JP3758225B2 - 投射装置 - Google Patents

投射装置 Download PDF

Info

Publication number
JP3758225B2
JP3758225B2 JP01683296A JP1683296A JP3758225B2 JP 3758225 B2 JP3758225 B2 JP 3758225B2 JP 01683296 A JP01683296 A JP 01683296A JP 1683296 A JP1683296 A JP 1683296A JP 3758225 B2 JP3758225 B2 JP 3758225B2
Authority
JP
Japan
Prior art keywords
light
optical system
color
component
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01683296A
Other languages
English (en)
Other versions
JPH09211385A (ja
Inventor
雄二 間辺
英明 下村
徹夫 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP01683296A priority Critical patent/JP3758225B2/ja
Publication of JPH09211385A publication Critical patent/JPH09211385A/ja
Application granted granted Critical
Publication of JP3758225B2 publication Critical patent/JP3758225B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、液晶ライトバルブ上に形成される画像をスクリーン上に投射する装置に関し、特に複数の色成分用の液晶ライトバルブに形成される画像ををれぞれ複数の色成分の照明光で照明するとともに、これら画像を合成して投射レンズにて該合成像を投射する装置に関するものである。
【0002】
【従来の技術】
光源からの光を三色分解光学系によりR、G、B光に色分解し、液晶を使用したライトバルブによりこれら分解されたR、G、B光の入射光を信号によって変調して、これらライトバルブから射出した変調光を色合成し、投射レンズにより投射する投射装置が知られている。この装置の代表的な例を図5示す。
【0003】
図5において、ランプ301から放射されたR、G、B光を含む光源光は背後に配置される凹面鏡302と集光レンズ303によって略平行光束に変換され、色分解光学系に入射する。色分解光学系は青色光(B光)反射ダイクロイックミラー304と緑光(G光)反射ダイクロイックミラー305とから構成され、B光反射ダイクロイックミラー304にて反射されたB光はミラー307によって再び反射されてB光用液晶ライトバルブ311に入射し、G光反射ダイクロイックミラー305によって反射されたG光はG光用液晶ライトバルブ310に入射する。そして、ダイクロイックミラー305を通過した赤色(R光)はミラー306及びミラー308にて反射されてR光用液晶ライトバルブ309に入射する。各液晶ライトバルブに入射した各色光は各色の映像信号に基づいて変調される。すなわち各色の映像信号は各液晶ライトバルブ上で透過率分布を持つ画像に変換される。これらライトバルブから射出された光は、合成光学系としてのR光及びB光反射ダイクロイック膜を有するダイクロイックプリズム312に入射して三色合成されて、G光が透過する方向に合成光として該プリズムから射出し、投射レンズ313にて図示なきスクリーン上に拡大投射される。この従来例では、ダイクロイックミラー304と305とが互いに平行になるように構成しているが、これらのダイクロイックミラー304と305ををX型に配置した、いわゆるクロスダイクロイックミラーとしたものも従来例として知られている。
【0004】
【発明が解決しようとする課題】
一般にダイクロイックミラーやダイクロイックプリズムのような多層膜フィルターにおいては、その分光特性に角度依存性がある。そのため、投射レンズによって決定される主光線の多層膜フィルターに対する入射角が、多層膜フィルターのどの位置においても一定でない場合には、多層膜フィルターの分光特性が各主光線ごとに異なり、、スクリーン上においてカラーシェーディングを引き起こすという問題が発生する。さらに、液晶ライトバルブにも角度依存性があるため、液晶ライトバルブに対する主光線の入射角が場所によって異なると、これに起因して投射像のコントラストにムラが発生するという問題も発生する。
【0005】
そこで、本発明は、カラーシェーディングが発生せず、コントラストの良好なフルカラー投射像を得ることを目的とする。
【0006】
【課題を解決するための手段】
上述の目的を達成するために、本発明の一つの態様にかかる投射装置は、光源からの光を色分離する色分離光学系と、色分離光学系によって色分離された光が導かれる位置に設けられた複数の色信号用ライトバルブと、複数の色信号用ライトバルブによって変調された光を合成する色合成光学系と、色合成光学系からの光を投射する投射レンズとを備えた投射装置であって、投射レンズは開口絞りを有し、色分離光学系と色合成光学系とは、投射レンズの開口絞りによって定まる主光線がテレセントリック性を維持している位置に設けられ、前記光源と前記色分離光学系との間に設けられて、前記光源からの光を前記色分離光学系へ向かう第1偏光成分と、第2偏光成分とに分離する偏光分離光学系と、前記第2偏光成分により照明される輝度信号用ライトバルブと、前記色合成光学系と前記輝度信号用ライトバルブとの間の光路中に設けられて、前記色合成光学系からの光と、前記輝度信号用ライトバルブを経た光とを合成する合成光学系とをさらに有し、前記合成光学系は、主光線がテレセントリツク性を維持している位置に設けられるように構成される。
【0007】
また、本発明の好ましい態様においては、光源と色分離光学系との間には、インテグレータとこのインテグレータからの光を色分離光学系へ導く照明用リレー光学系とが設けられるように構成される。また、本発明の好ましい態様においては、インテグレータは面光源を形成し、インテグレータの射出面は、インテグレータを射出し照明用リレー光学系に入射する投射レンズの開口絞りによって定まる主光線が、テレセントリック性を維持している位置に設けられるように構成される。また、本発明の好ましい態様においては、照明用リレー光学系は面光源の像を形成し、照明用リレー光学系は、面光源の像側または面光源側にテレセントリックな光学系であるように構成される。
【0008】
また、本発明の好ましい態様においては、色分離光学系は、光源からの光をR光成分、G光成分及びB光成分に分離し、複数の色信号用ライトバルブは、R光用ライトバルブ、G光用ライトバルブ及びB光用ライトバルブを有し、色分離光学系とR光用、G光用及びB光用ライトバルブとの間には、色分離光学系からのR光成分、G光成分及びB光成分をそれぞれR光用、G光用及びB光用ライトバルブへ導く用R光用、G光用及びB光用リレー光学系が設けられるように構成される。
【0009】
また、本発明の好ましい態様においては、光源と色分離光学系との間には、面光源を形成するインテグレータと面光源の像を形成する照明用リレー光学系とが設けられ、照明用リレー光学系は、面光源の像側にテレセントリックな光学系であり、R光用、G光用及びB光用リレー光学系は、面光源の2次像をR光用、G光用及びB光用ライトバルブ上に形成し、かつ2次像側にテレセントリックな光学系であるように構成される。
【0011】
また、本発明の別の態様にかかる投射装置は、光源からの光をR光成分、G光成分及びB光成分に色分離する色分離光学系と、色分離光学系によって色分離された光が導かれる位置に設けられたR光用、G光用及びB光用ライトバルブと、R光用、G光用及びB光用ライトバルブによって変調された光を合成する色合成光学系と、色合成光学系からの光を投射する投射レンズとを備えた投射装置であって、光源と色分離光学系との間には、インテグレータとインテグレータからの光を色分離光学系へ導く照明用リレー光学系とが設けられ、色分離光学系とR光用、G光用及びB光用ライトバルブとの間には、色分離光学系からのR光成分、G光成分及びB光成分をそれぞれR光用、G光用及びB光用ライトバルブへ導く用R光用、G光用及びB光用リレー光学系が設けられ、照明用リレー光学系は前群と後群とを有し、照明用リレー光学系の前群と後群との間には、光源からの光を色分離光学系へ向かう第1偏光成分と第2偏光成分とに分離する偏光分離光学系が設けられ、投射レンズは開口絞りを有し、投射装置は、輝度信号用ライトバルブと、第2偏光成分を輝度信号用ライトバルブへ導く輝度信号用リレー光学系と、色合成光学系からの光と輝度信号用ライトバルブを経た光とを合成する合成光学系とをさらに有し、色分離光学系、色合成光学系及び合成光学系とは、投射レンズの開口絞りによって定まる主光線がテレセントリック性を維持している位置に設けられるように構成される。
【0012】
【発明の実施の形態】
以下、図面を参照して、本発明の実施の形態を説明する。
[第1の実施の形態]
図1は、第1の実施の形態に係る投射装置の全体構成を説明するための斜視図であり、説明を簡単にするためにXYZ座標系を採用している。図2は、図1に示す投射装置のYZ平面図における光路図であり、図中実線は軸外光束の最周縁光線を示し、破線はこの軸外光束の主光線を示す。なお、図2における座標系は図1のものと対応している。
【0013】
図1において、図示なきランプと該ランプが第1焦点になるように設けられた楕円鏡とからなる光源1からの光は、図示なき赤外吸収フィルター及び紫外吸収フィルターを通過した後、角柱形状の透明光学部材からなるロッドインテグレータ2の入射面に集光される。ロッドインテグレータ2に入射した光は、その内面にて反射を繰り返して入射面と対向する射出面から射出される。ここで、射出面には均一の光強度分布を持つ面光源が形成される。言い換えると、この射出面は、ロッドインテグレータ2の内面反射によってその入射面の位置に形成される複数の光源の虚像からの光で重畳的に照明されている。
【0014】
次に、ロッドインテグレータ2の射出面からの光は、図中−Z方向に沿って進行し、第1及び第2照明レンズ101,102からなる照明用リレー光学系に入射する。この照明用リレー光学系は、焦点距離f1の第1照明レンズ101と焦点距離f2の第2照明レンズ102とが間隔f1+f2となるように、すなわち第1照明レンズ101の後側焦点位置と第2照明レンズ102の前側焦点位置とが合致するように構成されている。
【0015】
照明用リレー光学系101,102を通過した光は、R光反射ダイクロイックミラー3RとB光反射ダイクロイックミラー3BをX型に組み合わせたクロスダイクロイックミラー3に入射する。ここで、R成分光はR光反射ダイクロイックミラー3Rにて図中−X方向へ向けて反射され、B成分光はB光反射ダイクロイックミラー3Bにて図中+X方向へ向けて反射される。そして、G成分光はR光反射ダイクロイックミラー3R及びB光反射ダイクロイックミラー3Bを透過して図中−Z方向へ進行する。
【0016】
クロスダイクロイックミラー3によって分離されたR成分光、G成分光及びB成分光の光路における第2照明用レンズ102の後側焦点位置には、ロッドインテグレータ2の射出面の像が、各色成分光ごとに形成される。
さて、各色成分光のうちG成分光の光路を示す図2を参照して、G成分光について説明する。クロスダイクロイックミラー3を通過したG成分光は、第2照明用レンズ102から光路長f2だけ離れた位置に、ロッドインテグレータ2の射出面のG成分光による像を形成する。この像からのG成分光は、折曲げミラー4Gにて反射されて図中−Y方向に沿って進行する。その後、G成分光は、レンズ103Gを通過した後に折曲げミラー5Gにて反射されて、図中+Z方向に偏向されてレンズ104Gを通過する。ここで、レンズ103G及び104Gは、G光用リレー光学系を構成し、焦点距離f2のレンズ103Gと焦点距離f1のレンズ104Gとが間隔f1+f2となるように、すなわちレンズ103Gの後側焦点とレンズ104Gの前側焦点とが合致するように配置される。
【0017】
このG光用リレー光学系からのG成分光は、+Z方向に沿って進行し、色信号用ライトバルブとしてのG光用液晶ライトバルブ7Gに達する。このG光用液晶ライトバルブ7Gは、G光用リレー光学系から間隔f1だけ離れて配置されており、ここには、ロッドインテグレータ2の射出面のG成分光による像が形成される。
【0018】
図1に戻って、クロスダイクロイックミラー3によって−X方向へ向けて反射されたR成分光は、G成分光と同様に、第2照明用レンズ102から光路長f2だけ離れた位置に、ロッドインテグレータ2の射出面のR成分光による像を形成する。この像からのR成分光は、折曲げミラー4Rにて反射されて図中−Y方向に沿って進行する。その後、R成分光は、レンズ103Rを通過した後に折曲げミラー5Rにて反射されて、図中+Z方向に偏向されてレンズ104Rを通過する。ここで、レンズ103R及び104Rは、R光用リレー光学系を構成し、焦点距離f2のレンズ103Rと焦点距離f1のレンズ104Rとが間隔f1+f2となるように、すなわちレンズ103Rの後側焦点とレンズ104Rの前側焦点とが合致するように配置される。
【0019】
このR光用リレー光学系からのR成分光は、+X方向に沿って進行し、色信号用ライトバルブとしてのR光用液晶ライトバルブ7Rに達する。このR光用液晶ライトバルブ7Rは、R光用リレー光学系から間隔f1だけ離れて配置されており、ここには、ロッドインテグレータ2の射出面のR光成分による像が形成される。
【0020】
また、クロスダイクロイックミラー3にて反射されたB成分光は、G成分光と同様に、第2照明用レンズ102から光路長f2だけ離れた位置に、ロッドインテグレータ2の射出面のB成分光による像を形成する。この像からのB成分光は、折曲げミラー4Bにて反射されて図中−Y方向に沿って進行する。その後、B成分光は、レンズ103Bを通過した後に折曲げミラー5Bにて反射されて、図中+Z方向に偏向されてレンズ104Bを通過する。ここで、レンズ103B及び104Bは、B光用リレー光学系を構成し、焦点距離f2のレンズ103Bと焦点距離f1のレンズ104Bとが間隔f1+f2となるように、すなわちレンズ103Bの後側焦点とレンズ104Bの前側焦点とが合致するように配置される。
【0021】
このB光用リレー光学系からのB成分光は、+X方向に沿って進行し、色信号用ライトバルブとしてのB光用液晶ライトバルブ7Bに達する。このB光用液晶ライトバルブ7Bは、B光用リレー光学系から間隔f1だけ離れて配置されており、ここには、ロッドインテグレータ2の射出面のB光成分による像が形成される。
【0022】
このように、各色用液晶ライトバルブ上には、均一な光強度分布を持つロッドインテグレータ2の射出面の像が形成される。すなわち、各色用液晶ライトバルブは、均一な面光源によってクリティカル照明される。このように、第1の実施の形態においては、ロッドインテグレータ2の射出面と各色用液晶ライトバルブとが共役な配置であるため、角柱形状のロッドインテグレータ2の射出面を各液晶ライトバルブの画像表示面と相似となるようにそのアスペクト比を定めている。
【0023】
なお、第1の実施の形態による投射装置において、R光用リレー光学系のレンズ103Rと、G光用リレー光学系のレンズ103Gと、B光用リレー光学系のレンズ103Bとは、焦点距離f2の同一なレンズであり、R光用リレー光学系のレンズ104Rと、G光用リレー光学系のレンズ104Gと、B光用リレー光学系のレンズ104Bとは、焦点距離f1の同一なレンズである。また、色分離光学系であるクロスダイクロイックミラー3から各色用液晶ライトバルブ7R,7B,7Gまでの光路長はそれぞれ実質的に同一である。
【0024】
ここで、これらの各色用液晶ライトバルブ7R,7B,7Gについて説明する。各液晶ライトバルブは、液晶パネルをクロスニコルを構成する2枚の偏光板にて挟み込んだ構造をなしており、この液晶パネルは、光の入射側から順に、透明ガラス基板、該ガラス基板上に形成された格子状の画素を選択スイッチングするアクティブ非線形素子(例えばTFT)及びこれと結合された画素を構成する電極、液晶層、対向電極及び透明ガラス基板から構成されている。上記アクティブ素子が各色ごとの色信号によって電極をスイッチングすると、この電極と対向する対向電極間に電圧が印加され、この電界によって液晶の分子が互いに平行かつ基板に対して垂直に配列される。そのため入射側の偏光板からの偏光はそのまま液晶パネルを通過し、クロスニコルを構成する射出側の偏光板に吸収される。ここで、アクティブ素子によって選択されない箇所はねじれ構造を維持することとなり、この場合には、入射側の偏光板からの偏光は、液晶のねじれに倣って偏光方向が90度変換されてパネルから射出され、射出側の偏光板を通過する。このように、各液晶ライトバルブは、各色信号によりスイッチングされることにより、その上に各色信号に応じた画像を形成する、すなわち各液晶ライトバルブを通過する光に対して変調をかける。
【0025】
さて、図1に示す通り、各色用液晶ライトバルブ7R,7B,7Gの射出側には、R光反射ダイクロイック膜6RとB光反射ダイクロイック膜6BとがX型になるように設けられたクロスダイクロイックプリズム6が設けられている。G光用液晶ライトバルブ7Gにより変調されたG成分光は、図中+Z方向へ向けて進行し、R光反射ダイクロイック膜6RとB光反射ダイクロイック膜6Bとを透過する。また、R光用液晶ライトバルブ7Rにより変調されたR成分光は、図中+X方向へ向けて進行し、R光反射ダイクロイック膜6Rにて+Z方向へ向けて反射され、B光用液晶ライトバルブ7Bにより変調されたB成分光は、図中−X方向へ向けて進行し、B光反射ダイクロイック膜6Bにて+Z方向へ向けて反射される。すなわち、クロスダイクロイックミラー3によって、3方向(R成分光は+X方向、G成分光は−Z方向、B成分光は−X方向)に分離された各色成分光は、各液晶ライトバルブを通過した後、上記3方向とは逆向き(R成分光は−X方向、G成分光は+Z方向、B成分光は+X方向)にクロスダイクロイックプリズム6に入射して、クロスダイクロイックミラー3への入射方向(−Z方向)とは逆向き(+Z方向)でクロスダイクロイックプリズム6から各色成分光が合成されて射出される。
【0026】
このクロスダイクロイックプリズム6の射出側(+Z方向側)には、投射レンズ系105が配置されている。ここで、この投射レンズは、図示なき開口絞りを有し、この開口絞りよりもクロスダイクロイックプリズム6側に位置するレンズ群の後側焦点(開口絞り側を後側とする)位置に開口絞りを配置する構成である。この開口絞りによって投射装置の光学系の主光線が定まり、クロスダイクロイックプリズム6と投射レンズ系105との間において主光線が光軸と平行になる。すなわち、この投射レンズ系105は、クロスダイクロイックプリズム6側にテレセントリックな光学系である。
【0027】
図2に示すように、第1の実施の形態に係る投射装置では、ロッドインテグレータ2の射出面と照明用レンズ101との間の光路、照明用レンズ102とG光用リレーレンズのレンズ103Gとの間の光路及びG光用リレーレンズのレンズ104Gと投射レンズ系105との間の光路において、投射レンズ系105の開口絞りによって決定される主光線が光軸と平行になる。また、図2では図示していないが、照明用レンズ102とR光用リレーレンズのレンズ103Rとの間の光路、R光用リレーレンズのレンズ104Rと投射レンズ系105との間の光路、照明用レンズ102とB光用リレーレンズのレンズ103Bとの間の光路及びB光用リレーレンズのレンズ104Bと投射レンズ系105との間の光路においても、投射レンズ系105の開口絞りによって決定される主光線が光軸と平行になる。言い換えると、照明用リレー光学系、R光用リレー光学系、B光用リレー光学系及びG光用リレー光学系が両側テレセントリック光学系である。
【0028】
このように、第1の実施の形態に係る投射装置では、色分解光学系としてのクロスダイクロイックミラー3と、色合成光学系としてのクロスダイクロイックプリズム6とが共に、主光線が光軸と平行な位置、すなわち主光線がテレセントリック性を維持している位置に設けられているため、色分解及び色合成光学系の角度特性によるシェーディングが発生しない利点がある。さらに、第1の実施の形態に係る投射装置においては、R光、B光及びG光用液晶ライトバルブが、色分解及び色合成光学系と同様に、主光線がテレセントリック性を維持している位置に設けられているため、液晶ライトバルブの角度特性による投射像のコントラストのムラが発生しない利点もあり、結果として、優れた画質のフルカラー像を投射できる効果を奏する。
【0029】
なお、第1の実施の形態において、図示なきスクリーン上で各色用液晶ライトバルブの像が合成された状態で形成されるが、スクリーン上での像の方向が各色成分光ごとにそろうように各色用液晶ライトバルブをドライブすることは言うまでもない。
[第2の実施の形態]
次に、図3及び図4を参照して、本発明による第2の実施の形態を説明する。図3は、第2の実施の形態に係る投射装置の全体構成を説明するための斜視図であり、説明を簡単にするためにXYZ座標系を採用している。図4は、図3に示す投射装置のYZ平面図における光路図であり、図中実線は軸外光束の最周縁光線を示し、破線はこの軸外光束の主光線を示す。なお、図4における座標系は図3のものと対応している。
【0030】
図3において、図示なきランプと該ランプが第1焦点になるように設けられた楕円鏡とからなる光源11からの光は、図示なき赤外吸収フィルター及び紫外吸収フィルターを通過した後、角柱形状の透明光学部材からなるロッドインテグレータ12の入射面に集光される。ロッドインテグレータ12に入射した光は、その内面にて反射を繰り返して入射面と対向する射出面から射出される。ここで、射出面には均一の光強度分布を持つ面光源が形成される。言い換えると、この射出面は、ロッドインテグレータ2の内面反射によってその入射面の位置に形成される複数の光源の虚像からの光で重畳的に照明されている。
【0031】
次に、ロッドインテグレータ12の射出面からの光は、図中−Z方向に沿って進行し、第1及び第2照明レンズ201,202からなる照明用リレー光学系に入射する。この照明用リレー光学系は、前群としての焦点距離f1の第1照明レンズ201と後群としての焦点距離f2の第2照明レンズ202とが間隔f1+f2となるように、すなわち第1照明レンズ201の後側焦点位置と第2照明レンズ202の前側焦点位置とが合致するように構成されている。
【0032】
この照明用リレー光学系の瞳空間、すなわち第1照明レンズ201と第2照明レンズ202との間の光路中には、第1偏光ビームスプリッタ13が設けられている。第1偏光ビームスプリッタ13に入射する第1照明レンズ201からの光のうち、偏光ビームスプリッタ13に対してP偏光成分(振動方向が図中±Y方向の直線偏光)となる第1偏光成分は、この偏光ビームスプリッタ13を通過した後、その射出側に配置された1/2波長板14を通過して偏光方向が90度回転した状態の偏光成分(振動方向が図中±X方向の直線偏光)で第2照明レンズに入射する。
【0033】
照明用レンズ202を通過した直線偏光光は、R光反射ダイクロイックミラー15RとB光反射ダイクロイックミラー15BをX型に組み合わせたクロスダイクロイックミラー15に入射する。ここで、R成分光はR光反射ダイクロイックミラー15Rにて図中−X方向へ向けて反射され、B成分光はB光反射ダイクロイックミラー15Bにて図中+X方向へ向けて反射される。そして、G成分光はR光反射ダイクロイックミラー15R及びB光反射ダイクロイックミラー15Bを透過して図中−Z方向へ進行する。
【0034】
クロスダイクロイックミラー15によって分離されたR成分光、G成分光及びB成分光の光路における第2照明用レンズ202の後側焦点位置には、ロッドインテグレータ12の射出面の像が、各色成分光ごとに形成される。
さて、各色成分光のうちG成分光の光路を示す図4を参照して、G成分光について説明する。クロスダイクロイックミラー15を通過したG成分光は、第2照明用レンズ202から光路長f2だけ離れた位置に、ロッドインテグレータ12の射出面のG成分光による像を形成する。この像からのG成分光は、折曲げミラー16Gにて反射されて図中−Y方向に沿って進行する。その後、G成分光は、レンズ203Gを通過した後に折曲げミラー17Gにて反射されて、図中+Z方向に偏向されてレンズ204Gを通過する。ここで、レンズ203G及び204Gは、G光用リレー光学系を構成し、焦点距離f2のレンズ203Gと焦点距離f1のレンズ204Gとが間隔f1+f2となるように、すなわちレンズ203Gの後側焦点とレンズ204Gの前側焦点とが合致するように配置される。
【0035】
このG光用リレー光学系からのG成分光は、+Z方向に沿って進行し、色信号用ライトバルブとしてのG光用液晶ライトバルブ18Gに達する。このG光用ライトバルブ18Gは、G光用液晶リレー光学系から間隔f1だけ離れて配置されており、ここには、ロッドインテグレータ12の射出面のG成分光による像が形成される。
【0036】
図3に戻って、クロスダイクロイックミラー15によって−X方向へ向けて反射されたR成分光は、G成分光と同様に、第2照明用レンズ202から光路長f2だけ離れた位置に、ロッドインテグレータ12の射出面のR成分光による像を形成する。この像からのR成分光は、折曲げミラー16Rにて反射されて図中−Y方向に沿って進行する。その後、R成分光は、レンズ203Rを通過した後に折曲げミラー17Rにて反射されて、図中+Z方向に偏向されてレンズ204Rを通過する。ここで、レンズ203R及び204Rは、R光用リレー光学系を構成し、焦点距離f2のレンズ203Rと焦点距離f1のレンズ204Rとが間隔f1+f2となるように、すなわちレンズ203Rの後側焦点とレンズ204Rの前側焦点とが合致するように配置される。
【0037】
このR光用リレー光学系からのR成分光は、+X方向に沿って進行し、色信号用ライトバルブとしてのR光用液晶ライトバルブ18Rに達する。このR光用液晶ライトバルブ18Rは、R光用リレー光学系から間隔f1だけ離れて配置されており、ここには、ロッドインテグレータ12の射出面のR光成分による像が形成される。
【0038】
また、クロスダイクロイックミラー15にて反射されたB成分光は、G成分光と同様に、第2照明用レンズ202から光路長f2だけ離れた位置に、ロッドインテグレータ12の射出面のB成分光による像を形成する。この像からのB成分光は、折曲げミラー16Bにて反射されて図中−Y方向に沿って進行する。その後、B成分光は、レンズ203Bを通過した後に折曲げミラー17Bにて反射されて、図中+Z方向に偏向されてレンズ204Bを通過する。ここで、レンズ203B及び204Bは、B光用リレー光学系を構成し、焦点距離f2のレンズ203Bと焦点距離f1のレンズ204Bとが間隔f1+f2となるように、すなわちレンズ203Bの後側焦点とレンズ204Bの前側焦点とが合致するように配置される。
【0039】
このB光用リレー光学系からのB成分光は、+X方向に沿って進行し、色信号用ライトバルブとしてのB光用液晶ライトバルブ18Bに達する。このB光用液晶ライトバルブ18Bは、B光用リレー光学系から間隔f1だけ離れて配置されており、ここには、ロッドインテグレータ12の射出面のB光成分による像が形成される。
【0040】
このように、各色用液晶ライトバルブ上には、均一な光強度分布を持つロッドインテグレータ12の射出面の像が形成される。すなわち、各色用液晶ライトバルブは、均一な面光源によってクリティカル照明される。また、第2の実施の形態においては、照明用リレー光学系201,202はロッドインテグレータ12の射出面の像をf2/f1倍で形成し、各色用リレー光学系は、この像をf1/f2倍で各液晶ライトバルブ上に再結像する。すなわち、各液晶ライトバルブ上には、ロッドインテグレータ12の射出面の等倍像を形成する。このように、第2の実施の形態においては、ロッドインテグレータ12の射出面と各色用液晶ライトバルブとが共役な配置であり、その倍率関係も等倍であるため、角柱形状のロッドインテグレータ12の射出面を各液晶ライトバルブの画像表示面と同一サイズ・同一形状となるようにその縦横サイズを定めている。
【0041】
なお、第2の実施の形態による投射装置において、R光用リレー光学系のレンズ203Rと、G光用リレー光学系のレンズ203Gと、B光用リレー光学系のレンズ203Bとは、焦点距離f2の同一なレンズであり、R光用リレー光学系のレンズ204Rと、G光用リレー光学系のレンズ204Gと、B光用リレー光学系のレンズ204Bとは、焦点距離f1の同一なレンズである。また、色分離光学系であるクロスダイクロイックミラー15から各色用液晶ライトバルブ18R,18B,18Gまでの光路長はそれぞれ実質的に同一である。
【0042】
ここで、これらの各色用液晶ライトバルブ18R,18B,18Gは、各色信号によりスイッチングされることにより、その上に各色信号に応じた画像を形成する、すなわち各色用液晶ライトバルブを通過する光に対して変調をかけるものであって、それぞれ第1の実施の形態における各色用液晶ライトバルブ7R,7B,7Gと同様の機能を有するので、ここでは説明を省略する。
【0043】
さて、各色用液晶ライトバルブ18R,18B,18Gの射出側には、R光反射ダイクロイック膜19RとB光反射ダイクロイック膜19BとがX型になるように4つの直角プリズムを組み合わせたクロスダイクロイックプリズム19が設けられている。G光用液晶ライトバルブ18Gにより変調されたG成分光は、図中+Z方向へ向けて進行し、R光反射ダイクロイック膜19RとB光反射ダイクロイック膜19Bとを透過する。また、R光用液晶ライトバルブ18Rにより変調されたR成分光は、図中+X方向へ向けて進行し、R光反射ダイクロイック膜19Rにて+Z方向へ向けて反射され、B光用液晶ライトバルブ18Bにより変調されたB成分光は、図中−X方向へ向けて進行し、B光反射ダイクロイック膜6Bにて+Z方向へ向けて反射される。すなわち、クロスダイクロイックミラー15によって、3方向(R成分光は+X方向、G成分光は−Z方向、B成分光は−X方向)に分離された各色成分光は、各液晶ライトバルブを通過した後、上記3方向とは逆向き(R成分光は−X方向、G成分光は+Z方向、B成分光は+X方向)にクロスダイクロイックプリズム19に入射して、クロスダイクロイックミラー15への入射方向(−Z方向)とは逆向き(+Z方向)でクロスダイクロイックプリズム19から各色成分光が合成されて射出される。このとき、R光用液晶ライトバルブ18RからのR成分光は±Y方向に振動する直線偏光光であり、B光用液晶ライトバルブ18BからのB成分光は±Y方向に振動する直線偏光光であり、G光用液晶ライトバルブ18GからのG成分光は±Y方向に振動する直線偏光光である。このように、第2の実施の形態では、偏光ビームスプリッタ13とクロスダイクロイックミラー15との間に1/2波長板14を設けているため、各色液晶ライトバルブからの直線偏光光をクロスダイクロイックプリズム19の各ダイクロイック膜19R,19Bに対してS偏光とすることができ、各ダイクロイック膜19R,19Bの分光特性を良好にすることができる。
【0044】
このクロスダイクロイックプリズム19の射出側(+Z方向側)には、合成光用リレー光学系205が設けられており、この合成用リレー光学系205を通過した光は、+Z方向に沿って進行し、折曲げミラー20にて偏向されて+Y方向へ向けて進行し、各色用液晶ライトバルブ18R,18B,18Gの像を同じ位置に形成する、すなわち合成用リレー光学系によって、各色用液晶ライトバルブ18R,18B,18Gの合成像Iが形成される。この合成用リレー光学系205は、例えば図4に示すように、焦点距離f3のレンズ205‘と焦点距離f4のレンズ205“とを間隔f3+f4で配置したものを用いることができる。
【0045】
さて、偏光ビームスプリッタ13にて反射された第2偏光成分(振動方向が図中±X方向の直線偏光)は、図中−Y方向に沿って進行し、焦点距離f2の第3照明用レンズ206を通過した後、折曲げミラー22にて図中+Z方向へ向けて反射される。ここで、第3照明用レンズ206は、第1照明用レンズ201との光路長がf1+f2となるように、すなわち第1照明用レンズ201の後側焦点位置と第3照明用レンズ206の前側焦点位置とが合致するように配置されている。そして、第3照明用レンズ206の後側焦点位置には、輝度信号用ライトバルブ23が配置されている。
【0046】
ここで、輝度信号用ライトバルブ23にロッドインテグレータ12の像を形成する輝度信号用リレー光学系は、前群としての照明用リレー光学系の第1照明レンズ201と、後群としての輝度信号用リレー光学系の第3照明レンズ206とから構成されており、照明用リレー光学系と輝度信号用リレー光学系とで第1照明レンズ201を共用している。ここで、第2の実施の形態に係る投射装置では、照明用リレー光学系の第2照明レンズ202と輝度信号用リレー光学系の第3照明レンズ206とは、同一なレンズを用いている。
【0047】
この輝度信号用ライトバルブ23は、構造的には上述の色信号用ライトバルブ18R,18B,18Gと同様であるが、その大きさが色信号用ライトバルブ18R,18B,18Gよりも大きく、かつ画素の数も多くなるように構成されている。上記のリレー光学系201,206によって、輝度信号用ライトバルブ23上には、ロッドインテグレータ12の射出面の拡大像が形成される。このとき、輝度信号用ライトバルブ23上の拡大像の倍率は、f2/f1倍で与えられる。従って、第1乃至第3照明用レンズの焦点距離並びに各色用リレー光学系のレンズの焦点距離f1,f2は、輝度信号用ライトバルブ23と各色用液晶ライトバルブ18R,18B,19Gとの大きさの比によって定めれば良い。
【0048】
輝度信号用ライトバルブ23の射出側(+Z方向側)には、合成光学系としての偏光ビームスプリッタ24が配置されている。輝度信号用ライトバルブ23から射出される光は、図中±Y方向の振動方向を持つ直線偏光光であり、偏光ビームスプリッタ23に対してP偏光であるため、この光は偏光ビームスプリッタ23を透過して、その射出側に位置する投射レンズ207へ入射する。
【0049】
一方、合成用リレー光学系205によって形成された合成像Iからは、図中±Z方向の振動方向を持つ直線偏光光が+Y方向に沿って進行する。この直線偏光光は、1/2波長板21を通過して偏光方向が90度回転して±X方向となり、偏光ビームスプリッタ23へ入射する。この光は、偏光ビームスプリッタ23に対してS偏光となるため、ここで反射されて図中+Z方向に沿って進行し、投射レンズ207へ入射する。ここで、輝度信号用ライトバルブ23と合成像Iとは投射レンズ207に関して互いに共役な位置にある。
【0050】
この投射レンズ207は、図示なき開口絞りを有し、この開口絞りよりも偏光ビームスプリッタ23側に位置するレンズ群の後側焦点(開口絞り側を後側とする)位置に開口絞りを配置する構成である。この開口絞りによって投射装置の光学系の主光線が定まり、偏光ビームスプリッタ23と投射レンズ系207との間の光路において主光線が光軸と平行になる。すなわち、この投射レンズ系207は、偏光ビームスプリッタ23側にテレセントリックな光学系である。
【0051】
図4に示すように、第2の実施の形態に係る投射装置では、ロッドインテグレータ12の射出面と照明用レンズ201との間の光路、照明用レンズ202とG光用リレーレンズのレンズ203Gとの間の光路、G光用リレーレンズのレンズ204Gと合成用リレー光学系のレンズ205‘との間の光路、合成用リレー光学系のレンズ205“と投射レンズ207との間の光路及び第3照明レンズ206と投射レンズ207との間の光路において、投射レンズ系105の開口絞りによって決定される主光線が光軸と平行になる。また、図4では図示していないが、照明用レンズ202とR光用リレーレンズのレンズ203Rとの間の光路、R光用リレーレンズのレンズ204Rと合成用リレー光学系のレンズ205’との間の光路、照明用レンズ202とB光用リレーレンズのレンズ203Bとの間の光路及びB光用リレーレンズのレンズ104Bと合成用リレー光学系のレンズ205‘との間の光路においても、投射レンズ系207の開口絞りによって決定される主光線が光軸と平行になる。言い換えると、照明用リレー光学系201,202、照明用リレー光学系201,206、R光用リレー光学系203G,204G、B光用リレー光学系203B,204B、G光用リレー光学系203G,204G及び合成用リレー光学系が両側テレセントリック光学系である。
【0052】
このように、第2の実施の形態に係る投射装置では、色分解光学系としてのクロスダイクロイックミラー15と、色合成光学系としてのクロスダイクロイックプリズム19と、合成光学系としての偏光ビームスプリッタ24とが共に、主光線が光軸と平行な位置、すなわち主光線がテレセントリック性を維持している位置に設けられているため、色分解及び色合成光学系並びに合成光学系の角度特性によるシェーディングが発生しない利点がある。そして、第2の実施の形態に係る投射装置においては、R光、B光及びG光用液晶ライトバルブ並びに輝度信号用ライトバルブ23が、色分解及び色合成光学系と同様に、主光線がテレセントリック性を維持している位置に設けられているため、液晶ライトバルブの角度特性による投射像のコントラストのムラが発生しない利点もあり、結果として、優れた画質のフルカラー像を投射できる効果を奏する。
【0053】
なお、第2の実施の形態に係る投射装置においては、偏光分離光学系としての偏光ビームスプリッタ13がテレセントリックが維持されていない位置に設けられているが、この偏光ビームスプリッタ13においてはスクリーン上のカラーシェーディング及び投射像のコントラストムラに対する影響をほとんど与えないため、問題はない。
【0054】
また、第2の実施の形態に係る投射装置では、照明用リレー光学系の第1照明レンズ201と各色用リレー光学系のレンズ204R,204G,204Bとを焦点距離f1の同一種のレンズで構成し、照明用リレー光学系の第2照明レンズ202、輝度信号用リレー光学系の第3照明レンズ206及び各色用リレーレンズのレンズ203R,203G,203Bを焦点距離f2の同一種のレンズで構成している。このように、照明用リレー光学系、輝度信号用リレー光学系及び各色用リレー光学系を構成するレンズの共通化を図っているため、コストの低減が可能となっている。
【0055】
なお、第2の実施の形態においては、図示なきスクリーン上で各色用液晶ライトバルブの像及び輝度信号用液晶ライトバルブの像が合成された状態で形成されるが、スクリーン上での像の方向が各色成分光ごとにそろうように各色用液晶ライトバルブ及び輝度信号用液晶ライトバルブをドライブすることは言うまでもない。
【0056】
なお、図3及び図4に示した第2の実施の形態に係る投射装置では、合成用リレー光学系205を2つのレンズ群からなるものとして説明したが、その代わりに、例えばクロスダイクロイックプリズム19の射出側近傍(+Z方向側)に配置されるフィールドレンズと、合成像近傍に配置されるフィールドレンズと、これら2つのフィールドレンズの間に配置される正屈折力のレンズ群とから構成しても良い。また、図3及び図4の例では、合成像Iと偏光ビームスプリッタ24との間の光路中に1/2波長板21を配置しているが、その代わりに合成像Iと折曲げミラー20との間の光路中に配置しても良い。このように1/2波長板21は色合成光学系としてのダイクロイックプリズム19と合成光学系としての偏光ビームスプリッタ24との間の光路中に配置されていれば良い。また、1/2波長板14,21としては、シートタイプの1/2波長板を用いることもでき、この場合には、偏光ビームスプリッタ13,24及びダイクロイックプリズム19などのプリズム部材の表面上に設ければ良い。
【0057】
また、図3及び図4の例では、第1及び第2照明用レンズ201,202によって照明用リレー光学系を構成しているが、その代わりに、2つのフィールドレンズで挟まれた正屈折力のレンズ群で構成しても良い。この場合、偏光ビームスプリッタ13をクロスダイクロイックミラー15側のフィールドレンズと正屈折力のレンズ群との間に配置するときには、偏光ビームスプリッタ13及び24の間の光路中に、上記フィールドレンズと同じものを配置する。また、偏光ビームスプリッタ13を正屈折力のレンズ群とロッドインテグレータ12との間の光路中に配置するときには、偏光ビームスプリッタ13及び24の間の光路中に、上記正屈折力のレンズ群並びに上記フィールドレンズと同じものを配置すれば良い。
【0058】
また、上述の第1及び第2の実施の形態では、ロッドインテグレータを用いたが、その代わりに、フライアイレンズを適用しても良い。さらに、光源としてランプと楕円鏡とを用いる代わりに、ランプと放物面鏡、球面鏡とを用いることもできる。
なお、第1及び第2の実施の形態では、投射レンズ系の開口絞りによって主光線を定めているが、その代わりに/それに加えて、投射レンズ系の開口絞り相当位置と共役な位置に開口絞りを設けても良いことは言うまでもない。例えば、第1の実施の形態では、第1照明レンズ101と第2照明レンズ102との間及び/又は各色用リレー光学系のレンズ103R,103G,103Bと折曲げミラー5R,5G,5Bとの間における投射レンズ系105の開口絞り相当位置と共役な位置に設ければ良い。また、第2の実施の形態では、第1照明レンズ201と偏光ビームスプリッタ13との間、各色用リレー光学系のレンズ203R,203G,203Bと折曲げミラー17R,17G,17Bとの間及び/又は合成用リレー光学系中における投射レンズ系207の開口絞り相当位置と共役な位置に設ければ良い。このような投射レンズ系以外に設けられた開口絞りにより、投射装置の光学系における内面反射光や散乱光を除去することができ、投射像のコントラスト向上や液晶ライトバルブの加熱防止を図ることができる。
【0059】
また、第1及び第2の実施の形態において、ロッドインテグレータ2(12)の射出面と共役な位置に視野絞りを配置しても良い。このような視野絞りを設けることによっても、投射装置の光学系における内面反射光や散乱光を除去することができ、投射像のコントラスト向上や液晶ライトバルブの加熱防止を図ることができる。
【0060】
このように、本発明は上述の実施の形態には限られず種々の形態を取り得る。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る投射装置を示す斜視図である。
【図2】第1の実施の形態に係る投射装置の光路図である。
【図3】本発明の第2の実施の形態に係る投射装置を示す斜視図である。
【図4】第2の実施の形態に係る投射装置の光路図である。
【図5】従来の投射装置を示す図である。
【符号の説明】
1、11 光源
2、12 ロッドインテグレータ
13 偏光ビームスプリッタ
14、21 1/2波長板
3、15 クロスダイクロイックミラー
3R、15R R光反射ダイクロイックミラー
3B、15B B光反射ダイクロイックミラー
5R、5B、5G、18R、18B、18G 色信号用ライトバルブ
6、19 色合成用ダイクロイックプリズム
23 輝度信号用ライトバルブ
24 偏光ビームスプリッタ
205 合成用リレーレンズ
105、207 投射レンズ系

Claims (7)

  1. 光源からの光を色分離する色分離光学系と、該色分離光学系によつて色分離された光が導かれる位置に設けられた複数の色信号用ライトバルブと、該複数の色信号用ライトバルブによって変調された光を合成する色合成光学系と、該色合成光学系からの光を投射する投射レンズとを備えた投射装置において、
    前記投射レンズは開口絞りを有し、
    前記色分離光学系と前記色合成光学系とは、前記投射レンズの開口絞りによつて定まる主光線がテレセントリツク性を維持している位置に設けられ、
    前記光源と前記色分離光学系との間に設けられて、前記光源からの光を前記色分離光学系へ向かう第1偏光成分と、第2偏光成分とに分離する偏光分離光学系と、
    前記第2偏光成分により照明される輝度信号用ライトバルブと、
    前記色合成光学系と前記輝度信号用ライトバルブとの間の光路中に設けられて、前記色合成光学系からの光と、前記輝度信号用ライトバルブを経た光とを合成する合成光学系とをさらに有し、
    前記合成光学系は、主光線がテレセントリツク性を維持している位置に設けられる
    ことを特徴とする投射装置。
  2. 前記光源と前記色分離光学系との間には、インテグレ−タと該インテグレ−タからの光を前記色分離光学系へ導く照明用リレ−光学系とが設けられていることを特徴とする請求項1記載の投射装置。
  3. 前記インテグレータは面光源を形成し、
    前記インテグレータの射出面は、前記インテグレータを射出し前記照明用リレー光学系に入射する前記投射レンズの開口絞りによって定まる主光線が、テレセントリック性を維持している位置に設けられていることを特徴とする請求項2記載の投射装置。
  4. 前記照明用リレー光学系は前記面光源の像を形成し、
    前記照明用リレー光学系は、前記面光源の像側または前記面光源側にテレセントリックな光学系であることを特徴とする請求項2または3記載の投射装置。
  5. 前記色分離光学系は、前記光源からの光をR光成分、G光成分及びB光成分に分離し、
    前記複数の色信号用ライトバルブは、R光用ライトバルブ、G光用ライトバルブ及びB光用ライトバルブを有し、
    前記色分離光学系と前記R光用、G光用及びB光用ライトバルブとの間には、前記色分離光学系からのR光成分、G光成分及びB光成分をそれぞれR光用、G光用及びB光用ライトバルブへ導くR光用、G光用及びB光用リレ−光学系が設けられていることを特徴とする請求項1乃至4の何れか一項記載の投射装置。
  6. 前記光源と前記色分離光学系との間には、面光源を形成するインテグレ−タと該面光源の像を形成する照明用リレ−光学系とが設けられ、
    前記照明用リレ−光学系は、前記面光源の像側にテレセントリツクな光学系であり、
    前記R光用、G光用及びB光用リレ−光学系は、前記面光源の2次像を前記R光用、G光用及びB光用ライトバルブ上に形成し、かつ該2次像側にテレセントリツクな光学系であることを特徴とする請求項5記載の投射装置。
  7. 光源からの光をR光成分、G光成分及びB光成分に色分離する色分離光学系と、該色分離光学系によつて色分離された光が導かれる位置に設けられたR光用、G光用及びB光用ライトバルブと、該R光用、G光用及びB光用ライトバルブによつて変調された光を合成する色合成光学系と、該色合成光学系からの光を投射する投射レンズとを備えた投射装置において、
    前記光源と前記色分離光学系との間には、インテグレ−タと該インテグレ−タからの光を前記色分離光学系へ導く照明用リレ−光学系とが設けられ、
    前記色分離光学系と前記R光用、G光用及びB光用ライトバルブとの間には、前記色分離光学系からのR光成分、G光成分及びB光成分をそれぞれR光用、G光用及びB光用ライトバルブへ導く用R光用、G光用及びB光用リレ−光学系が設けられ、
    前記照明用リレ−光学系は前群と後群とを有し、
    前記照明用リレ−光学系の前群と後群との間には、前記光源からの光を前記色分離光学系へ向かう第1偏光成分と、第2偏光成分とに分離する偏光分離光学系設けられ、
    前記投射装置は、輝度信号用ライトバルブと、前記第2偏光成分を該輝度信号用ライトバルブへ導く輝度信号用リレ−光学系と、前記色合成光学系からの光と前記輝度信号用ライトバルブを経た光とを合成する合成光学系とをさらに有し、
    前記色分離光学系、前記色合成光学系及び前記合成光学系とは、主光線がテレセントリツク性を維持している位置に設けられることを特徴とする投射装置。
JP01683296A 1996-02-01 1996-02-01 投射装置 Expired - Fee Related JP3758225B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01683296A JP3758225B2 (ja) 1996-02-01 1996-02-01 投射装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01683296A JP3758225B2 (ja) 1996-02-01 1996-02-01 投射装置

Publications (2)

Publication Number Publication Date
JPH09211385A JPH09211385A (ja) 1997-08-15
JP3758225B2 true JP3758225B2 (ja) 2006-03-22

Family

ID=11927180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01683296A Expired - Fee Related JP3758225B2 (ja) 1996-02-01 1996-02-01 投射装置

Country Status (1)

Country Link
JP (1) JP3758225B2 (ja)

Also Published As

Publication number Publication date
JPH09211385A (ja) 1997-08-15

Similar Documents

Publication Publication Date Title
KR100569793B1 (ko) 투사형 액정표시장치
US6141151A (en) Projection-display apparatus
JP2738331B2 (ja) 投射型液晶表示装置
JP2004020621A (ja) 反射型映像投射装置と、それを用いた投写型映像ディスプレイ装置、及び、それに用いる光源装置
US6429906B1 (en) Projection displays with divergent chief rays at beam splitter
JP2001515609A (ja) マルチカラーバンド光源
US20060146290A1 (en) Projection type display
US20110128503A1 (en) Stereoscopic image projector
JPH1062775A (ja) 投射型カラー液晶表示装置
JPH06202094A (ja) 投写型表示装置
JPH1138407A (ja) 投射型カラー液晶表示装置
JP2004045907A (ja) 画像表示装置
JP3758225B2 (ja) 投射装置
JP2003029210A (ja) 背面投射型表示装置
JP4967201B2 (ja) 投射型表示装置
JPH09329761A (ja) 投射型表示装置
JPH1010467A (ja) 投影表示装置
JPH1020271A (ja) 投射型表示装置
JPH10111539A (ja) 投射型表示装置
JPH09211384A (ja) 投射装置
JP2004286767A (ja) 投射型表示装置
JPH09329854A (ja) 投射型表示装置
JPH09297352A (ja) 投射型表示装置
JP3610804B2 (ja) 照明装置及び投写型表示装置
JPH09211723A (ja) カラー投射装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050414

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051226

LAPS Cancellation because of no payment of annual fees