JP3753463B2 - Spheroidal graphite cast iron with excellent vibration damping capacity - Google Patents

Spheroidal graphite cast iron with excellent vibration damping capacity Download PDF

Info

Publication number
JP3753463B2
JP3753463B2 JP05084496A JP5084496A JP3753463B2 JP 3753463 B2 JP3753463 B2 JP 3753463B2 JP 05084496 A JP05084496 A JP 05084496A JP 5084496 A JP5084496 A JP 5084496A JP 3753463 B2 JP3753463 B2 JP 3753463B2
Authority
JP
Japan
Prior art keywords
cast iron
graphite
spheroidal graphite
vibration damping
graphite cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05084496A
Other languages
Japanese (ja)
Other versions
JPH09217142A (en
Inventor
泰生 長井
研一 熊沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SENSHU CORP
Original Assignee
SENSHU CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SENSHU CORP filed Critical SENSHU CORP
Priority to JP05084496A priority Critical patent/JP3753463B2/en
Publication of JPH09217142A publication Critical patent/JPH09217142A/en
Application granted granted Critical
Publication of JP3753463B2 publication Critical patent/JP3753463B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、強度のみならず、振動減衰能に優れた球状黒鉛鋳鉄に関するものである。
【0002】
【従来の技術】
球状黒鉛鋳鉄は、鋳放し状態で基地中に球状の黒鉛が晶出したものであり、黒鉛が片状に晶出した片状黒鉛鋳鉄(ねずみ鋳鉄)に比して高強度を有する。片状黒鉛鋳鉄では片状黒鉛が切欠作用を有するため、機械的性質が低下するからである。
【0003】
一方、振動減衰能については、黒鉛形態が球状より片状の方が減衰能が優れるため、例えば特開昭63−210256号公報に開示されているように、振動減衰能に優れた片状黒鉛鋳鉄が各種提案されている。
【0004】
【発明が解決しようとする課題】
エンジンやコンプレッサーのマウンティングブラケットは、強度のみならず、優れた振動減衰能が要求される。かかる部材を減衰能に優れた片状黒鉛鋳鉄により形成すると、所要の強度を満足するには部材の肉厚を大きく取る必要があり、重量や嵩が大きくなる。これでは、軽量化、小形化の要求に反するため、振動減衰能をある程度犠牲にして球状黒鉛鋳鉄が使用されているのが現状である。
【0005】
本発明は、かかる問題に鑑みなされたものであって、振動減衰能に優れた球状黒鉛鋳鉄を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の球状黒鉛鋳鉄は、表面層部の基地中に球状黒鉛が晶出し、該球状黒鉛はその外周面が凹凸状に形成されかつ球状黒鉛の内部及び外周部に多数の微細な空隙部が形成されていると共に表面に露出している。このため、黒鉛と表面層部の基地との干渉作用及び黒鉛自体による振動吸収性に優れ、振動減衰能が増大する。
【0007】
又、前記球状黒鉛鋳鉄における表面層部の基地をフェライト、パーライト又はベイナイトに形成すると良い。基地組織がフェライトの場合は、延性に優れた材質となり、パーライトの場合は強度と伸びのバランスの良い材質が得られる。特に、基地をベイナイト組織とすることで、高強度が得られると共に、ベイナイト特有の針状あるいは羽毛状組織により振動減衰能が更に向上する。
【0008】
【発明の実施の形態】
本発明の球状黒鉛鋳鉄は、表面層部の基地中に球状黒鉛が晶出している。下記熱処理により、球状黒鉛はその外周面が凹凸状に形成されかつ球状黒鉛の内部及び外周部に多数の微細な空隙部が形成される。更に、下記機械加工が施されることにより前記球状黒鉛は表面に露出している。
【0009】
例えば、本発明の球状黒鉛鋳鉄の化学組成は、球状黒鉛が晶出する組成であればよく、特に限定されないが、主要元素の代表的化学組成(wt%)及び成分限定理由は下記の通りである。
C : 2.5〜 4.0 %、 Si: 2.0〜 3.5 %、
Mg:0.02〜0.08 %、 残部実質的にFe。
【0010】
C : 2.5〜 4.0 %
Cは黒鉛の生成のために必要であり、2.5%未満では鋳造性が低下し、凝固収縮が大きくなり、引け巣不良が増大するようになる。一方、4.0%を越えると黒鉛の球状化が困難になり、キッシュ黒鉛が発生するおそれがある。好ましい範囲は3.5〜3.8%である。
【0011】
Si: 2.0〜 3.5 %
Siは黒鉛の生成を促進するために必要であり、2.0%未満では遊離セメンタイトが晶出し易くなり、一方3.5%を越えると材質が脆くなり、衝撃値が低下する。好ましい範囲は2.6〜2.9%である。
Mg:0.02〜0.08 %
Mgは黒鉛球状化のために必要であり、0.02%未満では黒鉛の球状化が困難であり、一方0.08%を越えるとセメンタイトが晶出するようになり、また引け巣不良やドロス不良が増大するようになる。好ましい範囲は0.025 〜0.050 %である。
【0012】
尚、不純物や黒鉛球状化阻害元素は少ない程よい。例えば、Pは球状化阻害元素ではないが、延性を著しく低下させ、材質を脆くするので0.1%以下に止めるのがよい。また、Sは黒鉛球状化を著しく阻害する元素であるため0.03%以下に止めるのがよい。Mnはパーライト安定化元素であるため、伸びの大きい材質にするためには少ない程よいが、基地を強化する場合にはある程度含有させてもよく、Mn:1.0%以下(好ましくは0.4%以下)が許容される。また、Cu、Ni、Moは黒鉛球状化阻害作用はなく、基地をパーライト組織、ベイナイト組織に変態し易くする作用を有するため基地の強化に有効であり、Cu:2.0%以下(好ましくは1.5%以下)、Ni:2.0%以下(好ましくは1.5%以下)、Mo:0.5%以下(好ましくは0.3%以下)が許容される。鋳物の肉厚が25mm以上の厚肉の場合、内部まで所期の組織を得るためには、前記Cu等の含有は特に有効である。
【0013】
次に、本発明の球状黒鉛鋳鉄の製造方法について説明する。
本発明の球状黒鉛鋳鉄の製造方法は、鋳造後の球状黒鉛鋳鉄に対し、750〜1100℃に加熱保持後共析変態点以下に冷却する焼鈍熱処理を2回以上繰り返した後、球状黒鉛が球状黒鉛鋳鉄の表面に露出するように機械加工が施される。上記のような焼鈍熱処理を施すため、当初の球状黒鉛の周囲に2次黒鉛が繰り返し析出、成長し、球状黒鉛の外周面が凹凸状に形成される。又、鋳鉄の成長により、黒鉛の外周部や内部に多数の空隙部が生成するようになる。この際、焼鈍温度が750℃未満では、基地中にオーステナイトが全く生成しないようになり、2次黒鉛や空隙部の生成が困難になり、1100℃を越えると、部分的に溶融が生じるようになるため好ましくない。焼鈍温度の好ましい範囲は、850〜950℃である。
【0014】
本発明の球状黒鉛鋳鉄を製造するには、上記化学組成の球状黒鉛鋳鉄を鋳造後、図1に記載した通り、750〜1100℃に加熱保持後、共析変態点以下の温度、例えば500〜600℃程度に冷却(炉冷あるいは空冷)する焼鈍熱処理を2回以上(図例ではA1,A2,A3,A4の4回)行った後、最終の焼鈍熱処理の冷却過程で、基地組織調整熱処理として、図例では焼きならし熱処理B1又はオーステンパー熱処理B2を施している。勿論、基地組織調整熱処理は最終の焼鈍熱処理後に行ってもよい。
【0015】
焼鈍熱処理の回数は通常2〜4回でよい。5回以上行っても振動吸収能は向上し難くなり、またコスト的に不利になるからである。1回当たりの焼鈍時間は、通常、肉厚1インチ当たり例えば0.5〜3hr程度に設定すればよい。所定の温度に加熱した際、基地が均質なオーステナイトとなっていても、0.5hr未満では2次黒鉛の生成、成長が過少である。一方、基地中に遊離セメンタイト等が晶出した不均質なものでは、均質化のためにある程度時間を要するが、3hrあれば十分であり、3hrを越えてまで保持する必要はない。
【0016】
前記焼鈍熱処理のままでは、基地組織はフェライト組織であり、強度がやや低いものの、延性に優れた材質となっている。最終の焼鈍熱処理後或いはその冷却過程で基地組織を調整するため、オーステンパ熱処理や焼ならし熱処理等の基地組織調整熱処理を施すことができる。勿論、基地をフェライト組織にする場合は、焼鈍熱処理後、そのまま炉冷すればよい。
【0017】
基地組織調整熱処理としてオーステンパー熱処理(B2)を施すことができる。このオーステンパ熱処理により、基地がベイナイトとなり、伸びがやや劣るものの、高強度かつ優れた減衰能が得られる。例えば、焼鈍温度から230〜400℃に保持した塩浴中に焼入れし、この温度でインチ当たり1.0〜3.0hr程度保持して等温変態を行わせた後、空冷すればよい。
【0018】
又、前記基地組織調整熱処理としては、基地組織をパーライト組織にする場合、焼きならし熱処理(B1)を行えばよく、比較的良好な振動減衰能を有すると共に強度と伸びとがバランスするようになる。例えば、焼鈍温度からAcm+50℃程度の750〜900℃に冷却(空冷又は炉冷)し、同温度でインチ当たり0.5hr程度保持して均熱後、空冷すればよい。もっとも、組成によってはパーライト中に一部フェライトが生成した混合組織になる場合がある。
【0019】
前記焼鈍熱処理或いは基地組織調整熱処理後には、砂落としや鋳バリ取りなどの鋳仕上げ処理とは別に、適宜の機械加工が施される。機械加工には、適宜の切削装置や研削装置が使用でき、例えばグラインダ、旋盤、フライス盤等が使用される。この機械加工により、鋳造品の表面に形成される黒皮を除去すると共に、鋳造品の表面に前記球状黒鉛を露出させ、振動減衰能を向上させる。
【0020】
本発明の球状黒鉛鋳鉄は、高強度及び高振動減衰能が要求される各種の機械構造部材の材料として好適であり、エンジンやコンプレッサーのマウンティングブラケットのほか、クランクシャフト、ベアリングキャップ、デフケース、発電機ブラケット、トランスや各種音響機器の設置台等の材料として好適である。
【0021】
【実施例】
以下、具体的実施例を掲げる。
(1) 先ず、下記化学組成(wt%)の片状黒鉛鋳鉄、球状黒鉛鋳鉄を鋳造した。この鋳造品を表1に記載した温度条件により熱処理を施した。熱処理を施した鋳造品の表面をグラインダーにより球状黒鉛が露出するまで研削した。尚、表中、試料No.1,No.2は従来例で、各々鋳放しの片状黒鉛鋳鉄(FC250),球状黒鉛鋳鉄(FCD450)である。又、試料No.3〜No.7も従来例で、機械加工を施しいないが表1の熱処理が施されている球状黒鉛鋳鉄であり、試料No.8 No.12は実施例である。
・片状黒鉛鋳鉄組成
C: 3.31 %、 Si: 1.85 %、Mn: 0.72 %、 P: 0.043 %、S: 0.023 %、 残部実質的にFe
・球状黒鉛鋳鉄組成
C: 3.71 %、 Si: 2.83 %、Mn: 0.28 %、 P: 0.031 %、S: 0.008 %、 Mg: 0.041 %、残部実質的にFe
【0022】
【表1】

Figure 0003753463
【0023】
(2) 次に、各試料より引張試験片(JIS4号)及び振動試験片(φ30mmより削り出したもの、幅20×長さ200×厚さ4mm)を採取し、引張試験及び振動減衰試験を行った。振動減衰試験は、棒状試験片の一端を固定し、他端を電磁加振機で加振し、加振を停止した後、光学変位測定機により、試験片他端の振動振幅を測定し、振幅減衰波形を求めた。得られた振幅減衰波形から、加振停止直前の所期振幅Aoと、Ao/3になるn山目の振幅Anを求め、下記(1) 式より減衰能Q-1を算出した。試験結果を表2に併せて示す。
【0024】
【式1】
-1=−(1/π)×(1/n)×ln(An/Ao)……(1)
【0025】
【表2】
Figure 0003753463
【0026】
表2より、試料No.8〜12の実施例は、片状黒鉛鋳鉄である試料No.1に比して引張強さ,伸びに優れ、かつ減衰性を有し、鋳放しの球状黒鉛鋳鉄である試料No.2に比して減衰能が20%以上大幅に向上した。しかも、基地組織調整熱処理を施した実施例はいずれも試料No.1,No.2に比して強度の向上が著しい。又、機械加工を施していない試料No.3〜No.7の従来例に比して、平均3%の減衰能の向上が見られ、機械加工することにより更に振動減衰能が向上していることがわかる。
【0027】
更に、実施例の試料No.8,No.9,No.10 を各々比較すると、焼鈍回数が増加すると共に振動減衰能が向上している。又、実施例の試料No.9と試料No.11 ,試料No.10 と試料No.12 とを比較すると、焼鈍回数が同じでも、オーステンパー熱処理を施した試料No.9,No.10は他のものに比して高強度であり、優れた振動減衰能が維持されていることが分かる。そして、基地組織調整熱処理を施していない実施例の試料No.11 は、他の実施例と比較して伸びが優れていることがわかる。
(3) そして、実施例の試料No.10から組織観察用の試験片を採取し、金属組織を光学顕微鏡により観察した。この試料No.10の実施例における表面層部の断面組織写真(100倍)を図2に示す。
【0028】
図2より、ほぼ球状を呈している黒鉛が、上記焼鈍熱処理を繰り返すことにより黒鉛の外周面が凹凸状となり、また多数の微細な空隙部(同図において、黒鉛中およびその外周部の白色部)が認められる。又、図より、外周面が凸凹状の球状黒鉛が試料の表面層部に分散して存在し、球状黒鉛が試料表面に露出していることが認められる。
【0029】
【発明の効果】
以上説明した通り、本発明の球状黒鉛鋳鉄は、外周面が凹凸状に形成されかつ球状黒鉛の内部及び外周部に多数の微細な空隙部が形成されている球状黒鉛が表面に露出しているので、黒鉛と表面層部の基地との干渉作用及び黒鉛自体による振動吸収性に優れ、振動減衰能を増大することができる。
【0030】
又、前記球状黒鉛鋳鉄における表面層部の基地をフェライト、パーライト又はベイナイトに形成するので、優れた伸びや強度を有する材質が得られる。特に、基地をベイナイト組織とすることで、高強度が得られると共にベイナイト特有の針状あるいは羽毛状組織により振動減衰能が更に向上する。
【図面の簡単な説明】
【図1】本発明にかかる熱処理線図である。
【図2】実施例の球状黒鉛鋳鉄の断面組織図面代用写真である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to spheroidal graphite cast iron that is excellent not only in strength but also in vibration damping capability.
[0002]
[Prior art]
Spheroidal graphite cast iron is obtained by crystallizing spherical graphite in the base in an as-cast state, and has higher strength than flake graphite cast iron (grey cast iron) in which graphite is crystallized in a flake. This is because flake graphite has a notch effect in flake graphite cast iron, and mechanical properties are deteriorated.
[0003]
On the other hand, with regard to vibration damping ability, flake graphite having excellent vibration damping ability is disclosed in, for example, Japanese Patent Application Laid-Open No. 63-210256, because the graphite form is more flaky than spherical. Various types of cast iron have been proposed.
[0004]
[Problems to be solved by the invention]
Engine and compressor mounting brackets are required not only for strength but also for excellent vibration damping. When such a member is formed of flake graphite cast iron having an excellent damping capacity, it is necessary to increase the thickness of the member in order to satisfy the required strength, resulting in an increase in weight and bulk. This is contrary to the demand for weight reduction and downsizing, and at present, spheroidal graphite cast iron is used at the expense of vibration damping ability to some extent.
[0005]
This invention is made | formed in view of this problem, Comprising: It aims at providing the spheroidal graphite cast iron excellent in vibration damping ability.
[0006]
[Means for Solving the Problems]
In the spheroidal graphite cast iron of the present invention, spheroidal graphite crystallizes in the base of the surface layer portion, and the spheroidal graphite has an outer peripheral surface formed in an uneven shape, and a large number of fine voids are formed in and inside the spheroidal graphite. It is formed and exposed on the surface. For this reason, it is excellent in the interference effect | action of graphite and the base | substrate of a surface layer part, and the vibration absorptivity by graphite itself, and vibration damping capability increases.
[0007]
Further, the base of the surface layer portion in the spheroidal graphite cast iron is preferably formed of ferrite, pearlite, or bainite. When the matrix structure is ferrite, a material having excellent ductility is obtained. When pearlite is used, a material having a good balance between strength and elongation can be obtained. In particular, by making the base a bainite structure, high strength can be obtained, and the vibration damping ability is further improved by a needle-like or feather-like structure peculiar to bainite.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the spheroidal graphite cast iron of the present invention, spheroidal graphite is crystallized in the base of the surface layer portion. By the following heat treatment, the outer surface of the spherical graphite is formed in an uneven shape, and a large number of fine voids are formed in the inner and outer peripheral portions of the spherical graphite. Furthermore, the spherical graphite is exposed on the surface by the following machining.
[0009]
For example, the chemical composition of the spheroidal graphite cast iron of the present invention is not particularly limited as long as it is a composition in which spheroidal graphite is crystallized, but the typical chemical composition (wt%) of main elements and the reasons for limiting the components are as follows. is there.
C: 2.5-4.0%, Si: 2.0-3.5%,
Mg: 0.02 to 0.08%, the balance being substantially Fe.
[0010]
C: 2.5-4.0%
C is necessary for the production of graphite, and if it is less than 2.5%, the castability is lowered, the solidification shrinkage is increased, and the shrinkage defect is increased. On the other hand, if it exceeds 4.0%, it becomes difficult to spheroidize graphite, and quiche graphite may be generated. A preferable range is 3.5 to 3.8%.
[0011]
Si: 2.0-3.5%
Si is necessary to promote the formation of graphite. If it is less than 2.0%, free cementite tends to crystallize, while if it exceeds 3.5%, the material becomes brittle and the impact value decreases. A preferable range is 2.6 to 2.9%.
Mg: 0.02 to 0.08%
Mg is necessary for spheroidizing graphite, and if it is less than 0.02%, it is difficult to spheroidize graphite. On the other hand, if it exceeds 0.08%, cementite will crystallize, and shrinkage defects and dross will be lost. Defects increase. A preferred range is from 0.025 to 0.050%.
[0012]
In addition, it is better that there are few impurities and graphite spheroidization inhibiting elements. For example, although P is not a spheronization inhibiting element, it is preferable to keep it at 0.1% or less because it significantly lowers ductility and makes the material brittle. Moreover, since S is an element which remarkably inhibits graphite spheroidization, it is preferable to keep it at 0.03% or less. Since Mn is a pearlite stabilizing element, it is better to have a small amount for making a material having a large elongation. However, when strengthening the base, it may be contained to some extent. Mn: 1.0% or less (preferably 0.4 % Or less) is allowed. Further, Cu, Ni, and Mo are effective in strengthening the base because there is no graphite spheroidization inhibiting action and the base is easily transformed into a pearlite structure or a bainite structure. Cu: 2.0% or less (preferably 1.5% or less), Ni: 2.0% or less (preferably 1.5% or less), and Mo: 0.5% or less (preferably 0.3% or less) are allowed. In the case where the thickness of the casting is 25 mm or more, the inclusion of Cu or the like is particularly effective in order to obtain a desired structure up to the inside.
[0013]
Next, the manufacturing method of the spheroidal graphite cast iron of this invention is demonstrated.
In the method for producing spheroidal graphite cast iron of the present invention, spheroidal graphite is spheroidal after repeated annealing heat treatment for cooling the spheroidal graphite cast iron after casting at 750 to 1100 ° C. after cooling to the eutectoid transformation point or less twice. Machining is performed so as to be exposed on the surface of the graphite cast iron. Since the annealing heat treatment as described above is performed, secondary graphite repeatedly precipitates and grows around the original spherical graphite, and the outer peripheral surface of the spherical graphite is formed in an uneven shape. In addition, as a result of the growth of cast iron, a large number of voids are generated in the outer periphery and inside of graphite. At this time, when the annealing temperature is less than 750 ° C., no austenite is generated in the matrix, and it becomes difficult to generate secondary graphite and voids, and when it exceeds 1100 ° C., melting occurs partially. Therefore, it is not preferable. A preferable range of the annealing temperature is 850 to 950 ° C.
[0014]
In order to produce the spheroidal graphite cast iron of the present invention, after casting the spheroidal graphite cast iron having the above chemical composition, as shown in FIG. 1, after heating and holding at 750 to 1100 ° C., a temperature below the eutectoid transformation point, for example, 500 to An annealing heat treatment that cools to about 600 ° C. (furnace cooling or air cooling) is performed twice or more (in the example shown, four times A1, A2, A3, and A4), and then in the cooling process of the final annealing heat treatment, the base structure adjustment heat treatment As shown, the normalizing heat treatment B1 or the austempering heat treatment B2 is applied. Of course, the base structure adjusting heat treatment may be performed after the final annealing heat treatment.
[0015]
The number of annealing heat treatments is usually 2 to 4 times. This is because vibration absorption ability is difficult to improve even if it is performed five times or more, and it is disadvantageous in terms of cost. What is necessary is just to set the annealing time per time to about 0.5-3 hr normally per thickness of 1 inch. Even when the base is a homogeneous austenite when heated to a predetermined temperature, the production and growth of secondary graphite is too low if it is less than 0.5 hr. On the other hand, in the case of non-homogeneous material in which free cementite or the like is crystallized in the base, it takes a certain amount of time for homogenization, but 3 hours is sufficient, and it is not necessary to maintain it for more than 3 hours.
[0016]
If the annealing heat treatment is used as it is, the base structure is a ferrite structure, and although the strength is slightly low, it is a material having excellent ductility. In order to adjust the base structure after the final annealing heat treatment or in the cooling process, base structure adjusting heat treatment such as austempering heat treatment and normalizing heat treatment can be performed. Of course, when the base is made of a ferrite structure, the furnace may be cooled as it is after the annealing heat treatment.
[0017]
Austempering heat treatment (B2) can be performed as the base structure adjusting heat treatment. By this austempering heat treatment, the base becomes bainite and the elongation is slightly inferior, but high strength and excellent damping ability can be obtained. For example, quenching may be performed in a salt bath maintained at 230 to 400 ° C. from the annealing temperature, and maintained at about 1.0 to 3.0 hours per inch for isothermal transformation, and then air-cooled.
[0018]
Further, as the base structure adjusting heat treatment, when the base structure is a pearlite structure, a normalizing heat treatment (B1) may be performed, so that it has a relatively good vibration damping capability and balances strength and elongation. Become. For example, it may be cooled (air cooling or furnace cooling) from the annealing temperature to 750 to 900 ° C. of about Acm + 50 ° C., held at the same temperature for about 0.5 hr per inch, soaked, and then air cooled. However, depending on the composition, there may be a mixed structure in which ferrite is partially formed in pearlite.
[0019]
After the annealing heat treatment or the base structure adjustment heat treatment, appropriate machining is performed separately from the casting finishing treatment such as sand removal and casting deburring. For machining, an appropriate cutting device or grinding device can be used, for example, a grinder, a lathe, a milling machine or the like is used. By this machining, the black skin formed on the surface of the cast product is removed, and the spherical graphite is exposed on the surface of the cast product, thereby improving the vibration damping capability.
[0020]
The spheroidal graphite cast iron of the present invention is suitable as a material for various mechanical structural members that require high strength and high vibration damping capability. In addition to mounting brackets for engines and compressors, crankshafts, bearing caps, differential cases, generators It is suitable as a material for mounting brackets, transformers and various audio equipment.
[0021]
【Example】
Specific examples are listed below.
(1) First, flake graphite cast iron and spheroidal graphite cast iron having the following chemical composition (wt%) were cast. This cast product was heat-treated under the temperature conditions described in Table 1. The surface of the cast product subjected to the heat treatment was ground with a grinder until the spherical graphite was exposed. In the table, samples No. 1 and No. 2 are conventional examples, and are as-cast flake graphite cast iron (FC250) and spheroidal graphite cast iron (FCD450), respectively. Samples No. 3 to No. 7 are also conventional examples, which are spheroidal graphite cast irons that are not machined but are heat-treated as shown in Table 1. Samples No. 8 to No. 12 are examples.
・ Flake graphite cast iron composition C: 3.31%, Si: 1.85%, Mn: 0.72%, P: 0.043%, S: 0.023%, the balance being substantially Fe
Spheroidal graphite cast iron composition C: 3.71%, Si: 2.83%, Mn: 0.28%, P: 0.031%, S: 0.008%, Mg: 0.041%, the balance being substantially Fe
[0022]
[Table 1]
Figure 0003753463
[0023]
(2) Next, take a tensile test piece (JIS No. 4) and a vibration test piece (thickened from φ30mm, width 20 x length 200 x thickness 4mm) from each sample, and conduct a tensile test and vibration damping test. went. In the vibration attenuation test, one end of a rod-shaped test piece is fixed, the other end is vibrated with an electromagnetic shaker, and after the vibration is stopped, the vibration amplitude of the other end of the test piece is measured with an optical displacement measuring machine, The amplitude decay waveform was obtained. From the obtained amplitude decay waveform, the expected amplitude Ao immediately before the stop of excitation and the amplitude An of the n-th peak at Ao / 3 were obtained, and the damping ability Q −1 was calculated from the following equation (1). The test results are also shown in Table 2.
[0024]
[Formula 1]
Q −1 = − (1 / π) × (1 / n) × ln (An / Ao) (1)
[0025]
[Table 2]
Figure 0003753463
[0026]
From Table 2, the examples of sample Nos. 8-12 are superior in tensile strength and elongation to sample No. 1 which is flake graphite cast iron, and has a damping property, and is an as-cast spheroidal graphite cast iron. Compared to Sample No. 2, the damping capacity was greatly improved by 20% or more. In addition, in all of the examples subjected to the heat treatment for adjusting the base structure, the strength is significantly improved as compared with the samples No. 1 and No. 2. In addition, compared with the conventional examples of samples No. 3 to No. 7 that have not been machined, the damping capacity is improved by 3% on average, and the vibration damping capacity is further improved by machining. I understand that.
[0027]
Further, when Samples No. 8, No. 9, and No. 10 of the example are respectively compared, the number of annealing increases and the vibration damping ability is improved. In addition, comparing sample No. 9 and sample No. 11 and sample No. 10 and sample No. 12 in the example, sample No. 9 and No. 10 subjected to the austemper heat treatment are the same even if the number of annealing times is the same. It can be seen that the strength is higher than the others and excellent vibration damping ability is maintained. And it turns out that the sample No.11 of the Example which has not performed the base-structure adjustment heat processing is excellent in elongation compared with the other Examples.
(3) Then, a specimen for tissue observation was collected from Sample No. 10 of the Example, and the metal structure was observed with an optical microscope. FIG. 2 shows a cross-sectional structure photograph (100 times) of the surface layer portion in the sample No. 10 example.
[0028]
As shown in FIG. 2, the substantially spherical graphite has an uneven outer peripheral surface by repeating the annealing heat treatment, and a large number of fine voids (in FIG. 2, white portions in and around the graphite). ) Is allowed. Further, it can be seen from FIG. 2 that spherical graphite having an uneven outer peripheral surface is present dispersed in the surface layer portion of the sample, and the spherical graphite is exposed on the sample surface.
[0029]
【The invention's effect】
As described above, in the spheroidal graphite cast iron of the present invention, spheroidal graphite in which the outer peripheral surface is formed in an uneven shape and a large number of fine voids are formed in the inner and outer peripheral portions of the spheroidal graphite is exposed on the surface. Therefore, the interference effect between graphite and the base of the surface layer portion and the vibration absorption by graphite itself are excellent, and the vibration damping ability can be increased.
[0030]
In addition, since the base of the surface layer portion of the spheroidal graphite cast iron is formed of ferrite, pearlite, or bainite, a material having excellent elongation and strength can be obtained. In particular, by making the base a bainite structure, high strength can be obtained and the vibration damping ability is further improved by the needle-like or feather-like structure peculiar to bainite.
[Brief description of the drawings]
FIG. 1 is a heat treatment diagram according to the present invention.
FIG. 2 is a photograph substituting for a cross-sectional structure drawing of spheroidal graphite cast iron of an example.

Claims (2)

表面層部の基地中に球状黒鉛が晶出し、該球状黒鉛はその外周面が凹凸状に形成されかつ球状黒鉛の内部及び外周部に多数の微細な空隙部が形成されていると共に球状黒鉛が表面に露出していることを特徴とする振動減衰能に優れた球状黒鉛鋳鉄。Spherical graphite crystallizes in the base of the surface layer portion, and the spherical graphite has an outer peripheral surface formed with irregularities, and a large number of fine voids are formed in the inner and outer peripheral portions of the spherical graphite. Spheroidal graphite cast iron with excellent vibration damping, characterized by being exposed on the surface. 表面層部の基地がフェライト、パーライト又はベイナイトにより形成されている請求項1に記載した球状黒鉛鋳鉄。The spheroidal graphite cast iron according to claim 1, wherein the base of the surface layer portion is formed of ferrite, pearlite, or bainite.
JP05084496A 1996-02-13 1996-02-13 Spheroidal graphite cast iron with excellent vibration damping capacity Expired - Lifetime JP3753463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05084496A JP3753463B2 (en) 1996-02-13 1996-02-13 Spheroidal graphite cast iron with excellent vibration damping capacity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05084496A JP3753463B2 (en) 1996-02-13 1996-02-13 Spheroidal graphite cast iron with excellent vibration damping capacity

Publications (2)

Publication Number Publication Date
JPH09217142A JPH09217142A (en) 1997-08-19
JP3753463B2 true JP3753463B2 (en) 2006-03-08

Family

ID=12870050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05084496A Expired - Lifetime JP3753463B2 (en) 1996-02-13 1996-02-13 Spheroidal graphite cast iron with excellent vibration damping capacity

Country Status (1)

Country Link
JP (1) JP3753463B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3964675B2 (en) 1999-06-08 2007-08-22 旭テック株式会社 Non-austempered spheroidal graphite cast iron
JP5614887B2 (en) * 2010-11-30 2014-10-29 Udトラックス株式会社 Method for improving fatigue strength of cast iron material
JP2012117095A (en) * 2010-11-30 2012-06-21 Ud Trucks Corp Method for improving fatigue strength of cast iron material
JP2012115881A (en) * 2010-12-02 2012-06-21 Ud Trucks Corp Method for improving fatigue strength of cast iron material

Also Published As

Publication number Publication date
JPH09217142A (en) 1997-08-19

Similar Documents

Publication Publication Date Title
KR20120040728A (en) Drawn and heat-treated steel wire for high-strength spring, and undrawn steel wire for high-strength spring
KR20040083545A (en) Steel wire for hard-drawn spring excellent in fatique strength and sag resistance, and hard-drawn spring
JP2006291237A (en) Steel superior in cold-forgeability and machinability for machine structural use
JP3527641B2 (en) Steel wire with excellent cold workability
KR100328087B1 (en) A steel for high strength suspension spring with excellent machinability and a method of manufacturing spring by using it
JPS6358881B2 (en)
JP3753463B2 (en) Spheroidal graphite cast iron with excellent vibration damping capacity
JP5076609B2 (en) Mn-Cu vibration damping alloy and manufacturing method thereof
JP4687983B2 (en) Method for producing Mn-Cu vibration damping alloy
JP2001342544A (en) Wire or rod steel suppressed arising of deformation resistance at room temperature and in area of working heat generation
JPS63118048A (en) Sliding member made of cast iron and its manufacture
JPH08157945A (en) Spheroidal graphite cast iron having excellent vibration attenuatability and its production
JP2002146480A (en) Wire rod/steel bar having excellent cold workability, and manufacturing method
JPS5959825A (en) Heat treatment of tough and strong spheroidal graphite cast iron
JP2000017374A (en) Age hardening type high strength bainitic steel and its production
JP3823347B2 (en) High yield strength, high ductility cast iron and manufacturing method thereof
JP2003306741A (en) High-tensile cast steel and production method thereof
JPS61210151A (en) Casting of spheroidal graphite cast iron
Kibble et al. An examination of the effects of annealing heat treatment on secondary carbide formation in 25% Cr high chromium irons
JP2567258B2 (en) Iron-based casting having high strength, high rigidity, and high toughness, and a method for producing the same
JPH10140236A (en) Production of high damping alloy
JP7321354B2 (en) valve spring
JP7321355B2 (en) damper spring
JP5601268B2 (en) Iron alloy damping material manufacturing method and iron alloy damping material
KR100311795B1 (en) Steel for spring and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term