JP3753132B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP3753132B2
JP3753132B2 JP2003099671A JP2003099671A JP3753132B2 JP 3753132 B2 JP3753132 B2 JP 3753132B2 JP 2003099671 A JP2003099671 A JP 2003099671A JP 2003099671 A JP2003099671 A JP 2003099671A JP 3753132 B2 JP3753132 B2 JP 3753132B2
Authority
JP
Japan
Prior art keywords
heat radiating
electrode
heat
semiconductor device
mold resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003099671A
Other languages
Japanese (ja)
Other versions
JP2004311533A (en
Inventor
賢次 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003099671A priority Critical patent/JP3753132B2/en
Publication of JP2004311533A publication Critical patent/JP2004311533A/en
Application granted granted Critical
Publication of JP3753132B2 publication Critical patent/JP3753132B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、半導体スイッチング素子の両主面にそれぞれ電気的かつ熱的に接続された一対の放熱部材を備えてなり、当該両主面から放熱を行う半導体装置に関する。
【0002】
【従来の技術】
半導体スイッチング素子の両主面から放熱を行う半導体装置には、例えば、一対の放熱部材(ヒートシンク)を、素子を挟む形で配置し、放熱部材間を樹脂でモールドしたものがある(下記特許文献1参照)。このような半導体装置は、代表的な半導体スイッチング素子(半導体パワー素子ともいう)であるIGBT(Insulated Gate Bipolar Transistor)を例にすると、素子の2つの主面にそれぞれ露出するエミッタ電極及びコレクタ電極に、それぞれヒートシンクを直接、またはスペーサを介してそれぞれハンダ接続する。この場合のヒートシンクは、大電流経路としての機能も有する。一方、素子のゲート電極(制御用電極)と、モールド樹脂部の外部に延出する制御信号用リードとは、ボンディングワイヤにより導通接続される。そして、このような半導体装置(素子パッケージ)を複数組付けることにより、インバータ回路モジュールが作製され、モータ駆動等の用途に供される。
【0003】
【特許文献1】
特開2001−156225号公報
【0004】
【発明が解決しようとする課題】
ところで、上記放熱部材は、素子が発した熱を受ける受熱面と、その熱を外部に放出する放熱面とを有し、該放熱面はその役割から外部に露出していることが求められる。モールド樹脂部を形成する際(放熱部材間を樹脂でモールドする際)において、放熱部材をはじめ全ての部材は金型のキャビティ内に納められるため、放熱部材の放熱面も当然キャビティ内にあり、キャビティの内周面と接するように配されるが、そのようにキャビティ内に納められた放熱部材には、部材の配置や設計の誤差等の要因によりガタつきが生じることがあり、そのため放熱部材の放熱面とキャビティの内周面との間に隙間が生じ、モールドされた樹脂がその隙間に入り込み放熱面を覆ってしまうことがある。その結果、半導体装置における放熱性が著しく低下してしまい、素子が発した熱を十分に放熱できなくなる。
【0005】
したがって、本発明の課題は、放熱部材の放熱面が外部に露出し、十分な放熱性を有する樹脂モールド半導体装置を提供することにある。
【0006】
【課題を解決するための手段及び作用・発明の効果】
上記課題を解決するため、本発明の半導体装置では、
一方の主面側に第一電極及び制御用電極、他方の主面側に第二電極が露出した半導体スイッチング素子と、前記半導体スイッチング素子を挟む形で配置され、前記第一電極と前記第二電極とにそれぞれ電気的かつ熱的に接続される一対の放熱部材と、前記一対の放熱部材の間を充填するモールド樹脂部と、を備える半導体装置であって、
前記一対の放熱部材のうち少なくともいずれか一方が、第一部材及び第二部材の2種類の部材にて構成され、
前記第一部材は、前記接続に供されるとともに、前記モールド樹脂部の外周面から突出し、且つ、前記モールド樹脂部に接するように設けられた前記第二部材に設けられた嵌合孔に嵌合する突出部を有し、
前記第一部材と前記第二部材とが嵌合してなり、少なくとも前記第二部材に設けられた放熱面において放熱が行われることを特徴とする。
なお、当該本発明を以下「第一発明」とする。
【0007】
上記第一発明によると、一対の放熱部材のうち少なくともいずれか一方が、第一部材及び第二部材の2種類の部材にて構成されている。この2種類の部材は、大まかには、第一部材が素子へ接続する役割を担い、第二部材が主に外部への放熱を行う役割を担う。第一部材は、モールド樹脂部の外周面から突出した突出部を有し、それ以外の部位はモールド樹脂部内で素子への接続に供されている。また突出部は、モールド樹脂部外にある第二部材に設けられた嵌合孔に嵌合する形状となっており、第一部材と第二部材は、突出部と嵌合孔において嵌合することにより放熱部材とされ、半導体装置を構成する。このように構成することで、第二部材は、モールド樹脂部を形成した後に、モールド樹脂部の外周面から突出する第一部材の突出部に嵌合させることができるので、モールド時に金型のキャビティ内に配する必要がなく、放熱面に樹脂が付着してしまうことがない。そのため、第二部材の放熱面において良好に放熱を行うことができる。
【0008】
2種類の部材にて構成される放熱部材を「一対の放熱部材のうち少なくともいずれか一方」とした理由について、従来の半導体装置1´及び製造過程を表す図7及び図8を例に、以下に説明する。半導体装置1´は、製造過程において(図7参照)、一方の放熱部材2上に半導体スイッチング素子10を接合し、その上にさらに放熱部材3(図ではスペーサ103を介している)を接合するといった順序で積層構造Wを形成した後、金型100のキャビティ100c内にて放熱部材2、3間に樹脂を充填する。その際、上側に位置する放熱部材3はガタつきが生じやすく、放熱面31とキャビティ100cの内周面との間に隙間100sが生まれ、モールド樹脂4形成後(図8参照)に放熱面31を覆う樹脂バリ4bが付着してしまう。一方、下側に位置する放熱部材2は重力(外部から力を加える場合もある)によりキャビティ100cの内周面に密着しやすく、隙間100sが生じて放熱面21に樹脂バリ4bが付着する可能性が少ない。そのため、一対の放熱部材2、3のうち少なくともいずれか一方(この場合では金型内で上側に位置する放熱部材3)を、上記のような2種類の部材にて構成すれば、放熱面が露出し、良好な放熱を行えるという効果が十分に得られる。
【0009】
また、上記のような積層構造Wを形成する際において、半導体スイッチング素子10では一方の主面側に第一電極10e及び制御用電極10g、他方の主面側に第二電極10cが露出しており(図6参照)、制御用電極10gには、外部からの制御信号を入力するためのリード5を接続する必要があるので、第一電極10e側の主面を上側にして積層構造Wを形成した方が、接続の利便性を得られやすい。その場合、上側に位置する第一電極10eに接続される放熱部材3の放熱面31に、上記のような樹脂バリ4bが付着しやすい。そこで、少なくとも第一電極に接続される放熱部材を、上記のような2種類の部材にて構成することで、リードの接続の利便性を確保しつつ、そのような問題を解決できる。
【0010】
次に、本発明の半導体装置では、
一方の主面側に第一電極及び制御用電極、他方の主面側に第二電極が露出した半導体スイッチング素子と、前記半導体スイッチング素子を挟む形で配置され、前記第一電極と前記第二電極とにそれぞれ電気的かつ熱的に接続される一対の放熱部材と、前記一対の放熱部材の間を充填するモールド樹脂部と、を備える半導体装置であって、
前記一対の放熱部材のうち少なくともいずれか一方が、前記モールド樹脂部の外周面から突出し、且つ、前記モールド樹脂部に接するように設けられた外部の放熱部材に設けられた嵌合孔に嵌合することが可能な突出部を有することを特徴とする。
なお、当該本発明を以下「第二発明」とする。
【0011】
上記第二発明によると、一対の放熱部材のうち少なくともいずれか一方が、モールド樹脂部の外周面から突出した突出部を有する。そして、この突出部は、外部の放熱部材(以下、外部放熱部材ともいう)に設けられた嵌合孔に嵌合することが可能な形状であり、突出部を有する放熱部材が外部放熱部材に嵌合された場合、突出部から外部放熱部材に熱が伝わり、放熱効果を促進できる。なお、この突出部を有する放熱材は、上述の第一発明における2種類の部材にて構成される放熱部材の第一部材と同様の構成である。しかし、第二発明では突出部を有する部材のみを放熱部材として半導体装置を構成している点で、上述の第一発明とは異なる。
【0012】
また、第二発明においても、上述の第一発明の場合と同様に、少なくとも第一電極に接続される放熱部材を、突出部を有する構成とすることで、リードの接続の利便性を確保しつつ、第一電極に接続される放熱部材の放熱面への樹脂バリの付着という問題を解決できる。
【0013】
【発明の実施の形態】
(第一発明の実施形態)
図1に示すのは、本発明の第一発明の実施形態であるパワーモジュール(半導体装置)1の断面模式図である。パワーモジュール1は、半導体スイッチング素子10(以下、単に半導体チップともいう)、一対の放熱部材2、3、モールド樹脂部4、制御信号入力用リード5が一体化したものである。このようなパワーモジュール1は、例えばブラシレスモータ用の三相インバータ回路の一部を構成する。半導体チップ10の種類は、例えばIGBTやパワーMOSFETとすることができる。IGBTには、通常、フリーホイールダイオードが逆並列に接続されるが、図1中には表していない。また、IGBTとフリーホイールダイオードとを個別にパッケージ(モールド)してもよい。
【0014】
図6の拡大断面図に示すように、薄板状の半導体チップ10は、一方の主面側に上記第一電極であるエミッタ電極10e(またはソース電極)及び制御用電極であるゲート電極10gが露出し、他方の主面側に上記第二電極であるコレクタ電極10c(またはドレイン電極)が露出するように設計されている。ゲート電極10g、エミッタ電極10e及びコレクタ電極10cには、Ni−Auめっきなど、半田との濡れ性向上のための表面処理が施されている。エミッタ電極10e及びゲート電極10gが露出形成されている主面側において、ゲート電極10g及びエミッタ電極10eの非露出領域は、ポリイミド樹脂等などの絶縁保護膜10aに被覆されている。他方、反対側の主面では、全面にコレクタ電極10cが露出している。
【0015】
そして、半導体チップ10において、コレクタ電極10cにはコレクタ側放熱部材2が、エミッタ電極10eにはエミッタ側放熱部材3が、例えばハンダからなる接合部材6により、それぞれ電気的かつ熱的に接続されている。また、各放熱部材2、3には、モールド樹脂部4の外側に延出する大電流用のリード端子がそれぞれ形成されている(図示せず)。なお、各放熱部材2、3は、熱伝導性および電気伝導性の観点から、たとえばCu、W、Mo、Alのグループから選択される1種の金属材料、もしくはそれらの金属材料を主体とする合金により構成されることが好ましい。
【0016】
ゲート電極10gには、ボンディングワイヤ7により制御信号入力用リード5が接続されている。制御信号入力用リード5は、外部に引き出された部位が外部機器に接続され、外部機器からの制御信号をゲート電極10gに伝える役割を担っている。なお、制御信号用リード端子5は、CuやCu合金など良導性の金属材料により構成された帯状または線状の部材とされる。
【0017】
また、半導体チップ10の周側面を被覆するとともに、放熱部材2、3により形成される隙間を充填するようにモールド樹脂部4が設けられている。モールド樹脂部4は、たとえばエポキシ樹脂により構成される。
【0018】
放熱部材2、3は、接合部材6を介して半導体チップ10に接続される受熱面22、32、外部に露出した放熱面21、31及び35(後述)を有する。これらの面はそれぞれ略平面であり、互いに略平行となっている。半導体チップ10の下側に位置している放熱部材2は、扁平状または板状の形態を有し、受熱面22に半導体チップ10のコレクタ電極10cに接続されており、また放熱面21は外部に露出している。一方、半導体チップ10の上側に位置している放熱部材3は、受熱面32を有し、該受熱面32がモールド樹脂部4内で半導体チップ10のエミッタ電極10eに接続される第一部材3aと、放熱面35を有し、モールド樹脂部4外にある第二部材3bと、の2種類の部材からなる。
【0019】
第一部材3aは、モールド樹脂4内に埋設される埋設部38と、モールド樹脂4の外周面から突出した突出部39とを備える。そして、突出部39は、第二部材3bに設けられた嵌合孔37に嵌合する形状となっており、突出部39と嵌合孔37とにおいて、第一部材3aと第二部材3bが嵌合することで放熱部材3とされている。なお、上述のモールド樹脂部4の外側に延出する大電流用のリード端子(図示しない)は、第二部材3b側に形成される。
【0020】
放熱は、半導体チップ10が発した熱を、第一部材3aの受熱面32が受け、突出部39の側面(接合面)33から、第二部材3bの嵌合孔37の内周面に伝え、そして放熱面35において行う。また、第二部材3bの嵌合孔37は貫通孔として形成されているため、第一部材3aの突出部39の上面31は外部に露出しており、該上面31も放熱面として働く。なお、嵌合孔37の形状は貫通孔に限られることはなく、上側の端面が塞がれていてもよい(その場合、突出部39の上面31は放熱面とされない)。
【0021】
図5は、第一部材3aのみを表す図であるが、第一部材3aは、第二部材3bの嵌合孔37の内周面に接合される接合面33を有する突出部39と、受熱面32を有しモールド樹脂部4内に埋設される埋設部38とを有する。第一部材3aの突出部39は円柱形状で構成されている。円柱形状で構成されることにより、第二部材3bの嵌合孔37の寸法との間に多少の誤差があっても容易に嵌合させることができる。また、埋設部38において、受熱面32は、半導体チップ10が発した熱をより多く取り込めるよう、エミッタ電極10eと略同形状とされている。受熱面32の形状をエミッタ電極10eより大きくしてもその効果は飽和する。また、エミッタ電極10eの近辺にはゲート電極10gが形成されており、短絡(ショート)の危険性があるため、受熱面32はエミッタ電極10eと略同形状であることが好ましい。本実施形態では、エミッタ電極10eは長方形であるため、受熱面32もそれと略同形状の長方形であり、そして埋設部38は受熱面32を底面とした柱状とされている。
【0022】
突出部36は、径が例えば5〜20mm程度で、突出高さHが例えば1〜5mm程度の円柱形状で構成されている。また、埋設部38の底面である受熱面32は、縦10mm×横9mmの長方形である。なお、本実施形態では図1のように、突出部36の突出高さHと、第二部材3bの高さ(厚さ)とが同程度であるがこれに限られることはない。
【0023】
第一部材3aと第二部材3bとを嵌合させるための突出部39と嵌合孔37とは、例えばハンダからなる接合材8を介して接合(嵌合)されている。この他にも、突出部39を嵌合孔37に差し込んだ後に、突出部39及び第二部材3b(特に嵌合孔37の周辺)の少なくともいずれかを変形させる、いわゆる「かしめ」等の手段によっても接合(嵌合)させることができる。変形の手段としては、衝撃を与える方法や、熱による膨張・収縮を利用する方法(いわゆる、熱かしめ)などがある。
【0024】
上記のようなパワーモジュール1は、以下のような方法で得ることができる。図4に示すように、まず、モールド樹脂部4を除く部材で積層体Wを形成する。なお、ここでは積層体Wに放熱部材3の第二部材3bは含まれない(後述)。積層体Wは次の順序で作製される。▲1▼放熱部材2の放熱面21を下にし、受熱面22上に半導体チップ10を、受熱面22とコレクタ電極10cが接続するよう、接合部材(ハンダ)6を介して接合する。▲2▼半導体チップ10のゲート電極10gに、制御信号入力用リード5を、ボンディングワイヤ7を介して接続する。▲3▼放熱部材3のうち第一部材3aのみを、半導体チップ10上に、受熱面32とエミッタ電極10eが接続するよう、接合部材(ハンダ)8を介して接続する。そして、このようにして得られた積層体Wを、金型100のキャビティ100c内にセットして、樹脂注入孔100iより樹脂を注入することで、積層体Wの周辺部にモールド樹脂部4を形成するわけであるが、この際、金型100には第一部材3aの突出部39を収納して表面を保護するための凹部100dが、また、凹部100dの開口にはOリング100rが設けられており、隙間から樹脂が入り込まないような構成になっている。そのため、突出部39の表面(接合面33及び上面31)に樹脂バリを付着させずにモールド樹脂4を形成できる。突出部39の表面に樹脂バリが付着した場合、後に嵌合される第二部材3bへ熱を伝えることが困難となり、放熱部材3の放熱性を低下させてしまうので、突出部39の表面に樹脂バリを付着させないことが重要である。
【0025】
なお、従来のような長方形の板状の放熱部材において、上記のようにOリングを用いて放熱面に樹脂バリを付着させないようにするには、例えば、図7を参照して説明すると(Oリングは示していない)、金型100のキャビティ100cの内周面と、放熱面31との間にOリングを配し、金型100に型締め荷重を加えることにより、これらを密着させてOリングの内周部に樹脂が入り込まないようにして放熱面31を保護するといった方法が考えられる。しかし、この場合、型締め荷重は放熱面31に対して鉛直方向に加わるため、素子10に荷重が伝わってしまい、素子10の割れや特性劣化を引き起こす惧れが生じる。しかし、本発明では、第一部材3aが全体的に柱状(本実施形態においては突出部39が円柱状、埋設部38が角柱状)で構成されており、Oリング100rは柱状に形成された第一部材3aの側面(本実施形態では突出部39の接合面33)を取り囲むよう配され、上面31には配されないため、金型100の型締め荷重がOリング100rを介して素子10に加わることがない。また、Oリング100r自身の内周側への締めの力も、柱状に形成された第一部材3aの軸方向に向かって加わるため、素子10へは伝わらない。したがって、素子10の割れや特性劣化の惧れなく、上記のようにOリング100rを用いることができる。
【0026】
そして、上記の方法により得られたモールド樹脂部4形成後の積層体Wにおいて、モールド樹脂部4の外周面から突出した第一部材3aの突出部39を、用意された第二部材3bの嵌合孔37に嵌合させることで、放熱部材3とし、パワーモジュール1が完成する。このように、第二部材3bを除いた状態でモールド樹脂部4の形成までを行い、その後第二部材3bを、モールド樹脂部4から突出した第一部材3aの突出部39に嵌合させるので、第二部材3bの放熱面35には樹脂バリが付着することがなく、また第一部材3aの突出部39の表面も樹脂バリが付着していないので、良好な放熱性を有するパワーモジュール1を得ることができる。なお、第二部材3bは後から嵌合されるので、放熱面35の反対側の面36はモールド樹脂部4に接しているだけである。
【0027】
本実施形態においては、上記のごとく、エミッタ電極10eに接続される放熱部材3が2種類の部材(第一部材3a及び第二部材3b)にて構成されているが、この形態に限らず、放熱部材2を2種類の部材にて構成しても良いし、または両方の放熱部材2及び3をそれぞれ2種類の部材にて構成することもできる。
【0028】
(第二発明の実施形態)
図2に示すのは、本発明の第二発明の実施形態であるパワーモジュール(半導体装置)1の断面模式図である。以下、主として図1と異なるところを述べ、同一部分は図2中に同一符号を付して説明を簡略化する。図2に示すように、放熱部材3は、上記第一発明の実施形態に示した第一部材3aと同様の形状を有するものである。つまり、放熱部材3は、モールド樹脂4内に埋設される埋設部38と、モールド樹脂4の外周面から突出した突出部39とを備えるものである。そして、本実施形態のパワーモジュール1においては、当該突出部39を、外部の放熱部材(外部放熱部材)200に設けられた嵌合孔201に嵌合させることができる。その場合、半導体チップ10が発する熱を、放熱部材3が受け、その熱を突出部39の接合面33から外部放熱部材200に伝えることで、放熱を促進させることができる。
【0029】
また、外部放熱部材200の嵌合孔201は貫通孔として形成されているため、放熱部材3の突出部39の上面31は外部に露出しており、放熱面とされている。なお、嵌合孔201の形状は貫通孔に限られることはなく、上側の端面が塞がれていてもよい。その場合、放熱部材3は、専ら外部放熱部材200に熱を伝える役割を果たすことになる。また、放熱部材3は接合面33において、外部放熱部材200の嵌合孔201の内周面と接合されているが、この接合に関しても、上記第一発明の場合と同様に、接合材(ハンダ)8や、または「かしめ」等の手段を用いることができる。
【0030】
上記のようなパワーモジュール1は、放熱部材3が上記第一発明における第一部材3aと同様の構造を有するため、上述と同様の方法(図4参照)により得ることができる(但し、第二部材3bは接合されない)。外部放熱部材200は、例えば、大電流用のバスバー(上記第一発明における大電流用のリード端子の先に接続されるものに相当する)に嵌合孔201を形成した構成とすることができる。なお、この場合は、バスバーごと冷却が行われる。また、外部放熱部材200に複数の嵌合孔201を形成しておき、パワーモジュール1を複数個接続させることが可能である。これにより、外部放熱部材200上で、例えばブラシレスモータ用の三相インバータ回路の一部を構成することも可能となる。
【0031】
本実施形態においては、上記のごとく、エミッタ電極10eに接続される放熱部材3が、モールド樹脂部4の外周面から突出する突出部39を備えるよう構成されているが、この形態に限らず、放熱部材2が突出部39を備えるよう構成しても良いし、または両方の放熱部材2及び3がそれぞれ突出部39を備えるよう構成することもできる。
【0032】
(変形例)
図3に示すのは、本発明の第一発明及び第二発明の変形例であるパワーモジュール(半導体装置)1の断面模式図である。以下、主として図1及び2と異なるところを述べ、同一部分は図3中に同一符号を付して説明を簡略化する。パワーモジュール1は、上記第一発明及び上記第二発明をそれぞれ備えたものとすることが可能である。すなわち、図3に示すように、エミッタ電極10eに接続された放熱部材3が、上記第一発明のごとく2種類の部材(第一部材3a及び第二部材3b)から構成され、一方、コレクタ電極10cに接続された放熱部材2が、上記第二発明のごとくモールド樹脂部4の外周面から突出し、外部放熱部材200の嵌合孔201に嵌合することができる突出部29を備えた構成とすることができる。また、これとは逆に、放熱部材3に第二発明の構成、放熱部材2に第一発明の構成とすることも可能である。これにより、両方の放熱面が露出し、良好な放熱を行うことが可能なうえ、例えば、外部放熱部材200上で上記のような回路の一部を構成することが可能となる。
【図面の簡単な説明】
【図1】第一発明の半導体装置1の実施形態における断面構造を表す模式図
【図2】第二発明の半導体装置1の実施形態における断面構造を表す模式図
【図3】図1及び2の実施形態の半導体装置1の変形例における断面構造を表す模式図
【図4】半導体装置1のモールド樹脂部4の形成前を表す図(金型100内における)
【図5】放熱部材(もしくは放熱部材の第一部材)を表す模式図
【図6】半導体スイッチング素子10の断面構造を表す模式図
【図7】従来の半導体装置1´のモールド樹脂部4の形成前を表す図(金型100内における)
【図8】従来の半導体装置1´の断面構造を表す模式図
【符号の説明】
1 半導体装置(パワーモジュール)
2 放熱部材(コレクタ電極10c側)
3 放熱部材(エミッタ電極10e側)
3a 放熱部材(エミッタ電極10e側)を構成する第一部材
3b 放熱部材(エミッタ電極10e側)を構成する第二部材
39 突出部
4 モールド樹脂部
5 制御信号入力用リード
6 接合部材(ハンダ)
7 ボンディングワイヤ
8 接合材(ハンダ)
10 半導体スイッチング素子(半導体チップ)
10c コレクタ電極
10e エミッタ電極
10g ゲート電極
[0001]
[Technical field to which the invention belongs]
The present invention relates to a semiconductor device that includes a pair of heat dissipating members electrically and thermally connected to both main surfaces of a semiconductor switching element and radiates heat from both main surfaces.
[0002]
[Prior art]
A semiconductor device that radiates heat from both main surfaces of a semiconductor switching element includes, for example, a pair of heat radiating members (heat sinks) arranged with an element sandwiched between them and molded between the heat radiating members with resin (the following patent documents) 1). In such a semiconductor device, when an IGBT (Insulated Gate Bipolar Transistor), which is a typical semiconductor switching element (also referred to as a semiconductor power element), is taken as an example, an emitter electrode and a collector electrode exposed on two main surfaces of the element are respectively used. Each of the heat sinks is soldered directly or via a spacer. The heat sink in this case also has a function as a large current path. On the other hand, the gate electrode (control electrode) of the element and the control signal lead extending to the outside of the mold resin portion are conductively connected by a bonding wire. Then, by assembling a plurality of such semiconductor devices (element packages), an inverter circuit module is manufactured and used for applications such as motor driving.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-156225
[Problems to be solved by the invention]
By the way, the said heat radiating member is required to have the heat receiving surface which receives the heat which the element emitted, and the heat radiating surface which discharge | releases the heat outside, and this heat radiating surface is exposed outside from the role. When forming the mold resin part (when molding between the heat radiating members with resin), since all the members including the heat radiating member are stored in the cavity of the mold, the heat radiating surface of the heat radiating member is naturally in the cavity, Although arranged so as to be in contact with the inner peripheral surface of the cavity, the heat radiating member housed in the cavity may be rattled due to factors such as the arrangement of the member and design errors. There is a case where a gap is formed between the heat radiating surface and the inner peripheral surface of the cavity, and the molded resin enters the gap and covers the heat radiating surface. As a result, the heat dissipation in the semiconductor device is significantly reduced, and the heat generated by the element cannot be sufficiently dissipated.
[0005]
Accordingly, an object of the present invention is to provide a resin molded semiconductor device having a sufficient heat dissipation property by exposing a heat dissipation surface of a heat dissipation member to the outside.
[0006]
[Means for solving the problems and functions / effects of the invention]
In order to solve the above problems, in the semiconductor device of the present invention,
The first electrode and the control electrode on one main surface side, the semiconductor switching element with the second electrode exposed on the other main surface side, and the semiconductor switching element are arranged to sandwich the first electrode and the second electrode A semiconductor device comprising a pair of heat radiating members electrically and thermally connected to electrodes, and a mold resin portion filling between the pair of heat radiating members,
At least one of the pair of heat radiating members is composed of two types of members, a first member and a second member,
The first member is provided for the connection, and protrudes from an outer peripheral surface of the mold resin portion, and is fitted in a fitting hole provided in the second member provided to be in contact with the mold resin portion. Has a mating protrusion,
The first member and the second member are fitted, and heat radiation is performed at least on a heat radiation surface provided on the second member.
The present invention is hereinafter referred to as “first invention”.
[0007]
According to the first invention, at least one of the pair of heat dissipating members is composed of two types of members, a first member and a second member. These two types of members roughly have a role in which the first member is connected to the element, and a second member mainly plays a role in radiating heat to the outside. The first member has a protruding portion protruding from the outer peripheral surface of the mold resin portion, and other portions are provided for connection to the element in the mold resin portion. The protruding portion is shaped to fit into a fitting hole provided in the second member outside the mold resin portion, and the first member and the second member are fitted in the protruding portion and the fitting hole. As a result, a heat dissipation member is formed to constitute a semiconductor device. By comprising in this way, since the 2nd member can be made to fit in the protrusion part of the 1st member which protrudes from the outer peripheral surface of a mold resin part after forming a mold resin part, it is the mold of a mold at the time of molding. There is no need to place it in the cavity, and the resin does not adhere to the heat dissipation surface. Therefore, heat can be radiated favorably on the heat radiating surface of the second member.
[0008]
The reason why the heat dissipating member composed of two types of members is “at least one of a pair of heat dissipating members” is described below with reference to FIGS. 7 and 8 showing the conventional semiconductor device 1 ′ and the manufacturing process as an example. Explained. In the manufacturing process (see FIG. 7), the semiconductor device 1 ′ has the semiconductor switching element 10 bonded to one of the heat radiating members 2, and the heat radiating member 3 (via the spacer 103 in the drawing) is further bonded thereto. After the laminated structure W is formed in this order, the resin is filled between the heat radiating members 2 and 3 in the cavity 100c of the mold 100. At that time, the heat radiating member 3 located on the upper side is easily rattled, and a gap 100s is formed between the heat radiating surface 31 and the inner peripheral surface of the cavity 100c, and the heat radiating surface 31 is formed after the molding resin 4 is formed (see FIG. 8). The resin burr 4b covering the surface adheres. On the other hand, the heat radiating member 2 located on the lower side easily adheres to the inner peripheral surface of the cavity 100c due to gravity (sometimes force is applied from the outside), and a gap 100s is generated, and the resin burr 4b can adhere to the heat radiating surface 21. There is little nature. Therefore, if at least any one of the pair of heat radiating members 2 and 3 (in this case, the heat radiating member 3 positioned on the upper side in the mold) is constituted by the two kinds of members as described above, the heat radiating surface is provided. The effect that it is exposed and good heat dissipation can be obtained is sufficiently obtained.
[0009]
Further, when forming the laminated structure W as described above, in the semiconductor switching element 10, the first electrode 10e and the control electrode 10g are exposed on one main surface side, and the second electrode 10c is exposed on the other main surface side. Since the lead 5 for inputting an external control signal needs to be connected to the control electrode 10g, the laminated structure W is formed with the main surface on the first electrode 10e side facing upward. Forming it is easier to obtain the convenience of connection. In that case, the resin burr 4b as described above is likely to adhere to the heat radiation surface 31 of the heat radiation member 3 connected to the first electrode 10e located on the upper side. Therefore, by constituting at least the heat dissipating member connected to the first electrode with the two types of members as described above, such problems can be solved while ensuring the convenience of connecting the leads.
[0010]
Next, in the semiconductor device of the present invention,
The first electrode and the control electrode on one main surface side, the semiconductor switching element with the second electrode exposed on the other main surface side, and the semiconductor switching element are arranged to sandwich the first electrode and the second electrode A semiconductor device comprising a pair of heat radiating members electrically and thermally connected to electrodes, and a mold resin portion filling between the pair of heat radiating members,
At least one of the pair of heat radiating members is fitted in a fitting hole provided in an external heat radiating member provided so as to protrude from the outer peripheral surface of the mold resin portion and to be in contact with the mold resin portion. It has the protrusion part which can do, It is characterized by the above-mentioned.
The present invention is hereinafter referred to as “second invention”.
[0011]
According to the second invention, at least one of the pair of heat dissipating members has the protruding portion protruding from the outer peripheral surface of the mold resin portion. And this protrusion part is a shape which can be fitted in the fitting hole provided in the external heat radiating member (henceforth an external heat radiating member), and the heat radiating member which has a protrusion part becomes an external heat radiating member. When fitted, heat is transferred from the protruding portion to the external heat radiating member, and the heat radiating effect can be promoted. In addition, the heat radiating material which has this protrusion part is the structure similar to the 1st member of the heat radiating member comprised by two types of members in the above-mentioned 1st invention. However, the second invention is different from the first invention described above in that the semiconductor device is configured by using only the member having the protruding portion as a heat radiating member.
[0012]
Also in the second invention, as in the case of the first invention described above, the heat dissipation member connected to at least the first electrode is configured to have a protruding portion, thereby ensuring the convenience of lead connection. However, it is possible to solve the problem of resin burrs adhering to the heat radiation surface of the heat radiation member connected to the first electrode.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment of the first invention)
FIG. 1 is a schematic cross-sectional view of a power module (semiconductor device) 1 according to an embodiment of the first invention of the present invention. The power module 1 includes a semiconductor switching element 10 (hereinafter also simply referred to as a semiconductor chip), a pair of heat radiating members 2 and 3, a mold resin portion 4, and a control signal input lead 5. Such a power module 1 constitutes a part of a three-phase inverter circuit for a brushless motor, for example. The type of the semiconductor chip 10 can be, for example, an IGBT or a power MOSFET. A free wheel diode is normally connected in reverse parallel to the IGBT, but is not shown in FIG. Further, the IGBT and the free wheel diode may be individually packaged (molded).
[0014]
As shown in the enlarged sectional view of FIG. 6, in the thin plate-like semiconductor chip 10, the emitter electrode 10e (or source electrode) as the first electrode and the gate electrode 10g as the control electrode are exposed on one main surface side. In addition, the collector electrode 10c (or the drain electrode) which is the second electrode is designed to be exposed on the other main surface side. The gate electrode 10g, the emitter electrode 10e, and the collector electrode 10c are subjected to surface treatment for improving wettability with solder such as Ni—Au plating. On the main surface side where the emitter electrode 10e and the gate electrode 10g are exposed, the unexposed regions of the gate electrode 10g and the emitter electrode 10e are covered with an insulating protective film 10a such as polyimide resin. On the other hand, the collector electrode 10c is exposed on the entire main surface on the opposite side.
[0015]
In the semiconductor chip 10, the collector-side heat dissipation member 2 is connected to the collector electrode 10 c, and the emitter-side heat dissipation member 3 is connected to the emitter electrode 10 e, for example, by a joining member 6 made of solder. Yes. Further, each of the heat dissipating members 2 and 3 is formed with a lead terminal for a large current extending outside the mold resin portion 4 (not shown). Each of the heat dissipating members 2 and 3 is mainly composed of, for example, one type of metal material selected from the group of Cu, W, Mo, and Al, or those metal materials from the viewpoint of thermal conductivity and electrical conductivity. It is preferable to be composed of an alloy.
[0016]
A control signal input lead 5 is connected to the gate electrode 10 g by a bonding wire 7. The control signal input lead 5 is connected to an external device at a part drawn out to the outside, and plays a role of transmitting a control signal from the external device to the gate electrode 10g. The control signal lead terminal 5 is a belt-like or linear member made of a highly conductive metal material such as Cu or Cu alloy.
[0017]
A mold resin portion 4 is provided so as to cover the peripheral side surface of the semiconductor chip 10 and to fill a gap formed by the heat radiating members 2 and 3. The mold resin portion 4 is made of, for example, an epoxy resin.
[0018]
The heat radiating members 2 and 3 have heat receiving surfaces 22 and 32 connected to the semiconductor chip 10 through the bonding member 6 and heat radiating surfaces 21, 31 and 35 (described later) exposed to the outside. Each of these surfaces is a substantially flat surface and is substantially parallel to each other. The heat dissipating member 2 located below the semiconductor chip 10 has a flat or plate shape, is connected to the collector electrode 10c of the semiconductor chip 10 on the heat receiving surface 22, and the heat dissipating surface 21 is external. Is exposed. On the other hand, the heat dissipation member 3 located on the upper side of the semiconductor chip 10 has a heat receiving surface 32, and the heat receiving surface 32 is connected to the emitter electrode 10 e of the semiconductor chip 10 in the mold resin portion 4. And a second member 3b having a heat radiating surface 35 and outside the mold resin portion 4.
[0019]
The first member 3 a includes an embedded portion 38 embedded in the mold resin 4 and a protruding portion 39 protruding from the outer peripheral surface of the mold resin 4. And the protrusion part 39 becomes a shape fitted to the fitting hole 37 provided in the 2nd member 3b, and the 1st member 3a and the 2nd member 3b are in the protrusion part 39 and the fitting hole 37. It is set as the heat radiating member 3 by fitting. A lead terminal for large current (not shown) extending to the outside of the mold resin portion 4 is formed on the second member 3b side.
[0020]
For heat dissipation, the heat generated by the semiconductor chip 10 is received by the heat receiving surface 32 of the first member 3a and transmitted from the side surface (joint surface) 33 of the protrusion 39 to the inner peripheral surface of the fitting hole 37 of the second member 3b. And on the heat radiating surface 35. Since the fitting hole 37 of the second member 3b is formed as a through hole, the upper surface 31 of the protruding portion 39 of the first member 3a is exposed to the outside, and the upper surface 31 also functions as a heat radiating surface. The shape of the fitting hole 37 is not limited to the through-hole, and the upper end surface may be closed (in this case, the upper surface 31 of the protruding portion 39 is not a heat radiating surface).
[0021]
FIG. 5 shows only the first member 3a. The first member 3a includes a protrusion 39 having a joint surface 33 joined to the inner peripheral surface of the fitting hole 37 of the second member 3b, and a heat receiving member. And an embedded portion 38 having a surface 32 and embedded in the mold resin portion 4. The protrusion 39 of the first member 3a is formed in a cylindrical shape. By being configured in a cylindrical shape, even if there is some error between the dimension of the fitting hole 37 of the second member 3b, it can be easily fitted. Further, in the embedded portion 38, the heat receiving surface 32 has substantially the same shape as the emitter electrode 10e so as to capture more heat generated by the semiconductor chip 10. Even if the shape of the heat receiving surface 32 is made larger than that of the emitter electrode 10e, the effect is saturated. In addition, since the gate electrode 10g is formed in the vicinity of the emitter electrode 10e and there is a risk of short circuit (short circuit), the heat receiving surface 32 is preferably substantially the same shape as the emitter electrode 10e. In the present embodiment, since the emitter electrode 10e is rectangular, the heat receiving surface 32 is also a rectangle having substantially the same shape, and the embedded portion 38 has a columnar shape with the heat receiving surface 32 as a bottom surface.
[0022]
The protruding portion 36 is formed in a cylindrical shape having a diameter of, for example, about 5 to 20 mm and a protruding height H of, for example, about 1 to 5 mm. Further, the heat receiving surface 32 which is the bottom surface of the embedded portion 38 is a rectangle having a length of 10 mm and a width of 9 mm. In the present embodiment, as shown in FIG. 1, the protruding height H of the protruding portion 36 and the height (thickness) of the second member 3b are approximately the same, but the present invention is not limited to this.
[0023]
The protrusion 39 and the fitting hole 37 for fitting the first member 3a and the second member 3b are joined (fitted) through a joining material 8 made of, for example, solder. In addition, after inserting the protrusion 39 into the fitting hole 37, at least one of the protrusion 39 and the second member 3 b (particularly around the fitting hole 37) is deformed, so-called “caulking” or the like. Can also be joined (fitted). As a means for deformation, there are a method of applying an impact and a method of utilizing expansion / contraction by heat (so-called heat caulking).
[0024]
The power module 1 as described above can be obtained by the following method. As shown in FIG. 4, first, the laminate W is formed with members excluding the mold resin portion 4. In addition, the 2nd member 3b of the thermal radiation member 3 is not contained in the laminated body W here (after-mentioned). The laminated body W is manufactured in the following order. (1) The heat radiation surface 21 of the heat radiation member 2 is faced down, and the semiconductor chip 10 is joined to the heat reception surface 22 via the joint member (solder) 6 so that the heat reception surface 22 and the collector electrode 10c are connected. (2) The control signal input lead 5 is connected to the gate electrode 10 g of the semiconductor chip 10 through the bonding wire 7. (3) Only the first member 3a of the heat radiating member 3 is connected to the semiconductor chip 10 via a bonding member (solder) 8 so that the heat receiving surface 32 and the emitter electrode 10e are connected. And the laminated body W obtained in this way is set in the cavity 100c of the mold 100, and the resin is injected from the resin injection hole 100i, so that the mold resin portion 4 is formed around the laminated body W. At this time, the mold 100 is provided with a recess 100d for storing the protrusion 39 of the first member 3a to protect the surface, and an O-ring 100r is provided at the opening of the recess 100d. It is configured so that the resin does not enter through the gap. Therefore, it is possible to form the mold resin 4 without attaching a resin burr to the surface of the protrusion 39 (the bonding surface 33 and the upper surface 31). When a resin burr adheres to the surface of the protrusion 39, it becomes difficult to transfer heat to the second member 3b to be fitted later, and the heat dissipation of the heat dissipation member 3 is reduced. It is important not to allow resin burrs to adhere.
[0025]
In addition, in a conventional rectangular plate-shaped heat dissipation member, in order to prevent the resin burr from adhering to the heat dissipation surface using the O-ring as described above, for example, referring to FIG. (The ring is not shown), an O-ring is arranged between the inner peripheral surface of the cavity 100c of the mold 100 and the heat radiating surface 31, and a mold clamping load is applied to the mold 100 to bring them into close contact with each other. A method of protecting the heat radiating surface 31 by preventing the resin from entering the inner peripheral portion of the ring can be considered. However, in this case, since the clamping load is applied in the vertical direction with respect to the heat radiating surface 31, the load is transmitted to the element 10, which may cause cracking of the element 10 and characteristic deterioration. However, in the present invention, the first member 3a is generally formed in a columnar shape (in this embodiment, the protruding portion 39 is a columnar shape and the embedded portion 38 is a prismatic shape), and the O-ring 100r is formed in a columnar shape. Since the first member 3a is disposed so as to surround the side surface (the bonding surface 33 of the protruding portion 39 in this embodiment) and is not disposed on the upper surface 31, the clamping load of the mold 100 is applied to the element 10 via the O-ring 100r. There is no participation. Further, the tightening force of the O-ring 100r itself toward the inner peripheral side is also applied toward the axial direction of the first member 3a formed in a columnar shape, and thus is not transmitted to the element 10. Therefore, the O-ring 100r can be used as described above without fear of cracking of the element 10 or deterioration of characteristics.
[0026]
And in the laminated body W after the mold resin part 4 formation obtained by said method, the protrusion 39 of the 1st member 3a protruded from the outer peripheral surface of the mold resin part 4 is fitted to the prepared second member 3b. By fitting in the joint hole 37, the heat radiating member 3 is formed and the power module 1 is completed. In this manner, the molding resin portion 4 is formed without the second member 3b, and then the second member 3b is fitted to the protruding portion 39 of the first member 3a protruding from the molding resin portion 4. Since the resin burrs do not adhere to the heat radiation surface 35 of the second member 3b, and the resin burrs also do not adhere to the surface of the protruding portion 39 of the first member 3a, the power module 1 having good heat dissipation. Can be obtained. Since the second member 3 b is fitted later, the surface 36 on the opposite side of the heat radiating surface 35 is only in contact with the mold resin portion 4.
[0027]
In the present embodiment, as described above, the heat dissipating member 3 connected to the emitter electrode 10e is composed of two types of members (first member 3a and second member 3b). The heat radiating member 2 may be composed of two types of members, or both the heat radiating members 2 and 3 may be composed of two types of members.
[0028]
(Embodiment of the second invention)
FIG. 2 is a schematic cross-sectional view of a power module (semiconductor device) 1 which is an embodiment of the second invention of the present invention. In the following, differences from FIG. 1 will be mainly described, and the same parts will be denoted by the same reference numerals in FIG. 2 to simplify the description. As shown in FIG. 2, the heat radiating member 3 has the same shape as the first member 3a shown in the embodiment of the first invention. That is, the heat radiating member 3 includes an embedded portion 38 embedded in the mold resin 4 and a protruding portion 39 protruding from the outer peripheral surface of the mold resin 4. And in the power module 1 of this embodiment, the said protrusion part 39 can be fitted in the fitting hole 201 provided in the external heat radiating member (external heat radiating member) 200. FIG. In that case, the heat radiating member 3 receives the heat generated by the semiconductor chip 10, and the heat is transmitted to the external heat radiating member 200 from the joint surface 33 of the protruding portion 39, so that the heat radiation can be promoted.
[0029]
Moreover, since the fitting hole 201 of the external heat radiating member 200 is formed as a through-hole, the upper surface 31 of the protruding portion 39 of the heat radiating member 3 is exposed to the outside and serves as a heat radiating surface. Note that the shape of the fitting hole 201 is not limited to the through hole, and the upper end surface may be closed. In that case, the heat radiating member 3 exclusively plays a role of transferring heat to the external heat radiating member 200. In addition, the heat radiating member 3 is joined to the inner peripheral surface of the fitting hole 201 of the external heat radiating member 200 at the joint surface 33. The joint material (solder) is also used for this joint as in the case of the first invention. ) 8 or means such as “caulking” can be used.
[0030]
The power module 1 as described above can be obtained by the same method as described above (see FIG. 4) since the heat dissipation member 3 has the same structure as the first member 3a in the first invention (however, the second The member 3b is not joined). The external heat radiating member 200 can be configured, for example, such that a fitting hole 201 is formed in a bus bar for large current (corresponding to the one connected to the tip of the lead terminal for large current in the first invention). . In this case, the entire bus bar is cooled. In addition, a plurality of fitting holes 201 can be formed in the external heat radiating member 200 and a plurality of power modules 1 can be connected. Accordingly, it is possible to configure a part of a three-phase inverter circuit for a brushless motor, for example, on the external heat radiating member 200.
[0031]
In the present embodiment, as described above, the heat dissipating member 3 connected to the emitter electrode 10e is configured to include the projecting portion 39 projecting from the outer peripheral surface of the mold resin portion 4. The heat dissipating member 2 may be configured to include the protruding portion 39, or both the heat dissipating members 2 and 3 may be configured to include the protruding portion 39, respectively.
[0032]
(Modification)
FIG. 3 is a schematic cross-sectional view of a power module (semiconductor device) 1 which is a modification of the first invention and the second invention of the present invention. In the following, differences from FIGS. 1 and 2 will be mainly described, and the same portions will be denoted by the same reference numerals in FIG. 3 to simplify the description. The power module 1 can include the first invention and the second invention. That is, as shown in FIG. 3, the heat radiating member 3 connected to the emitter electrode 10e is composed of two types of members (first member 3a and second member 3b) as in the first invention, while the collector electrode The heat dissipating member 2 connected to 10c protrudes from the outer peripheral surface of the mold resin portion 4 as in the second invention, and includes a protrusion 29 that can be fitted into the fitting hole 201 of the external heat dissipating member 200. can do. On the contrary, the heat dissipating member 3 may have the structure of the second invention, and the heat dissipating member 2 may have the structure of the first invention. As a result, both heat radiation surfaces are exposed and good heat radiation can be performed, and for example, a part of the circuit as described above can be formed on the external heat radiation member 200.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a cross-sectional structure in an embodiment of a semiconductor device 1 of the first invention. FIG. 2 is a schematic diagram showing a cross-sectional structure in an embodiment of a semiconductor device 1 of a second invention. FIG. 4 is a schematic diagram illustrating a cross-sectional structure in a modification of the semiconductor device 1 of the embodiment; FIG. 4 is a diagram illustrating a state before the mold resin portion 4 of the semiconductor device 1 is formed (in the mold 100).
5 is a schematic view showing a heat dissipation member (or a first member of the heat dissipation member). FIG. 6 is a schematic view showing a cross-sectional structure of the semiconductor switching element 10. FIG. 7 is a view showing a mold resin portion 4 of a conventional semiconductor device 1 ′. The figure before formation (inside the mold 100)
FIG. 8 is a schematic diagram showing a cross-sectional structure of a conventional semiconductor device 1 ′.
1 Semiconductor device (power module)
2 Heat dissipation member (collector electrode 10c side)
3 Heat dissipation member (emitter electrode 10e side)
3a First member 3b constituting the heat dissipating member (emitter electrode 10e side) Second member 39 constituting the heat dissipating member (emitter electrode 10e side) Protruding part 4 Mold resin part 5 Control signal input lead 6 Joining member (solder)
7 Bonding wire 8 Bonding material (solder)
10 Semiconductor switching element (semiconductor chip)
10c Collector electrode 10e Emitter electrode 10g Gate electrode

Claims (5)

一方の主面側に第一電極及び制御用電極、他方の主面側に第二電極が露出した半導体スイッチング素子と、前記半導体スイッチング素子を挟む形で配置され、前記第一電極と前記第二電極とにそれぞれ電気的かつ熱的に接続される一対の放熱部材と、前記一対の放熱部材の間を充填するモールド樹脂部と、を備える半導体装置であって、
前記一対の放熱部材のうち少なくともいずれか一方が、第一部材及び第二部材の2種類の部材にて構成され、
前記第一部材は、前記接続に供されるとともに、前記モールド樹脂部の外周面から突出し、且つ、前記モールド樹脂部に接するように設けられた前記第二部材に設けられた嵌合孔に嵌合する突出部を有し、
前記第一部材と前記第二部材とが嵌合してなり、少なくとも前記第二部材に設けられた放熱面において放熱が行われることを特徴とする半導体装置。
The first electrode and the control electrode on one main surface side, the semiconductor switching element with the second electrode exposed on the other main surface side, and the semiconductor switching element are arranged to sandwich the first electrode and the second electrode A semiconductor device comprising a pair of heat radiating members electrically and thermally connected to electrodes, and a mold resin portion filling between the pair of heat radiating members,
At least one of the pair of heat radiating members is composed of two types of members, a first member and a second member,
The first member is provided for the connection, and protrudes from an outer peripheral surface of the mold resin portion, and is fitted in a fitting hole provided in the second member provided to be in contact with the mold resin portion. Has a mating protrusion,
The semiconductor device according to claim 1, wherein the first member and the second member are fitted, and heat is radiated at least on a heat radiating surface provided on the second member.
少なくとも前記第一電極に接続される前記放熱部材が、前記2種類の部材にて構成されることを特徴とする請求項1に記載の半導体装置。  The semiconductor device according to claim 1, wherein at least the heat radiating member connected to the first electrode includes the two types of members. 一方の主面側に第一電極及び制御用電極、他方の主面側に第二電極が露出した半導体スイッチング素子と、前記半導体スイッチング素子を挟む形で配置され、前記第一電極と前記第二電極とにそれぞれ電気的かつ熱的に接続される一対の放熱部材と、前記一対の放熱部材の間を充填するモールド樹脂部と、を備える半導体装置であって、
前記一対の放熱部材のうち少なくともいずれか一方が、前記モールド樹脂部の外周面から突出し、且つ、前記モールド樹脂部に接するように設けられた外部の放熱部材に設けられた嵌合孔に嵌合することが可能な突出部を有することを特徴とする半導体装置。
The first electrode and the control electrode on one main surface side, the semiconductor switching element with the second electrode exposed on the other main surface side, and the semiconductor switching element are arranged to sandwich the first electrode and the second electrode A semiconductor device comprising a pair of heat radiating members electrically and thermally connected to electrodes, and a mold resin portion filling between the pair of heat radiating members,
At least one of the pair of heat radiating members is fitted in a fitting hole provided in an external heat radiating member provided so as to protrude from the outer peripheral surface of the mold resin portion and to be in contact with the mold resin portion. A semiconductor device having a projecting portion that can be formed.
少なくとも前記第一電極に接続される前記放熱部材が、前記突出部を有することを特徴とする請求項3に記載の半導体装置。  The semiconductor device according to claim 3, wherein at least the heat dissipation member connected to the first electrode has the protrusion. 前記突出部は、円柱形状に構成されていることを特徴とする請求項1ないし4のいずれか1項に記載の半導体装置。  The semiconductor device according to claim 1, wherein the protruding portion is formed in a cylindrical shape.
JP2003099671A 2003-04-02 2003-04-02 Semiconductor device Expired - Fee Related JP3753132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003099671A JP3753132B2 (en) 2003-04-02 2003-04-02 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003099671A JP3753132B2 (en) 2003-04-02 2003-04-02 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2004311533A JP2004311533A (en) 2004-11-04
JP3753132B2 true JP3753132B2 (en) 2006-03-08

Family

ID=33464046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003099671A Expired - Fee Related JP3753132B2 (en) 2003-04-02 2003-04-02 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3753132B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4555187B2 (en) * 2005-08-01 2010-09-29 ニチコン株式会社 Power module and manufacturing method thereof

Also Published As

Publication number Publication date
JP2004311533A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
JP3516789B2 (en) Semiconductor power module
JP3357220B2 (en) Semiconductor device
US7470939B2 (en) Semiconductor device
US7247929B2 (en) Molded semiconductor device with heat conducting members
US8203848B2 (en) Circuit device and method of manufacturing the same
JP5339800B2 (en) Manufacturing method of semiconductor device
JP3596388B2 (en) Semiconductor device
JP3910383B2 (en) Power module and inverter
US11189547B2 (en) Semiconductor module and semiconductor module manufacturing method
KR101173927B1 (en) semiconductor device module
JP4254527B2 (en) Semiconductor device
JP4840165B2 (en) Semiconductor device
JP4526125B2 (en) High power semiconductor devices
US20230215788A1 (en) Power module and manufacturing method thereof, converter, and electronic device
CN110914975B (en) Power semiconductor module
CN112185910A (en) Semiconductor module, semiconductor device, and method for manufacturing semiconductor module
JP3935381B2 (en) Electronic circuit device having double-sided electrode semiconductor element and method of manufacturing the electronic circuit device
CN110959191A (en) Semiconductor device with a plurality of semiconductor chips
JP4019993B2 (en) Semiconductor device
US20130256920A1 (en) Semiconductor device
JP3753132B2 (en) Semiconductor device
US10903138B2 (en) Semiconductor device and method of manufacturing the same
JP2004335493A (en) Packaging structure of semiconductor device
JP2004048084A (en) Semiconductor power module
JPH11220074A (en) Semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3753132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees