JP3755076B2 - Composition by supercritical solvent treatment of biomass and method for producing the same - Google Patents

Composition by supercritical solvent treatment of biomass and method for producing the same Download PDF

Info

Publication number
JP3755076B2
JP3755076B2 JP2000015157A JP2000015157A JP3755076B2 JP 3755076 B2 JP3755076 B2 JP 3755076B2 JP 2000015157 A JP2000015157 A JP 2000015157A JP 2000015157 A JP2000015157 A JP 2000015157A JP 3755076 B2 JP3755076 B2 JP 3755076B2
Authority
JP
Japan
Prior art keywords
biomass
alcohol
supercritical
composition
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000015157A
Other languages
Japanese (ja)
Other versions
JP2001205070A5 (en
JP2001205070A (en
Inventor
志朗 坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2000015157A priority Critical patent/JP3755076B2/en
Priority to PCT/JP2001/000456 priority patent/WO2001054837A1/en
Publication of JP2001205070A publication Critical patent/JP2001205070A/en
Publication of JP2001205070A5 publication Critical patent/JP2001205070A5/ja
Application granted granted Critical
Publication of JP3755076B2 publication Critical patent/JP3755076B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/04Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by extraction
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/10Natural spices, flavouring agents or condiments; Extracts thereof
    • A23L27/11Natural spices, flavouring agents or condiments; Extracts thereof obtained by solvent extraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/008Processes carried out under supercritical conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Description

【0001】
【発明の属する技術分野】
本発明は、リグノセルロース系バイオマス(前記バイオマスの未利用及び廃物資源を含む)を、アルコール中で、アルコールの超臨界条件において処理して前記リグノセルロース系バイオマス由来の化学物質を含む組成物を得る方法、該リグノセルロース系バイオマス由来の有用化学物質などを回収する方法及び前記処理により得られる前記バイオマス由来の組成物に関する。
詳細には超臨界状態もしくは亜臨界状態の有機溶媒が、従来超臨界溶媒を形成する物として用いられていた水に比べて、比較的低い温度および圧力において超臨界状態を達成でき、常温、常圧にもどした場合、良好な化成品に対する溶解性を持ち、かつ良好なイオン的反応領域を形成することを利用して、超臨界水では実現できなかった加溶媒分解(部分的な熱分解も進行することもある)を実現し、容易かつ効果的(溶媒不溶生成物の少ない)に、低分子量のバイオマス由来の組成物に効率良く変換する方法とその方法により得られる組成物に関するものである。
【0002】
【従来の技術】
斉藤正三郎監修「超臨界流体の科学と技術」第280−286頁,1996年2月28日発行には、超臨界水中での加水分解、熱分解、酸化反応などの反応促進効果について解説され、具体的技術として、セルロース分解反応、ポリエチレンテレフタレート、ポリエチレンの分解反応などについて言及している。
また、「エネルギーレビュー」1998年6月、28−29頁〔(株)エネルギーレビューセンター発行〕には、未利用バイオマス廃棄物、すなわち、サトウキビの搾りかす(バガス)などの農業廃棄物、おが屑や間伐材などの林産廃棄物、OA紙や新聞紙などの産業廃棄物、さらには有機系水産廃棄物などを、超臨界水中で処理して、化成製品を得ること、また、グルコースからエタノールを経て、これを脱水することにより、化石原料から得られているエチレンができること、超臨界状態では、解離した水の密度が増大し、水素イオンとしての働きが強くなる、つまり酸触媒として働くことになる、などが説明されている。
【0003】
特開平11−292799号公報には、植物体を超臨界水または亜臨界水で処理することにより、植物体に含まれる芳香族化合物および/または植物体中の成分から分解して生じた芳香族化合物を植物体外に遊離させ、遊離した芳香族化合物を単離することにより、芳香族化合物またはその重合体を製造する技術が報告されている。
また、特開平9−268166号公報には、超臨界水の特殊な物性に着目し、これを利用して蛋白質からアミノ酸やペプチドを製造する方法が報告されているが、水の超臨界状態への移行を妨げない範囲での各種有機溶媒(メチルアルコ−ル、エチルアルコ−ル、アセトン等)の添加も有効であることが記載されている。ただその有効性の技術的意味には言及していない。
【0004】
Jasco Report「超臨界最新技術特集第3号」日本分光、28-31(1999.5.28)、超臨界流体のポスト石油化学への応用、−超臨界メタノールによる植物油のバイオディーゼル燃料への変換−において、超臨界メタノールを反応媒体として用いることで、植物油の主成分であるトリグセライドをエステル交換反応によりメチルエステル化物に変換し、ディーゼルエンジン燃料に変換する技術が報告されている。
このような報告は、「日本木材学会」バイオマス変換研究会(1999年10月6日)においても報告されている。
【0005】
前記従来技術は、水を溶媒とするために、超臨界条件は高い温度(374℃以上)においてのみ可能であり、該温度条件は原料の過度の熱分解を進行させるだけでなく、溶媒が水であるため超臨界水に溶解していた原料中のリグニン由来成分などの疎水性成分がオイル物質として常温、常圧での水から分離するなど、工程上の不都合がある。
また、超臨界メタノールを溶媒として用いたものには、廃食用油を含む植物油(トリグリセライド)のエステル交換反応によるメチルエステル化物への変換反応の研究であるが、この研究は、バイオマスの主構成成分がセルロース、ヘミセルロース及びリグニン類などである原料を超臨界メタノールを用いて化学変換する反応とは異なるものを対象としており、このような反応に対する超臨界メタノールの溶媒としての有用性を説明するものではないことは明らかである。
【0006】
【発明が解決しようとする課題】
本発明は、こうした状況のもとになされたものであって、その目的は、従来技術における前記不都合を発生させることなく、未利用及び廃バイオマスを含むセルロース系、リグノセルロース系バイオマス、含窒素多糖類及びたんぱく質系バイオマス資源から、低分子量の有用物質を、物資の利用など(最終製品または化成品製造原料などとしての利用か)を考慮しつつ、効率良く変換して得る技術を提供することにある。
さらに、本発明は、前記リグノセルロース系バイオマス資源をメタノールなどのアルコールの超臨界状態で加溶媒分解することにより得られる前記リグノセルロース系バイオマス由来の有用物質を含む組成物、特に、アルコールに溶解したバイオマス由来の成分を含む液体燃料としてそのまま利用できる組成物を提供することにある。また、得られるアルコールに溶解したバイオマス由来の成分は、該溶媒を留去した後、他の溶媒に溶解して新しい組成物として、燃料などの用途に用いることもできる。または、該溶媒を留去した化成品を種々の用途に利用できる。
【0007】
【課題を解決するための手段】
本発明の第1は、リグノセルロース系バイオマス、320℃〜360℃の超臨界状態アルコール中で処理する前記バイオマス由来の組成物を得る方法である。好ましくは、アルコールとしてメタノールを用いたことを特徴とする前記バイオマス由来の組成物の製造方法であり、また超臨界アルコール処理後の製品をアルコール可溶部と不溶部に分離し、アルコール可溶部からアルコールを留去することを特徴とする前記各バイオマス由来の組成物の製造方法である。更に好ましくは、超臨界状態のアルコールに有効量の酸から選択される触媒を添加(2%以下)することを特徴とする前記各バイオマス由来の組成物の製造方法である。
【0008】
本発明の第2は、リグノセルロース系バイオマスを、320℃〜360℃の超臨界状態アルコール中で処理して得られる前記アルコールおよびバイオマス由来の化合物を含む組成物である。好ましくは、リグノセルロース系バイオマスを、320℃〜360℃の超臨界状態メタノール中で処理して得られる前記アルコールおよびバイオマス由来の化合物を含む組成物である。
【0009】
【発明の実施の態様】
本発明をより詳細に説明する。
A.本発明において対象とするバイオマス資源は特にリグニンを含むリグノセルロース系資源である。バイオマスには、木材などのリグノセルロース類を中心とする林産物、トウモロコシなどの農産物、海藻などの水産植物など地球上の総てのセルロース系資源及びその他のリグノセルロース系資源、えび殻やかに殻の成分であるキチン、キトサンなどの含窒素多糖類系資源及び獣膠、カゼイン血液アルブミンなどの動物質たんぱく質、及び大豆たんぱくなどの植物性たんぱく質などのタンパク質系資源が含まれる。このような中には、有効利用されずに廃棄されている間伐材、廃材等の林産廃棄物、もみ殻やトウモロコシの茎葉などの農産廃棄物、未利用の海藻などの水産廃棄物など各種バイオマス資源、えび殻やかに殻の成分であるキチン、キトサンなどの含窒素多糖類、獣膠、カゼイン血液アルブミンなどの動物質たんぱく質、及び大豆たんぱくなどの植物性たんぱく質、さらには、都市ゴミなどの廃資源などがある。本発明は超臨界溶媒に良く解け,処理後そのままでも利用可能な製品が得られるリグノセルロース系バイオマスを処理の対象とした。
B.超臨界有機溶媒として有用なアルコールとは、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、イソブチルアルコール、2−ブタノール、t−ブタノール、アリルアルコールなどの一価アルコール類、特にメタノールを意味し、式ROHで表される。但し、Rは1−24個の炭素原子を含有する脂肪族基からなるものである。これらの溶媒は、単独でまたは2種以上の混合物として用いられる。これらのアルコール類の臨界温度(Tc)および臨界圧(Pc)の一例を表1に示す。
【0010】
【表1】

Figure 0003755076
【0011】
C.超臨界状態とは、反応系内の温度が臨界温度(Tc)以上で且つ圧力が臨界圧力(Pc)以上の状態をいう。亜臨界とは、反応系内の温度がアルコールの沸点以上で、且つ概ね150℃以上であり、且つ圧力が反応温度におけるアルコールの蒸気圧以上で、且つ概ね2.0MPa以上の状態をいう。
従って、本発明を実施するに当たり、超臨界状態または亜臨界状態のアルコールを形成するには、少なくとも温度150−600℃、圧力2.0−200MPaの範囲で温度および圧力を適切に調整すればよい。600℃を越える温度では、バイオマス資源、アルコールの熱分解が著しく、有用物質の収率が低下する。又反応圧力が200MPaを越えても有用物質の収率や反応時間の改善は見られない。より好ましくは、温度220−400℃、圧力3−100Paの範囲である。反応時間は反応条件に応じて1秒から2時間の範囲から選ばれる。更に好ましくは1−30分の範囲である。
超臨界有機溶媒中、特にアルコール中で起こる反応は、実質的には加溶媒反応であるが、部分的には熱分解反応もおこる。従って、本発明において超臨界溶媒中での処理とは実質的には加溶媒反応を意味する。
【0012】
D.本発明では、必要に応じて超臨界のアルコールに、超臨界水におけると同様に、酸、例えば塩酸、硫酸、リン酸などの無機酸、から選ばれる触媒を有効成分として2%以下の濃度となる範囲で添加することも有効である。添加が2%を越えると煩雑な後処理が必要となることから好ましくない。より好ましい触媒濃度は0.05%以下である。即ち、本発明によれば、触媒濃度が0.05%以下でも、触媒効果を十分に発揮できる。
【0013】
E.本発明の製造方法を実施する装置の形式は特に規定しないが、たとえばバッチ式反応器や連続式槽型反応器、ピストンフロー型流通式反応器、塔型流通式反応器など、超臨界水を用いた反応に使用されていたものと同様のものを用いることができる。
アルコール可溶部と不溶部の分離および反応装置の取り扱い性は、水を超臨界溶媒とする場合に比べて、オイル状の物質もアルコールに可溶化するため扱いやすいことが分かった。
F.反応には、加熱浴としてすず浴(約350℃浴)を用いて、圧力43MPa、温度240−340℃の範囲の超臨界状態が実現可能である。また、加熱浴として塩浴〔亜硫酸ナトリウム、亜硫酸カリウム(1:1)〕などを用いることもできる。
【0014】
本発明の製造方法で得られるバイオマス由来の組成物、特にリグノセルロース系資源からの組成物は、有機溶媒から有用成分を分離したものをエネルギー源とすることも、また、アルコール溶媒を含んだままでバイオマスエネルギーとして用いることもできる。また、軽油、灯油、A重油などと混合して燃料にして用いることもできる。また、前記組成物から、たとえば、セルロース及びヘミセルロースの由来の成分としてセロトリオース、セロビオース、グルコース、キシロース、マンノース、フルクトースなど糖類及びそのメチル化誘導体、レボグルコサン、ヒドロキシメチルフルフラール、フルフラール及びそれらのメチル化誘導体などを有用成分として回収することができる。また、リグニン由来成分としてコニフェリルアルコール、シナピルアルコール、p-クマリルアルコールやそれらの誘導体やメチル化誘導体などを回収することができる。たんぱく質は、アミノ酸とアミノ基がアミド結合した高分子化合物であるが、これを超臨界水で処理すると加水分解によりαーアミノ酸に分解されるが、超臨界メタノールで処理すると、加溶媒分解によりαーアミノ酸メチルがえられる。含窒素多糖類からは、前記セルロース系及びタンパク質系の加溶媒分解と同様の反応を受けた製品が得られる。
【0015】
本発明においては、超臨界溶媒が原料バイオマス由来の有効化学製品に対しての溶解性が高く、かつ、超臨界にするための温度条件がマイルドであるために、実質的に加溶媒分解反応が進行し、熱分解反応の進行が小さいので、熱分解反応による揮発性の生成物の生成が少ない。また、超臨界溶媒反応にアルコール系溶媒を使用したことにより高沸点の原料バイオマス由来の有効化学製品が大量に、かつ取り扱いが容易な溶液の形で得られるという、顕著な効果がもたらされる。更に、アルコール系溶媒可溶部を少なくとも一部蒸留により分離回収できるなど、超臨界処理により得られる組成物が利用性の高い状態で得られることができるという優れた作用・効果がもたらされる。これに対して、従来の水を超臨界反応の溶媒とする場合には、超臨界の温度条件が高温であるために加水分解反応に加えて、熱分解反応がかなり進行して、フルフラールなど沸点が低い揮発性の低分子化合物の生成が多くなる。従って、溶媒である水を留去して、有用化学製品を得ようとしても、前記留去の際に、除去されるような生成物が多く、比較的高沸点の原料バイオマス由来の有効化学製品を得るのに困難がある。
この点からも、本発明において、前記バイオマスの超臨界溶媒中での処理において、溶媒として一価のアルコール類、特にメタノールを用いることにより、前記従来の超臨界溶媒中での反応処理からは予測できない、顕著な効果がもたらされるものである。
【0016】
本発明の超臨界アルコール中での処理により得られるリグノセルロース系バイオマス由来の組成物は、前記したとおりであるが、超臨界状態アルコール、特にメタノールによる作用・効果は、次のように考えることができる。
超臨界状態または亜臨界状態のアルコールは、温度および圧力を制御することによって、誘電率およびイオン積を容易且つ大幅に変化させることができる。アルコールの誘電率は、メタノールで33.1(25℃)、エタノールで23.8(25℃)であり、それらは水素結合により4分子の会合体となっている。しかし、超臨界状態では水素結合が解裂し、疎水性となって誘電率が低下し、非極性物質を容易に溶解する。また、アルコールのイオン積の各圧力における温度依存性から、圧力が高いほど高温領域までイオン積の高い状態を保ち、かなりの高温下においても、良好なイオン的反応(アルコリシス反応)の為の領域を形成するものと考えられる。即ち、超臨界状態または亜臨界状態のアルコールのイオン積や誘電率を温度や圧力の制御によって幅広い範囲で調整できるので、この様な状態のアルコールを加溶媒分解の溶媒として用いることによって、バイオマスを構成するセルロース、ヘミセルロース及びリグニンを有用な化合物に効率よく変換する最適な環境が提供されたもとの考えられ、水を溶媒とする場合に比べて、原料バイオマス由来の有効化学製品が効率良く、かつ容易に得られることが理解できる。
【0017】
【実施例】
実施例1
以下本発明を実施例によって更に詳細に説明する。これは本発明の有用性を更に明確にすることを意図するものであって、本発明を限定するものではない。
図1は、本発明を実施するための装置を示す概略説明図である。
この装置はバッチタイプのものであり、1はスズ浴槽(加熱用)、2は水浴槽(急冷用)、3は反応管、4は温度モニター、5は圧力計をそれぞれ示す。4及び5により反応管内の温度と圧力をリアルタイムにモニターでき、3の反応管は振り子運動により振とうすることができる。
図1に示した装置を用いて本発明を実施し、本発明の効果を確認した。
バイオマス資源としてスギ木粉(おおよそ80メッシュに粉砕したもの)を用いた。該木粉20gを670mL容反応管3に仕込み、これに常温のメタノールを加えて670mLとし、あらかじめ350℃に昇温したスズ浴槽1に浸漬して、急速に昇温、昇圧し、メタノールの超臨界状態(240−340℃、43MPa)で5分保持し、反応管3を水浴槽2にすばやく移動させて、反応を停止した。その後、それらをビーカーに採り、メタノール可溶部とメタノール不可溶部を分離した。不可溶部が30%で、ほとんどメタノールに可溶化していた。メタノール可溶部を高速液体クロマトグラフイー(HPLC)分析した〔カラム:STR ODS−II、溶離剤(eluent)CH3OH/H2O=20/80→100/0、検出器:SPD(254nm)。〕
図2は、得られた組成物の前記分析結果である。
(a)は得られた組成物からメタノールを蒸留により除去後、同量の純粋なメタノールを加えたものの分析結果であり、
(b)は得られた組成物そのままのものの分析結果である。
このことから、バイオマス由来のメタノール可溶部化学製品はメタノールより高沸点のものであることが理解される。また、蒸留時に蒸散するもの〔(a)と(b)のクロマトグラムとを対比して、検出ピークが消失した成分〕はフルフラールのみで、その他のバイオマス分解物は、固形物として回収されていることが理解される。このことから、得られるバイオマス由来の成分はメタノールに可溶化しおり、かつ、単に溶媒を留去するだけで有用物を回収できることを示している。
【0018】
比較例
溶媒として水を用い、超臨界状態(450℃、200MPa)で5秒保持して、実施例1を繰り返した。木粉残渣はほとんど認められなかったが、常温の水に不溶なオイル状物が25%得られ、水可溶物と分離しての回収が困難であった。
得られた分解物の化学製品を調べるために、比較例1の水可溶物から水を留去し、固形物を得たあと留去した同量の水を加えて、再度溶解したものと留去前のものをHPLC分析(λ=254nm、カラム:ULTRON PS−80P、キャリヤーソルベント:H2O))したところ図3のようなHPLCクロマトグラムを得た。水留去前(b)と水留去後同量の純粋な水を入れたもの(a)とを比較すると溶媒留去の際に、生成したほとんどの成分が蒸散し、水可溶部から、バイオマス原料由来の有用化合物を回収することが困難であった。
前記実施例1と対比すると、反応溶媒としてメタノールの方が圧倒的に有利であることが理解される。
なお、水不溶分中(オイル状物も含む)にはバイオマス原料由来の有用化合物が含まれていることは推測できるが、有用物の回収には反応溶媒外の溶媒の使用と、分離操作が必要である。
【0019】
上記実施例1および比較例1で得られた組成物の有用性の評価。
実施例1で得られたメタノール可溶部をアルコールランプに入れ点火したところ、メタノールのみの場合と同様、良好な燃焼状態を示し、全て燃えつき、燃料として有用であることが確認された。これに対して、
比較例1で得られた水可溶部とオイル状物の混合をメタノールを加えて溶媒和させアルコールランプに入れ点火したが良好な燃焼は認められなかった。
このことから、実施例で得られるものと、比較例で得られるものとには製品的に大きな違いがあることが理解できる。
【0020】
実施例1で得られた組成物からの化学製品の分離。
実施例1で得られたメタノール可溶部を薄層クロマトグライー(TLC)により成分分離した。セルロース及びヘミセルロース由来の成分として糖のメチル化誘導体やリグニン由来のコニフェリルアルコール、p-クマリルアルコールやそれらの誘導体のメチル化物が回収できた。
比較例1で得られた組成物からの化学製品の分離。
比較例1で得られた水可溶部とオイル状物質から有用ケミカルスの回収は可能であるが、取り扱いが煩雑で容易に回収することはできなかった。
【0021】
実施例2
ここでは、バイオマス原料による反応性を調べた。
実施例1で用いたバイオマス原料であるスギ木粉(おおよそ80メッシュに粉砕したもの)に替えて、アビセル(Avicel)、コットンリンタおよび溶解パルプを用いて、実施例1と同様の条件で超臨界メタノール中で処理をした。
結果を図4に示す。バイオマスの特性(結晶性等)、原料の形態、例えば、前処理によって反応性が異なることが理解できる。スギ木粉は、もっと微細に粉砕することにより反応性が向上することが、原料形態により反応性に大きな違いがあることから推測される。
【0022】
【発明の効果】
以上のように、超臨界状態反応溶媒としてアルコール系媒、好ましくはメタノールを溶媒として用いて、リグノセルロース系バイオマスを処理することにより、前記バイオマス原料由来の低分子量の有用物質を、物資の利用など(最終製品または化成品製造原料などとしての利用)を考慮しつつ、効率良く変換し得る超臨界溶媒での反応が設計でき、かつ、該反応により得られる製品組成物はそのままでも燃料として利用でき、また、有用な化学製品を得るための取り扱いし易い原料が得られるという、顕著な効果がもたらされる。
また、当然ながら、資源の有効利用、利用効率の観点からも極めて好ましいものである。
【図面の簡単な説明】
【図1】 本発明を実施する装置の一例の概略図
【図2】 超臨界メタノール溶媒中でスギ木粉を処理して得られた組成物の高速液体クロマトグラフイー(HPLC)分析結果:
(a)は得られた組成物から溶媒であるメタノールを蒸留により除去後、同量の純粋なメタノールを加えたものの分析結果。(b)は得られた組成物そのままのものの分析結果
【図3】 超臨界水中でスギ材を処理して得られた組成物そのものの(b)また、水を蒸留除去後、同量の純粋な水をいれたもの(a)の高速液体クロマトグラフイー(HPLC)分析結果
【図4】 スギ木粉(約80メッシュに粉砕)、アビセル(Avicel)、コットンリンタおよび溶解パルプバイオマス原料の、超臨界メタノール中での反応特性
【符号の説明】
1 スズ浴槽 2 水浴槽 3 反応管
4 温度モニター 5 圧力計[0001]
BACKGROUND OF THE INVENTION
The present invention, lignocellulosic biomass (including unused and waste resources before Symbol biomass), in an alcohol, chemicals of the lignocellulosic biomass derived by Oite processed supercritical conditions for the alcohol The present invention relates to a method for obtaining a composition, a method for recovering useful chemical substances derived from the lignocellulosic biomass, and a composition derived from the biomass obtained by the treatment.
Specifically, an organic solvent in a supercritical state or a subcritical state can achieve a supercritical state at a relatively low temperature and pressure as compared with water that has been used as a conventional supercritical solvent. When the pressure is restored, the solvolysis (partial thermal decomposition is also not possible) with supercritical water is achieved by using the good solubility in chemical products and the formation of a good ionic reaction region. The present invention relates to a method for efficiently converting to a low molecular weight biomass-derived composition easily and effectively (with less solvent-insoluble product) and a composition obtained by the method. .
[0002]
[Prior art]
"Science and technology of supercritical fluid", pages 280-286, published on February 28, 1996, supervised by Shozaburo Saito, explained the reaction promotion effects such as hydrolysis, thermal decomposition and oxidation in supercritical water. Specific techniques include cellulose decomposition reaction, polyethylene terephthalate, polyethylene decomposition reaction, and the like.
Also, “Energy Review”, June 1998, pages 28-29 (issued by Energy Review Center Co., Ltd.), unused biomass waste, that is, agricultural waste such as sugarcane squeezed (bagasse), sawdust and Treating forest waste such as thinned wood, industrial waste such as OA paper and newspaper, and organic marine waste in supercritical water to obtain chemical products, and from glucose to ethanol, By dehydrating this, it is possible to produce ethylene obtained from fossil raw materials, and in the supercritical state, the density of dissociated water increases and the action as hydrogen ions increases, that is, it acts as an acid catalyst. Etc. are explained.
[0003]
JP-A No. 11-292799 discloses an aromatic produced by treating a plant with supercritical water or subcritical water to decompose it from aromatic compounds contained in the plant and / or components in the plant. There has been reported a technique for producing an aromatic compound or a polymer thereof by releasing the compound outside the plant body and isolating the released aromatic compound.
Japanese Patent Application Laid-Open No. 9-268166 discloses a method for producing amino acids and peptides from proteins using the special physical properties of supercritical water and using this property. It is described that the addition of various organic solvents (methyl alcohol, ethyl alcohol, acetone, etc.) within the range that does not hinder the transition of is effective. It does not mention the technical meaning of its effectiveness.
[0004]
Jasco Report "Supercritical State-of-the-Art Special Issue No.3" JASCO, 28-31 (1999.5.28), Application of supercritical fluid to post-petrochemicals,-Conversion of vegetable oil to biodiesel fuel with supercritical methanol- In addition, a technique for converting triglyceride, which is a main component of vegetable oil, into a methyl esterified product by transesterification by using supercritical methanol as a reaction medium and converting it into diesel engine fuel has been reported.
Such a report is also reported in the “Japan Wood Research Society” Biomass Conversion Study Group (October 6, 1999).
[0005]
In the prior art, since water is used as a solvent, the supercritical condition is possible only at a high temperature (above 374 ° C.). The temperature condition not only causes excessive thermal decomposition of the raw material, but also the solvent is water. Therefore, there are inconveniences in the process such that hydrophobic components such as lignin-derived components dissolved in the supercritical water are separated from water at normal temperature and normal pressure as oil substances.
In addition, for those using supercritical methanol as a solvent, research on the conversion reaction of vegetable oil (triglyceride) containing waste edible oil into methyl esterified product by transesterification reaction, this research is the main component of biomass Is intended to be different from the reaction of chemically converting raw materials such as cellulose, hemicellulose and lignin using supercritical methanol, and the usefulness of supercritical methanol as a solvent for such reactions will not be described. Clearly not.
[0006]
[Problems to be solved by the invention]
The present invention has been made under such circumstances, and the object thereof is to produce cellulosic, lignocellulosic biomass, nitrogen-rich biomass including unused and waste biomass without causing the disadvantages of the prior art. To provide a technology for efficiently converting low-molecular-weight useful substances from sugar and protein biomass resources while considering the use of materials (use as final product or chemical production raw material) is there.
Furthermore, the present invention, the lignocellulosic biomass resources composition comprising a useful substance from said lignocellulosic biomass obtained by supercritical state by solvolysis alcohol such as methanol, in particular, to the alcohol It is providing the composition which can be utilized as it is as a liquid fuel containing the component derived from the dissolved biomass. In addition, the biomass-derived component dissolved in the alcohol obtained can be used for fuel or the like as a new composition by distilling off the solvent and dissolving in another solvent. Alternatively, the chemical product obtained by distilling off the solvent can be used for various purposes.
[0007]
[Means for Solving the Problems]
The first of the present invention is a method for obtaining a biomass-derived composition to be treated in lignocellulosic biomass , supercritical alcohol at 320 ° C to 360 ° C. Preferably, the method for producing a biomass-derived composition characterized in that methanol is used as the alcohol , and the product after supercritical alcohol treatment is separated into an alcohol-soluble part and an insoluble part, and the alcohol-soluble part It is a manufacturing method of the composition derived from each said biomass characterized by distilling alcohol off from. More preferably the method for producing a composition from each biomass comprising adding a catalyst selected from an acid effective amount alcohol supercritical state (less than 2%).
[0008]
2nd of this invention is a composition containing the said alcohol and the compound derived from biomass obtained by processing lignocellulosic biomass in 320 degreeC-360 degreeC supercritical state alcohol . Preferably, the composition includes the alcohol and the biomass-derived compound obtained by treating lignocellulosic biomass in supercritical methanol at 320 ° C to 360 ° C.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention will be described in more detail.
A. Biomass resources of interest in the present invention are lignocellulosic resources, especially containing lignin. Biomass includes forest products such as wood and other lignocelluloses, agricultural products such as corn, marine plants such as seaweed, and all other cellulosic resources on earth, other lignocellulosic resources, shrimp shells and crab shells. And nitrogen-containing polysaccharide resources such as chitin and chitosan, and animal resources such as animal glue, casein blood albumin, and protein resources such as vegetable protein such as soybean protein. This includes various types of biomass, such as thinned wood that has been discarded without being effectively used, forest waste such as waste, agricultural waste such as rice husk and corn stover, and marine waste such as unused seaweed. Resources, nitrogen-containing polysaccharides such as chitin and chitosan which are components of shrimp shells and crab shells, animal proteins such as animal glue, casein blood albumin, vegetable proteins such as soybean protein, and municipal waste There are waste resources. In the present invention, lignocellulosic biomass that can be well dissolved in a supercritical solvent and can be used as it is after the treatment is targeted for treatment.
B. Alcohols useful as supercritical organic solvents include monohydric alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, isobutyl alcohol, 2-butanol, t-butanol, and allyl alcohol , particularly methanol . Meaning, represented by the formula R 1 OH. However, R 1 is made of an aliphatic group containing 1-24 carbon atoms. These solvents are used alone or as a mixture of two or more. Table 1 shows an example of the critical temperature (Tc) and critical pressure (Pc) of these alcohols.
[0010]
[Table 1]
Figure 0003755076
[0011]
C. The supercritical state refers to a state where the temperature in the reaction system is higher than the critical temperature (Tc) and the pressure is higher than the critical pressure (Pc). Subcritical refers to a state in which the temperature in the reaction system is not lower than the boiling point of the alcohol and generally not lower than 150 ° C., and the pressure is not lower than the vapor pressure of the alcohol at the reaction temperature and generally not lower than 2.0 MPa.
Therefore, in carrying out the present invention, in order to form an alcohol in a supercritical state or a subcritical state, it is only necessary to appropriately adjust the temperature and the pressure within the range of at least a temperature of 150 to 600 ° C. and a pressure of 2.0 to 200 MPa. . When the temperature exceeds 600 ° C., the thermal decomposition of biomass resources and alcohol is remarkable, and the yield of useful substances decreases. Even when the reaction pressure exceeds 200 MPa, the yield of useful substances and the reaction time are not improved. More preferably, the temperature is 220 to 400 ° C. and the pressure is 3 to 100 Pa. The reaction time is selected from the range of 1 second to 2 hours depending on the reaction conditions. More preferably, it is the range for 1-30 minutes.
The reaction that takes place in a supercritical organic solvent, particularly in an alcohol, is substantially a solvolysis reaction, but also partially undergoes a thermal decomposition reaction. Therefore, in the present invention, the treatment in the supercritical solvent substantially means a solvation reaction.
[0012]
D. In the present invention, if necessary, a supercritical alcohol is added to a supercritical alcohol, as in supercritical water, and a catalyst selected from acids, for example, inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, etc. It is also effective to add in such a range. If the addition exceeds 2%, complicated post-treatment is required, which is not preferable. A more preferable catalyst concentration is 0.05% or less. That is, according to the present invention, the catalytic effect can be sufficiently exerted even when the catalyst concentration is 0.05% or less.
[0013]
E. The type of the apparatus for carrying out the production method of the present invention is not particularly defined. For example, supercritical water such as a batch reactor, a continuous tank reactor, a piston flow reactor, a tower reactor, etc. The thing similar to what was used for the used reaction can be used.
It was found that the separation of the alcohol-soluble part and the insoluble part and the handling of the reaction apparatus were easier to handle because the oily substance was also solubilized in the alcohol than when water was used as the supercritical solvent.
F. In the reaction, using a tin bath (about 350 ° C. bath) as a heating bath, a supercritical state in a pressure range of 43 MPa and a temperature range of 240 to 340 ° C. can be realized. Moreover, a salt bath [sodium sulfite, potassium sulfite (1: 1)] etc. can also be used as a heating bath.
[0014]
The composition of the biomass origin obtained by the process of the present invention, particularly compositions from Rigunoseruro scan system resources, it is a material obtained by separation of useful components from the organic solvent and the energy source are also, while containing an alcohol solvent It can also be used as biomass energy. Further, it can be used as a fuel by mixing with light oil, kerosene, A heavy oil or the like. In addition, from the above composition, for example, as components derived from cellulose and hemicellulose, saccharides such as cellotriose, cellobiose, glucose, xylose, mannose, fructose and methylated derivatives thereof, levoglucosan, hydroxymethylfurfural, furfural and methylated derivatives thereof Can be recovered as a useful component. In addition, coniferyl alcohol, cinapyl alcohol, p-coumaryl alcohol, their derivatives, methylated derivatives, and the like can be recovered as lignin-derived components. A protein is a polymer compound in which an amino acid and an amino group are amide-bonded, but when this is treated with supercritical water, it is decomposed into α-amino acids by hydrolysis, but when treated with supercritical methanol, α is dissolved by solvolysis. -Amino acid methyl is obtained. From the nitrogen-containing polysaccharide, a product having undergone the same reaction as the solvolysis of the cellulose and protein is obtained.
[0015]
In the present invention, since the supercritical solvent has high solubility in the effective chemical product derived from the raw material biomass, and the temperature condition for making it supercritical is mild, the solvolysis reaction is substantially performed. Since it progresses and the progress of the pyrolysis reaction is small, the generation of volatile products by the pyrolysis reaction is small. In addition, the use of an alcohol solvent in the supercritical solvent reaction brings about a remarkable effect that a large amount of effective chemical products derived from raw material biomass having a high boiling point can be obtained in the form of a solution that is easy to handle. Furthermore, the alcohol-based solvent-soluble part can be separated and recovered at least partially by distillation, for example, so that the composition obtained by supercritical processing can be obtained in a highly available state. On the other hand, when conventional water is used as the solvent for the supercritical reaction, since the supercritical temperature condition is high, in addition to the hydrolysis reaction, the thermal decomposition reaction proceeds considerably and the boiling point such as furfural The production of low molecular weight compounds with low volatility increases. Therefore, even if an attempt is made to obtain a useful chemical product by distilling off water as a solvent, there are many products that are removed during the distillation, and an effective chemical product derived from a relatively high boiling point raw material biomass. There are difficulties to get.
Also from this point, in the present invention, in the treatment of the biomass in the supercritical solvent, by using monovalent alcohols, particularly methanol, as the solvent, it is predicted from the reaction treatment in the conventional supercritical solvent. This is a remarkable effect that cannot be achieved.
[0016]
Composition derived from lignocellulosic biomass obtained by treatment with supercritical alcohol of the present invention is as described above, supercritical state alcohols, operation and effect, particularly by methanol, considered as follows be able to.
Supercritical or subcritical alcohols can easily and significantly change their dielectric constant and ionic product by controlling temperature and pressure. The dielectric constant of alcohol is 33.1 (25 ° C.) with methanol and 23.8 (25 ° C.) with ethanol, and they form an association of four molecules by hydrogen bonding. However, in the supercritical state, the hydrogen bond is broken and becomes hydrophobic, the dielectric constant is lowered, and the nonpolar substance is easily dissolved. Also, due to the temperature dependence of the ionic product of alcohol at each pressure, the higher the pressure, the higher the ionic product is kept up to the high temperature region, and the region for good ionic reaction (alcolysis reaction) even at fairly high temperatures. Is thought to form. In other words, the ionic product and dielectric constant of alcohol in the supercritical state or subcritical state can be adjusted in a wide range by controlling the temperature and pressure, so that the biomass can be obtained by using the alcohol in such a state as a solvent for solvolysis. It is thought that the optimal environment for efficiently converting the constituent cellulose, hemicellulose and lignin into useful compounds was provided. Effective chemical products derived from raw material biomass are more efficient and easier than when water is used as a solvent. Can be understood.
[0017]
【Example】
Example 1
Hereinafter, the present invention will be described in more detail with reference to examples. This is intended to further clarify the usefulness of the present invention and is not intended to limit the present invention.
FIG. 1 is a schematic explanatory view showing an apparatus for carrying out the present invention.
This apparatus is of a batch type, 1 is a tin bath (for heating), 2 is a water bath (for quenching), 3 is a reaction tube, 4 is a temperature monitor, and 5 is a pressure gauge. The temperature and pressure inside the reaction tube can be monitored in real time by 4 and 5, and the reaction tube of 3 can be shaken by pendulum motion.
The present invention was implemented using the apparatus shown in FIG. 1, and the effects of the present invention were confirmed.
As a biomass resource, cedar wood flour (pulverized to approximately 80 mesh) was used. 20 g of the wood flour is charged into a 670 mL reaction tube 3, methanol at room temperature is added to make 670 mL, immersed in a tin bath 1 that has been heated to 350 ° C. in advance, rapidly heated and pressurized, The reaction was stopped by keeping it in a critical state (240-340 ° C., 43 MPa) for 5 minutes, and quickly moving the reaction tube 3 to the water bath 2. Then, they were taken in a beaker, and a methanol soluble part and a methanol insoluble part were separated. The insoluble part was 30%, and it was almost solubilized in methanol. The methanol soluble part was analyzed by high performance liquid chromatography (HPLC) [column: STR ODS-II, eluent CH 3 OH / H 2 O = 20/80 → 100/0, detector: SPD (254 nm). ]
FIG. 2 shows the analysis result of the obtained composition.
(A) is the analysis result of what added the same amount of pure methanol after removing methanol by distillation from the obtained composition,
(B) is an analysis result of the obtained composition as it is.
From this, it is understood that the biomass-soluble methanol-soluble part chemical product derived from biomass has a higher boiling point than methanol. In addition, the one that evaporates during distillation (the component in which the detection peak disappears in comparison with the chromatograms of (a) and (b)) is only furfural, and other biomass decomposition products are recovered as solids. It is understood. This indicates that the biomass-derived component obtained is solubilized in methanol, and that useful substances can be recovered simply by distilling off the solvent.
[0018]
Example 1 was repeated using water as the solvent for the comparative example and holding for 5 seconds in a supercritical state (450 ° C., 200 MPa). Almost no wood powder residue was observed, but 25% of an oily substance insoluble in water at room temperature was obtained, and it was difficult to separate it from water-soluble substances.
In order to examine the chemical product of the obtained decomposition product, water was distilled off from the water-soluble product of Comparative Example 1, and after obtaining a solid material, the same amount of distilled water was added and dissolved again. The product before distillation was analyzed by HPLC (λ = 254 nm, column: ULTRON PS-80P, carrier solvent: H 2 O), and an HPLC chromatogram as shown in FIG. 3 was obtained. Compared with (b) before distilling off water and (a) containing the same amount of pure water after distilling off the water, most of the components produced were evaporated and removed from the water-soluble part. It was difficult to recover useful compounds derived from biomass raw materials.
In contrast to Example 1, it is understood that methanol is overwhelmingly advantageous as a reaction solvent.
Although it can be estimated that useful compounds derived from biomass raw materials are contained in the water-insoluble matter (including oil-like substances), the use of a solvent other than the reaction solvent and the separation operation are necessary for the recovery of useful substances. is necessary.
[0019]
Evaluation of the usefulness of the compositions obtained in Example 1 and Comparative Example 1 above.
When the methanol-soluble part obtained in Example 1 was placed in an alcohol lamp and ignited, it showed a good combustion state as in the case of methanol alone, and it was confirmed that it was all burned and useful as a fuel. On the contrary,
The mixture of the water-soluble part and the oily substance obtained in Comparative Example 1 was solvated by adding methanol, placed in an alcohol lamp and ignited, but good combustion was not observed.
From this, it can be understood that there is a great difference in product between what is obtained in the example and what is obtained in the comparative example.
[0020]
Separation of chemical products from the composition obtained in Example 1.
The methanol-soluble part obtained in Example 1 was separated by thin layer chromatography (TLC). As components derived from cellulose and hemicellulose, methylated derivatives of sugar, lignin-derived coniferyl alcohol, p-coumaryl alcohol and methylated products of these derivatives could be recovered.
Separation of chemical products from the composition obtained in Comparative Example 1.
Although useful chemicals can be recovered from the water-soluble part and the oily substance obtained in Comparative Example 1, the handling is complicated and it cannot be easily recovered.
[0021]
Example 2
Here, the reactivity with biomass raw materials was examined.
Supercritical under the same conditions as in Example 1 using Avicel, cotton linter and dissolving pulp instead of the cedar wood flour (approximately ground to 80 mesh) used as the biomass material in Example 1. Treated in methanol.
The results are shown in FIG. It can be understood that the reactivity varies depending on the characteristics (crystallinity, etc.) of the biomass and the form of the raw material, for example, pretreatment. It is assumed that the reactivity of cedar wood flour is improved by pulverizing it more finely because there is a large difference in reactivity depending on the raw material form.
[0022]
【The invention's effect】
As described above, the alcohol-based Solvent as supercritical Sakaijo state reaction solvent, good Mashiku is using methanol as a solvent, by treating the lignocellulosic biomass, useful low molecular weight from said biomass material A product composition obtained by designing a reaction in a supercritical solvent that can be efficiently converted while considering the use of a substance (use as a final product or a raw material for producing a chemical product). Can be used as a fuel as it is, and a material that is easy to handle for obtaining useful chemical products can be obtained.
Of course, it is also extremely preferable from the viewpoint of effective use of resources and utilization efficiency.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an example of an apparatus for carrying out the present invention. FIG. 2 is a result of high-performance liquid chromatography (HPLC) analysis of a composition obtained by treating cedar wood flour in a supercritical methanol solvent:
(A) Analytical result of removing methanol as a solvent from the obtained composition by distillation and adding the same amount of pure methanol. (B) is the analysis result of the obtained composition as it is. [Fig. 3] (b) of the composition itself obtained by treating the cedar wood in supercritical water. Of high-performance liquid chromatography (HPLC) analysis of water containing fresh water (a) [Fig. 4] Ultra-high performance of cedar wood flour (pulverized to about 80 mesh), Avicel, cotton linter, and dissolved pulp biomass feedstock Reaction characteristics in critical methanol 【Explanation of symbols】
1 Tin bath 2 Water bath 3 Reaction tube
4 Temperature monitor 5 Pressure gauge

Claims (6)

リグノセルロース系バイオマスを、320℃〜360℃の超臨界状態アルコール中で処理する前記バイオマス由来の組成物を得る方法。The method of obtaining the said biomass-derived composition which processes lignocellulosic biomass in 320 degreeC-360 degreeC supercritical state alcohol. アルコールとしてメタノールを用いたことを特徴とする請求項1に記載のバイオマス由来の組成物の製造方法。Methanol is used as alcohol , The manufacturing method of the composition derived from biomass of Claim 1 characterized by the above-mentioned. 超臨界アルコール処理後の製品をアルコール可溶部と不溶部に分離し、アルコール可溶部からアルコールを留去することを特徴とする請求項1または2に記載のバイオマス由来の組成物の製造方法。  The method for producing a biomass-derived composition according to claim 1 or 2, wherein the product after the supercritical alcohol treatment is separated into an alcohol-soluble part and an insoluble part, and the alcohol is distilled off from the alcohol-soluble part. . 超臨界状態のアルコールに有効量の一種または二種以上の酸触媒を添加することを特徴とする請求項1、2または3に記載のバイオマス由来の組成物の製造方法。Method for producing a composition derived from the biomass of claim 1, 2 or 3, characterized in adding an effective amount of one or more kinds of acid catalyst to alcohol supercritical state. リグノセルロース系バイオマスを、320℃〜360℃の超臨界状態アルコール中で処理して得られる前記アルコールおよびバイオマス由来の化合物を含む組成物。A composition comprising the alcohol and a biomass-derived compound obtained by treating lignocellulosic biomass in supercritical alcohol at 320 ° C to 360 ° C. リグノセルロース系バイオマスを、320℃〜360℃の超臨界状態メタノール中で処理して得られる前記アルコールおよびバイオマス由来の化合物を含む組成物。A composition comprising the alcohol and a biomass-derived compound obtained by treating lignocellulosic biomass in supercritical methanol at 320 ° C to 360 ° C.
JP2000015157A 2000-01-25 2000-01-25 Composition by supercritical solvent treatment of biomass and method for producing the same Expired - Fee Related JP3755076B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000015157A JP3755076B2 (en) 2000-01-25 2000-01-25 Composition by supercritical solvent treatment of biomass and method for producing the same
PCT/JP2001/000456 WO2001054837A1 (en) 2000-01-25 2001-01-24 Composition produced by supercritical solvent treatment of biomass and method for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000015157A JP3755076B2 (en) 2000-01-25 2000-01-25 Composition by supercritical solvent treatment of biomass and method for producing the same

Publications (3)

Publication Number Publication Date
JP2001205070A JP2001205070A (en) 2001-07-31
JP2001205070A5 JP2001205070A5 (en) 2005-04-07
JP3755076B2 true JP3755076B2 (en) 2006-03-15

Family

ID=18542494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000015157A Expired - Fee Related JP3755076B2 (en) 2000-01-25 2000-01-25 Composition by supercritical solvent treatment of biomass and method for producing the same

Country Status (2)

Country Link
JP (1) JP3755076B2 (en)
WO (1) WO2001054837A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009014225A1 (en) 2007-07-25 2009-01-29 Toyota Jidosha Kabushiki Kaisha Method for production of liquefied fuel oil using biomass as raw material

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3405981B1 (en) 2002-06-26 2003-05-12 日本財経株式会社 Method for producing cellulose acetate
KR20110130526A (en) 2002-10-30 2011-12-05 산토리 홀딩스 가부시키가이샤 Method of manufacturing plant finished product
JP3522264B2 (en) * 2002-12-16 2004-04-26 日本財経株式会社 Method for producing xylo-oligosaccharide
JP4759227B2 (en) * 2004-04-05 2011-08-31 志朗 坂 Biomass decomposition and liquefaction method
JP4982036B2 (en) * 2004-04-16 2012-07-25 志朗 坂 Biomass decomposition and liquefaction method
JP2006223152A (en) * 2005-02-16 2006-08-31 Hitachi Zosen Corp Method for treating biomass through combination of dissolution by cellulose solvent and hydrolysis
JP4889286B2 (en) * 2005-11-18 2012-03-07 日本ハム株式会社 Low molecular weight protein and feed material or food material containing the same
JP4674723B2 (en) * 2006-05-11 2011-04-20 パナソニック株式会社 Decomposition method for woody waste
FI20085275L (en) * 2008-04-02 2009-10-09 Hannu Ilvesniemi A method for processing biomass
ES2684442T3 (en) * 2008-10-01 2018-10-02 Licella Pty Limited Bio-oil production method
KR101569013B1 (en) 2009-02-16 2015-11-16 삼성전자주식회사 Method for Pretreating and Saccharifying Marine Algae Biomass
JP2010280850A (en) * 2009-06-05 2010-12-16 Toyota Motor Corp Manufacturing method for non-water soluble liquefied fuel oil from biomass
JP2010280851A (en) * 2009-06-05 2010-12-16 Toyota Motor Corp Manufacturing method for non-water soluble liquefied fuel oil including hydrocarbon from biomass as principal component
JP2011089000A (en) * 2009-10-21 2011-05-06 Tokyo Univ Of Agriculture & Technology Method for producing biomass liquefied fuel
US8383864B2 (en) 2009-12-08 2013-02-26 Iowa State University Research Foundation, Inc. Method for the conversion of cellulose and related carbohydrate materials to low-molecular-weight compounds
US8686192B2 (en) 2009-12-08 2014-04-01 Iowa State University Research Foundation, Inc. Method for the conversion of cellulose and related carbohydrate materials to low-molecular-weight compounds
KR101391686B1 (en) 2012-10-29 2014-05-07 서울대학교산학협력단 Method for pretreatment of lignocellulosic biomass

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1177012A (en) * 1997-09-05 1999-03-23 Japan Organo Co Ltd Supercritical hydroxylation decomposition treatment device for urban waste
JP2001062424A (en) * 1999-08-27 2001-03-13 Shinko Pantec Co Ltd Process and equipment for chemical recycling treatment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009014225A1 (en) 2007-07-25 2009-01-29 Toyota Jidosha Kabushiki Kaisha Method for production of liquefied fuel oil using biomass as raw material
US8945246B2 (en) 2007-07-25 2015-02-03 Toyota Jidosha Kabushiki Kaisha Method for producing liquefied fuel oil using biomass as feedstock

Also Published As

Publication number Publication date
WO2001054837A1 (en) 2001-08-02
JP2001205070A (en) 2001-07-31

Similar Documents

Publication Publication Date Title
JP3755076B2 (en) Composition by supercritical solvent treatment of biomass and method for producing the same
JP4982036B2 (en) Biomass decomposition and liquefaction method
JP5799091B2 (en) Biomass fractionation method
de CM Miranda et al. Pineapple crown delignification using low-cost ionic liquid based on ethanolamine and organic acids
JP2001205070A5 (en)
Shitu et al. Sub-critical water as a green solvent for production of valuable materials from agricultural waste biomass: A review of recent work
EP2254913B1 (en) Method for lignocellulose pretreatment using a super-cellulose-solvent and highly volatile solvents
US7960520B2 (en) Conversion of lignocellulosic biomass to chemicals and fuels
Trinh et al. Aqueous acidified ionic liquid pretreatment for bioethanol production and concentration of produced ethanol by pervaporation
New et al. The application of green solvent in a biorefinery using lignocellulosic biomass as a feedstock
Feng et al. Preparation of methyl levulinate from fractionation of direct liquefied bamboo biomass
Zhu et al. Comparative evaluation of microwave-assisted acid, alkaline, and inorganic salt pretreatments of sugarcane bagasse for sugar recovery
Pu et al. Autohydrolysis pretreatment of mixed hardwoods to extract value prior to combustion
Brunner et al. Pinewood pyrolysis occurs at lower temperatures following treatment with choline-amino acid ionic liquids
Raita et al. Effects of alkaline catalysts on acetone-based organosolv pretreatment of rice straw
Yang et al. Using deep eutectic solvent pretreatment for enhanced enzymatic saccharification and lignin utilization of masson pine
WO2015087248A1 (en) Production of furfural from xylose
Moreira et al. Defatted rice bran pretreated with deep eutectic solvents and sequential use as feedstock for subcritical water hydrolysis
Cho et al. An integrated process for conversion of spent coffee grounds into value-added materials
WO2018130776A1 (en) Biomass treatment method
Liu et al. Conversion of waste water hyacinth into high-value chemicals by iron (III) chloride under mild conditions
Yuan et al. Production of Levulinic Acid from Pennisetum alopecuroides in the Presence of an Acid Catalyst
Kim et al. Use of an alkaline catalyst with ethanol-water as a co-solvent in the hydrothermal liquefaction of the Korean native kenaf: An analysis of the light oil and heavy oil characteristics
Cañadas et al. Green solvents extraction-based detoxification to enhance the enzymatic hydrolysis of steam-exploded lignocellulosic biomass and recover bioactive compounds
Nurdin et al. Effectiveness of green chemical solvent-based on triethylammonium methanesulfonate ion liquid for the OPEFB pretreatment process

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090106

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees