JP3783329B2 - Vacuum ultraviolet-excited luminescent phosphor and method for producing the same - Google Patents
Vacuum ultraviolet-excited luminescent phosphor and method for producing the same Download PDFInfo
- Publication number
- JP3783329B2 JP3783329B2 JP11204997A JP11204997A JP3783329B2 JP 3783329 B2 JP3783329 B2 JP 3783329B2 JP 11204997 A JP11204997 A JP 11204997A JP 11204997 A JP11204997 A JP 11204997A JP 3783329 B2 JP3783329 B2 JP 3783329B2
- Authority
- JP
- Japan
- Prior art keywords
- phosphor
- boric acid
- weight
- acid compound
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Vessels And Coating Films For Discharge Lamps (AREA)
- Luminescent Compositions (AREA)
- Gas-Filled Discharge Tubes (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、プラズマディスプレイパネル、高負荷蛍光ランプ、或いは希ガス放電ランプ等に使用される蛍光体の製造方法に係り、特に、デバイスにおける発光輝度と、その働程特性の改良に関する。
【0002】
【従来の技術】
カラープラズマディスプレイパネル或いは蛍光ランプ等は、基本的に、放電空間において発生した紫外線を蛍光体により可視光に変換しており、これらのデバイスは、その放電空間内壁に蛍光体粒子が層状に塗布された蛍光体層を有する。
【0003】
この蛍光体層を形成するには、通常、蛍光体と有機質のバインダー(ビヒクル)を混合した塗布組成物をスクリーン印刷等によって所定部分に塗布し、その後、有機バインダーを除去する目的で400〜600℃の範囲の温度で焼成する。この焼成は未分解成分が残留しないように空気中において十分な時間行われるが、この際、蛍光体は高温度で空気中の酸素と接触するために蛍光体表面は酸化し、その結果、発光輝度が低下する。このような酸化は、2価のユーロピウムで付活されたBaMg2Al16O27:Eu蛍光体など、還元雰囲気で焼成されている蛍光体において特に顕著である。
【0004】
また、プラズマディスプレイパネル(PDP)において励起源となるのはXeの共鳴線147nmと分子線172nmの紫外線であり、非常に波長が短いため透過力が弱く、蛍光体粒子表面層部分しか励起されない。従って、その発光特性は酸化等による表層部分の影響を受けやすい。
【0005】
さらに、これら発光デバイスにおいては、放電空間と蛍光体層は近接しており、蛍光体は放電空間からのイオン衝撃や真空紫外線にさらされ、これらの作用で蛍光体の発光輝度は経時的に大きく低下する。
【0006】
【発明が解決しようとする課題】
本発明は、上述した事情に鑑みなされたもので、真空紫外線により励起されて発光する蛍光体の発光輝度と働程特性を改良することを目的とする。
【0007】
【発明を解決するための手段】
本発明者等は、蛍光体粒子表面を上述したような阻害要因から遮断し、または保護することにより、蛍光体の輝度低下を防止することができると考え、鋭意検討した結果、蛍光体の粒子表面に硼酸系化合物を保護物質として被覆することにより、蛍光体をデバイスに実装したときの発光輝度及び働程特性が著しく改善されることを見いだし本発明を完成させるに至った。
【0008】
すなわち、本発明の真空紫外線励起発光蛍光体は、蛍光体の粒子表面に、硼酸系化合物が硼素(B)として蛍光体に100重量部に対し0.001〜10重量部被覆されていることを特徴とする。
【0009】
本発明が対象とする蛍光体は、基本的に還元雰囲気で焼成されている蛍光体があるが、Eu、Mnのうちの少なくとも一種の付活剤により付活されたアルミン酸塩蛍光体に適用すると効果的である。特に、2価のユーロピウムで付活されたBaMg2Al16O27:Eu蛍光体に効果がある。
【0010】
また、本発明の蛍光体は、硼酸、酸化硼素、硼酸アンモニウムの内の少なくとも一種の硼酸系化合物を溶解した水と蛍光体を混合してスラリーを調製し、スラリーを乾燥し、次に300〜1000℃の温度で焼成することで、蛍光体粒子表面に硼素酸系化合物を被覆させることで得ることができる。
【0011】
【発明の実施の形態】
<硼酸系化合物の被覆量>
図1に、硼酸系化合物を被覆したBaMg2Al16O27:Eu蛍光体について、真空紫外線分光光度計を用いて147nmの真空紫外線励起時の相対発光強度と、硼酸系化合物の被覆量の関係についてプロットした。ここで硼酸系化合物の被覆量は硼素(B)の分析値で表している。図中、実線は蛍光体を空気中で450℃で30分間のベーキングした場合であり、破線はベーキングをしていない蛍光体である。破線より硼酸系化合物の付着量とともに僅かであるが、相対輝度は低下傾向であり、その量が0.1重量部付着したものの相対発光強度は95%程度である。
【0012】
プラズマディスプレイ等発光デバイスの用途には上述したように蛍光体層を形成するときに使用したバインダーを除去する目的でベーキングが行われている。従って、実際の発光デバイスに実装する場合の蛍光体の相対発光強度は実線のベーキングした場合に近似する。
【0013】
実線で示すベーキングした蛍光体の曲線は硼素分析値が0.0001重量部程度まで、相対発光強度は60%程度と低いが、硼酸量が増加するに従い発光輝度は改善され、0.01重量部被覆した蛍光体の相対発光強度は90%を超えている。0.01重量部以上被覆したものはベークキングしない実線とほぼ重なり、硼酸系化合物を被覆したことにより、ベーキングしたことの影響がみられなくなっている。言い換えれば、ベーキングによる輝度低下はないといえる。
【0014】
図1に示すように、相対強度をみるとと本発明において硼酸系化合物は、蛍光体100重量部に対して硼素として、0.001〜10重量部の範囲被覆している必要があり、0.01〜5重量部の範囲被覆していることが好ましい。硼素の被覆量が0.001より小さいと効果が認められず、10重量部より多いと大幅に輝度が低下して実用に適さない。
【0015】
図2に、真空紫外線分光光度計を用いて147nmの真空紫外線励起時の相対発光強度と、硼酸系化合物の被覆量の関係についてプロットした。図中、実線は450℃で30分間ベーキングしたBaMg2Al16O27:Eu蛍光体を示し、破線は、同蛍光体をKr−Xe−Heの混合ガスを4torr封入したガラス管へセットし、1.2Aの電流、130vの電圧で1時間アーク放電し、表面を劣化した蛍光体をそれぞれ示している。
【0016】
図2より硼酸系化合物を粒子表面に付着した蛍光体はそのBの付着量の増加に応じてKr−Xe−Heの混合ガスの放電管による劣化率は小さくなっている。ただ、硼酸系化合物の付着量が多くなると相対発光強度が低下するので、被覆量は蛍光体100重量部に対し、Bとして10重量部より少なくすることが実用上必要である。
【0017】
硼酸系化合物としては、Ba、Ca、Sr、Mg、Zn、Y、Gd、Lu、Sc、La等の金属硼酸塩を使用することも可能であるが、これらは励起源である真空紫外線を吸収する性質があり、輝度は低下しやすいため、非金属塩であるB2O3、B4O5などの酸化物、或いはH3BO3、H3B4O7、HBO2等の硼酸類、または、硼酸類のアンモニウム塩を用いるのが好ましい。
【0018】
<硼酸系化合物の被覆方法>
蛍光体粒子表面に硼酸系化合物を被覆するために、先ず、蛍光体に対し所定量の硼酸系化合物を混合する。この混合は、できるだけ均質な混合を行うことが好ましい。それは蛍光体粒子表面に形成される硼酸系化合物の被膜はできるだけ均質であることが好ましいからである。実際の被覆は次工程の焼成により行われるが、この工程でより均質に行うことで、焼成温度は低めに設定することができ好ましい。
【0019】
均質な混合のためには、硼酸化合物を水溶性のものを選択し、これを蛍光体懸濁液に添加し、乾燥(蒸発乾固)することで蛍光体粒子表面に均一に被覆することができる。このような水溶性硼酸化合物としてB2O3、B4O5などの酸化物、或いはH3BO3、H3B4O7、HBO2等の硼酸類、または、硼酸類のアンモニウム塩等がある。
【0020】
これら硼酸系化合物の中で、溶解度の低いものは必要量が所定量の水に溶解せず、一部あるいは大部分が蛍光体の粒子表面に粒子状に付着するが、この中でも融点が高いものは粒子径が小さい方が少量で蛍光体粒子表面に被覆することができるため、その被覆の効果が大きい。従って、蛍光体粒子表面に付着する硼酸系化合物の粒径は0.1μm程度以下であることが好ましい。
【0021】
<焼成温度>
蛍光体表面に均質に被覆した硼酸系化合物をさらに300〜1000℃の温度で焼成するのは、硼酸系化合物を高温で焼成することで、蛍光体粒子表面にガラス状の強固な被覆物が生成し、被覆物の光学的透明性を向上すると同時に、被覆物が化学的物理的に安定化するからである。焼成温度は300℃より低いと硼酸系化合物の被覆剤が蛍光体粒子表面に十分拡散せず、本発明の効果は期待できなくなる。逆に、焼成温度が1000℃より高いと、蛍光体粒子内部まで被覆剤が拡散し、蛍光体が劣化し硼酸による表面のガラス化による効果を失うばかりか、逆に蛍光体の発光輝度を低下する。従って、焼成温度は600〜900℃の範囲がさらに望ましい。最も好ましいのは800℃付近である。前記したように、焼成温度はできるだけ低温度で行うことが蛍光体母体にとって好ましいが、低温度で行うほどガラスの前記した効果は低減する。そこで、前工程で蛍光体粒子表面にできるだけ均質に硼酸系化合物を付着しておくことが低温下に効果がある。
【0022】
<焼成雰囲気>
300〜500℃の範囲の比較的低温度で焼成する場合、その焼成雰囲気は空気中でも良いが、500〜1000℃範囲の比較的高温度で焼成する場合、N2、Arのような中性雰囲気か、或いはN2−H2混合ガス雰囲気、CO2−CO混合ガス雰囲気のような弱還元性雰囲気が望ましい。
【0023】
【作用】
蛍光体励起発光に使用される紫外線は主として、高圧水銀灯からの365nm、低圧水銀蒸気放電から高効率に得られる253.7nm、同放電から一部放射されている184.9nm、キセノン放電から放射される147nmの紫外線があるが、紫外線の波長が短いほど、透過力が小さく、逆に紫外線の波長が長いほど透過力が大きくなる。すなわち、184.9nm或いは147nm等の真空紫外線で励起されるのは蛍光体の比較的表面付近である。一方、ベーキングにより、酸化されるのは蛍光体の表面付近であり、必ずしも蛍光体内部まで酸化されることはない。従って、真空紫外線で励起発光するものほど、ベーキングによる酸化の影響を被りやすい。言い換えれば、真空紫外線励起蛍光体はベーキング改良により蛍光体性能を大幅に改善することができるということになる。
【0024】
従って、本発明が効果的に作用するのは、付活剤が、Eu2+、Mn2+、Ce3+、Tb3+、Sb3+、或いはSn2+である蛍光体である。酸化されやすくしかも真空紫外線により効率的に励起発光する蛍光体である。このような蛍光体として、BaMg2Al16O27:Eu、BaMg2Al16O27:Eu,Mn、Sr4Al14O25:Eu、Zn2SiO4:Mn、LaPO4:Ce,Tb、MgAl11O19:Ce,Tb、Y2SiO5:Tb、等がある。この中でも、特にEu2+或いはMn2+を付活剤とするアルミン塩酸系の蛍光体に対し効果的である。
【0025】
【実施例】
2価ユーロピウムで付活したアルミン酸塩蛍光体の一つであるBaMg2Al16O27:Euを例として本発明の実施例を説明する。
【0026】
先ず、この蛍光体は従来より通常行われる方法で次のように作製することができる。原料として下記のものを秤量し、
BaCO3 ・・・・・・・・・・・・・・・・ 0.90モル
3MgCO3・Mg(OH)2・3H2O・・・・ 0.50モル
γ−Al2O3 ・・・・・・・・・・・・・・・ 8.00モル
Eu2O3 ・・・・・・・・・・・・・・・・・ 0.05モル
これらの全量100重量部に対し、1.0重量部のAlF3を添加し、磁性ポット中でボールミル混合する。
【0027】
得られた混合原料を蓋付きアルミナ坩堝に充填し、空気中で1500℃8時間焼成する。冷却後さらにN2−H2の還元性雰囲気中で1500℃で8時間焼成する。冷却後分散処理を行い、300メッシュの篩を通した後、脱水乾燥した。
【0028】
得られた蛍光体はBaMg2Al16O27:Eu0.1の組成で147nm紫外線励起で青色に発光する。(以下BAM蛍光体と称す)
【0029】
[実施例1]
得られたBAM蛍光体100gにH3BO3を0.1gと水100gを添加混合し、スラリー状とした後、100℃で乾燥させる。乾燥後アルミナ坩堝に充填し、電気炉を用いて空気中400℃で1時間焼成し本発明の蛍光体を得た。蛍光体の化学分析の結果によると硼素は蛍光体100重量部に対し0.017重量部であった。
【0030】
[実施例2]
BAM蛍光体100gにH3BO3を0.5gと水100gを添加し、実施例1と同様の操作を行い本発明の蛍光体を得た。蛍光体の化学分析の結果によると硼素は蛍光体100重量部に対し0.085重量部であった。
【0031】
[実施例3]
BAM蛍光体100gにH3BO3を2.5gと水100gを添加し、実施例1と同様の操作を行い本発明の蛍光体を得た。蛍光体の化学分析の結果によると硼素は蛍光体100重量部に対し0.43重量部であった。
【0032】
[実施例4]
BAM蛍光体100gにH3BO3を12.5gと水100gを添加し、実施例1と同様の操作を行い本発明の蛍光体を得た。蛍光体の化学分析の結果によると硼素は蛍光体100重量部に対し2.1重量部であった。
【0033】
[実施例5]
BAM蛍光体100gにH3BO3を25.0gと水100gを添加し、実施例1と同様の操作を行い本発明の蛍光体を得た。蛍光体の化学分析の結果によると硼素は蛍光体100重量部に対し4.3重量部であった。
【0034】
[実施例6]
BAM蛍光体100gに硼酸アンモニウム1gと水100gを添加し混合して、スラリー状とした後乾燥する。乾燥後、アルミナ坩堝に充填しH2−N2雰囲気中で800℃1時間焼成し本発明の蛍光体を得た。蛍光体の化学分析の結果によると硼素は蛍光体100重量部に対し0.14重量部であった。
【0035】
[実施例7]
BAM蛍光体100gを500gの水に攪拌しながら投入し蛍光体を完全に懸濁させ、50gの水に溶解したY(NO3)30.93gを滴下し、続いて50gの水に溶解したH3BO3を.34g滴下後、アンモニア水を加えてpHを8にする。1時間放置した後、脱水しながら十分水洗し乾燥し本発明の蛍光体を得た。蛍光体の化学分析の結果によると硼素は蛍光体100重量部に対し0.022重量部であった。
【0036】
[比較例1]
本実施例で施したようなH3BO3等の硼酸系化合物の蛍光体粒子表面への被覆を一切行わない蛍光体を選択する。すなわち、実施例1〜実施例7の蛍光体の被覆処理する前の蛍光体である。
【0037】
[比較例2]
蛍光体の粒子表面に被覆するのではなく、蛍光体の原料の中に硼酸系化合物を仕込み焼成して得られる蛍光体を次のように調製した。
【0038】
原料として下記のものを秤量し、
BaCO3 ・・・・・・・・・・・・・・・・ 0.90モル
3MgCO3・Mg(OH)2・3H2O・・・・ 0.50モル
γ−Al2O3 ・・・・・・・・・・・・・・・ 8.00モル
Eu2O3 ・・・・・・・・・・・・・・・・・ 0.05モル
これらの全量100重量部に対し、1.0重量部のAlF3に加えて0.1重量部のH3BO3を添加し、磁性ポット中でボールミル混合する。得られた混合原料を上記した実施例1〜7で使用した硼酸化合物被覆前のBAM蛍光体と同じ方法で製造した。
【0039】
実施例1〜7及び比較例1及び2で得られたBAM蛍光体5gを磁性坩堝に詰め、電気炉を用いて450℃で30分間ベーキング行い、ベーキング前後の輝度比較試験、及び希ガス放電管の試験を行った。結果を表1に示す。また、発光強度維持率は、ベーキング後の発光強度/ベーキング前の発光強度×100%として算出した。
【0040】
【表1】
【0041】
【発明の効果】
以上説明したように、蛍光体粒子表面を硼酸系化合物で被覆することによって、蛍光体のベーキング時の酸化による劣化を防止し、放電空間中でのイオン衝撃による劣化も防止することができる。すなわち、本発明の蛍光体を使用することにより、紫外線、特に主としてキセノンの147nm真空紫外線を利用するカラープラズマディスプレイパネルや、キセノン放電型蛍光ランプ等の発光デバイスを高輝度化し、しかも働程特性を改善することが可能となる。
【図面の簡単な説明】
【図1】147nmの真空紫外線励起時の相対発光強度と、硼酸系化合物の被覆量の関係を示す特性図(実線はベーク後、破線はベーク前)
【図2】147nmの真空紫外線励起時の相対発光強度と、硼酸系化合物の被覆量の関係を示す特性図(実線は放電管の劣化前、破線は劣化後)[0001]
[Industrial application fields]
The present invention relates to a method of manufacturing a phosphor used in a plasma display panel, a high-load fluorescent lamp, a rare gas discharge lamp, or the like, and more particularly, to an improvement in light emission luminance and a working characteristic of a device.
[0002]
[Prior art]
Color plasma display panels or fluorescent lamps basically convert ultraviolet light generated in the discharge space into visible light by a phosphor, and these devices have phosphor particles coated in layers on the inner wall of the discharge space. A phosphor layer.
[0003]
In order to form this phosphor layer, usually, a coating composition in which a phosphor and an organic binder (vehicle) are mixed is applied to a predetermined portion by screen printing or the like, and then 400 to 600 for the purpose of removing the organic binder. Baking at a temperature in the range of ° C. This firing is performed in the air for a sufficient period of time so that undecomposed components do not remain. At this time, the phosphor surface is oxidized at a high temperature because of contact with oxygen in the air, and as a result, light emission occurs. The brightness decreases. Such oxidation is particularly noticeable in phosphors fired in a reducing atmosphere, such as BaMg2Al16O27: Eu phosphors activated with divalent europium.
[0004]
In the plasma display panel (PDP), the excitation source is ultraviolet rays of Xe resonance line 147 nm and molecular beam 172 nm. Since the wavelength is very short, the transmission power is weak and only the phosphor particle surface layer part is excited. Therefore, the light emission characteristics are easily affected by the surface layer portion due to oxidation or the like.
[0005]
Furthermore, in these light emitting devices, the discharge space and the phosphor layer are close to each other, and the phosphor is exposed to ion bombardment and vacuum ultraviolet rays from the discharge space, and these actions increase the emission luminance of the phosphor over time. descend.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described circumstances, and an object thereof is to improve the light emission luminance and working characteristics of a phosphor that emits light when excited by vacuum ultraviolet rays.
[0007]
[Means for Solving the Invention]
The inventors of the present invention have considered that the phosphor particles can be prevented from being reduced in luminance by blocking or protecting the phosphor particle surface from the above-described inhibition factors, and as a result of intensive studies, phosphor particles It has been found that by coating the surface with a boric acid compound as a protective substance, the light emission luminance and working characteristics when the phosphor is mounted on a device are remarkably improved, and the present invention has been completed.
[0008]
That is, in the vacuum ultraviolet ray-excited luminescent phosphor of the present invention, the phosphor particle surface is coated with 0.001 to 10 parts by weight of boric acid compound as boron (B) on 100 parts by weight of the phosphor. Features.
[0009]
The phosphor targeted by the present invention is basically a phosphor fired in a reducing atmosphere, but is applied to an aluminate phosphor activated by at least one activator of Eu and Mn. It is effective. In particular, it is effective for a BaMg2Al16O27: Eu phosphor activated with divalent europium.
[0010]
Further, the phosphor of the present invention is prepared by mixing a phosphor and water in which at least one boric acid compound of boric acid, boron oxide, and ammonium borate is dissolved, and drying the slurry. By baking at a temperature of 1000 ° C., the phosphor particles can be obtained by coating the surface of the phosphor particles with a boric acid compound.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
<Boric acid compound coverage>
FIG. 1 is a plot of the relationship between the relative emission intensity of a BaMg2Al16O27: Eu phosphor coated with a boric acid compound and the coating amount of the boric acid compound when excited by vacuum ultraviolet radiation at 147 nm using a vacuum ultraviolet spectrophotometer. Here, the coating amount of the boric acid compound is represented by an analytical value of boron (B). In the figure, the solid line represents the case where the phosphor was baked in air at 450 ° C. for 30 minutes, and the broken line represents the phosphor that was not baked. Although the amount of adhesion of the boric acid compound is slight as shown by the broken line, the relative luminance tends to decrease, and the relative emission intensity is about 95% when the amount is 0.1 parts by weight.
[0012]
As described above, baking is performed for the purpose of removing the binder used when forming the phosphor layer as described above for use in a light emitting device such as a plasma display. Therefore, the relative emission intensity of the phosphor when mounted on an actual light emitting device approximates the case of baking with a solid line.
[0013]
The curve of the baked phosphor shown by a solid line shows a boron analysis value of up to about 0.0001 parts by weight and a relative emission intensity as low as about 60%. However, as the amount of boric acid increases, the emission luminance improves and 0.01 parts by weight. The relative emission intensity of the coated phosphor is over 90%. The coating of 0.01 part by weight or more almost overlaps the solid line that is not baked, and the effect of baking is not observed because the boric acid compound is coated. In other words, it can be said that there is no decrease in luminance due to baking.
[0014]
As shown in FIG. 1, in terms of relative strength, in the present invention, the boric acid compound needs to be coated in the range of 0.001 to 10 parts by weight as boron with respect to 100 parts by weight of the phosphor. It is preferable to coat in the range of 0.01 to 5 parts by weight. If the boron coating amount is less than 0.001, the effect is not recognized, and if it is more than 10 parts by weight, the luminance is greatly lowered and is not suitable for practical use.
[0015]
FIG. 2 is a plot of the relationship between the relative emission intensity at the time of excitation with vacuum ultraviolet rays of 147 nm and the coating amount of the boric acid compound using a vacuum ultraviolet spectrophotometer. In the figure, the solid line shows the BaMg2Al16O27: Eu phosphor baked at 450 ° C. for 30 minutes, and the broken line shows that the phosphor is set in a glass tube sealed with 4 torr of Kr—Xe—He mixed gas with a current of 1.2 A. , Phosphors having a surface deteriorated by arc discharge at a voltage of 130 V for 1 hour, respectively.
[0016]
As shown in FIG. 2, the phosphor with the boric acid compound attached to the particle surface has a smaller deterioration rate due to the discharge tube of the mixed gas of Kr—Xe—He as the amount of B attached increases. However, since the relative emission intensity decreases as the adhesion amount of the boric acid compound increases, it is practically necessary that the coating amount is less than 10 parts by weight as B with respect to 100 parts by weight of the phosphor.
[0017]
As boric acid compounds, metal borates such as Ba, Ca, Sr, Mg, Zn, Y, Gd, Lu, Sc, and La can be used, but these absorb vacuum ultraviolet rays that are excitation sources. It is preferable to use nonmetallic salts such as oxides such as B2O3 and B4O5, boric acids such as H3BO3, H3B4O7, and HBO2, or ammonium salts of boric acids.
[0018]
<Boric acid compound coating method>
In order to coat the phosphor particles with the boric acid compound, first, a predetermined amount of boric acid compound is mixed with the phosphor. This mixing is preferably performed as homogeneously as possible. This is because the boric acid compound film formed on the surface of the phosphor particles is preferably as homogeneous as possible. The actual coating is performed by firing in the next step, but it is preferable to perform the coating more uniformly in this step because the firing temperature can be set lower.
[0019]
For homogeneous mixing, a water-soluble boric acid compound is selected, added to the phosphor suspension, and dried (evaporated to dryness) to uniformly coat the phosphor particle surface. it can. Such water-soluble boric acid compounds include oxides such as B2O3 and B4O5, boric acids such as H3BO3, H3B4O7, and HBO2, or ammonium salts of boric acids.
[0020]
Among these boric acid compounds, those with low solubility do not dissolve in the required amount of water, and some or most of them adhere to the surface of the phosphor particles, but among these, the melting point is high Since the smaller the particle diameter, the smaller the particle size, the surface of the phosphor particles can be coated. Accordingly, the particle size of the boric acid compound adhering to the phosphor particle surface is preferably about 0.1 μm or less.
[0021]
<Baking temperature>
The boric acid compound uniformly coated on the phosphor surface is calcined at a temperature of 300 to 1000 ° C. The boric acid compound is calcined at a high temperature to produce a strong glassy coating on the phosphor particle surface. In addition, the optical transparency of the coating is improved, and at the same time, the coating is chemically and physically stabilized. When the firing temperature is lower than 300 ° C., the boric acid compound coating agent does not sufficiently diffuse on the surface of the phosphor particles, and the effect of the present invention cannot be expected. Conversely, if the firing temperature is higher than 1000 ° C., the coating agent diffuses into the phosphor particles, and the phosphor deteriorates and loses the effect of vitrification of the surface with boric acid. To do. Therefore, the firing temperature is more preferably in the range of 600 to 900 ° C. Most preferred is around 800 ° C. As described above, the firing temperature is preferably as low as possible for the phosphor matrix, but the effect of the glass is reduced as the temperature is lowered. Therefore, it is effective at low temperatures to deposit the boric acid compound as uniformly as possible on the surface of the phosphor particles in the previous step.
[0022]
<Baking atmosphere>
When firing at a relatively low temperature in the range of 300 to 500 ° C., the firing atmosphere may be in air, but when firing at a relatively high temperature in the range of 500 to 1000 ° C., is it a neutral atmosphere such as
[0023]
[Action]
Ultraviolet rays used for phosphor-excited light emission are mainly emitted from 365 nm from a high-pressure mercury lamp, 253.7 nm obtained with high efficiency from low-pressure mercury vapor discharge, 184.9 nm partially emitted from the discharge, and xenon discharge. However, the shorter the ultraviolet wavelength, the smaller the transmission power. Conversely, the longer the ultraviolet wavelength, the higher the transmission power. That is, it is relatively near the surface of the phosphor that is excited by vacuum ultraviolet rays such as 184.9 nm or 147 nm. On the other hand, the portion oxidized by baking is near the surface of the phosphor, and is not necessarily oxidized to the inside of the phosphor. Therefore, those that emit light with vacuum ultraviolet light are more susceptible to oxidation due to baking. In other words, the vacuum ultraviolet-excited phosphor can greatly improve the phosphor performance by improving the baking.
[0024]
Therefore, the present invention works effectively with a phosphor whose activator is Eu 2+ , Mn 2+ , Ce 3+ , Tb 3+ , Sb 3+ , or Sn 2+ . It is a phosphor that is easily oxidized and efficiently excited and emitted by vacuum ultraviolet rays. Such phosphors include BaMg2Al16O27: Eu, BaMg2Al16O27: Eu, Mn, Sr4Al14O25: Eu, Zn2SiO4: Mn, LaPO4: Ce, Tb, MgAl11O19: Ce, Tb, Y2SiO5: Tb, and the like. Among these, it is particularly effective for an alumina hydrochloride phosphor using Eu 2+ or Mn 2+ as an activator.
[0025]
【Example】
Examples of the present invention will be described by taking BaMg2Al16O27: Eu, which is one of aluminate phosphors activated by divalent europium, as an example.
[0026]
First, this phosphor can be manufactured as follows by a conventional method. Weigh the following as raw materials,
BaCO3 ··········· 0.90
[0027]
The obtained mixed raw material is filled in an alumina crucible with a lid and fired in air at 1500 ° C. for 8 hours. After cooling, it is further calcined at 1500 ° C. for 8 hours in a reducing atmosphere of
[0028]
The obtained phosphor has a composition of BaMg2Al16O27: Eu0.1 and emits blue light when excited with 147 nm ultraviolet rays. (Hereinafter referred to as BAM phosphor)
[0029]
[Example 1]
To 100 g of the obtained BAM phosphor, 0.1 g of H3BO3 and 100 g of water are added and mixed to form a slurry, and then dried at 100 ° C. After drying, it was filled in an alumina crucible and fired at 400 ° C. for 1 hour in the air using an electric furnace to obtain the phosphor of the present invention. According to the result of chemical analysis of the phosphor, boron was 0.017 part by weight with respect to 100 parts by weight of the phosphor.
[0030]
[Example 2]
The phosphor of the present invention was obtained by adding 0.5 g of H3BO3 and 100 g of water to 100 g of the BAM phosphor and performing the same operation as in Example 1. According to the result of chemical analysis of the phosphor, boron was 0.085 parts by weight with respect to 100 parts by weight of the phosphor.
[0031]
[Example 3]
2.5 g of H3BO3 and 100 g of water were added to 100 g of the BAM phosphor, and the same operation as in Example 1 was performed to obtain the phosphor of the present invention. According to the result of chemical analysis of the phosphor, boron was 0.43 parts by weight with respect to 100 parts by weight of the phosphor.
[0032]
[Example 4]
12.5 g of H3BO3 and 100 g of water were added to 100 g of the BAM phosphor, and the same operation as in Example 1 was performed to obtain the phosphor of the present invention. According to the result of the chemical analysis of the phosphor, boron was 2.1 parts by weight with respect to 100 parts by weight of the phosphor.
[0033]
[Example 5]
25.0 g of H3BO3 and 100 g of water were added to 100 g of the BAM phosphor, and the same operation as in Example 1 was performed to obtain the phosphor of the present invention. According to the result of the chemical analysis of the phosphor, boron was 4.3 parts by weight with respect to 100 parts by weight of the phosphor.
[0034]
[Example 6]
To 100 g of BAM phosphor, 1 g of ammonium borate and 100 g of water are added and mixed to form a slurry and then dried. After drying, it was filled in an alumina crucible and fired at 800 ° C. for 1 hour in an
[0035]
[Example 7]
100 g of BAM phosphor was added to 500 g of water while stirring to completely suspend the phosphor, 30.93 g of Y (NO3) dissolved in 50 g of water was added dropwise, and then H3BO3 dissolved in 50 g of water was added. . After dropwise addition of 34 g, aqueous ammonia is added to adjust the pH to 8. After leaving it for 1 hour, it was sufficiently washed with water and dried while dehydrating to obtain the phosphor of the present invention. According to the result of chemical analysis of the phosphor, boron was 0.022 parts by weight with respect to 100 parts by weight of the phosphor.
[0036]
[Comparative Example 1]
A phosphor that does not cover the phosphor particle surface with a boric acid compound such as H3BO3 as in the present embodiment is selected. That is, it is a phosphor before the phosphors of Examples 1 to 7 are coated.
[0037]
[Comparative Example 2]
Instead of coating the phosphor particle surface, a phosphor obtained by charging a phosphoric acid compound into a phosphor material and firing it was prepared as follows.
[0038]
Weigh the following as raw materials,
BaCO3 ··········· 0.90
[0039]
BAM phosphors 5g obtained in Examples 1 to 7 and Comparative Examples 1 and 2 were packed in a magnetic crucible and baked at 450 ° C. for 30 minutes using an electric furnace, and luminance comparison tests before and after baking, and a rare gas discharge tube The test was conducted. The results are shown in Table 1. Further, the emission intensity maintenance ratio was calculated as emission intensity after baking / emission intensity before baking × 100%.
[0040]
[Table 1]
[0041]
【The invention's effect】
As described above, by coating the phosphor particle surface with a boric acid compound, deterioration due to oxidation during baking of the phosphor can be prevented, and deterioration due to ion bombardment in the discharge space can also be prevented. That is, by using the phosphor of the present invention, a light emitting device such as a color plasma display panel or a xenon discharge fluorescent lamp using ultraviolet rays, particularly xenon's 147 nm vacuum ultraviolet rays, has high brightness and has a working characteristic. It becomes possible to improve.
[Brief description of the drawings]
FIG. 1 is a characteristic diagram showing the relationship between the relative emission intensity when excited by vacuum ultraviolet radiation at 147 nm and the coating amount of a boric acid compound (the solid line is after baking, and the broken line is before baking)
FIG. 2 is a characteristic diagram showing the relationship between the relative emission intensity when excited by vacuum ultraviolet rays at 147 nm and the coating amount of a boric acid compound (the solid line is before deterioration of the discharge tube, and the broken line is after deterioration).
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11204997A JP3783329B2 (en) | 1997-04-30 | 1997-04-30 | Vacuum ultraviolet-excited luminescent phosphor and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11204997A JP3783329B2 (en) | 1997-04-30 | 1997-04-30 | Vacuum ultraviolet-excited luminescent phosphor and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10298548A JPH10298548A (en) | 1998-11-10 |
JP3783329B2 true JP3783329B2 (en) | 2006-06-07 |
Family
ID=14576751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11204997A Expired - Fee Related JP3783329B2 (en) | 1997-04-30 | 1997-04-30 | Vacuum ultraviolet-excited luminescent phosphor and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3783329B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001240856A (en) * | 2000-02-29 | 2001-09-04 | Sumitomo Chem Co Ltd | Fluorescent substance for light emission element by ultraviolet excitation in vacuum |
JP2003253259A (en) * | 2002-02-28 | 2003-09-10 | Okayama Prefecture | Fluorescent substance for display element and method for producing the same |
KR100793543B1 (en) | 2003-03-14 | 2008-01-14 | 사까이가가꾸고오교가부시끼가이샤 | Phosphor and method for producing same |
JP4207644B2 (en) * | 2003-04-22 | 2009-01-14 | パナソニック株式会社 | Method for manufacturing phosphor for plasma display device |
JP2008303230A (en) * | 2007-06-05 | 2008-12-18 | Panasonic Corp | Phosphor and manufacturing method therefor |
-
1997
- 1997-04-30 JP JP11204997A patent/JP3783329B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10298548A (en) | 1998-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4796774B2 (en) | Phosphor containing boron and rare earth metal, and light source incorporating the phosphor | |
JP3758203B2 (en) | Vacuum ultraviolet-excited luminescent phosphor and method for producing the same | |
US6822385B2 (en) | Gas discharge lamp with down conversion luminophore | |
JP2001172626A (en) | Display and light emitting device | |
JP4399518B2 (en) | Phosphor for vacuum ultraviolet ray, method for producing the same, phosphor paste composition, and vacuum ultraviolet light emitting device | |
CN1274004C (en) | Gas discharge lamp with sownconversion phosphor | |
JP3783329B2 (en) | Vacuum ultraviolet-excited luminescent phosphor and method for producing the same | |
CN1265420C (en) | Gas discharge lamp with descending-conversion light emitter | |
JP3832024B2 (en) | Vacuum ultraviolet-excited luminescent phosphor and method for producing the same | |
JP3721811B2 (en) | Phosphor and gas discharge device using the same | |
US6940216B2 (en) | Gas discharge lamp for dielectrically impeded discharges comprising a blue phosphor | |
JP4199530B2 (en) | Fluorescent substance for mercury vapor discharge lamp and mercury vapor discharge lamp | |
JP4157324B2 (en) | Alkaline earth aluminate phosphor, phosphor paste composition, and vacuum ultraviolet-excited light emitting device | |
JP3856356B2 (en) | Phosphor paste composition and vacuum ultraviolet light-excited light emitting device | |
JP3606277B2 (en) | Cold cathode discharge tube and its lighting device | |
JPH11172244A (en) | Phosphor, manufacture thereof and fluorescent lamp | |
JP4146173B2 (en) | Bivalent metal silicate phosphor, phosphor paste composition, and vacuum ultraviolet-excited light emitting device using the same | |
JP2000290648A (en) | Red-color fluophor | |
JP2002256262A (en) | Rare earth oxide fluorescent substance for vacuum ultraviolet light excitation, fluorescent substance paste composition and vacuum ultraviolet light excitation light-emitting device | |
JP4016724B2 (en) | Phosphor for vacuum ultraviolet light-emitting device | |
JP3402028B2 (en) | Cold cathode discharge tube and its lighting device | |
JP2007099909A (en) | Mixed phosphor, phosphor paste composition and vacuum ultraviolet light-excited light emitting element | |
JP2004026922A (en) | Fluorescent substance for vacuum ultraviolet light excitation light emission element | |
JP4232559B2 (en) | Phosphor for vacuum ultraviolet light-emitting device | |
JP2807527B2 (en) | Fluorescent lamp |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051129 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060127 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Effective date: 20060221 Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060306 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090324 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 3 Free format text: PAYMENT UNTIL: 20090324 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 4 Free format text: PAYMENT UNTIL: 20100324 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100324 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 5 Free format text: PAYMENT UNTIL: 20110324 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 5 Free format text: PAYMENT UNTIL: 20110324 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120324 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120324 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |