JP3758381B2 - 単結晶製造方法 - Google Patents

単結晶製造方法 Download PDF

Info

Publication number
JP3758381B2
JP3758381B2 JP28182798A JP28182798A JP3758381B2 JP 3758381 B2 JP3758381 B2 JP 3758381B2 JP 28182798 A JP28182798 A JP 28182798A JP 28182798 A JP28182798 A JP 28182798A JP 3758381 B2 JP3758381 B2 JP 3758381B2
Authority
JP
Japan
Prior art keywords
magnetic field
solid
single crystal
liquid interface
electromagnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28182798A
Other languages
English (en)
Other versions
JP2000109390A (ja
Inventor
啓成 安部
丈生 斉藤
智司 工藤
貴 熱海
直樹 小野
久 降屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP28182798A priority Critical patent/JP3758381B2/ja
Publication of JP2000109390A publication Critical patent/JP2000109390A/ja
Application granted granted Critical
Publication of JP3758381B2 publication Critical patent/JP3758381B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、MCZ法(磁場印加チョクラルスキー法)によって、石英ルツボ内に収容された半導体融液から単結晶を引き上げるに際し、融液対流による温度振動を抑制し、単結晶化率を向上させることができる単結晶製造方法に関するものである。
【0002】
【従来の技術】
従来、シリコン(Si)やガリウムヒ素(GaAs)等の半導体単結晶を成長させる装置として、図10に示すように、MCZ法(磁場印加チョクラルスキー法)を用いた単結晶引き上げ装置10が知られている。このような単結晶引き上げ装置10には、チャンバ2の内部に石英ルツボ3とヒータ4とが配設されている。石英ルツボ3はサセプタ5を介して昇降自在、かつ、回転自在な下軸6に支持されている。また、ヒータ4は半導体融液を加熱するためのものであり、石英ルツボ3の周囲に配置されている。
【0003】
チャンバ2上部からは、種結晶を下端部に把持するワイヤ7が昇降自在、かつ、回転自在に吊り下げられている。また、チャンバ2の外側には半導体融液の対流を抑制するカスプ磁場を印加する電磁石8,9が設置されている。
【0004】
従来の単結晶製造方法は、炉上部からアルゴンガスを供給しつつ、上方より種結晶を半導体融液に浸漬させ、石英ルツボ3を回転させながら種結晶を引き上げることにより、半導体の単結晶13を得るものである。
単結晶の引き上げ中には、図11に示すように、石英ルツボ3の壁面と半導体融液が反応して、半導体融液内に酸素が溶出するが、電磁石8,9によってカスプ磁場11(破線で示す)が印加されると、石英ルツボ3の底面及び側面の両方に直角な磁界成分が加わるため、石英ルツボ3内壁付近の対流が抑制される。言い換えれば、溶解した酸素が石英ルツボ3の壁面付近に滞留するため、さらなる酸素の溶解が起こり難くなる。また、酸素を比較的高濃度に含む融液の結晶直下への流入を抑制する。
【0005】
このように、カスプ磁場11を印加させることで、単結晶中の酸素濃度を低減することができる。
尚、単結晶の成長に伴って半導体融液の固液界面12の位置が低下するのを補うように図12に示すように石英ルツボ3が下軸6により上昇するようになっている。この種の技術としては、例えば、特許第2706165号公報に開示されている。
【0006】
【発明が解決しようとする課題】
上記従来技術においては、図11,12に示すように、上下方向の磁場中心を固液界面12に位置させた状態で単結晶13の引き上げを行うようにしているため、融液の中心部(結晶直下)は低磁界領域となる。
【0007】
したがって、上記のように酸素濃度を低減させる点では有利である反面、融液対流による温度振動の顕著化を抑制できないため、同じ石英ルツボ3に横磁場を印加した場合に比較して径制御が困難になり(特にシード工程)、単結晶化率が低下するという問題がある。とりわけ、石英ルツボ3が大容量化している今日では温度振動をなくして単結晶化率を向上できる単結晶製造方法が要望されてきている。
そこで、この発明は、とりわけ、大口径ルツボによるカスプ磁界下での結晶成長において、融液対流による温度振動を防止して単結晶化率を向上させることができる単結晶製造方法を提供するものである。
【0008】
【課題を解決するための手段】
上記課題を解決するために、本発明における第1の発明は、カスプ磁場下におかれたルツボ内の半導体融液から単結晶を引き上げる単結晶製造方法において、上下方向の磁場中心を固液界面から下方にずらし、かつ、固液界面の磁界強度を500ガウス以上に設定した状態で引き上げを行い、固液界面が単結晶の胴部とボトム部との境界部分にさしかかったら上記上下方向の磁場中心を徐々に固液界面に移動することを特徴とする。
【0009】
このように構成することで、単結晶がボトム部付近にさしかかるまでは、温度振動を防止することで単結晶化率を向上させることができる条件(上記磁場中心位置、及び、磁場強度条件)で引き上げを行い、単結晶がボトム部付近に到達したら、転位が起きないような条件(磁場中心を固液界面に設定する)で引き上げを行う。
【0010】
本発明の第2の発明は、カスプ磁場下におかれたルツボ内の半導体融液から単結晶を引き上げる単結晶製造方法において、上側の電磁石と下側の電磁石とのコイル電流を一致させた状態で上側の電磁石と下側の電磁石との上下方向の中間レベル位置を固液界面から下方にずらし、かつ、固液界面の磁界強度を500ガウス以上に設定した状態で引き上げを行い、固液界面が単結晶の胴部とボトム部との境界部分にさしかかったら上記中間レベル位置を徐々に固液界面に移動することを特徴とする。
【0011】
このように構成することで、単結晶がボトム部付近にさしかかるまでは、例えば、上下同じ電磁石で、かつ、コイル電流を同じにして、両電磁石の位置を下げることにより上下の磁場中心を固液界面から下方にずらすことができ、単結晶がボトム部付近に到達したら、両電磁石の位置を上げることで磁場中心を固液界面に移動することが可能となる。
【0012】
本発明の第3の発明は、カスプ磁場下におかれたルツボ内の半導体融液から単結晶を引き上げる単結晶製造方法において、上側の電磁石と下側の電磁石とのコイル電流に差を持たせることにより上下方向の磁場中心を固液界面から下方にずらし、かつ、固液界面の磁界強度を500ガウス以上に設定した状態で引き上げを行い、固液界面が単結晶の胴部とボトム部との境界部分にさしかかったら上記上下方向の磁場中心を上下の電磁石のコイル電流を変化させることによって徐々に固液界面に移動することを特徴とする。
【0013】
このように構成することで、単結晶がボトム部付近にさしかかるまでは、例えば、上下同じ電磁石で、かつ、コイル電流を下側の電磁石の方を小さくすることで上下方向の磁場中心を固液界面から下方にずらすことができ、単結晶がボトム部付近に到達したら、下側の電磁石のコイル電流を徐々に増加させることにより上下方向の磁場中心を固液界面に移動することが可能となる。
【0014】
本発明の第4の発明は、上記固液界面位置から下方にずらした上下方向の磁場中心のオフセット量をルツボ内径の4.0%±2.5%に設定したことを特徴とする。オフセット量を上記値、最適にはルツボ内径の4.0%に設定することで、単結晶の胴体部の単結晶化率を高めることが可能となる。
【0015】
【発明の実施の形態】
以下、この発明の実施形態を図面と共に説明する。尚、以下の説明において、この実施形態の単結晶製造方法に使用される単結晶引き上げ装置の基本的構造は従来技術と同様であるので、同一部分に同一符号を付して説明する。
【0016】
第1実施形態を図1ないし図5によって説明する。図1において、石英ルツボ3周囲の電磁石8,9により石英ルツボ3内の半導体融液をカスプ磁場11下におく。ここで電磁石8,9は同一のものを使用している。このとき、上下方向の磁場中心pを固液界面12から下方にずらしておく。尚、磁場中心pは上側の電磁石8と下側の電磁石9との上下方向の中間レベル位置であり、磁界強度0位置である。ここで、磁場中心pを固液界面12から下方にずらすオフセット量dは、ルツボ径の4.0%±2.5%(最適には4.0%)、例えば、32インチ径の石英ルツボ3を使用する場合、石英ルツボ3の内径が790mmであるのでその4.0%±2.5である30mm±20mm(最適には30mm)とする。また、固液界面12の石英ルツボ側壁における磁界強度を1000ガウスに設定する。この状態で従来と同様に引き上げ作業を行う。
【0017】
そして、単結晶13の胴体部13Aの引き上げが終わり固液界面12が単結晶13のボトム部13B付近、具体的には、図2、図3に示すように単結晶13の胴部13Aとボトム部13Bとの境界部分にさしかかったら(図3参照)、電磁石8,9を石英ルツボ3に対して徐々に上昇させ、上記上下方向の磁場中心pを徐々に固液界面12に移動し、単結晶13のボトム部13Bの直径が胴体部13Aの直径Dの半分(1/2・D)になったときに(図4参照)、上下方向の磁場中心pが固液界面12に位置させるようにする。そして、その後さらに単結晶13を引き上げる(図5参照)。
【0018】
このように構成することで、単結晶13がボトム部13B付近にさしかかるまでは、結晶が固化する固液界面12における温度振動を確実に防止して単結晶化率を向上させることができ、単結晶13がボトム部13B付近に到達したら、有転位化させずに引き上げを行うことができる。
【0019】
具体的な実験結果を表1、表2に示す。
表1は、単結晶化率とカスプ磁場0ガウス位置の依存性についての実験結果である。
【0020】
【表1】
Figure 0003758381
【0021】
実験条件
ルツボ径:32インチ、チャージ:180Kg、シード回転数:10rpm
ルツボ回転数:5rpm、アルゴンガス流量:90L/min
炉内圧:15Torr
上記実験の結果、固液界面12から−30mmの位置で磁界強度を0にし、かつ、固液界面レベルの石英ルツボ側壁における磁界強度が1000ガウスの場合に最高の単結晶率比0.89を確保することができた。尚。この単結晶化率比は後述する表2の横磁場の場合を1としたときの単結晶化率の比である。
【0022】
ここで、固液界面12から0mmの場合では、上記と同様に磁界強度1000ガウスにおいては単結晶化率比0.62であり、固液界面12から−30mmの場合に比べると低い値になるが、その内容を調べると、15本中でボトム部13B終了まで単結晶化が成立したのは(ボトム○数)5本であった。また、このとき胴体部13Aが単結晶化した数は7本であった。
これに比べ、磁界強度0位置が固液界面12から−30mmの場合では、16本中でボトム○数は1本であった。また、このとき胴体部13Aが単結晶化した数は12本であった。
【0023】
これにより単結晶13の胴体部13Aを製造する場合には、磁界強度0位置を固液界面12から−30mmの位置として製造し、単結晶13のボトム部13Bを製造する場合には、磁界強度0位置を固液界面12から0mmの位置(固液界面上)として製造することが、単結晶化率を最大にできることが判明した。
表2は、単結晶化率と温度振動の依存性についての実験結果である。
【0024】
【表2】
Figure 0003758381
【0025】
実験条件
5000ガウス(0.5T)の横磁場下でルツボ回転数(CR)1の場合と、1000ガウス(0.1T)のカスプ磁場下でルツボ回転数(CR)5の場合について比較した。尚、カスプ磁場においては表1のように磁界強度0の位置を変えた場合(0,−30,+30mm)について実験した。ここで、ルツボ径等のデータは前記実験のものと同様である。尚、本発明の場合については後述する。
【0026】
融液温度の標準偏差は、石英ルツボ3の中心部と結晶端部について測定した。単結晶化率比は横磁場とカスプ磁場における3つのケースについて、横磁場の場合を1として測定した。
ボトム部13Bまで無転位でボトム成長中に有転位化する確率についても横磁場とカスプ磁場における3つのケースについて測定を行った。
ここで、上記標準偏差は以下の式によって求めた。
((nΣx2−(Σx)2)/n21/2
また、測定は、0.1sec間隔で410sec行われた。
【0027】
この実験によれば、磁界強度0の位置を−30mmとした場合が温度分布のばらつきが少ないことが判明した。すなわち、石英ルツボ3の中心部だけをみると、磁界強度0の位置を+30mmとした場合が一番ばらつきが小さいが、φ300mm結晶の端部を含めてトータルで考えると、磁界強度0の位置を−30mmとした場合が最適なのである。
そして、ボトム部13Bまで無転位でボトム成長中に有転位化する確率では圧倒的に磁界強度0の位置を−30mmとした場合が有利であることが判明した。ここで、この磁界強度0の位置を−30mmとした場合については、固液界面12がボトム部13Bにさしかかったとき(図3の状態)から徐々に磁界強度0位置を固液界面12に移動させ、胴体部13Aの直径Dの半分になったとき(図4の状態)に磁界強度0位置が固液界面12に整合するようにしている。
このようにして、単結晶化率を高めると共にボトム部13Bまで有転位化が起きないようにできるのである。
【0028】
次に、第2実施形態について説明する。
この実施形態は、カスプ磁界を発生させる電磁石8,9の位置を変えないで、電磁石の電流値を変化させることで、上記第1実施形態と同様に、単結晶13がボトム部13Bにさしかかったら、固液界面の磁界強度を0に近づけるようにしたものである。
【0029】
具体的に、使用されるルツボの寸法、及び、電磁石8,9の配置等について説明する。図6において、ルツボは高さH=450mm、直径R0=813mm、小半径R1=160mm、大半径R2=813mm、メルト重量ML=250Kg、メルト深さMD=249.6mmである。
また、電磁石の基準位置における配置寸法は、図7に示すように固液界面12よりも上方140mmの位置に上側の電磁石8のクライオスタットの下面が、また、固液界面12よりも下方140mmの位置に下側の電磁石9のクライオスタット上面が位置しており、配置内径は1640mmになっている。尚、電磁石のクライオスタットの高さは355mm、幅は120mmである。
【0030】
このような電磁石8,9を使用して、電磁石8,9の電流を上下で異ならせることによって、石英ルツボ3内に作用する磁力成分を変化させることができる点について説明する。
まず、後述する図9の参考例として上下の電磁石8,9のコイル電流を同じ値にし、かつ、コイル位置を下げた場合の磁界強度の分布を図8に示す。図8において上下の電磁石8,9のコイル電流は同様の5000Aであり、電磁石8,9のコイル位置は固液界面12から−30mmの位置に設定されている。このとき、カスプ磁界0ガウス位置は十分に石英ルツボ3内の固液界面12から−30mmに位置し、固液界面12付近の磁界強度は528.6ガウス(500ガウス以上)となる。
【0031】
次に、図9においては、上側の電磁石8のコイル電流を5000A、下側の電磁石9のコイル電流を上側の電磁石よりも小さい4700Aとし、電磁石8,9のコイル位置を固液界面12上に設定すると、等磁界強度の分布はコイル電流が上下でアンバランスであるため、カスプ磁界0ガウス位置はコイル電流が少ない下側の電磁石9の方に歪むようにして沈み込む。このとき、カスプ磁界0ガウス位置は十分に石英ルツボ3内の固液界面12から−30mmに位置し、固液界面12付近の磁界強度の絶対値は528.6ガウス(500ガウス以上)となる。
【0032】
したがって、図9に示すような電磁石8と電磁石9を用いて、単結晶13の胴体部13Aについては、カスプ磁界0ガウス位置を石英ルツボ3内−30mmに位置させておき、ボトム部13Bにさしかかったら、例えば、下側の電磁石9のコイル電流を5000Aに近づけるようにすることでカスプ磁界0ガウス位置を固液界面12に移動させることが可能となるのである。
よって、この実施形態によれば、電磁石8,9のコイル電流値を変化させることで、カスプ磁界0ガウス位置を調整できるため、電磁石8,9自体を上下させる場合に比較して装置の複雑化を回避できる。
本発明の実施形態として、図9に示す電磁石8,9仕様で単結晶の引き上げ終期に磁場変更によって固液界面の磁場強度を0にするようにした場合について実験してみると、表2に示すように、単結晶化率においても、ボトム部まで無転位でボトム成長中に有転位化する確率においても優れている結果が得られた。
ここで、図8は実際の磁場強度を示す例として開示したが、この図8に示すような電磁石8,9の仕様は第1実施形態において利用可能である。
【0033】
尚、この発明は上記実施形態に限られるものではなく、例えば、上下の電磁石の上下方向の移動と、上下の電磁石のコイル電流の変化を組み合わせることにより、固液界面付近の磁界強度をコントロールするようにしても良い。
【0034】
【発明の効果】
以上説明してきたように、本発明における第1の発明によれば、単結晶がボトム部付近にさしかかるまでは、温度振動を防止することで単結晶化率を向上させることができる条件(上記磁場中心位置、及び、磁場強度条件)で引き上げを行い、単結晶がボトム部付近に到達したら、転位が起きないような条件(磁場中心を固液界面に設定する)で引き上げを行うことができるため、ボトム部における転位による結晶欠陥の発生(有転位化)を抑えつつ、温度振動を効果的に抑制して単結晶全体としての単結晶化率を高めることができる効果がある。
【0035】
本発明における第2の発明によれば、単結晶がボトム部付近にさしかかるまでは、例えば、上下同じ電磁石で、かつ、コイル電流を同じにして、両電磁石の位置を下げることにより上下の磁場中心を固液界面から下方にずらすことができ、単結晶がボトム部付近に到達したら、両電磁石の位置を上げることで磁場中心を固液界面に移動することが可能となるため、電磁石の単純な上下動で単結晶化率を高めることができる効果がある。
【0036】
本発明における第3の発明によれば、単結晶がボトム部付近にさしかかるまでは、例えば、上下同じ電磁石で、かつ、コイル電流を下側の電磁石の方を小さくすることで上下方向の磁場中心を固液界面から下方にずらすことができ、単結晶がボトム部付近にさしかかったら、下側の電磁石のコイル電流を徐々に増加させることにより上下方向の磁場中心を固液界面に移動することが可能となるため、電磁石を上下させるための機械的な装置が必要なく、装置の複雑化を回避できる効果がある。
【0037】
本発明における第4の発明によれば、オフセット量をルツボ内径の4.0%±2.5%に設定することで、単結晶の胴体部の単結晶化率を高めることが可能となるため、温度振動を効果的に抑制し単結晶化率を高めることができる効果がある。
【図面の簡単な説明】
【図1】 この発明の第1実施形態の説明図である。
【図2】 図1の単結晶をボトム部付近まで引き上げた状態を示す説明図である。
【図3】 図2の要部拡大図である。
【図4】 図3から更に引き上げた状態を示す説明図である。
【図5】 引き上げ終了状態を示す図1に相当する説明図である。
【図6】 石英ルツボの寸法図である。
【図7】 電磁石の配置を示す寸法図である。
【図8】 上下の電磁石の磁界強度を同じにした状態のカスプ磁界の等磁界強度の分布を示す説明図である。
【図9】 上下の電磁石の磁界強度を変えた状態のカスプ磁界の等磁界強度の分布を示す説明図である。
【図10】 従来技術の単結晶引き上げ装置の全体説明図である。
【図11】 従来技術の単結晶の引き上げ初期の説明図である。
【図12】 従来技術の単結晶の引き上げ終期の説明図である。
【符号の説明】
3 石英ルツボ
8 上側の電磁石
9 下側の電磁石
12 固液界面
13 単結晶
13B ボトム部
d オフセット量
p 磁場中心

Claims (4)

  1. カスプ磁場下におかれたルツボ内の半導体融液から単結晶を引き上げる単結晶製造方法において、上下方向の磁場中心を固液界面から下方にずらし、かつ、固液界面の磁界強度を500ガウス以上に設定した状態で引き上げを行い、固液界面が単結晶の胴部とボトム部との境界部分にさしかかったら上記上下方向の磁場中心を徐々に固液界面に移動することを特徴とする単結晶製造方法。
  2. カスプ磁場下におかれたルツボ内の半導体融液から単結晶を引き上げる単結晶製造方法において、上側の電磁石と下側の電磁石とのコイル電流を一致させた状態で上側の電磁石と下側の電磁石との上下方向の中間レベル位置を固液界面から下方にずらし、かつ、固液界面の磁界強度を500ガウス以上に設定した状態で引き上げを行い、固液界面が単結晶の胴部とボトム部との境界部分にさしかかったら上記中間レベル位置を徐々に固液界面に移動することを特徴とする単結晶製造方法。
  3. カスプ磁場下におかれたルツボ内の半導体融液から単結晶を引き上げる単結晶製造方法において、上側の電磁石と下側の電磁石とのコイル電流に差を持たせることにより上下方向の磁場中心を固液界面から下方にずらし、かつ、固液界面の磁界強度を500ガウス以上に設定した状態で引き上げを行い、固液界面が単結晶の胴部とボトム部との境界部分にさしかかったら上記上下方向の磁場中心を上下の電磁石のコイル電流を変化させることによって徐々に固液界面に移動することを特徴とする単結晶製造方法。
  4. 上記固液界面位置から下方にずらした上下方向の磁場中心のオフセット量をルツボ内径の4.0%±2.5%に設定したことを特徴とする請求項1ないし請求項3に記載の単結晶製造方法。
JP28182798A 1998-10-02 1998-10-02 単結晶製造方法 Expired - Fee Related JP3758381B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28182798A JP3758381B2 (ja) 1998-10-02 1998-10-02 単結晶製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28182798A JP3758381B2 (ja) 1998-10-02 1998-10-02 単結晶製造方法

Publications (2)

Publication Number Publication Date
JP2000109390A JP2000109390A (ja) 2000-04-18
JP3758381B2 true JP3758381B2 (ja) 2006-03-22

Family

ID=17644563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28182798A Expired - Fee Related JP3758381B2 (ja) 1998-10-02 1998-10-02 単結晶製造方法

Country Status (1)

Country Link
JP (1) JP3758381B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002010485A1 (fr) * 2000-07-28 2002-02-07 Shin-Etsu Handotai Co.,Ltd. Procede et dispositif pour fabriquer un monocristal de semiconducteur
KR100470231B1 (ko) * 2001-12-31 2005-02-05 학교법인 한양학원 자기장을 이용한 초크랄스키 풀러 및 이를 이용한 단결정잉곳 성장방법
KR100827028B1 (ko) 2006-10-17 2008-05-02 주식회사 실트론 쵸크랄스키법을 이용한 반도체 단결정 제조 방법, 및 이방법에 의해 제조된 반도체 단결정 잉곳 및 웨이퍼
CN103060902B (zh) * 2013-01-10 2016-04-27 上海大学 直接成形制备带硅的方法及硅片直接成形装置
JP6888568B2 (ja) 2018-02-28 2021-06-16 株式会社Sumco シリコン単結晶の製造方法

Also Published As

Publication number Publication date
JP2000109390A (ja) 2000-04-18

Similar Documents

Publication Publication Date Title
KR101009074B1 (ko) 가변 자기장을 사용한 성장 실리콘 결정의 용융물-고체 계면 형상의 제어
KR100840751B1 (ko) 고품질 실리콘 단결정 잉곳 제조 방법, 성장 장치 및그로부터 제조된 잉곳 , 웨이퍼
JP2940437B2 (ja) 単結晶の製造方法及び装置
KR100793950B1 (ko) 실리콘 단결정 잉곳 및 그 성장방법
JP2001158690A (ja) 高品質シリコン単結晶の製造方法
JP2001220289A (ja) 高品質シリコン単結晶の製造装置
JP2009114054A (ja) 酸素濃度特性が改善した半導体単結晶の製造方法
JP3758381B2 (ja) 単結晶製造方法
KR101022933B1 (ko) 선택적 자기 차폐를 이용한 반도체 단결정 제조장치 및 제조방법
WO2007013148A1 (ja) シリコン単結晶引上装置及びその方法
JP2688137B2 (ja) シリコン単結晶の引上げ方法
JP4045666B2 (ja) シリコン単結晶の製造方法
KR100991088B1 (ko) 커스프 자기장을 이용한 반도체 단결정 잉곳 제조장치 및제조방법
JP3750440B2 (ja) 単結晶引上方法
JP4013324B2 (ja) 単結晶成長方法
JP2004189559A (ja) 単結晶成長方法
JP3719088B2 (ja) 単結晶育成方法
JP2006327879A (ja) 化合物半導体単結晶の製造方法
GB2084046A (en) Method and apparatus for crystal growth
JP2000239096A (ja) シリコン単結晶の製造方法
JP3521862B2 (ja) 単結晶成長方法
KR100869940B1 (ko) 실리콘 단결정 잉곳의 제조방법
EP1365048B1 (en) Method for fabricating silicon single crystal
JP7424282B2 (ja) 単結晶シリコンインゴットの製造方法
JP4801869B2 (ja) 単結晶成長方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees