JP3758203B2 - Vacuum ultraviolet-excited luminescent phosphor and method for producing the same - Google Patents

Vacuum ultraviolet-excited luminescent phosphor and method for producing the same Download PDF

Info

Publication number
JP3758203B2
JP3758203B2 JP12807795A JP12807795A JP3758203B2 JP 3758203 B2 JP3758203 B2 JP 3758203B2 JP 12807795 A JP12807795 A JP 12807795A JP 12807795 A JP12807795 A JP 12807795A JP 3758203 B2 JP3758203 B2 JP 3758203B2
Authority
JP
Japan
Prior art keywords
phosphor
baking
vacuum ultraviolet
phosphoric acid
phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12807795A
Other languages
Japanese (ja)
Other versions
JPH08319483A (en
Inventor
俊明 立岩
哲也 貞本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP12807795A priority Critical patent/JP3758203B2/en
Publication of JPH08319483A publication Critical patent/JPH08319483A/en
Application granted granted Critical
Publication of JP3758203B2 publication Critical patent/JP3758203B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Luminescent Compositions (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、プラズマディスプレイパネル、高負荷蛍光ランプ、或いは希ガス放電ランプ等に使用される、励起源として真空紫外線を利用する発光デバイスの輝度を改良する蛍光体に関し、特に、真空紫外線励起発光における蛍光体のベーキング劣化特性の改良に関する。
【0002】
【従来の技術】
カラープラズマディスプレイパネル或いは蛍光ランプは、基本的に、放電空間において生成された紫外線放射エネルギーで蛍光体を高エネルギー状態に励起し、低エネルギー状態に遷移時に発生する波長変換されたエネルギーを蛍光として外部に取り出し利用している。このような蛍光体を利用するデバイスは、放電空間の近傍に蛍光体層、或いは蛍光膜と呼ばれる蛍光体粒子が層状に塗布された部分を有する。
【0003】
上述した蛍光体による蛍光を利用する発光デバイスの蛍光体層の形成において、通常、蛍光体と有機バインダーを混合した塗布組成物を調製し、所定の部位にスラリー法、印刷法等により塗布し乾燥することにより蛍光体層を形成する。それ故、塗布乾燥後の蛍光体層には有機バインダーがそのまま残留する。この有機バインダーは発光デバイスの発光性能を著しく損なうため、有機バインダを揮散させるためのベーキングが行われている。このベーキング条件は、発光デバイスの種類、塗布方法等にもよるが、空気中で400℃〜600℃の温度でベーキングされる。ベーキング工程により、蛍光体粒子の表面も酸化され、大きな発光効率の低下を引き起こす問題がある。
【0004】
発光効率低下の主な原因は、還元雰囲気で焼成されて得られる蛍光体の粒子表面付近の付活剤が酸化されることで発光しなくなることである。このような蛍光体は酸化を受けやすい為に、ベーキング雰囲気の酸素量を制限することがあるが、そのことは逆に、前述した有機バインダーの不完全燃焼により、遊離した炭素が蛍光体層中に残留して蛍光を吸収することで輝度が大幅に低くなり、また、経時的な発光輝度の維持率の大幅な低下をまねく。
【0005】
紫外線により蛍光体を励起発光させる場合、特に真空紫外線により励起発光させる発光デバイスにおいて、ベーキングによる輝度低下が大きくなる。これは、紫外線励起による発光は特に蛍光体の表面付近で起こり、真空紫外線のような短波長紫外線はエネルギーは高いが、さらに透過力は少なく、蛍光体の比較的表層部しか励起できない。それで、蛍光体の表面酸化は紫外線励起の発光輝度に大きく影響するからである。従って、真空紫外線で励起発光する蛍光体は、ベーキングによる酸化の影響を被りやすい。言い換えれば、真空紫外線励起発光蛍光体はベーキング改良により蛍光体性能を大幅に改善することができるということになる。
【0006】
このようなベーキングによる輝度低下要因は、紫外線、特に主としてキセノンの147nm真空紫外線を利用するプラズマディスプレイパネルや、一部の蛍光ランプ、或いは特に184.9nmの放射エネルギーの比率が比較的大きい高負荷型の蛍光ランプ等蛍光体を利用した発光デバイスの発光輝度を低下せしめている。
【0007】
【発明が解決しようとする課題】
本発明は、上述した事情に鑑みなされたもので、真空紫外線により励起されて発光する蛍光体のベーキング劣化を改良することを目的とする。
【0008】
【発明を解決するための手段】
本発明者等は上述した問題を解決するために鋭意検討した結果、蛍光体の粒子表面にリン酸系化合物を保護物質として被覆することにより、ベーキングによる劣化が著しく改善されることを見いだし本発明を完成させるに至った。
【0009】
すなわち、本発明の真空紫外線励起発光蛍光体は、蛍光体の粒子表面に、リン酸系化合物がリン(P)として蛍光体に対し0.001〜15wt%被覆されていることを特徴とする。
【0010】
ここで、被覆物質のリン酸系化合物とは、基本的にはリンと酸素の化合により生成する物質であり、例えば、酸化リン、リン酸、及びリン酸塩等である。これらのうちリン酸塩はアンモニウム塩のような非金属塩であることが好ましいが、金属塩でもベーキング劣化の改良には効果はある。しかし、金属が含有されることで真空紫外線による蛍光体の励起発光をいくらか阻害するため、発光輝度は低下傾向となる。
【0011】
リン酸系化合物の被覆の適量は、前記したようにリン(P)換算で蛍光体に対し0.001〜15wt%の範囲である。この範囲よりもリンが少ないと、被覆量が少なすぎ効果が期待できなくなり、逆に、この範囲よりも多いと被覆量が多すぎることにより、蛍光体の励起及び発光を阻害し、蛍光体の輝度低下が問題となる。このような理由でリン酸系化合物のさらに好ましい範囲は0.1〜8wt%である。
【0012】
本発明の蛍光体は、酸化リン、リン酸、及びリン酸塩の内の少なくとも一種と、蛍光体を溶剤中で混合してスラリー化し乾燥することにより、蛍光体の粒子表面にリン酸系化合物を被覆することで得られる。
【0013】
上述した方法により得られた蛍光体を、さらに200〜1000℃の温度範囲、好ましくは400〜700℃の温度範囲で焼成することが望ましい。それはこの焼成により、蛍光体表面のリン酸系化合物は縮合(分子内脱水)され、より安定化されるからである。また、加熱前の被覆物には原料中或いは溶剤中に含まれる水素、酸素、窒素、或いは炭素が残留しており、これが特に真空紫外線による励起発光を阻害する。焼成時間にもよるが焼成温度が1000℃よりも高温になると、リンが殆どの蛍光体の粒子内部に拡散して、蛍光体により大幅な輝度低下を引き起こすことがある。
【0014】
酸化リンにはP410、P49、P48、P46、(PO)nなどがあり、いずれも適用可能である。リン酸はこれら酸化リンを加水分解することで得ることができ、代表的なものとしてオルトリン酸H3PO4がある。また、リン酸塩には、リン酸アンモニウム(NH42PO4、(NH4)2HPO4、(NH4)3PO4)、或いはリン酸カリウム、リン酸ナトリウム等アルカリ金属リン酸塩に代表される水溶性リン酸塩と、リン酸カルシウム、リン酸マグネシウム等のアルカリ土類金属リン酸塩或いはリン酸亜鉛等の水に不溶性或いは難溶性のリン酸塩がある。本発明はこれらを限定しないが、基本的には水溶性のものが好ましい。それは水溶性のリン酸塩を使用した場合、蛍光体表面に緻密なリン酸系化合物の被膜が形成され、微量でより大きな効果を生むからである。
【0015】
水溶性リン酸塩の内アルカリ金属を使用する場合、最終製品へのアルカリ金属の残留が問題になる場合がある。例えば、蛍光ランプのように、放電動作中、水銀蒸気と直接接触する構造の場合、このアルカリ金属の残留を避けるために、十分な洗浄をする必要がある。
【0016】
不溶性或いは難溶性リン酸塩を使用する場合は、リン酸塩粒子の平均粒径が0.1μm以下であることが望ましい。リン酸塩粒子はこれよりも大きいと、緻密なリン酸系化合物の被膜が形成されず、効果が期待できなくなる。
【0017】
本発明は、基本的に紫外線励起発光蛍光体であれば効果はある。すなわち、蛍光ランプ用蛍光体、プラズマディスプレイ用蛍光体として通常用いられている蛍光体に対し適用できる。例えば、(SrCaBaMg)5(PO43Cl:Eu、BaMg2Al1627:Eu、BaMg2Al1627:Eu,Mn、Sr5(PO43Cl:Eu、LaPO4:Ce,Tb、MgAl1119:Ce,Tb、Y23:Eu、Y(PV)O4:Eu、3.5MgO・0.5MgF2・GeO2:Mn、Ca10(PO46FCl:Sb,Mn、Sr10(PO46FCl:Sb,Mn、(SrMg)227:Eu、Sr227:Eu、CaWO4、CaWO4:Pb、MgWO4、(BaCa)5(PO43Cl:Eu、Sr4Al1425:Eu、Zn2SiO4:Mn、BaSi25:Pb、SrB47:Eu、(CaZn)3(PO42:Tl、LaPO4:Ce等の蛍光体に適用可能である。
【0018】
これら蛍光体の中で、特に付活剤が、Eu2+、Mn2+、Ce3+、Tb3+、Sb3+、或いはSn2+である場合、還元雰囲気或いは弱還元雰囲気で焼成されているため、空気中でベーキングされることでより高い酸化状態に酸化されやすい。従って、そのような蛍光体にリン酸系化合物を被覆することで、ベーキング特性は大きく改良できる。さらに、このような種類の蛍光体の中でも、BaMg2Al1627:Eu、及びBaMg2Al1627:Eu,Mn蛍光体に代表されるアルミン酸塩において特に効果的である。
【0019】
【作用】
蛍光体励起発光に使用される紫外線は主として、高圧水銀灯からの365nm、低圧水銀蒸気放電から高効率に得られる253.7nm、同放電から一部放射されている184.9nm、キセノン放電から放射される147nmの紫外線があるが、紫外線の波長が短いほど、透過力が小さく、逆に紫外線の波長が長いほど透過力が大きくなる。すなわち、184.9nm或いは147nm等の真空紫外線で励起されるのは蛍光体の比較的表面付近である。一方、ベーキングにより、酸化されるのは蛍光体の表面付近であり、必ずしも蛍光体内部まで酸化されることはない。従って、真空紫外線で励起発光するものほど、ベーキングによる酸化の影響を被りやすい。言い換えれば、真空紫外線励起蛍光体はベーキング改良により蛍光体性能を大幅に改善することができるということになる。
【0020】
従って、本発明が効果的に作用するのは、付活剤が、Eu2+、Mn2+、Ce3+、Tb3+、Sb3+、或いはSn2+である蛍光体である。酸化されやすくしかも真空紫外線により効率的に励起発光する蛍光体である。このような蛍光体として、BaMg2Al1627:Eu、BaMg2Al1627:Eu,Mn、Sr4Al1425:Eu、Zn2SiO4:Mn、LaPO4:Ce,Tb、MgAl1119:Ce,Tb等がある。この中でも、特にEu2+或いはMn2+を付活剤とするアルミン塩酸系の蛍光体である。
【0021】
BaMg2All627:Eu蛍光体粒子表面に、リン酸系化合物を被覆した場合について、リンP量に対するベーキング前及びベーキング後の147nm励起発光時の相対輝度を図1の曲線a、bにそれぞれプロットした。図中○点及び●点はリン酸系化合物被覆量が0である比較例のそれぞれベーキング前、ベーキング後の相対輝度値を示す。この場合被覆物質原料は(NH4)2HPO4を使用している。これより、被覆量が増加するにしたがいベーキング前輝度は徐々に低下するが、ベーキング後の輝度は大幅に向上している。このような事実から、リン酸系化合物被覆量はPとして0.001〜15wt%が実用範囲であり、0.1〜8wt%の範囲がさらに好ましいことが分かる。
【0022】
BaMg2Al1627:Eu蛍光体粒子表面に、種々の原料種を用いてリン酸系化合物を被覆した場合について、リン(P)量に対するベーキング前及びベーキング後の147nm励起発光時の相対輝度と、輝度維持率について表1に示した。輝度維持率については、本発明の実施例が比較例に比べすべて改善されていることが分かる。
【0023】
【表1】

Figure 0003758203
【0024】
原料種として金属リン酸塩を使用した実施例5、6、及び7については、非金属であるアンモニウム塩の実施例1、2、3、及び9或いは実施例4に比べるとベーキング前の相対輝度が十数パーセント低い。これは、被覆物質の中に金属が存在することで、147nmの真空紫外線を一部吸収され、蛍光体の励起分が減少したことによる。しかし、この金属が存在しても、ベーキングによる輝度維持率が低下することはない。
【0025】
また、実施例8において、ベーキング前後で輝度維持率が127%と大幅に増加しているのは、被覆量が他に比べ多いために、乾燥後もアンモニアが多量に残留することで、ベーキング前の相対輝度が低くなっている。しかし、ベーキングする事でアンモニアは除去され、相対輝度が向上している。
【0026】
本発明の蛍光体に類似したものとして、Eu2+、Mn2+共付活のバリウム・マグネシウムアルミネート蛍光体の組成にリン酸を導入することにより、蛍光体の温度特性が改善されることが特公昭54−3678号公報に開示されている。しかし、これは本発明の粒子表面にリン酸系化合物を被覆された蛍光体とは全く異なる。この蛍光体を試作したものを比較例2に示す。
【0027】
蛍光体表面のPと、蛍光体母体に含有されるPを次のように分別して分析することができる。蛍光体を過塩素酸で重量で約1割程度溶解し、溶解液中の蛍光体母体に対するPの割合wt%を求める。また、未溶解の約9割の蛍光体を分離し、引き続き溶解して同様に蛍光体母体に対するPの割合wt%を求める。表2に上述した分析を本発明の蛍光体と、比較例の蛍光体に適用した結果を示す。
【0028】
【表2】
Figure 0003758203
【0029】
このように、本発明の蛍光体は粒子表面にリン酸系化合物を形成することで、その保護作用により、蛍光体の粒子表面がベーキング等により酸化され難くなり、特に、真空紫外線による励起発光が殆ど損なわれなくなる。
【0030】
【実施例】
ここでは特に真空紫外線励起で良好な青色発光を示すBaMg2Al1627:Eu蛍光体へのリン酸系化合物の被覆について説明するが、それ以外の蛍光体、特に真空紫外線励起発光蛍光体についても効果がある。
【0031】
[実施例1]
0.5gの(NH42HPO4を100gの純水に溶解し、そこへBaMg2Al1627:Eu蛍光体100gを加え、混練しスラリー状とする。得られたスラリーを全量乾燥し、乾燥後200メッシュのフルイを通し、本発明の蛍光体を得た。ここで、本発明に適用するBaMg2Al1627:Eu蛍光体は、特別な製法は必要なく、以下に示す通常の方法で得られるものをそのまま使用した。
【0032】
原料としてBaCO3、Mg4(CO33OH・3H2O、Eu23、及びAl23を必要量計量し、これにAlF3を原料全体に対し1wt%添加しボールミルで混合し、窒素及び水素からなる還元雰囲気中1300℃で5時間焼成する。次に焼成物を冷却後ボールミルで粉砕し、湿潤還元性ガス中で1300℃で3時間焼成し、焼成物を冷却後200メッシュのフルイを通すことでBaMg2Al1627:Eu蛍光体を得た。
【0033】
本発明の蛍光体のP被覆量について、蛍光体を過塩素酸で全量溶解し、化学分析により蛍光体に対するP量を測定した。得られた蛍光体を真空紫外線分光光度計を用い、147nm紫外線で励起し、基準蛍光体に対する(a)ベーキング前相対輝度を測定する。この蛍光体のベーキングによる劣化を測定するため、空気中500℃で30分間ベーキング試験する。ベーキング後の輝度を同じく147nm紫外線で励起し測定し、(b)ベーキング後相対輝度を得る。また、(b)/(a)×100を計算することで輝度維持率(%)を得る。これら測定値を表1にまとめた。
【0034】
[実施例2]
被覆物質の原料として(NH42HPO4が0.1gである以外実施例1と同様にして蛍光体を調製し、結果を表1にまとめた。
【0035】
[実施例3]
被覆物質の原料として(NH42HPO4が2.5gである以外実施例1と同様にして蛍光体を調製し、結果を表1にまとめた。
【0036】
[実施例4]
被覆物質の原料としてP410が0.5gである以外実施例1と同様にして蛍光体を調製し、結果を表1にまとめた。
【0037】
[実施例5]
被覆物質の原料としてCa(H2PO42が1.0gである以外実施例1と同様にして蛍光体を調製し、結果を表1にまとめた。
【0038】
[実施例6]
被覆物質の原料としてKH2PO4が0.1gである以外実施例1と同様にして蛍光体を調製し、結果を表1にまとめた。
【0039】
[実施例7]
被覆物質の原料としてAlPO4が0.5gである以外実施例1と同様にして蛍光体を調製し、結果を表1にまとめた。
【0040】
[実施例8]
被覆物質の原料として(NH42HPO4を0.5g使用し、得られた蛍光体を500℃で1時間焼成すること以外実施例1と同様にして蛍光体を調製し、結果を表1にまとめた。
【0041】
[実施例9]
被覆物質の原料として(NH42HPO4を20.0g使用し、得られた蛍光体を500℃で1時間焼成すること以外実施例1と同様にして蛍光体を調製し、結果を表1にまとめた。
【0042】
[比較例1]
リン酸系化合物の原料を蛍光体に被覆しない以外実施例1と同様にして比較例の蛍光体を調製し、結果を表1にまとめた。
【0043】
[比較例2]
特公昭54−3678に開示される方法に従い、蛍光体母体の形成時、蛍光体原料100gに対し、(NH42HPO4を0.85gを混合し焼成することにより比較例の蛍光体を得た。これについても実施例1と同様な測定を行い、結果を表1にまとめた。表中の分析値は蛍光体母体のP含有量である。
【0044】
【発明の効果】
以上説明したように、本発明により、紫外線励起発光蛍光体、特に真空紫外線励起発光蛍光体のベーキング劣化を大幅に改善することができる。
【0045】
このようなベーキングによる輝度低下要因を最小限に抑えることにより、紫外線、特に主としてキセノンの147nm真空紫外線を利用するカラープラズマディスプレイパネルや、キセノン放電型蛍光ランプ、或いは184.9nmの放射エネルギーの比率が比較的大きい高負荷型の蛍光ランプ等の発光デバイスの発光輝度を大幅に改善することができる。
【図面の簡単な説明】
【図1】本発明の蛍光体のベーキング前後の相対輝度と、リン酸系化合物被覆量の関係を示すグラフ図。[0001]
[Industrial application fields]
The present invention relates to a phosphor that improves the luminance of a light emitting device that uses vacuum ultraviolet rays as an excitation source, which is used in plasma display panels, high-load fluorescent lamps, rare gas discharge lamps, and the like. The present invention relates to improvement of baking deterioration characteristics of phosphors.
[0002]
[Prior art]
A color plasma display panel or fluorescent lamp basically excites a phosphor to a high energy state with ultraviolet radiation energy generated in a discharge space, and converts the wavelength-converted energy generated at the time of transition to a low energy state to the outside as fluorescence. It is taken out and used. A device using such a phosphor has a portion in which phosphor particles called a phosphor layer or a phosphor film are coated in a layer in the vicinity of the discharge space.
[0003]
In the formation of a phosphor layer of a light-emitting device using fluorescence by the phosphor described above, a coating composition in which a phosphor and an organic binder are mixed is usually prepared, applied to a predetermined site by a slurry method, a printing method, etc. and dried. By doing so, a phosphor layer is formed. Therefore, the organic binder remains as it is in the phosphor layer after coating and drying. Since this organic binder significantly impairs the light-emitting performance of the light-emitting device, baking is performed to volatilize the organic binder. This baking condition depends on the type of light emitting device, the coating method, etc., but is baked in air at a temperature of 400 ° C. to 600 ° C. Due to the baking process, the surface of the phosphor particles is also oxidized, and there is a problem that the luminous efficiency is greatly lowered.
[0004]
The main cause of the decrease in luminous efficiency is that the activator in the vicinity of the phosphor particle surface obtained by firing in a reducing atmosphere is oxidized to stop emitting light. Since such phosphors are susceptible to oxidation, the amount of oxygen in the baking atmosphere may be limited. On the contrary, the carbon that has been liberated due to the incomplete combustion of the organic binder described above may be present in the phosphor layer. In this case, the luminance is significantly lowered by absorbing the fluorescence, and the maintenance ratio of the emission luminance with time is greatly reduced.
[0005]
When phosphors are excited to emit light by ultraviolet rays, particularly in a light emitting device that is excited to emit light by vacuum ultraviolet rays, a decrease in luminance due to baking becomes large. This is because light emission caused by ultraviolet excitation occurs particularly near the surface of the phosphor, and short wavelength ultraviolet rays such as vacuum ultraviolet rays have high energy, but have less transmission power, and can excite only a relatively surface layer portion of the phosphor. This is because the surface oxidation of the phosphor greatly affects the emission luminance of ultraviolet excitation. Therefore, a phosphor that emits light by excitation with vacuum ultraviolet rays is likely to be affected by oxidation due to baking. In other words, the vacuum ultraviolet-excited luminescent phosphor can greatly improve the phosphor performance by improving the baking.
[0006]
The cause of luminance reduction due to such baking is a plasma display panel using ultraviolet rays, particularly xenon's 147 nm vacuum ultraviolet rays, some fluorescent lamps, or particularly a high load type having a relatively large ratio of radiant energy of 184.9 nm. The light emission luminance of light emitting devices using phosphors such as fluorescent lamps is reduced.
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described circumstances, and an object thereof is to improve the baking deterioration of a phosphor that emits light when excited by vacuum ultraviolet rays.
[0008]
[Means for Solving the Invention]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that coating with a phosphoric acid compound as a protective substance on the phosphor particle surface significantly improves deterioration due to baking. It came to complete.
[0009]
That is, the vacuum ultraviolet ray-excited luminescent phosphor of the present invention is characterized in that the phosphor particles are coated with 0.001 to 15 wt% of phosphor as phosphorous (P) on the phosphor particle surface.
[0010]
Here, the phosphoric acid compound of the coating substance is basically a substance generated by a combination of phosphorus and oxygen, such as phosphorus oxide, phosphoric acid, and phosphate. Of these, the phosphate is preferably a non-metal salt such as an ammonium salt, but a metal salt is also effective in improving baking deterioration. However, since the presence of the metal somewhat inhibits the excitation light emission of the phosphor by vacuum ultraviolet rays, the light emission luminance tends to decrease.
[0011]
As described above, an appropriate amount of the phosphoric acid compound coating is in the range of 0.001 to 15 wt% with respect to the phosphor in terms of phosphorus (P). If the amount of phosphorus is less than this range, the coating amount is too small and the effect cannot be expected.On the other hand, if the amount is more than this range, the coating amount is too large, thereby inhibiting excitation and emission of the phosphor. A decrease in brightness is a problem. For this reason, a more preferable range of the phosphoric acid compound is 0.1 to 8 wt%.
[0012]
The phosphor of the present invention is prepared by mixing at least one of phosphorous oxide, phosphoric acid, and phosphate with a phosphor in a solvent and slurrying and drying the phosphor compound on the phosphor particle surface. It is obtained by coating.
[0013]
It is desirable that the phosphor obtained by the above-described method is further fired in a temperature range of 200 to 1000 ° C, preferably in a temperature range of 400 to 700 ° C. This is because the phosphoric acid compound on the phosphor surface is condensed (intramolecular dehydration) and more stabilized by this firing. Further, hydrogen, oxygen, nitrogen, or carbon contained in the raw material or the solvent remains in the coating before heating, which inhibits excitation light emission particularly by vacuum ultraviolet rays. Depending on the firing time, when the firing temperature is higher than 1000 ° C., phosphorus diffuses inside most phosphor particles, and the phosphor may cause a significant decrease in luminance.
[0014]
Phosphorus oxide includes P 4 O 10 , P 4 O 9 , P 4 O 8 , P 4 O 6 , (PO) n, etc., any of which can be applied. Phosphoric acid can be obtained by hydrolyzing these phosphorus oxides, and a typical example is orthophosphoric acid H 3 PO 4 . Examples of the phosphate include ammonium phosphate (NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4 , (NH 4 ) 3 PO 4 ), or alkali metal phosphates such as potassium phosphate and sodium phosphate. And water-soluble phosphates, alkaline earth metal phosphates such as calcium phosphate and magnesium phosphate, and water-insoluble or hardly soluble phosphates such as zinc phosphate. The present invention is not limited to these, but water-soluble ones are basically preferred. This is because when a water-soluble phosphate is used, a dense phosphoric acid-based compound film is formed on the phosphor surface, which produces a greater effect in a small amount.
[0015]
When using an alkali metal in a water-soluble phosphate, the residual alkali metal in the final product may be a problem. For example, in the case of a structure that is in direct contact with mercury vapor during a discharge operation, such as a fluorescent lamp, it is necessary to perform sufficient cleaning to avoid the residual alkali metal.
[0016]
When using an insoluble or hardly soluble phosphate, it is desirable that the average particle diameter of the phosphate particles is 0.1 μm or less. If the phosphate particles are larger than this, a dense phosphoric acid compound film is not formed, and the effect cannot be expected.
[0017]
The present invention is effective as long as it is basically an ultraviolet-excited luminescent phosphor. That is, the present invention can be applied to phosphors usually used as phosphors for fluorescent lamps and phosphors for plasma displays. For example, (SrCaBaMg) 5 (PO 4 ) 3 Cl: Eu, BaMg 2 Al 16 O 27 : Eu, BaMg 2 Al 16 O 27 : Eu, Mn, Sr 5 (PO 4 ) 3 Cl: Eu, LaPO 4 : Ce , Tb, MgAl 11 O 19: Ce, Tb, Y 2 O 3: Eu, Y (PV) O 4: Eu, 3.5MgO · 0.5MgF 2 · GeO 2: Mn, Ca 10 (PO 4) 6 FCl: Sb , Mn, Sr 10 (PO 4 ) 6 FCl: Sb, Mn, (SrMg) 2 P 2 O 7 : Eu, Sr 2 P 2 O 7 : Eu, CaWO 4 , CaWO 4 : Pb, MgWO 4 , (BaCa) 5 (PO 4 ) 3 Cl: Eu, Sr 4 Al 14 O 25 : Eu, Zn 2 SiO 4 : Mn, BaSi 2 O 5 : Pb, SrB 4 O 7 : Eu, (CaZn) 3 (PO 4 ) 2 : It is applicable to phosphors such as Tl, LaPO 4 : Ce.
[0018]
Among these phosphors, particularly when the activator is Eu 2+ , Mn 2+ , Ce 3+ , Tb 3+ , Sb 3+ , or Sn 2+ , the phosphor is fired in a reducing atmosphere or a weak reducing atmosphere. Therefore, it is easily oxidized to a higher oxidation state by being baked in the air. Therefore, the baking characteristics can be greatly improved by coating the phosphor with a phosphoric acid compound. Further, among these types of phosphors, aluminate represented by BaMg 2 Al 16 O 27 : Eu and BaMg 2 Al 16 O 27 : Eu, Mn phosphors is particularly effective.
[0019]
[Action]
Ultraviolet rays used for phosphor-excited light emission are mainly emitted from 365 nm from a high-pressure mercury lamp, 253.7 nm obtained with high efficiency from low-pressure mercury vapor discharge, 184.9 nm partially emitted from the discharge, and xenon discharge. However, the shorter the ultraviolet wavelength, the smaller the transmission power. Conversely, the longer the ultraviolet wavelength, the higher the transmission power. That is, it is relatively near the surface of the phosphor that is excited by vacuum ultraviolet rays such as 184.9 nm or 147 nm. On the other hand, the portion oxidized by baking is near the surface of the phosphor, and is not necessarily oxidized to the inside of the phosphor. Therefore, those that emit light with vacuum ultraviolet light are more susceptible to oxidation due to baking. In other words, the vacuum ultraviolet-excited phosphor can greatly improve the phosphor performance by improving the baking.
[0020]
Therefore, the present invention works effectively with a phosphor whose activator is Eu 2+ , Mn 2+ , Ce 3+ , Tb 3+ , Sb 3+ , or Sn 2+ . It is a phosphor that is easily oxidized and efficiently excited and emitted by vacuum ultraviolet rays. As such a phosphor, BaMg 2 Al 16 O 27: Eu, BaMg 2 Al 16 O 27: Eu, Mn, Sr 4 Al 14 O 25: Eu, Zn 2 SiO 4: Mn, LaPO 4: Ce, Tb, MgAl 11 O 19 : Ce, Tb, etc. Among these, phosphors based on alumina hydrochloride using Eu 2+ or Mn 2+ as an activator are particularly preferable.
[0021]
When the phosphoric acid compound is coated on the surface of the BaMg 2 Al l6 O 27 : Eu phosphor particle, the relative luminance at the 147 nm excitation emission before baking and after baking with respect to the amount of phosphorus P is shown in curves a and b in FIG. Each was plotted. In the figure, ◯ and ● indicate the relative luminance values before and after baking in the comparative example in which the phosphate compound coating amount is 0, respectively. In this case, (NH 4 ) 2 HPO 4 is used as a coating material raw material. As a result, the luminance before baking gradually decreases as the coating amount increases, but the luminance after baking is greatly improved. From these facts, it can be seen that the phosphoric acid compound coating amount in the range of 0.001 to 15 wt% in terms of P is in the practical range, and the range of 0.1 to 8 wt% is more preferable.
[0022]
BaMg 2 Al 16 O 27: Eu in the phosphor particle surface, the case coated with phosphate-based compound using a variety of raw materials species, the relative luminance of phosphorus (P) at 147nm excitation emission of baked before and baking for weight The luminance maintenance rate is shown in Table 1. With respect to the luminance maintenance rate, it can be seen that all the examples of the present invention are improved as compared with the comparative example.
[0023]
[Table 1]
Figure 0003758203
[0024]
For Examples 5, 6, and 7 using metal phosphate as the raw material species, the relative brightness before baking as compared to Examples 1, 2, 3, and 9 or Example 4 of the non-metallic ammonium salt Is a dozen percent lower. This is because the presence of metal in the coating material partially absorbed vacuum ultraviolet light of 147 nm, and the excitation of the phosphor decreased. However, even if this metal exists, the luminance maintenance rate by baking does not decrease.
[0025]
Further, in Example 8, the luminance maintenance rate significantly increased to 127% before and after baking because the coating amount was larger than others, and a large amount of ammonia remained after drying. The relative brightness of is low. However, baking removes ammonia and improves relative brightness.
[0026]
As similar to the phosphor of the present invention, the phosphor temperature is improved by introducing phosphoric acid into the composition of Eu 2+ and Mn 2+ co-activated barium / magnesium aluminate phosphor. Is disclosed in Japanese Patent Publication No. 54-3678. However, this is completely different from the phosphor in which the particle surface of the present invention is coated with a phosphoric acid compound. A prototype of this phosphor is shown in Comparative Example 2.
[0027]
P on the phosphor surface and P contained in the phosphor matrix can be separated and analyzed as follows. The phosphor is dissolved with perchloric acid by about 10% by weight, and the ratio wt% of P to the phosphor matrix in the solution is determined. Further, about 90% of the undissolved phosphor is separated and subsequently dissolved, and the ratio wt% of P with respect to the phosphor matrix is determined in the same manner. Table 2 shows the results of applying the analysis described above to the phosphor of the present invention and the phosphor of the comparative example.
[0028]
[Table 2]
Figure 0003758203
[0029]
As described above, the phosphor of the present invention forms a phosphoric acid compound on the particle surface, so that the protective action prevents the phosphor particle surface from being oxidized by baking or the like. Almost no damage.
[0030]
【Example】
Here, the coating of a phosphoric acid compound on a BaMg 2 Al 16 O 27 : Eu phosphor exhibiting good blue light emission particularly when excited by vacuum ultraviolet light will be described. However, other phosphors, particularly vacuum ultraviolet light excited light emitting phosphors will be described. Is also effective.
[0031]
[Example 1]
0.5 g of (NH 4 ) 2 HPO 4 is dissolved in 100 g of pure water, to which 100 g of BaMg 2 Al 16 O 27 : Eu phosphor is added and kneaded to form a slurry. The obtained slurry was all dried, and after drying, passed through a 200-mesh sieve to obtain the phosphor of the present invention. Here, BaMg 2 Al 16 O 27 is applied to the present invention: Eu phosphor, a special process is not required, was used as it is obtained in the usual manner described below.
[0032]
BaCO 3 , Mg 4 (CO 3 ) 3 OH 3H 2 O, Eu 2 O 3 , and Al 2 O 3 are weighed as necessary, and 1 wt% of AlF 3 is added to the total raw material and mixed by a ball mill. And calcining at 1300 ° C. for 5 hours in a reducing atmosphere consisting of nitrogen and hydrogen. Next, the fired product is cooled and pulverized with a ball mill, fired in a wet reducing gas at 1300 ° C. for 3 hours, and the fired product is cooled and passed through a 200 mesh sieve to obtain BaMg 2 Al 16 O 27 : Eu phosphor. Obtained.
[0033]
Regarding the P coating amount of the phosphor of the present invention, the entire phosphor was dissolved with perchloric acid, and the P amount relative to the phosphor was measured by chemical analysis. The obtained phosphor is excited with 147 nm ultraviolet rays using a vacuum ultraviolet spectrophotometer, and (a) relative luminance before baking with respect to the reference phosphor is measured. In order to measure deterioration of the phosphor due to baking, a baking test is performed in air at 500 ° C. for 30 minutes. The luminance after baking is also measured by exciting with 147 nm ultraviolet rays, and (b) relative luminance after baking is obtained. Further, the luminance maintenance ratio (%) is obtained by calculating (b) / (a) × 100. These measured values are summarized in Table 1.
[0034]
[Example 2]
Phosphors were prepared in the same manner as in Example 1 except that (NH 4 ) 2 HPO 4 was 0.1 g as a raw material for the coating substance, and the results are summarized in Table 1.
[0035]
[Example 3]
Phosphors were prepared in the same manner as in Example 1 except that (NH 4 ) 2 HPO 4 was 2.5 g as a raw material for the coating substance, and the results are summarized in Table 1.
[0036]
[Example 4]
Phosphors were prepared in the same manner as in Example 1 except that P 4 O 10 was 0.5 g as a raw material for the coating substance, and the results are summarized in Table 1.
[0037]
[Example 5]
Phosphors were prepared in the same manner as in Example 1 except that Ca (H 2 PO 4 ) 2 was 1.0 g as a raw material for the coating material, and the results are summarized in Table 1.
[0038]
[Example 6]
Phosphors were prepared in the same manner as in Example 1 except that KH 2 PO 4 was 0.1 g as a raw material for the coating material, and the results are summarized in Table 1.
[0039]
[Example 7]
Phosphors were prepared in the same manner as in Example 1 except that AlPO 4 was 0.5 g as a raw material for the coating substance, and the results are summarized in Table 1.
[0040]
[Example 8]
A phosphor was prepared in the same manner as in Example 1 except that 0.5 g of (NH 4 ) 2 HPO 4 was used as a raw material for the coating material, and the obtained phosphor was fired at 500 ° C. for 1 hour. Summarized in 1.
[0041]
[Example 9]
A phosphor was prepared in the same manner as in Example 1 except that 20.0 g of (NH 4 ) 2 HPO 4 was used as a raw material for the coating substance, and the obtained phosphor was baked at 500 ° C. for 1 hour. Summarized in 1.
[0042]
[Comparative Example 1]
Phosphors of comparative examples were prepared in the same manner as in Example 1 except that the phosphoric acid compound raw material was not coated on the phosphors, and the results are summarized in Table 1.
[0043]
[Comparative Example 2]
In accordance with the method disclosed in Japanese Patent Publication No. 54-3678, when forming the phosphor matrix, 0.85 g of (NH 4 ) 2 HPO 4 is mixed and baked with respect to 100 g of the phosphor raw material, thereby producing the phosphor of the comparative example. Obtained. For this, the same measurement as in Example 1 was performed, and the results are summarized in Table 1. The analytical value in the table is the P content of the phosphor matrix.
[0044]
【The invention's effect】
As described above, the present invention can greatly improve the baking deterioration of ultraviolet-excited luminescent phosphors, particularly vacuum ultraviolet-excited luminescent phosphors.
[0045]
By minimizing the factor of luminance reduction due to baking, the ratio of radiation energy of a color plasma display panel, a xenon discharge fluorescent lamp, or 184.9 nm using ultraviolet rays, particularly xenon's 147 nm vacuum ultraviolet rays can be increased. The light emission luminance of a light emitting device such as a relatively large high-load fluorescent lamp can be greatly improved.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the relative luminance before and after baking of the phosphor of the present invention and the amount of phosphate compound coating.

Claims (1)

蛍光体の粒子表面に、酸化リン、リン酸、及びリン酸塩の内の少なくとも一種からなるリン酸系化合物がリン(P)として蛍光体に対し0.001〜15wt%被覆されている真空紫外線励起発光蛍光体であって、前記蛍光体はBaMgAl1627:Euであり、前記酸化リンはP10、P、P、P又は(PO)であり、前記リン酸はHPOであり、前記リン酸塩はNHPO、(NH)HPO、(NH)PO、リン酸カリウム、リン酸ナトリウム、Ca(HPO又はリン酸亜鉛であることを特徴とする真空紫外線励起発光蛍光体。Vacuum ultraviolet rays in which phosphoric acid compounds composed of at least one of phosphorous oxide, phosphoric acid, and phosphate are coated on the phosphor particle surface as phosphorous (P) in an amount of 0.001 to 15 wt% with respect to the phosphor. a excited light emitting phosphor, the phosphor is BaMg 2 Al 16 O 27: a E u, the phosphorus oxide is P 4 O 10, P 4 O 9, P 4 O 8, P 4 O 6 or (PO n , the phosphoric acid is H 3 PO 4 , and the phosphate is NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4 , (NH 4 ) 3 PO 4 , potassium phosphate, phosphoric acid A vacuum ultraviolet ray-excited phosphor that is sodium, Ca (H 2 PO 4 ) 2 or zinc phosphate.
JP12807795A 1995-05-26 1995-05-26 Vacuum ultraviolet-excited luminescent phosphor and method for producing the same Expired - Fee Related JP3758203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12807795A JP3758203B2 (en) 1995-05-26 1995-05-26 Vacuum ultraviolet-excited luminescent phosphor and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12807795A JP3758203B2 (en) 1995-05-26 1995-05-26 Vacuum ultraviolet-excited luminescent phosphor and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08319483A JPH08319483A (en) 1996-12-03
JP3758203B2 true JP3758203B2 (en) 2006-03-22

Family

ID=14975866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12807795A Expired - Fee Related JP3758203B2 (en) 1995-05-26 1995-05-26 Vacuum ultraviolet-excited luminescent phosphor and method for producing the same

Country Status (1)

Country Link
JP (1) JP3758203B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6015597A (en) 1997-11-26 2000-01-18 3M Innovative Properties Company Method for coating diamond-like networks onto particles
US6265068B1 (en) 1997-11-26 2001-07-24 3M Innovative Properties Company Diamond-like carbon coatings on inorganic phosphors
DE19937420C1 (en) * 1999-08-07 2000-12-28 Philips Corp Intellectual Pty Plasma screen for producing color images with a high resolution has a phosphor preparation made of a phosphor and a coating containing a phosphate
US6303051B1 (en) * 1999-09-09 2001-10-16 Osram Sylvania Inc. Phosphate treated silicate phosphor
JP2001240856A (en) * 2000-02-29 2001-09-04 Sumitomo Chem Co Ltd Fluorescent substance for light emission element by ultraviolet excitation in vacuum
CN100437889C (en) 2000-04-19 2008-11-26 皇家菲利浦电子有限公司 High-pressure discharge lamp
DE10026913A1 (en) * 2000-05-31 2001-12-06 Philips Corp Intellectual Pty Gas discharge lamp with fluorescent layer
JP2002256262A (en) * 2001-03-02 2002-09-11 Kasei Optonix Co Ltd Rare earth oxide fluorescent substance for vacuum ultraviolet light excitation, fluorescent substance paste composition and vacuum ultraviolet light excitation light-emitting device
JP2004067874A (en) * 2002-08-06 2004-03-04 Matsushita Electric Ind Co Ltd Plasma display panel
JP2004091623A (en) * 2002-08-30 2004-03-25 Matsushita Electric Ind Co Ltd Plasma display panel
JP2006312695A (en) * 2005-05-09 2006-11-16 Toshiba Corp Blue light-emitting phosphor for display device, and field emission type display device
JP2006316105A (en) * 2005-05-10 2006-11-24 Toshiba Corp Green color-emitting fluorophor for display device and field emission-type display device
ATE541902T1 (en) * 2006-12-20 2012-02-15 Ct Fuer Angewandte Nanotechnologie Can Gmbh SURFACE TREATMENT PROCESS FOR NANOPARTICLES
DE102009044255A1 (en) * 2009-10-15 2011-04-28 Leuchtstoffwerk Breitungen Gmbh Alkaline earth metal silicate phosphors and methods for improving their long-term stability
CN104350127B (en) * 2012-06-08 2017-02-22 电化株式会社 Method for treating surface of phosphor, phosphor, light-emitting device, and illumination device
JP5967787B1 (en) * 2016-02-12 2016-08-10 エルティーアイ株式会社 Method for producing phosphorescent pigment
US10153405B2 (en) 2016-02-26 2018-12-11 Nichia Corporation Fluorescent material, light emitting device, and method for producing fluorescent material

Also Published As

Publication number Publication date
JPH08319483A (en) 1996-12-03

Similar Documents

Publication Publication Date Title
JP3758203B2 (en) Vacuum ultraviolet-excited luminescent phosphor and method for producing the same
US6096243A (en) Method for producing a divalent europium-activated phosphor
JP5225539B2 (en) Phosphors containing phosphates and / or boric acid of group IIIA, IVA, and lanthanide series metals, and light sources incorporating the phosphors
JP4796774B2 (en) Phosphor containing boron and rare earth metal, and light source incorporating the phosphor
EP1528094A1 (en) Phosphors containing boron and metals of groups IIIA and IIIB
JP2505784B2 (en) Low pressure mercury vapor discharge lamp
JP2009074090A (en) Phosphor for vacuum-ultraviolet ray-excited light-emitting element
WO2010137533A1 (en) Process for producing surface-treated fluorescent-substance particles, and surface-treated fluorescent-substance particles
JP4199530B2 (en) Fluorescent substance for mercury vapor discharge lamp and mercury vapor discharge lamp
JP2002212553A (en) Lanthanum phosphate fluorophor for vacuum ultraviolet and rare gas discharge lamp
WO1994019422A1 (en) Phospor and fluorescent lamp made by using the same
US8415869B1 (en) Fluorescent lamp with underlying yttrium vanadate phosphor layer and protective phosphor layer
JP3515737B2 (en) Phosphor and fluorescent lamp using the same
JP3832024B2 (en) Vacuum ultraviolet-excited luminescent phosphor and method for producing the same
JP3783329B2 (en) Vacuum ultraviolet-excited luminescent phosphor and method for producing the same
JPH11172244A (en) Phosphor, manufacture thereof and fluorescent lamp
JP2002348570A (en) Vacuum ultraviolet-excited fluorescent substance and method for producing the same
JP2001279182A (en) Protective film coating fluid and fluorescent lamp and its manufacturing method and illuminator
KR960000475B1 (en) Fluorescent material and method for preparing therof
KR100893098B1 (en) Phosphor and fluorescent lamp
JP5092686B2 (en) Phosphor and fluorescent lamp using the same
JP2002256262A (en) Rare earth oxide fluorescent substance for vacuum ultraviolet light excitation, fluorescent substance paste composition and vacuum ultraviolet light excitation light-emitting device
JP2006052406A (en) Quantum-splitting fluoride-based phosphor, method for producing the same and device containing the same
JPH02276884A (en) Fluorescent compound
US20070018137A1 (en) Fluorescent material and fluorescent material paste

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050909

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees