極104を通過して外部に放出される電子の量が小さくなり、電子の放出効率が低下するという不具合を招いたものと推定される。
【0017】
本発明の目的は、電子輸送層や表面層におけるクラックなどの欠陥に起因するリーク電流を抑制する手段を講ずることにより、電子放出効率の高い電子デバイスの提供を図ることにある。
【0018】
【課題を解決するための手段】
本発明の電子デバイスは、GaNからなる電子供給層と、上記電子供給層上に設けられ、電子供給層から表面層に向かう方向に電子親和力が小さくなるように変調されたAlGaNからなる電子輸送層と、上記電子輸送層上に設けられ、電子親和力が負あるいは0である材料により構成される表面層と、上記電子供給層から上記電子輸送層を経て上記表面層の最表面まで電子を移動させるように、上記電子供給層に対して電圧を印加するための表面電極と、上記表面層と上記表面電極との間に設けられて、上記電子輸送層に存在するクラックにより生じる電子の移動に対する障壁として機能し、かつ、上記表面層と同等あるいはより大きい電子親和力を有するフィルタ層とを備えている。
【0019】
これにより、電子輸送層にクラックなどの欠陥がある場合にも、表面層と表面電極との間に設けられたフィルタ層が表面層のうちNEA状態にある部分には到達しない電子の移動に対する障壁として機能するので、リーク電流が表面電極に流れるのが抑制される。しかも、フィルタ層の電子親和力は表面層の電子親和力よりも大きいので、フィルタ層は表面層の伝導帯端と同等あるいはそれ以上のエネルギーレベルを有する電子の移動に対する障壁とはならない。したがって、フィルタ層の存在によって、リーク電流のみが抑制され、表面電極と電子供給層との間に印加される電圧に応じて表面層から有効に電子が放出され、電子の放出効率が高められることになる。
【0020】
上記電子輸送層は、少なくとも一部において上記電子供給層から上記表面層に向かう方向に連続的に拡大するバンドギャップを有することにより、電子輸送層における電子の移動がスムーズになるので好ましい。
【0021】
上記電子輸送層及び表面層を含む領域は、最表面に近づくほどAlの割合が多くなるように変化するAlxGa1-xN(0≦x≦1)により構成されていることがより好ましい。
【0022】
その場合、上記電子輸送層は、電子供給層に接する一方の端部から表面層に接する他方の端部まで上記xの値が0から0.65以上まで連続的にAl組成が増加していくように構成されていることが好ましい。
【0023】
また、上記電子輸送層は、キャリア用不純物がドープされていないことが好ましい。
【0024】
上記表面層は、AlxGa1-xN(0.65≦x≦1)により構成されていることにより、その表面が容易に負の電子親和力状態を実現できるので、高い電子放出効率を有する素子を得ることができるという点で好ましい。
【0025】
上記フィルタ層は、正の電子親和力を有する絶縁体材料により構成されていることが好ましく、また、酸化アルミニウム(Al23)、酸化シリコン(SiOx)、及び窒化シリコン(SiNx)のうち少なくともいずれか1つを含んでいるか、窒化アルミニウム(AlN),窒化ガリウム−窒化アルミニウム混晶半導体(AlxGa1-xN)(0.65≦x≦1)及びこれらの酸化物のうち少なくともいずれか1つを含んでいることが好ましい。
【0026】
上記表面電極の上方に、上記表面電極とは離間して設けられ、上記表面層から外部に放出された電子を加速及び制御するための収集電極をさらに備えていることにより、電圧印加によって上記電極層表面より放出された電子流の加速/収集機構を一体化できるので好ましい。すなわち、電子供給層−電極層間への電圧印加により放出された電子を収集する収集電極層を一体構造とすることにより、信号増幅やスイッチング動作が可能な電子デバイスをコンパクトかつ高密度に作製することができる。この素子は、上記のように電子放出が容易な電子供給層/電子輸送層/表面層/電極層からなり、さらに放出電子を加速する構成となっているので、絶縁耐圧が高い、内部損失が小さい、かつ低電圧駆動が可能であるといった利点を有している。
【0027】
上記電極層と収集電極層との間を、減圧状態に保つための密閉部材をさらに備えていることにより、電子が真空中で高速に加速されて収集電極に集められる構造となり、高いスイッチング機能が得られる。
【0028】
上記電極層と収集電極層との間に設けられた絶縁体層をさらに備えていてもよい。
【0029】
上記電子輸送層における電子の流れる領域を電子輸送層の断面の一部に制限するための埋め込み層をさらに備えていることにより、電流の集中により表面層からの電子の放出効率を高めることができる。
【0030】
【発明の実施の形態】
本発明の実施形態においても、上記従来のNEA電子デバイスと同様に、負の電子親和力(Negative Electron Affinity:NEA)を有する材料を用いたNEA電子デバイスについて説明する。この負の電子親和力の意味やNEA電子デバイスの原理については、上記従来の技術において説明した通りである。
【0031】
図4は、本発明のNEA電子デバイスの基本構成を示す斜視図である。本発明のNEA電子デバイスは、オーミック電極1と、電子を供給するための電子供給層2と、電子供給層2から供給される電子を固体表面側に輸送するための電子輸送層3と、NEA材料からなる表面層4と、電子供給層2から表面層4に電子を移動させるように電圧を印加するための表面電極6とを備えている。この構造は、基本的には、図1に示す従来のNEA電子放出素子の構造と同じである。
【0032】
ここで、本発明の電子デバイスの特徴は、従来のNEA電子デバイスとは異なり、表面層4と表面電極6との間に、電子の一部が表面電極6に流れるのを阻止するためのフィルタ層5を備えている点である。
【0033】
次に、上記各部を構成する材料について説明する。上記電子供給層2は、例えばn型のGaN(n−GaN)により構成され、電子供給層2から表面層4まで電子を輸送する電子輸送層3はノンドープでAl含有比xが連続的に変化する傾斜組成を有するAlxGa1-xN(xは0から1までほぼ連続的に増加する変数)により構成され、表面層4は真のNEA材料であるAlNにより構成され、表面電極6は白金(Pt)等の金属により構成されている。また、上記フィルタ層5は、酸化アルミニウム(アルミナ)(Al23)により構成されている。また、表面電極6は、白金(Pt)等の金属により構成されている。
【0034】
図5は、AlxGa1-xN系半導体材料の電子親和力の測定データを示す図である。この図において、横軸はAlxGa1-xN中のAl含有比xを表している。ただしAl含有比xとは、AlxGa1-xN中のGaとAl含有量におけるAl割合を示し、AlxGa1-xN全体におけるAl含有比のことではない。以下、同様とする。この図より、x=0の時、すなわちGaNの電子親和力は約3.3eVであり、正の電子親和力特性を示すが、Al含有比xが増加するにつれて電子親和力値は減少し、x>0.65の領域では電子親和力値はほぼ0、あるいは負になることがわかる。したがって、x=1のAlxGa1-xNであるAlNの電子親和力は負の状態である。つまり、この電子デバイスのごとく、電子供給層2をn型のGaN(n−GaN)により構成し、電子輸送層3をノンドープでAl含有比xが連続的に変化する傾斜組成を有するAlxGa1-xNにより構成し、表面層4を真のNEA材料であるAlNにより構成することにより、電子供給層2から表面層4まで、バンドギャップが順次拡大し、電子親和力が順次小さくなる構造を容易に実現することができる。
【0035】
図6(a),(b)は、電子供給層2、電子輸送層3、表面層4,フィルタ層5及び表面電極6とからなる図4の構成例において、電子供給層2−表面電極6間に電圧を印加していない状態(平衡状態)及び電圧Vの順バイアスを印加した時のエネルギーバンド図である。図6(a)に示すように、電子輸送層3は、表面に向かって徐々に電子親和力χが小さくなるような材料から選択されるが、その材料を巧く選択することにより、その材料の組成比を変化させることによって電子親和力がほぼ連続的に小さくなる構造を実現することができる。
【0036】
本構成例においては、電子供給層2としてn型にドープされたGaN層(キャリア密度:〜4×1018個/cm3 )を、電子輸送層3としてドープしていない傾斜組成のAlxGa1-xN層(0≦x≦1)を、表面層4としてAlN層を用いている。傾斜組成のAlxGa1-xNからなる電子輸送層3は、電子供給層2であるGaNと接する部分ではx=0、つまりAlを含んでおらず、表面層3であるAlNと接する部分ではx=1、つまりGaを含んでいない構成としている。またその途中はx値を徐々に増加させた、つまりAl含有量が表面に向かって増加していくように組成を傾斜させている。このような構造にすることにより、図6(a)に示すように、AlxGa1-xNからなる電子輸送層3の電子親和力は、電子供給層2と接する部分では正であるが、表面に向かうにつれてAl含有量の増加に伴って電子親和力値は小さくなり、電子輸送層3内の表面層4と接する部分ではAlNと同様に電子親和力が負となる。したがって、電子輸送層3の電子親和力は電子供給層2から表面層4に至るまでほぼ連続的に減少していることとなる。
【0037】
電子輸送層3として組成傾斜AlxGa1-xNを用いた場合、上記のような構成はバンドギャップの連続的な拡大ともとらえることもできる。図7は、AlxGa1-xN(0≦x≦1)のバンドギャップのAl含有比依存性を示す図である。同図において、横軸はAl含有比xを表しており、縦軸はその組成におけるバンドギャップEg(eV)を表している。同図に示すように、AlxGa1-xNのEg値は、xの増加に対して厳密には直線ではないが、直線に近い関係で大きくなっていく。つまり、電子輸送層3を構成するAlxGa1-xN層は、電子供給層2を構成するGaN層と接する部分ではx=0であってGaN層と同じバンドギャップ(Eg=3.4eV)を有し、表面層4を構成するAlN層と接する部分ではx=1であってAlN層と同じバンドギャップ(Eg=6.2eV)を有している。また、AlxGa1-xN層のうち両端部を除く領域においては、x値が徐々に増加しているので、つまり、Al含有量が表面に向かって徐々に増加していくように組成が傾斜しているので、電子輸送層3のバンドギャップは、電子供給層2から表面層4に至るまでAl含有量の増加に伴ってほぼ連続的に広がっていくこととなる。このような構成は、AlxGa1-xN系半導体が混晶であることから、原料組成を変化させたエピタキシャル成長により単結晶薄膜で実現しうることが、本発明者達によって確認されている。
【0038】
また、フィルタ層5は、表面層4よりも所定値Δχだけ電子親和力が大きい絶縁性材料により構成され、表面層4をAlNにより構成する場合には、フィルタ層5を構成する材料として、酸化アルミニウム(Al23)、酸化シリコン(SiOx)、窒化シリコン(SiNx),窒化アルミニウム(AlN),窒化ガリウム−窒化アルミニウム混晶半導体(AlxGa1-xN)(0.65≦x≦1),これらの酸化物などを用いることができる。
【0039】
さて、図6(a)に示したような平衡状態では、電子供給層2の伝導帯には多数の電子が存在しているが、表面層4の伝導帯端のエネルギーレベルが高いため、電子が最表面に到達することはない。一方、このような構造に順バイアス(表面電極側に正電圧)を印加すると、図6(b)に示すようにエネルギーバンドが曲がる。その結果、電子供給層2に存在する電子は濃度勾配及び電位勾配によって電子輸送層3を経て表面層4に輸送される。つまり、電子電流が流れる。また、電子輸送層3を構成するAlxGa1-xN層や、表面層4を構成するAlN層はノンドープであることから、電子供給層2から電子輸送層3、表面層4に注入された電子は、正孔等との再結合によって捕捉されることなく移動することができる。また、電子輸送層3での組成傾斜を連続的に行なうことで、電子移動の障害となるエネルギー障壁が伝導帯端には形成されないため、効率的に電子を表面まで送るという点で有利である。
【0040】
ところが、電子輸送層3にクラックなどの欠陥がある場合には、表面準位や欠陥準位などを介して電子が流れるので、表面層4のうちNEA状態にある部分を通過せずに表面電極6に流れ込むリーク電流が生じる(図6(b)の破線参照)。このような表面層4のうちNEA状態にある部分を通過しない電子は、真空中に取り出すことができない。ここで、この電子デバイスにおいては、表面層4と表面電極6との間に、絶縁性材料からなるフィルタ層5が介在している。そして、フィルタ層5はリーク電流に対する障壁として機能し、リーク電流が表面電極6に流れるのを抑制する。しかも、フィルタ層5の電子親和力は、表面層4の電子親和力よりも所定値Δχだけ大きいので、つまり、フィルタ層5の伝導帯端のエネルギーレベルは表面層4の伝導帯端のエネルギーレベルよりも低いので、フィルタ層5は表面層4の伝導帯端と同等あるいはそれ以上のエネルギーレベルを有する電子の移動に対する障壁とはならない。つまり、フィルタ層5の存在によって、リーク電流のみが抑制され、表面電極6と電子供給層2(あるいはオーミック電極1)との間に印加される電圧に応じて表面層4から有効に電子が放出され、電子の放出効率が高められることになる。
【0041】
なお、図2(a),(b)に示すように、一般に伝導帯に存在する電子はエネルギー分布を有しているため、たとえ表面層4の電子親和力値χが正であっても十分に小さい場合には、効率的には低下するがある程度の量の電子を低エネルギーで放出することは可能である。そこで、本発明におけるNEA材料には、負の電子親和力を有する材料(図6(a)に示すような真のNEA材料)だけではなく、χ値が実質的に0といえる程度に小さい正の電子親和力を有する材料(擬NEA材料)をも含むものとする。
【0042】
なお、これまで知られているNEA材料としては、ガリウム砒素(GaAs)やガリウム隣(GaP)、シリコン(Si)などの半導体表面に低仕事関数材料であるセシウム(Cs)や酸化セシウム(Cs−O)、セシウムアンチモン(Cs−Sb)、酸化ルビジウム(Rb−O)等を薄くコートした構成が知られている。これらの材料を用いた場合、表面層が安定性に乏しいため、一般的には高真空下でないとNEA状態を維持することができない。
【0043】
また、表面吸着層を用いないNEA材料としては、ワイドバンドギャップ材料であるダイヤモンドなどがあり、これを本発明のフィルタ層5を構成する材料として用いることもできる。
【0044】
また、上記構成例においては、電子輸送層3の組成が連続的に変化することで、電子親和力が連続的に小さくなる(あるいはバンドギャップが連続的に大きくなる)場合について説明したが、本発明の電子輸送層3の構成は、かかる構成例に限定されるものではなく、その組成がステップ状に変化した場合や多少不連続に変化する場合においても、電子の移動に関して大きな障害とならない程度であれば問題はない。つまり、電子輸送層3全体として電子親和力が表面方向に向かって小さくなるように、電子輸送層3を構成する材料の組成が変化していくようであれば、本発明の効果を得ることができる。
【0045】
次に、上述の構成例と同様に、表面層4及び電子輸送層3を構成する材料としてAlxGa1-xNを用いつつ、電子輸送層3の表面層4に隣接する側の端部におけるAl含有比xを1より小さくした場合の構成について説明する。
【0046】
図8(a),(b)は、電子輸送層としてAlxGa1-xN(0≦x≦y、かつy<1)を適用したNEA電子デバイスの平衡状態と順バイアス印加時におけるエネルギー状態を示すエネルギーバンド図である。この構成においても、電子デバイスの幾何学的な構造は、図4に示す構造と同じであるが、電子輸送層3を構成する材料の組成が図4に示す構造とは異なっている。
【0047】
図8(a)に示すように、本構成例では、電子供給層2(n−GaN)の上に電子輸送層3として機能するノンドープのAlxGa1-xN層(0≦x≦y、かつy<1)が形成され、さらにその上に、表面層4として機能するAlN層が積層されている。また、表面層4の上に、酸化アルミニウムからなるフィルタ層5と、白金(Pt)からなる表面電極6とが順次形成されている。このような構造においては、図8(a)に示すように、電子輸送層3と表面層4との界面にエネルギーレベルの不連続が生じる。この伝導帯におけるエネルギー障壁の値は、電子輸送層に適用するAlxGa1-xN層のAl含有比y(xの最大値)によって決まるが、この値があまりに大きいと電子供給層2から注入される電子が効率的に表面層3に移動させることができない。そこで、本構成例においては、Al含有比yは、0.5≦y≦0.8の範囲に設定されている。
【0048】
また、フィルタ層5は、第1の実施形態と同様に、表面層4よりも所定値Δχだけ電子親和力が大きい絶縁性材料により構成され、表面層4をAlNにより構成する場合には、フィルタ層5を構成する材料として、酸化アルミニウム(Al23)、酸化シリコン(SiOx)、窒化シリコン(SiNx)などを用いることができる。
【0049】
そして、図8(b)に示すように、電子供給層−表面電極間に順バイアス(表面電極側に正電圧)を印加すると、電子輸送層3及び表面層4のエネルギーバンドは印加される電圧値に応じて曲がる。その結果、図4に示す電子デバイスと同様に、電子供給層2に存在する電子は濃度勾配及び電位勾配によって電子輸送層3を経て表面層4に輸送される。つまり、電子電流が流れる。その際、表面層4を構成するAlN層の膜厚がある程度薄く、かつ伝導帯端に形成される電子輸送層−表面層間のエネルギー障壁の高さがある程度低いと、電子輸送層−表面層界面に達した電子は表面層4による障壁を乗り越えて最表面に移動することができる。すなわち、電子親和力が負あるいは0に近い材料により構成される表面層4より真空に取り出すことができる。このような構成における表面層の膜厚は、電子輸送層3の膜厚やAl含有比との兼ね合いもあり、限定はできないが概ね10nm以下である。
【0050】
以上のように、不連続なエネルギー障壁を伝導帯に有する組成傾斜AlxGa1-xN層を電子輸送層3として用いた場合においても、正の電子親和力であるn−GaN層から負の電子親和力である表面層4まで、効率よくかつ移動させることが可能になる。そして、この構成においても、図4に示す構成と同様に、表面層4と表面電極6との間に、表面層4の電子親和力よりも所定値Δχだけ大きい電子親和力を有する絶縁性材料からなるフィルタ層5が介在しているので、リ−ク電流のみが抑制され、表面電極6と電子供給層2(あるいはオ−ミック電極1)との間に印加される電圧に応じて表面層4から有効に電子が放出され、電子の放出効率が高められることになる。
【0051】
以下に、本発明の基本的構造を応用して得られる電子デバイスの各種実施形態について、以下に説明する。
【0052】
−第1の実施形態−
図9は、本発明の第1の実施形態におけるNEA電子デバイスの構造を示す断面図である。同図に示すように、本実施形態のNEA電子デバイスは、サファイア基板11と、サファイア基板11の上に設けられた電子供給層として機能するn−GaN層12と、n−GaN層12の上に設けられ、Al組成比xが0から1までほぼ連続的に変化する電子輸送層であり電子輸送層として機能するAlxGa1-xN層13と、AlxGa1-xN層13の上に設けられた表面層として機能するAlN層14と、AlN層14の上に設けられたフィルタ層として機能するアルミナ層15(Al23)と、電極層16とを備えている。さらにn−GaN層12上に形成されたオーミック電極17と、絶縁体層18を介して電極層16と電気的に接続する引出電極19とを備えている。ここで、AlxGa1-xN層13は、n−GaN層12との接合面においてはAl含有比xがほぼ0であり、AlN層14との接合面においてはAl含有比がほぼ1である傾斜組成を有している。本実施形態における電極層16は、例えばニッケル(Ni)、チタン(Ti)、白金(Pt)により構成されていても良いし、他の金属でも良いが、その膜厚は5〜10nm程度である。また、本実施形態における引出電極19は、オーミック電極17−電極層16間に電圧を印加するための信号接続端子部分であり、その膜厚は200nm程度である。その材質は、電極層16を構成する金属膜と同種の金属でも良いが、アルミナ層15や、酸化膜,窒化膜等からなる絶縁体層18との接着強度を考慮して選択しても良い。
【0053】
また、アノ−ド電極20は、本電子デバイス表面から空間を隔てて対向して配置されており、適当な正バイアス電圧を印加することにより本電子デバイスから外部に取り出された電子21を加速/収集するものである。
【0054】
本実施形態の素子構造においては、図4に示すNEA電子デバイスの基本構造例とほぼ同じ構造を有しているので、既に説明したとおり、順方向バイアスを印加することによって、n−GaN層12(電子供給層)から供給される電子を制御性良くAlxGa1-xN層13(電子輸送層)/AlN層14(表面層)/アルミナ層15(フィルタ層)内を移動させて、電極層16の表面から外部に効率よく放出させることができる。その際、当然のことながら電極層16に流れ込んでしまう電子が一部存在するが、電極層16の材質及びその膜厚並びに面積を巧く設定することにより、電極層16を通して電子を外部に取り出すことができる。
【0055】
また、フィルタ層として機能するアルミナ層15が設けられているので、AlxGa1-xN層13やAlN層14に存在するクラック等の欠陥を介して電子が電極層16にリーク電流として流れるのを抑制することができ、電子の放出効率の向上を図ることができる。
【0056】
このような第1の実施形態の構造を有するNEA電子デバイスに、2〜10V程度の順方向バイアスをオーミック電極−電極層間に印加した結果、印加電圧に応じて電子21が放出され、アノ−ド電極20に102〜103(A/cm2)程度の放出電子電流が流れることが、本発明者達によって確認されている。なお、アノ−ド電極20は、電極層16よりも約1mm上方に配置され、250Vのアノ−ド電圧が印加されている。
【0057】
また、本実施形態におけるフィルタ層として機能するアルミナ層15は、AlN層/電極層の間にのみ存在するが、この構造に限定されるものではない。
【0058】
図10は、アルミナ層15をAlN層14の全面上に形成した,第1の実施形態の変形例における電子デバイスの構造を示す断面図である。この変形例の構造によっても、第1の実施形態と同じ効果を発揮することができる。
【0059】
また、本実施形態において、フィルタ層はアルミナ(酸化アルミニウムAl23)より構成したが、本発明のフィルタ層を構成する材料はこれに限定されるものではなく、上述のように、フィルタ層が、窒化アルミニウム(AlN)、Al含有量が多い窒化ガリウム−窒化アルミニウム混晶半導体(AlxGa1-xN:0.65≦x≦1)及びそれらの酸化物、酸化シリコン(SiOx)、窒化シリコン(SiNx)等によって構成されていても、本実施形態と同じ効果を発揮することができる。
【0060】
上記実施形態及びその変形例においては、放出された電子21をアノ−ド20で捕捉しただけであるが、このアノ−ド電極20表面に蛍光体等を塗布しておけば、この電子照射による発光が得られるため、この発光を利用したディスプレィなどの表示素子を構成することもできる。
【0061】
なお、本実施形態及びその変形例において、アノ−ド電極20はNEA電子デバイスとは空間的に切り離された位置に配置されているが、本発明はこれらに限定されるものではなく、絶縁構造を用いてアノ−ド電極20がNEA電子デバイスと一体化された構成も可能である。
【0062】
ここで、本実施形態のNEA電子デバイスの製造方法について説明する。
【0063】
まず、サファイア基板11の上に、MOCVD法により、トリメチルガリウム(TMG)+アンモニア(NH3)とを反応させて、GaNバッファ層(図示せず)を形成した後、同様の反応ガスにシラン(SiH4)を添加して電子供給層であるn−GaN層12を形成する。次に、ド−プガスであるSiH4の供給を停止した後、トリメチルアルミニウム(TMA)を導入して、Alの添加量を徐々に増大させながら、AlxGa1-xN層13を形成し始め、途中からTMGの供給を徐々に減少させていくことによって、上方に向かってAl含有比がほぼ連続的に高くなっていくAlxGa1-xN層13を形成する。そして、最終的にAl含有比xを1、つまりGa含有比を0にすることで、表面層であるAlN層14をAlxGa1-xN層13の上に形成する。この時、高品質なAlxGa1-xN層13を成長させるために、反応温度も徐々に変化させる場合もある。このような手法により、電子供給層であるn−GaN層12と、電子輸送層であるAlxGa1-xN層13と、表面層であるAlN層14とを連続的に、かつ高品質に形成することができる。本実施形態においては、n−GaN層12の厚みを4μmとし、AlxGa1-xN層の厚みを0.07μmとし、AlN層の厚みを0.01μmとした。
【0064】
なお、n−GaN層12、AlxGa1-xN層13、及びAlN層15の形成方法は、上述の方法に限定されるものではない。例えば、MOCVD法に代わってMBE法などを用いることも可能である。また、傾斜組成を有するAlxGa1-xN層を形成する他の方法としては、例えば、GaN層の上に薄いAl層をエピタキシャル成長させて、これを熱処理することによって下方に行くほどAl含有比が小さく、表面に近いほどAl含有比が大きいAlxGa1-xN層を形成することも可能である。
【0065】
次に、電子供給層であるn−GaN層12にオーミック電極17を形成する。このとき、基板として用いたサファイアは絶縁体であることから、サファイア基板11の裏面に電極を設けることができない。そこで、n−GaN層12の一部を露出するために表面からある深さまでエッチングし、このエッチング処理によって露出したn−GaN層12の領域上にオーミック電極17(材質:Ti/Al/Pt/Au)を電子ビ−ム蒸着法により形成した。
【0066】
次に、AlN層14上に絶縁体層18を形成し、AlN層14をその一部を開口させるようにパタ−ニングした後、開口部に露出したAlN層14の上に、アルミナ層15と、引出電極19とを形成する。その材質は適宜選択されるが、絶縁体層18を構成する材料としてSiO2等が好ましく、引出電極19を構成する材料としてTi,Al等が好ましく用いられる。本実施形態では、SiO2膜の膜厚を100nmとし、Al電極の膜厚を200nmとした。
【0067】
さらに、表面層であるAlN層14の上に電極層16を形成する。その材質についても適宜選択されるが、Pt、Ni、Ti等が好適である。また形成方法についても、限定されるものではないが、電子ビ−ム蒸着法が一般的である。なお電極層16は電子放出部となるので、電子の放出効率を高めるため、できる限り薄いことが好ましい。本実施形態では、電極層16の膜厚を5nmとし、大きさをφ20μmとした。
【0068】
−第2の実施形態−
上記第1の実施形態及びその変形例においては、表面層14の上に絶縁体層18とは別に新たにフィルタ層15を付加したが、絶縁体層18の一部をフィルタ層として機能させても良い。
【0069】
図11は、本発明の第2の実施形態におけるNEA電子デバイスの構造を示す断面図である。同図に示すように、本実施形態においては、絶縁体層として用いている酸化シリコン膜の一部をエッチング処理して薄くした領域をフィルタ層として機能させた。本構成例においては、本来の絶縁体層の厚さを100nmとし、フィルタ層として機能するエッチング部の膜厚を10nmとした。このような構成においても、上記第1の実施形態と同様に、オーミック電極−電極層間にバイアス電圧を印加した結果、印加電圧に応じて電子21が放出され、アノ−ド電極20放出電子電流が流れることが本発明者達によって確認されている。
【0070】
−第3の実施形態−
上記各実施形態においては、AlN層14を表面層としているが、AlxGa1-xNはAl含有比xが0.65以上の範囲であればNEA材料であるので、0.65≦x≦1の範囲の組成を有するAlxGa1-xNを表面層に用いても良い。
【0071】
図12は、本発明の第3の実施形態におけるNEA電子デバイスの構造を示す断面図である。同図に示すように、本実施形態においては、サファイア基板11の上に電子供給層であるn−GaN層12が設けられ、n−GaN層12の上にはAlxGa1-xN層13が設けられている。ここで、本実施形態においては、AlN層が設けられていない。その理由は、第1の実施形態においては、NEA材料であるAlN層を表面層としているが、Al含有比xが0.65以上のAlxGa1-xNであればAlNと同様にNEA材料となりうるので、0.65≦x≦1の領域のAlxGa1-xNを表面層に適用できるからである。すなわち、AlxGa1-xN層13の上部13aにおけるAl含有比xをx≧0.65とすることにより、AlxGa1-xN層13の上部13aを表面層として機能させ、AlxGa1-xN層13の下部13bを電子輸送層として機能させることができる。
【0072】
例えば、本実施形態としては、AlxGa1-xN層13のAl含有比xを電子供給層側から連続的に変化させてAl0.9Ga0.1Nの組成に達した時点でエピタキシャル成長を止めて得られる構造も適用できるし、Al0.9Ga0.1Nの組成に達してから、さらに同じ組成で数nm程度の厚さのAl0.9Ga0.1N層をエピタキシャル成長させて得られる構造であっても良い。
【0073】
さらに、既に説明したように、表面層の電子親和力が必ずしも負に達していなくても、伝導帯に分布する電子の相当量の部分が、真空準位よりも高いエネルギ−レベルを持つような電子親和力値を持つ組成になっていればよい。つまり、真のNEA材料により構成されていなくても、実質的にNEA状態が実現されるような材料により構成されていればよい。
【0074】
そして、表面層として機能するAlxGa1-xN層の上部13aの上には、フィルタ層15及び電極層16が設けられている。このフィルタ層15並びに電極層16に用いる材質及びその構成は、上記各実施形態で用いたものと同じにすることができる。
【0075】
上記各実施形態と同様に、本構成のNEA電子デバイスに対して順方向バイアス(電極層16に正電圧)を印加することによって、n−GaN層12(電子供給層)から供給される電子を制御性良く、AlxGa1-xN層13の下部13b(電子輸送層)内を移動させて、AlxGa1-xN層13の上部13a(表面層)から外部に効率よく放出させることができる。
【0076】
−第4の実施形態−
上記第3の実施形態においては、NEA状態であるAlxGa1-xN層(0.65≦x<1)の上部を表面層としているが、図12に示すAlxGa1-xN層の上部13aの上に直接AlN層のようなNEA材料を堆積しても良い(図示は省略する)。この構成の場合、図8に示す電子デバイスの伝導帯にエネルギ−障壁が存在する構造と捉えることもできるし、図6に示す電子デバイスにAlNからなるフィルタ層を設けた構造と捉えることもできる。いずれの場合においても上記各実施形態と同様に、効率的に電子を真空中に取り出すことができる。
【0077】
−第5の実施形態−
図13は、本発明の第5の実施形態におけるNEA電子デバイスの構造を示す断面図である。本実施形態においては、上記第1の実施形態の電子デバイスの構造に加えて、n−GaN層12とAlxGa1-xN層13との境界付近に配置された埋込絶縁層22(あるいは、埋込p型層)を備えている。本実施形態では、n−GaN層12/AlxGa1-xN層13の境界付近に設けられた埋込絶縁層22によって電子輸送層であるAlxGa1-xN層13を移動する電子流を狭窄して、表面電極である電極層16に到達する電子密度を高めるものである。例えば、開口径がφ5μmの埋込絶縁層22を挿入した場合には、電子流の集中効果により、2×103(A/cm2)程度の電流密度が得られた。
【0078】
なお、本実施形態においても、電極層16は電子放出部として機能するので、電子の放出効率を高めるため、できる限り薄いことが好ましい。
【0079】
また、埋込絶縁層22(又は埋込p型層)は、プロセスの容易性を考慮すると、本実施形態のごとく、図13に示す位置に設けられていることが好ましいが、場合によっては、AlxGa1-xN層13内やn−GaN層12内に同様の機能を有する部材が設けられていてもよい。
【0080】
さらに、上記第1の実施形態の変形例や、第2〜第4の実施形態の電子デバイスにおいても、本実施形態の埋込絶縁層22(あるいは、埋込p型層)と同様の埋め込み絶縁層又は埋込p型層を設けることにより、本実施形態と同じ効果を発揮することができる。
【0081】
−第6の実施形態−
本実施形態においては、上記のNEA電子デバイスを用いて作製したトランジスタ動作可能な電子デバイスの例について説明する。
【0082】
図14は、第6の実施形態における電子デバイスの構造を示す断面図である。本実施形態の電子デバイス(真空トランジスタ)は、第1の実施形態(図9に示すNEA電子デバイス)に類似した構造を利用している。図14に示すように、本実施形態の電子デバイスは、サファイア基板51と、サファイア基板51の上に設けられた電子供給層として機能するn−GaN層52と、n−GaN層52の上に設けられ、組成がほぼ連続的に変化する,電子輸送層として機能するAlxGa1-xN層53と、AlxGa1-xN層53の上に設けられ、表面層として機能するAlN層54と、AlN層54の上に設けられ、フィルタ層として機能するAl23層55と、Al23層55の上に設けられた電極層56と、n−GaN層52上に設けられたオーミック電極57と、電極層56の上方に開口部を有する絶縁体層58と、電極層56と電気的に接続される引出電極59と、収集電極60とから構成されている。
【0083】
以上の構造は、上記第1の実施形態において説明したNEA電子デバイスにおける絶縁体層58を上方まで延ばし、収集電極60と接続することで、電子62が走行する電子走行室61を密封したものである。ここで、電極層56、絶縁体層58および収集電極60により囲まれる電子走行室61は、内径が約50μmで、圧力が約10-5Torr(約1.33mPa)程度の減圧状態となっている。
【0084】
本実施形態の電子デバイス(真空トランジスタ)は、電極層56とオーミック電極57の間に印加された信号に対応して放出される電子62を、減圧された電子走行室61で加速して、収集電極60で受けるものであり、電子走行領域を真空としているため、絶縁性が高く、内部損失が小さく、温度依存性も小さい増幅素子又はスィッチング素子として機能する。
【0085】
なお、本実施形態の電子デバイスは、第1の実施形態に類似したNEA電子デバイスの構造を利用したが、これに限定されるものではなく、上記第1の実施形態の変形例や、第2〜第5の実施形態のうちいずれかの実施形態で説明したNEA電子デバイスを利用しても、同じ効果を発揮することができる。
【0086】
−第7の実施形態−
次に、上記第6の実施形態の変形例ともいえる第7の実施形態における電子デバイスについて説明する。
【0087】
図15は、本実施形態における電子デバイスの構造を示す断面図である。本実施形態においては、NEA電子デバイスを密閉容器内に収納した構造を有している。
【0088】
図15に示すように、本実施形態の電子デバイスは、上記第6の実施形態における図14に示す構造とほぼ同様の構造に加えて、密閉用キャップ63と、キャップ63及びNEA電子デバイスを取り付けるための治具64と、オ−ミック電極57、電極層56、収集電極60と電気的に接続される端子65〜67とを備えている。ただし、本実施形態においては、電子走行室61は絶縁体層58、収集電極60などによって密閉されているわけではなく、絶縁体層58がブリッジ状に形成されている。本実施形態においては、密閉部材がキャップ63及び治具64によって構成され、内部の電子走行室61が約10-5Torr(約1.33mPa)以下の高真空に保たれている。
【0089】
本実施形態によっても、上記第6の実施形態と同様の効果を発揮することができる。特に、本実施形態においては、電子走行室61の真空度(減圧度)を10-5Torr(約1.33mPa)以下にすることが容易であるという利点がある。
【0090】
−第8の実施形態−
本実施形態においても、上記のNEA電子デバイスを用いて作製したトランジスタ動作可能な電子デバイスの例について説明する。
【0091】
図16は、第8の実施形態における電子デバイスの構造を示す断面図である。本実施形態の電子デバイスは、第1の実施形態(図9に示すNEA電子デバイス)に類似した構造を利用している。図16に示すように、本実施形態の電子デバイスは、サファイア基板51と、サファイア基板51の上に設けられた電子供給層として機能するn−GaN層52と、n−GaN層52の上に設けられ、組成がほぼ連続的に変化する,電子輸送層として機能するAlxGa1-xN層53と、AlxGa1-xN層53の上に設けられ、表面層として機能するAlN層54と、AlN層54の上に設けられ、フィルタ層として機能するAl23層55と、Al23層55の上に設けられた電極層56と、電極層56と電気的に接続される引出電極59と、n−GaN層52上に設けられたオ−ミック電極57と、電極層56及び引出電極59を覆うシリコン酸化膜(SiO2膜)からなる絶縁体層70と、絶縁体層70の上に設けられた収集電極60とから構成されている。また、オーミック電極57と引出電極59との間に交流電圧を印加するための交流電源68と、引出電極59と収集電極60との間に直流のバイアスを印加するための直流電源69とが設けられている。
【0092】
以上の構造は、上記第7の実施形態における電子走行室61を絶縁体層70によって埋めた構造と捉えることができる。
【0093】
本実施形態の電子デバイスは、電極層56とオ−ミック電極57の間に印加された信号に対応して絶縁体層70に注入される電子62を加速して、収集電極60で受けるものであり、絶縁性が高く、内部損失が小さく、温度依存性も小さい増幅素子又はスイッチング素子として機能する。
【0094】
図17(a),(b)は、本実施形態の電子デバイスの各部、つまり、n−GaN層52、AlxGa1-xN層53、AlN層54、Al23層55、電極層56、絶縁体層70及び収集電極60の電圧を印加していない状態(平衡状態)及び電圧Vの順バイアスを印加した時のエネルギーバンド図である。図17(a)に示すように、本実施形態におけるNEA電子デバイスの部分におけるバンド構造は、図6に示すバンド構造と同じである。そして、本実施形態においては、Al23層55の電子親和力はAlN層54の電子親和力よりも所定値Δχ1だけ大きく、絶縁体層70の電子親和力はAlN層54の電子親和力よりも所定値Δχ2だけ大きい。
【0095】
そして、このような構造に順バイアス(表面電極側に正電圧)を印加すると、図17(b)に示すようにエネルギーバンドが曲がる。図6(b)において説明したと同様の作用により、リーク電流のみが抑制され、電極層56とn−GaN層52(あるいはオーミック電極51)との間に印加される正の電圧に応じてAlN層54から有効に電子が放出される。また、収集電極60と電極層56十に印加される電圧に応じて、絶縁体層70のバンドが曲げられるので、絶縁体層70の伝導帯端の上方を電子が走行して、収集電極60に集められることになる。よって、真空トランジスタと同様に、特性の良好なスイッチング素子として機能することになる。
【0096】
なお、本実施形態の電子デバイスは、第1の実施形態に類似したNEA電子デバイスの構造を利用したが、これに限定されるものではなく、上記第1の実施形態の変形例や、第2〜第5の実施形態のうちいずれかの実施形態で説明したNEA電子デバイスを利用しても、同じ効果を発揮することができる。
【0097】
−その他の実施形態−
上記第1〜第8の実施形態における構造において、様々な構成例を示したが、それらの構成を複合化したような構造を用いることで、それぞれの効果を兼ね備えることも可能である。
【0098】
また、上記各実施形態において、基板はサファイアを用いたため、エッチングによって表面からオーミック電極を設けたが、SiCなどの導電性基板を用いた場合、裏面よりオーミック電極を形成することができるので、より簡便な構成/プロセスとすることができる。
【0099】
また、上記各実施形態においては、表面層をAlNまたはAlxGa1-xNにより構成したが、それ以外のNEA材料であるダイヤモンド等によって表面層を構成しても良い。
【0100】
上記第1〜第8の実施形態におけるAlxGa1-xN層内にn型不純物をド−プして、n型半導体として機能させても良い。
【0101】
上記第1〜第8の実施形態における電子放出部(表面層)は、1つの素子に複数個設けられていても良い。
【0102】
上記AlxGa1-xN層を利用した実施形態においては、AlxGa1-xN層のAl含有比xが連続的に変化する構造としたが、AlxGa1-xN層のAl含有比xが、例えば階段状に変化するものがあってもよい。
【0103】
【発明の効果】
本発明の電子デバイスによれば、負の電子親和力又は負に近い電子親和力を有する材料により表面層を構成すると共に、電子供給層から表面層に電子をスム−ズに移動させるための電子輸送層とを設け、さらに、表面層の上にリーク電流に対する障壁となるフィルタ層とを設けたので、リーク電流を抑制して、真空準位に近いエネルギーレベルの電子の放出による放出効率の高い電子デバイスを得ることができる。
【図面の簡単な説明】
【図1】NEA材料の例として窒化アルミニウム(AlN)を用いた従来のNEA電子デバイスの構成を示す斜視図である。
【図2】(a)、(b)は、電子親和力の値が負及び正である半導体材料のエネルギー状態をそれぞれ表すエネルギーバンド図である。
【図3】(a),(b)は、従来の電子デバイスの電圧を印加していない状態(平衡状態)及び電圧Vの順バイアスを印加した時のエネルギーバンド図である。
【図4】本発明のNEA電子デバイスの基本構成を示す斜視図である。
【図5】AlxGa1-xN系半導体材料の電子親和力の測定データを示す図である。
【図6】(a),(b)は、本発明の基本構成における電圧を印加していない状態(平衡状態)及び電圧Vの順バイアスを印加した時のエネルギーバンド図である。
【図7】AlxGa1-xN(0≦x≦1)のバンドギャップのAl含有比依存性を示す図である。
【図8】(a),(b)は、電子輸送層としてAlxGa1-xN(0≦x≦y、かつy<1)を適用したNEA電子デバイスの平衡状態と順バイアス印加時におけるエネルギー状態を示すエネルギーバンド図である。
【図9】本発明の第1の実施形態におけるNEA電子デバイスの構造を示す断面図である。
【図10】第1の実施形態の変形例における電子デバイスの構造を示す断面図である。
【図11】本発明の第2の実施形態におけるNEA電子デバイスの構造を示す断面図である。
【図12】本発明の第3の実施形態におけるNEA電子デバイスの構造を示す断面図である。
【図13】本発明の第5の実施形態におけるNEA電子デバイスの構造を示す断面図である。
【図14】本発明の第6の実施形態における電子デバイスの構造を示す断面図である。
【図15】本発明の第7の実施形態における電子デバイスの構造を示す断面図である。
【図16】本発明の第8の実施形態における電子デバイスの構造を示す断面図である。
【図17】(a),(b)は、第8の実施形態の電子デバイスの電圧を印加していない状態(平衡状態)及び電圧Vの順バイアスを印加した時のエネルギーバンド図である。
【符号の説明】
1 オーミック電極
2 電子供給層
3 電子輸送層
4 表面層
5 フィルタ層
6 電極層
11 サファイア基板
12 電子供給層
13 電子輸送層
14 表面層
15 フィルタ層
16 表面電極
17 オ−ミック電極
18 絶縁体層
19 引出電極
20 アノ−ド電極
21 電子
22 埋込絶縁層
51 サファイア基板
52 n−GaN層(電子供給層)
53 AlxGa1-xN層(電子輸送層)
54 AlN層(表面層)
55 Al23層(フィルタ層)
56 電極層
57 オ−ミック電極
58 絶縁体層
59 引出電極
60 収集電極
61 電子走行室
62 電子
63 キャップ
64 ジグ
65〜67 端子
68 交流電源
69 直流電源

Claims (13)

  1. GaNからなる電子供給層と、
    上記電子供給層上に設けられ、電子供給層から表面層に向かう方向に電子親和力が小さくなるように変調されたAlGaNからなる電子輸送層と、
    上記電子輸送層上に設けられ、電子親和力が負あるいは0である材料により構成される表面層と、
    上記電子供給層から上記電子輸送層を経て上記表面層の最表面まで電子を移動させるように、上記電子供給層に対して電圧を印加するための表面電極と、
    上記表面層と上記表面電極との間に設けられて、上記電子輸送層に存在するクラックにより生じる電子の移動に対する障壁として機能し、かつ、上記表面層と同等あるいはより大きい電子親和力を有するフィルタ層と
    を備えている電子デバイス。
  2. 請求項1記載の電子デバイスにおいて、
    上記電子輸送層は、少なくとも一部において上記電子供給層から上記表面層に向う方向に連続的に拡大するバンドギャップを有することを特徴とする電子デバイス。
  3. 請求項1又は2に記載の電子デバイスにおいて、
    上記電子輸送層及び表面層を含む領域は、最表面に近づくほどAlの割合が多くなるように変化するAlxGa1-xN(0≦x≦1)により構成されていることを特徴とする電子デバイス。
  4. 請求項3に記載の電子デバイスにおいて、
    上記電子輸送層は、電子供給層に接する一方の端部から表面層に接する他方の端部まで上記xの値が0から0.65以上まで連続的にAl組成が増加していくように構成されていることを特徴とする電子デバイス。
  5. 請求項1〜4のうちいずれか1つに記載の電子デバイスにおいて、
    上記電子輸送層は、キャリア用不純物がドープされていないことを特徴とする
    電子デバイス。
  6. 請求項1〜5のうちいずれか1つに記載の電子デバイスにおいて、
    上記表面層は、AlxGa1-xN(0.65≦x≦1)により構成されていることを特徴とする電子デバイス。
  7. 請求項1〜6のうちいずれか1つに記載の電子デバイスにおいて、
    上記フィルタ層は、正の電子親和力を有する絶縁体により構成されていることを特徴とする電子デバイス。
  8. 請求項1〜6のうちいずれか1つに記載の電子デバイスにおいて、
    上記フィルタ層は、酸化アルミニウム(Al23)、酸化シリコン(SiOx)、及び窒化シリコン(SiNx)のうち少なくともいずれか1つを含んでいることを特徴とする電子デバイス。
  9. 請求項1〜6のうちいずれか1つに記載の電子デバイスにおいて、
    上記フィルタ層は、窒化アルミニウム(AlN),窒化ガリウム−窒化アルミニウム混晶半導体(AlxGa1-xN)(0.65≦x≦1)及びこれらの酸化物のうち少なくともいずれか1つを含んでいることを特徴とする電子デバイス。
  10. 請求項1〜9のうちいずれか1つに記載の電子デバイスにおいて、
    上記表面電極の上方に、上記表面電極とは離間して設けられ、上記表面層から外部に放出された電子を加速及び制御するための収集電極をさらに備えていることを特徴とする電子デバイス。
  11. 請求項10に記載の電子デバイスにおいて、
    上記電極層と収集電極層との間を、減圧状態に保つための密閉部材をさらに備えていることを特徴とする電子デバイス。
  12. 請求項10に記載の電子デバイスにおいて、
    上記電極層と収集電極層との間に設けられた絶縁体層をさらに備えていること
    を特徴とする電子デバイス。
  13. 請求項10〜12のうちいずれか1つに記載の電子デバイスにおいて、
    上記電子輸送層における電子の流れる領域を電子輸送層の断面の一部に制限するための埋め込み層をさらに備えていることを特徴とする電子デバイス。
JP2000243840A 2000-08-11 2000-08-11 電子デバイス Expired - Fee Related JP3758955B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000243840A JP3758955B2 (ja) 2000-08-11 2000-08-11 電子デバイス
US09/924,920 US6566692B2 (en) 2000-08-11 2001-08-08 Electron device and junction transistor
EP01119353A EP1180780A3 (en) 2000-08-11 2001-08-10 Electron device and junction transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000243840A JP3758955B2 (ja) 2000-08-11 2000-08-11 電子デバイス

Publications (2)

Publication Number Publication Date
JP2002057322A JP2002057322A (ja) 2002-02-22
JP3758955B2 true JP3758955B2 (ja) 2006-03-22

Family

ID=18734633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000243840A Expired - Fee Related JP3758955B2 (ja) 2000-08-11 2000-08-11 電子デバイス

Country Status (1)

Country Link
JP (1) JP3758955B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7428573B2 (ja) 2020-04-06 2024-02-06 株式会社東芝 発電素子、発電モジュール、発電装置、及び、発電システム

Also Published As

Publication number Publication date
JP2002057322A (ja) 2002-02-22

Similar Documents

Publication Publication Date Title
JP4761319B2 (ja) 窒化物半導体装置とそれを含む電力変換装置
JPH1093137A (ja) Iii−v族窒化物半導体素子
TW200525783A (en) Light-emitting semiconductor device and method of fabrication
KR101100684B1 (ko) 3족 질화물 반도체 발광소자
JPH11261052A (ja) 高移動度トランジスタ
JP4642801B2 (ja) 窒化物半導体発光素子
JP2006286698A (ja) 電子デバイス及び電力変換装置
US6350999B1 (en) Electron-emitting device
US6566692B2 (en) Electron device and junction transistor
JP2008227536A (ja) GaN系半導体装置
JP3758955B2 (ja) 電子デバイス
EP0257460B1 (en) Solid-state electron beam generator
US3972060A (en) Semiconductor cold electron emission device
JP2006147518A (ja) 窒化物半導体共鳴トンネル電子放出素子
JP7129630B2 (ja) 発光素子および発光素子の製造方法
JP2000323015A (ja) 電子放出素子
JP4752050B2 (ja) 窒化物半導体電子放出素子
WO2015176596A1 (zh) 一种场发射器件及其制作方法
JPS63119131A (ja) 電子放出素子
JP4629955B2 (ja) GaN系III−V族窒化物半導体スイッチング素子
JP3862486B2 (ja) 接合型トランジスタ
JPWO2012137783A1 (ja) 半導体積層体及びその製造方法、並びに半導体素子
JP2013045925A (ja) 半導体装置およびその製造方法
JP5285252B2 (ja) 窒化物半導体装置
JP5272341B2 (ja) 半導体装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees