JP3752536B2 - Heat storage tank, heat utilization device and heat utilization method thereof - Google Patents

Heat storage tank, heat utilization device and heat utilization method thereof Download PDF

Info

Publication number
JP3752536B2
JP3752536B2 JP2002130018A JP2002130018A JP3752536B2 JP 3752536 B2 JP3752536 B2 JP 3752536B2 JP 2002130018 A JP2002130018 A JP 2002130018A JP 2002130018 A JP2002130018 A JP 2002130018A JP 3752536 B2 JP3752536 B2 JP 3752536B2
Authority
JP
Japan
Prior art keywords
heat
heat storage
tank
storage tank
utilization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002130018A
Other languages
Japanese (ja)
Other versions
JP2003322409A (en
Inventor
平野  聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002130018A priority Critical patent/JP3752536B2/en
Publication of JP2003322409A publication Critical patent/JP2003322409A/en
Application granted granted Critical
Publication of JP3752536B2 publication Critical patent/JP3752536B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱を一定時間貯蔵する蓄熱槽を有する熱利用装置及びその装置利用管理方法に関し、特に、浴槽の廃熱を有効に利用する蓄熱槽、熱利用装置及びこの装置を使用した熱利用方法に関する。
【0002】
【従来の技術】
従来、廃熱を有効に利用する方法として、例えば、特開2000−130885公報に記載の排熱回収システム、風呂用排熱利用方法及び蓄熱槽が提案されている。図14は従来の排熱回収システムを示す回路構成図である。
【0003】
図14において、31は流体を循環させる流体循環路で、ここでは浴槽水を循環させる水循環路、32は水循環路31に設けたポンプ、33は内部に温熱を有する流体を貯溜して利用する温熱利用槽で、ここでは浴槽である。浴槽33の内部に例えば40℃程度の浴槽水を貯溜して入浴に利用する。34は温熱利用槽の流体(この場合には浴槽33の浴槽水)を排出する流体排出手段で、例えば浴槽水の排水部であり、排熱回収後の浴槽水は排水部34から排水される。35はバルブなどの開閉手段であり、浴槽33へ導入する温水の開閉を行う。36は浴槽33内に貯溜している水を補助的に加熱する加熱手段で、例えばヒータである。バルブ35を開いて浴槽3内に温水が貯溜され排水部34から排水することにより、浴槽33内の流体である水は交換される。33a、33bは浴槽33から水循環路31への浴槽水の流出口、流入口である。
【0004】
バルブ35を開いて浴槽33へ導入され貯溜された温水は、入浴で利用された後に夜間などの入浴を行わない時間帯に、ポンプ32により流出口33aと流入口33bを通って水循環路31内を流動し、その温熱が後に記述する熱交換器39で蓄熱ユニット44側に熱回収される。
【0005】
また、37は水循環路、38は水循環路37に設けたポンプ、39は第1熱交換部で、例えば水−水熱交換器、40は水道管と直結している市水流入口、41は内部に温熱を蓄熱する蓄熱材42を有する蓄熱槽で例えば蓄熱タンク、42は蓄熱槽41内に充填した蓄熱材で例えば潜熱蓄熱材、43は給湯口(温熱供給路)であり、例えばバルブ35などの開閉手段を介し、蓄熱槽41で加温された温水を浴槽33に導入する流体導入手段を構成している。水循環路37には熱媒体として例えば水を循環させる。
【0006】
第1熱交換部である熱交換器39の内部では水循環路31を循環する浴槽水と水循環路37を循環する熱媒体である水とが別々の流路で流通し、互いに熱交換可能である。ポンプ38によって水循環路37を循環する水が、熱交換器39で浴槽水の温熱を吸熱し、蓄熱槽41内を流通する際に蓄熱材用容器内に充填されている潜熱蓄熱材42に熱を伝える。この場合、蓄熱槽41内で水循環路37を循環する熱媒体である水と潜熱蓄熱材42との熱交換が行われており、第2熱交換部として動作している。即ち、水循環路37によって、浴槽33の流体である浴槽水からの排熱を蓄熱槽41の潜熱蓄熱材42に伝える温熱輸送手段を構成している。この構成では第2熱交換部と潜熱蓄熱材42との間には、別の熱交換部を有する循環路が介在しておらず直接的に水と潜熱蓄熱材42との間で熱交換される。
【0007】
蓄熱槽41内には複数の蓄熱材用容器が充填され、蓄熱材用容器の中には例えば酢酸ナトリウムやアルミニウムミョウバンなどの潜熱蓄熱材42が封入されている。この蓄熱材用容器の周囲を水や温水が流通できる構造になっている。なお、蓄熱材用容器は、例えば、ポリプロピレンやポリエチレンなどある程度耐熱性を有する材料で形成されている。潜熱蓄熱材42は液体と固体の相変化を行うことにより熱を蓄熱・放熱する材料でその凝固温度によって蓄熱槽41内に蓄えている熱の温度、即ち温熱供給路43に供給する温熱の温度が異なる。
【0008】
例えば、ネオペンチルグリコールでは40℃程度、酢酸ナトリウムでは50℃程度、ポリエチレングリコールでは60℃程度、アルミニウムミョウバンでは90℃程度の温度で蓄熱できる。ただし、本実施例の形態の構成では水ー水熱交換器39で熱交換した後の水循環路37内の水の温度も40℃以上にはならない。従って、潜熱蓄熱材としてはネオペンチルグリコールが適していることになる。
【0009】
上述のように構成された排熱回収システムにおいては、温熱利用槽33の排熱を熱交換器39を用いて、蓄熱槽41に蓄熱し、再度、温熱利用槽33を使用する際に、市水流入口40から冷水を蓄熱槽41に流入して蓄熱槽41内の温熱が冷水に伝達される。その冷水から変化した温水が温熱供給路43に供給され、直接の市水流よりも高温の水を得ることができる。
【0010】
【発明が解決しようとする課題】
従来の排熱回収システムは上述のように構成されており、潜熱蓄熱材に排熱を蓄熱させているが、蓄熱槽の温度が潜熱蓄熱材の融点を下回ると、蓄熱材は勝手に凝固を開始し、せっかく貯蔵した高温の潜熱を放出してしまう。このため、熱の利用間隔が開くと、蓄熱された高温の潜熱が勝手に放出されやすい状態となり、排熱の利用効率を悪化させる原因となっていた。また、排熱の利用方法においても、何ら工夫が見られない。
【0011】
本発明は上述のような問題点を解決するためになされたもので、排熱の利用効率が高く、長時間の蓄熱も可能な熱利用装置及びその熱の利用方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明による熱利用装置においては、熱媒体を利用するための熱利用槽と、その中を熱媒体が通過し、前記熱利用槽に熱媒体を供給するための第1の経路と、その中を熱媒体が通過し、前記熱利用槽から熱媒体を排出するための第2の経路と、前記第1の経路及び前記第2の経路の途中に設けられた蓄熱槽と、前記蓄熱槽の中に設けられ、過冷却可能な蓄熱材の充填された蓄熱体と、前記熱媒体に熱を供給するための熱供給手段とを備えたことを特徴とする。
また、本発明による熱利用装置においては、熱媒体の熱を利用するための熱利用槽と、外部から熱媒体が注入され、過冷却可能な蓄熱体を備えた蓄熱槽と、その中を熱媒体が通過し、前記熱利用槽と前記蓄熱槽との間で熱媒体を授受するための第1の経路と、前記蓄熱槽から前記熱利用槽に熱媒体を循環させるための第2の経路と、前記熱媒体に熱を供給するための熱供給手段とを備え、前記第1の経路は前記熱利用槽と蓄熱槽の上部で連通し、前記第2の経路は前記熱利用槽と蓄熱槽の下部で連通することを特徴とする。
また、前記第1の経路と前記第2の経路を通過する熱媒体は、前記蓄熱槽内で隔離されていることを特徴とする。
また、前記第1の経路と前記第2の経路を通過する熱媒体を前記蓄熱槽内で隔離する手段は、前記蓄熱体を取り巻く管であることを特徴とする。
また、前記熱供給手段は、前記蓄熱槽から前記熱利用槽へと延びる前記第1の経路の途中に設けられ、前記第1の経路を通過する熱媒体に熱を供給することを特徴とする。
また、前記熱供給手段を通過する熱媒体を前記蓄熱槽に循環させるための第3の経路が前記熱供給手段と蓄熱槽との間に設けられていることを特徴とする。
また、前記蓄熱槽は、前記熱媒体に熱を供給するための熱供給手段の燃焼排気経路中に置かれていることを特徴とする。
【0013】
また、前記過冷却可能な蓄熱材には、相分離防止材が添加されていることを特徴とする。
また、前記蓄熱体は、過冷却可能な蓄熱材の充填された複数の小容器からなることを特徴とする。
また、前記蓄熱体は、細長い形状であることを特徴とする。
また、前記蓄熱槽は、前記蓄熱体を加熱するヒーターが設けられていることを特徴とする。
また、前記蓄熱槽は、断熱材で覆われていることを特徴とする。
また、前記過冷却可能な蓄熱材は、リン酸水素二ナトリウム・十二水和物であることを特徴とする。
また、前記過冷却可能な蓄熱材は、酢酸ナトリウム・三水和物であることを特徴とする。
また、前記過冷却可能な蓄熱材は、硫酸ナトリウム・十水和物であることを特徴とする。
また、前記過冷却可能な蓄熱材は、チオ硫酸ナトリウム・五水和物であることを特徴とする。
また、前記過冷却可能な蓄熱材は、塩化カルシウム・六水和物であることを特徴とする。
【0014】
また、上述の熱利用装置における熱利用方法は、熱媒体の貯蔵された熱利用槽に熱が供給されたのちに、熱利用槽の利用が終了すると、前記第2の経路を用いて熱利用槽の廃熱を前記蓄熱槽に輸送して蓄熱体中の蓄熱材を融解させたのちに、蓄熱材を過冷却現象を利用して液体のままで保持し、次の熱利用槽の利用時には、前記第1の経路を通過する熱媒体を廃熱の蓄熱された蓄熱体と接触させて蓄熱体中の蓄熱材の過冷却を解消させ、該熱媒体はその時に発生する該蓄熱材の凝固熱を吸収しながら熱利用槽に注入されることを特徴とする。
【0015】
また、上述の熱利用装置における熱利用方法は、熱利用槽の利用が終了すると、熱利用槽中の熱媒体は保持された状態で、熱利用槽→第1の経路→蓄熱槽→第2の経路→熱利用槽という順で熱媒体を循環させ、熱利用槽中の熱媒体の温度成層を保持しながら、上部の高温の廃熱を蓄熱槽中の蓄熱体に注入し、蓄熱体中の蓄熱材を融解させたのちに、蓄熱材を過冷却現象を利用して液体のままで保持し、次の熱利用槽の利用時には、前記第1の経路を通過する熱媒体を廃熱の蓄熱された蓄熱体と接触させて蓄熱体中の蓄熱材の過冷却を解消させ、該熱媒体はその時に発生する該蓄熱材の凝固熱を吸収しながら熱利用槽に注入されることを特徴とする。
【0016】
また、上述の熱利用装置における熱利用方法は、熱利用槽の利用が終了し、その廃熱が蓄熱材を融解させるのに十分な場合は、前記第2の経路を用いて前記熱利用槽の廃熱を前記蓄熱槽に輸送して蓄熱体中の蓄熱材を融解させ、熱利用槽の廃熱が蓄熱材を融解させるのに不十分な場合は、蓄熱槽→第1の経路→熱供給手段→第3の経路→蓄熱槽という循環によって蓄熱槽中の熱媒体に熱を補いながら蓄熱体中の蓄熱材を融解させたのちに、蓄熱材を過冷却現象を利用して液体のままで保持し、次の熱利用槽の利用時には、前記第1の経路を通過する熱媒体を廃熱の蓄熱された蓄熱体と接触させて蓄熱体中の蓄熱材の過冷却を解消させ、該熱媒体はその時に発生する該蓄熱材の凝固熱を吸収しながら熱利用槽に注入されることを特徴とする。
【0017】
また、上述の熱利用装置における熱利用方法は、熱媒体の貯蔵された熱利用槽に熱が供給されたのちに、熱利用槽の保温のために動作する熱供給手段の排熱で蓄熱槽を予熱し、熱利用槽の利用が終了すると、前記第2の経路を用いて熱利用槽の廃熱を前記蓄熱槽に輸送して蓄熱体中の蓄熱材を融解させたのちに、蓄熱材を過冷却現象を利用して液体のままで保持し、次の熱利用槽の利用時には、前記第1の経路を通過する熱媒体を廃熱の蓄熱された蓄熱体と接触させて蓄熱体中の蓄熱材の過冷却を解消させ、該熱媒体はその時に発生する該蓄熱材の凝固熱を吸収しながら熱利用槽に注入されることを特徴とする熱利用装置の熱利用方法。
【0018】
さらに、本発明による蓄熱槽においては、該蓄熱槽の内部に設置され、過冷却可能な蓄熱材の充填された複数の蓄熱体と、前記蓄熱体の下部に蓄熱槽を横断するように設けられた複数の熱媒体通路を持つ拡散体と、前記拡散体を挟んで蓄熱槽に設けられた熱媒体の通過する流入口と流出口とを備えたことを特徴とする。
また、前記拡散体は、網であることを特徴とする。
また、前記拡散体は、多孔質体であることを特徴とする。
また、前記過冷却可能な蓄熱材には、相分離防止材が添加されていることを特徴とする。
また、前記蓄熱体は、細長い形状であることを特徴とする。
また、前記蓄熱槽は、前記蓄熱体を加熱するヒーターが設けられていることを特徴とする。
また、前記蓄熱槽は、断熱材で覆われていることを特徴とする。
【0019】
また、本発明の蓄熱槽における熱利用方法は、熱の注入過程においては、蓄熱槽の下部に設けられた前記流入口より熱媒体を注入し、該熱媒体を前記拡散体を通過させて、前記蓄熱体に熱を注入した後に、蓄熱槽の上部に設けられた前記流出口より熱媒体を流出させ、熱の抽出過程では、前記流入口より前記蓄熱材の過冷却の解消温度よりも低い温度の熱媒体を注入し、該熱媒体を前記拡散体を通過させて、前記蓄熱体の下部に熱媒体を接触させ、蓄熱材の過冷却を解消させ、該熱媒体はその時に発生する該蓄熱材の凝固熱を吸収しながら前記流出口より流出されることを特徴とする蓄熱槽の熱利用方法。
【0020】
また、本発明による熱利用装置の蓄熱槽は、n個(nは2以上の自然数)の蓄熱槽J(1≦i≦n−1、i:整数)からなり、蓄熱槽Ji+1の蓄熱材の融点は、蓄熱槽Jの蓄熱材の融点よりも低く、蓄熱槽Jから蓄熱槽Ji+1へ順に熱媒体が通過して熱利用槽の廃熱が貯蔵されたのちに、蓄熱槽Ji+1から蓄熱槽Jへ順に熱媒体が通過して廃熱が抽出されることを特徴とする。
【0021】
【作用】
本発明による熱利用装置では、第1の経路を通じて外部から蓄熱槽に導入される熱媒体の温度をT1、第1の経路を通じて蓄熱槽から熱利用槽に導入される熱媒体の温度をT2、熱利用槽の熱利用温度をT3、第2の経路を通じて熱利用槽から蓄熱槽へ排出される熱媒体の温度をT4、第2の経路を通じて蓄熱槽から外部へ排出される熱媒体の温度をT5、蓄熱体に充填された過冷却可能な蓄熱材の融点(凝固点)をTm、蓄熱材の過冷却度(融点と発核温度との差)をΔT、発核温度をTcとすれば、
T1≦Tc<Tm<T4≦T3 (1)
T1<T2≦Tm (2)
Tm≦T5<T4 (3)
Tc=Tm−ΔT (4)
の関係を持つようなTmやTcを示す蓄熱材を適用する。
【0022】
熱利用槽での熱利用が終了すると、第2の経路を通じて熱利用槽から蓄熱槽へ温度T4の熱媒体が排出される。式(1)のように第2の経路を通じて熱利用槽から蓄熱槽へ排出される熱媒体の温度T4は、蓄熱材の融点Tmよりも高いので、蓄熱材は熱媒体からの熱を受けて融解する。第2の経路を通じて蓄熱槽から外部へ排出される熱媒体の温度T5は、蓄熱材を融解させた反作用として式(3)のようにT4よりも低くなる。熱利用槽の排水が無くなると蓄熱槽への熱供給が停止するので、蓄熱槽周囲の環境への熱損失によって蓄熱材の温度は低下する。蓄熱材の温度はやがて融点Tmを下回ることになるが、蓄熱材は過冷却できるので、Tcに達しない限りは融解熱を貯蔵した過冷却状態で液体のまま存在する。
【0023】
熱利用槽での熱利用を再度行う際には、第1の経路を通じて外部から蓄熱槽へ温度T1の熱媒体を導入する。導入される熱媒体の温度T1は、式(1)に示すように蓄熱材の発核温度Tcよりも低いので、蓄熱材は発核し、凝固を開始する。凝固中の蓄熱材の温度は融点Tmになるので、第1の経路を通じて外部から蓄熱槽へ導入された熱媒体は蓄熱材の凝固熱で加熱され、T2となる。第1の経路を通じて蓄熱槽から熱利用槽へ導入される熱媒体の温度T2は、式(2)に示すように第1の経路を通じて外部から蓄熱槽へ導入される熱媒体の温度T1よりも高い。
【0024】
熱利用槽の熱容量をMとし、熱媒体を第1の経路の蓄熱槽を経由せずに熱利用槽へ導入すると仮定した場合に熱利用槽の昇温に必要な熱量をQ1、本発明の方式により熱媒体を第1の経路の蓄熱槽を経由して熱利用槽へ導入する場合に熱利用槽の昇温に必要な熱量をQ2とすれば、
Q1=M(T3−T1) (5)
Q2=M(T3−T2) (6)
になる。そこで、式(5)と式(6)を式(2)に代入して整理すれば、
Q2<Q1 (7)
となる。すなわち、従来熱利用槽から利用されないままで廃棄されていた熱の一部が蓄熱材の蓄熱機能によって保存され、次回の熱利用槽の昇温の補助熱源となることで、熱利用槽の運転に必要な熱量が削減される。
【0025】
過冷却現象を利用した蓄熱式加熱体や蓄熱器の蓄熱体には、水和物が適している。しかし、水和物は風解性あるいは潮解性と相分離が激しいので、長期間にわたって蓄熱材を密閉する手段と相分離を防止する手段を欠いて、蓄熱式加熱体や蓄熱器を実現することはできない。蓄熱材の体積が大きくなればなるほど、長期間にわたって蓄熱材を密閉する容器を製作することは強度上困難になり、また相分離の原因となる重力方向の寸法も大きくならざるをえないので、風解と相分離の防止が困難になる。
【0026】
さらに、発明者の実験によれば、本蓄熱方式の鍵となる過冷却度は蓄熱材の体積に依存し、蓄熱材の体積が大きくなるほど過冷却度は小さくなり、過冷却度を利用した蓄熱の利点が減少してしまうことがわかった。このため、本発明による熱利用装置の蓄熱体は、内部に過冷却可能な蓄熱材を相分離防止剤とともに複数の小容器に収容する。これにより、本発明の熱利用装置では蓄熱材の風解あるいは潮解と相分離が容易に長期間防止されるとともに、蓄熱材は過冷却度が大きい状態で保持されるので、従来の提案では実現できなかった大きな過冷却現象を長期的に安定的に発現させることが可能になる。
【0027】
また、給湯式の熱利用装置の場合、熱供給手段を通過する熱媒体を蓄熱槽に循環させるための第3の経路が熱供給手段と蓄熱槽の間に設けられているので、もしも熱利用槽の利用後の廃熱の温度が低く、蓄熱材を融解させるのに不十分な場合は、熱利用槽内の熱媒体を蓄熱槽に輸送後、第3の経路を用いることによって、蓄熱槽内の残液を熱供給手段と蓄熱槽との間で循環させ、不足分の熱を蓄熱材に供給する。あるいは、蓄熱槽内に設置したヒーターを用いることによって、不足分の熱を蓄熱材に供給する。
【0028】
また、本発明による熱利用装置においては、熱利用槽と蓄熱槽との間で熱媒体を授受するための第1の経路と、蓄熱槽から熱利用槽に熱媒体を循環させるための第2の経路とを備えているので、熱利用槽の利用が終了したときに、熱利用槽中の熱媒体は保持された状態で、熱利用槽→第1の経路→蓄熱槽→第2の経路→熱利用槽という順で熱媒体を循環させることができ、熱利用槽中の熱媒体の温度成層を保持しながら、上部の高温の廃熱から蓄熱槽中の蓄熱体に注入し、蓄熱体中の蓄熱材を融解させる。この場合は、熱利用槽から蓄熱槽へ廃熱のみを回収するので、温度の低下した熱媒体を熱利用槽に貯蔵しておくことができ、必要に応じて再利用することができる。
【0029】
また、本発明による蓄熱槽においては、熱媒体を拡散させるための拡散体を備えているので、注入された熱媒体は拡散体を通過し、複数の蓄熱体に均等に接触するので、蓄熱体へ均等に熱が供給される。これにより、複数の蓄熱体内の蓄熱材は、それぞれ均一に融解させられる。
【0030】
また、本発明による熱利用装置においては、融点の異なる過冷却可能な蓄熱材の充填された蓄熱槽を複数設置し、蓄熱材を融解させて熱を貯蔵する場合には融点の高い蓄熱槽から融点の低い蓄熱槽へ順に熱媒体を通過させ、蓄熱材を凝固させて熱を抽出する場合には融点の高い蓄熱槽から融点の低い蓄熱槽へ順に熱媒体を通過させる。
【0031】
たとえば、二つの蓄熱槽を設け、第1の蓄熱槽の蓄熱材の融点をS2、第2の蓄熱槽の蓄熱材の融点をS4とし、第1の経路を通じて外部から第1の蓄熱槽に導入される熱媒体の温度をX1、第1の経路を通じて第1の蓄熱槽から第2の蓄熱槽に導入される熱媒体の温度をX2、第1の経路を通じて第2の蓄熱槽から熱利用槽に導入される熱媒体の温度をX3、熱利用槽の熱利用温度をX4、第2の経路を通じて熱利用槽から第2の蓄熱槽へ排出される熱媒体の温度をX5、第2の経路を通じて第2の蓄熱槽から第1の蓄熱槽へ排出される熱媒体の温度をX6、第2の経路を通じて第1の蓄熱槽から外部へ排出される熱媒体の温度をX7、第1の蓄熱槽の蓄熱材の発核温度をS1、第2の蓄熱槽の蓄熱材の発核温度をS3とすれば、
X1≦S1<S2 (8)
X1<X2≦S3<S4 (9)
X2<X3≦X4 (10)
S2<S4<X5≦X4 (11)
S2<X6<X5 (12)
X7<X6 (13)
の関係を持つようなS1、S2、S3、S4を示す蓄熱材を適用する。
【0032】
熱利用槽での熱利用が終了すると、第2の経路を通じて熱利用槽から第2の蓄熱槽へ温度X5の熱媒体が排出される。式(11)のように第2の経路を通じて熱利用槽から第2の蓄熱槽へ排出される熱媒体の温度X5は、第2の蓄熱槽の蓄熱材の融点S4よりも高いので、蓄熱材は熱媒体からの熱を受けて融解する。第2の経路を通じて第2の蓄熱槽から第1の蓄熱槽へ排出される熱媒体の温度X6は、蓄熱材を融解させた反作用として式(12)のようにX5よりも低くなる。式(12)のように第2の経路を通じて第2の蓄熱槽から第1の蓄熱槽へ排出される熱媒体の温度X6は、第1の蓄熱槽の蓄熱材の融点S2よりも高いので、蓄熱材は熱媒体からの熱を受けて融解する。
【0033】
第2の経路を通じて第1の蓄熱槽から外部へ排出される熱媒体の温度X7は、蓄熱材を融解させた反作用として式(13)のようにX6よりも低くなる。熱利用槽の排水が無くなると各蓄熱槽への熱供給が停止するので、蓄熱槽周囲の環境への熱損失によって各蓄熱材の温度は低下する。各蓄熱材の温度はやがて融点S2、S4を下回ることになるが、各蓄熱材は過冷却できるので、S1とS3にそれぞれ達しない限りは融解熱を貯蔵した過冷却状態で液体のまま存在する。
【0034】
熱利用槽での熱利用を再度行う際には、第1の経路を通じて外部から第1の蓄熱槽へ温度X1の熱媒体が導入される。導入される熱媒体の温度X1は、式(8)に示すように第1の蓄熱槽の蓄熱材の発核温度S1よりも低いので、蓄熱材は発核し、凝固を開始する。凝固中の蓄熱材の温度は融点S2になるので、第1の経路を通じて外部から第1の蓄熱槽へ導入された熱媒体は蓄熱材の凝固熱で加熱され、X2となる。第1の経路を通じて第1の蓄熱槽から第2の蓄熱槽へ温度X2の熱媒体が導入される。導入される熱媒体の温度X2は、式(9)に示すように第2の蓄熱槽の蓄熱材の発核温度S3よりも低いので、蓄熱材は発核し、凝固を開始する。
【0035】
凝固中の蓄熱材の温度は融点S4になるので、第1の経路を通じて第1の蓄熱槽から第2の蓄熱槽へ導入された熱媒体は蓄熱材の凝固熱で加熱され、X3となる。第1の経路を通じて第2の蓄熱槽から熱利用槽へ導入される熱媒体の温度X3は、式(10)に示すように第1の経路を通じて第1の蓄熱槽から第2の蓄熱槽へ導入される熱媒体の温度X2よりも高い。第1の蓄熱槽が無い場合に外部から第2の蓄熱槽に導入される熱媒体の温度はX1であるのに対して、第1の蓄熱槽がある場合に第1の蓄熱槽から第2の蓄熱槽に導入される熱媒体の温度はX2であり、X1よりも高温である。
【0036】
したがって、第1の蓄熱槽が無い場合よりも第1の蓄熱槽がある場合の方が、第2の蓄熱槽によって加熱され、熱利用槽に導入される熱媒体の温度は高温になり、その結果として熱利用槽の昇温に必要な熱量は削減されることになる。すなわち、蓄熱槽を複数用意し、蓄熱材の融点に関して直列に接続することによって、従来は使われずに廃棄されていた熱利用槽からの廃熱が、蓄熱槽が単独の場合よりもより有効に回収利用される。
【0037】
【発明の実施の形態】
本発明に係る実施の形態を実施例に基づいて図面を参照して以下説明する。
(実施例1)
図1は、本発明による熱利用装置の構造図を示す。図において、1は浴槽、2は浴槽1に熱媒体となる水を供給するための給水経路、3は蓄熱槽10の中に設けられ、浴槽1から廃熱を蓄熱するための蓄熱体で、内部には過冷却可能な蓄熱材が充填されている。4は蓄熱槽10を覆うように設けられた断熱材である。5は浴槽1からの廃湯を蓄熱体3に輸送するための排水経路、6は給水経路2に設けられたバルブ、7、8は排水経路5に設けられたバルブである。9は浴槽1の中の水に熱を供給するための熱源となる湯沸かし器である。蓄熱槽10は浴槽1よりも低い位置に配置する。
【0038】
これによって、浴槽1の排水は自由落下により、外部動力を必要とせずに行われる。給水側はバルブ6に至る前に一定の給水圧が掛けられているので、給水においても本実施例のための特別な外部動力を与える必要はない。給水経路2においては、蓄熱槽10の下部に入水口aを設け、蓄熱槽10の上部に出水口bを設けており、排水経路5においては蓄熱槽10の下部に入水口cを設け、蓄熱槽10の上部に出水口dを設けている。このような位置関係にすることにより、熱媒体が流れながら蓄熱体3に接触する面積を最大限にすることができる。
【0039】
また、上述の過冷却可能な蓄熱材は、過冷却現象が顕著な物質の中から必要とする温度や過冷却度に応じて種々の物質を選択して用いることができる。過冷却の程度は、例えば、リン酸水素二ナトリウム・十二水和物(NaHPO・12HO)ではその凝固点が約36℃で、結晶核が生成される温度は0℃〜36℃程度になり、酢酸ナトリウム・三水和物(CHCOONa・3HO)ではその凝固点が約58℃で、結晶核が生成される温度は−20℃〜58℃程度になることが知られている(蓄熱材の核生成温度は主に蓄熱材の体積に依存して変わる)。
【0040】
また、チオ硫酸ナトリウム・五水和物(Na・5HO、凝固点約48℃)、炭酸ナトリウム・十水和物(NaCO・10HO、凝固点約33℃)、硫酸ナトリウム・十水和物(NaSO・10HO、凝固点約32℃)、塩化カルシウム・六水和物(CaCl・6HO、凝固点約29℃)なども、体積によるが10℃以上の大きな過冷却度を示す。
【0041】
他に過冷却現象が顕著な物質としては、塩化マグネシウム・六水和物(MgCl・6HO、凝固点117℃)、塩化ストロンチウム・六水和物(SrCl・6HO、同115℃)、硫酸アルミニウム・十水和物(Al(SO・10HO、同112℃)、硫酸アルミニウム・アンモニウム・十二水和物(NHAl(SO・12HO、同94℃)、硫酸カリウム・アルミニウム・十二水和物(KAl(SO・12HO、同93℃)、硝酸マグネシウム・六水和物(Mg(NO・6HO、同93℃)、硝酸ニッケル(II)・六水和物(Ni(NO・6HO、同57℃)、炭酸カルシウム・六水和物(CaCO・6HO、同29℃)、およびふっ化カリウム四水和物(KF・4HO、同19℃)などの水和物、マンニトール(HOCH(CHOH)CHOH、同167℃)やエリスリトール(HOCH(CHOH)CHOH、同122℃)などの多価アルコールを比較的人体に安全な物質として挙げることができるが、これらに限定されるものではない。
【0042】
上述のように構成された熱利用装置の動作について説明する。図2は熱利用装置における蓄熱材と水の温度の時間的な変化を示す。第1回目のサイクルでは、まず浴槽1に蓄熱槽10を経る給水経路2から熱媒体である水を供給する。この場合、バルブ6は開けておき、バルブ7、8は閉じておく。この時点(時刻A1)では蓄熱体3は固体で水温と同一温度である。次に、湯沸かし器9から浴槽に熱を与え、湯沸かしを行うと、水温は入浴可能な温度まで上昇し(時刻A2)、入浴が行われる。入浴後はバルブ7、8を開け、バルブ6を閉じ、排水経路5から蓄熱槽10へ浴槽1の温水を移動させると、温水は蓄熱体3と接触した後に排水されることになり、蓄熱体3中の過冷却可能な蓄熱材は、固相のまま徐々にその温度が上昇する(時刻A3〜A4)。時刻A4で蓄熱材の融点に達すると、蓄熱材は融解し始める。融解中の蓄熱材は一定の温度になる。時刻A5で融解が完了する。
【0043】
時刻A5以降は、蓄熱材は液相のままで徐々に温度が上昇し、排水の温度へ近づいて行く。時刻A6で排水が終了すると、蓄熱槽10への熱供給が無くなるので、蓄熱材の温度は蓄熱槽10の周囲の環境への熱損失によって低下して行く。蓄熱材の温度はやがて蓄熱材の融点に達するが、蓄熱材は過冷却することが可能なのですぐには凝固を開始せず、顕熱を放出しながら液相のままで融点よりも低い温度に低下して行く。次のサイクルすなわち次の給水まで、この過冷却状態が保持できるような過冷却可能な蓄熱材を選択するか、断熱を行う。すなわち、過冷却中の蓄熱材の温度が発核温度を下回らないような断熱を行う。上述の操作において、もしも浴槽利用後の温水の温度が蓄熱材の融点を下回るときには、すぐに湯沸かし器9を用いて温水の温度が融点を上回るようにし、すべての蓄熱材が融解されるようにする。
【0044】
次のサイクルの給水で、給水経路2から蓄熱槽10に供給される水が、蓄熱体3を通過して浴槽1に供給されると、供給された低温の水によって蓄熱体3が冷却され、過冷却中の蓄熱材の発核が促される。つまり、蓄熱材の一部の分子同士が配向し、結晶核が生成されて蓄熱材内に結晶が成長し、凝固が開始される。この場合、凝固の開始条件として、給水温を上回る発核温度を持つ蓄熱材を選択することである。水道水の温度は季節に応じて5℃〜25℃程度の範囲内で変化するが、たとえばリン酸水素二ナトリウム・十二水和物の発核温度は通常20〜30℃程度となるので、本発明の蓄熱材として適用することができる。
【0045】
凝固が開始されると、過冷却状態の液体として持っていた位置エネルギーが放出されるので、蓄熱材原子あるいは分子の運動エネルギーが増加し、蓄熱材の温度は凝固点に回復する(時刻B0)。凝固過程では、蓄熱材は一定の温度、すなわち融点(凝固点)で潜熱を放出しながら液相から固相へと相変化して行く。このとき、注入され続ける水は、蓄熱材で放出される潜熱を吸収しながら浴槽1に移動するため、水温が上昇する。時刻B1で蓄熱材の凝固が完了すると、固体顕熱を放出しながら蓄熱材の温度は低下して給水温度に近づく。時刻B2で浴槽1への給水が完了すると、第1のサイクルと同じように湯沸かし以降が行われる。この繰り返しによって、温水の廃熱が有効利用される。
【0046】
蓄熱材には、相分離防止材として粘土や多糖類・糊料、動植物繊維、吸液性樹脂などを添加する。多糖類・糊料には、アーモンドガム、アエロモナスガム、アカシアガム、アゾトバクター・ビネランジーガム、アマシードガム、アラビアガム、アラビノガラクタン、アルギン酸、アルギン酸ナトリウム、アロエベラ抽出物、ウェランガム、エルウィニア・ミツエンシスガム、エレミ樹脂、エンテロバクター・シマナスガム、エンテロバクターガム、オクラ抽出物、カードラン、海藻セルロース、カシアガム、カゼイン、カゼインナトリウム、褐藻抽出物、ガティガム、カラギーナン、カラヤガム、カルボキシメチルセルロースカルシウム、カルボキシメチルセルロースナトリウム、カロブビーンガム、キサンタンガム、キダチアロエ抽出物、キチン、キトサン、グァーガム、グアヤク樹脂、クエン酸ステアリル、グルコサミン、グルテン、グルテン分解物、ケルプ抽出物、酵母細胞膜、昆布類粘質物、サイリウムシードガム、サイリウムハスク、酸カゼイン、ザンサンガム、ジェランガム、スクレロガム、ステアリル乳酸ナトリウム、セスバニアガム、セドウガム、繊維素グリコール酸カルシウム、繊維素グリコール酸ナトリウム、タマリンドガム、タラガム、ダンマル樹脂、デキストラン、デンプングリコール酸ナトリウム、デンプンリン酸エステルナトリウム、トラガントガム、トリアカンソスガム、トロロアオイ、納豆菌粘質物、納豆菌ガム、乳酸ナトリウム、微小繊維状セルロース、ヒドロキシプロピルメチル繊維素、ヒドロキシプロピル繊維素、ピロリン酸ナトリウム、ピロリン酸四ナトリウム、ピロリン酸二水素ナトリウム、ファーセレラン、ブドウ糖多糖、フラクタン、プルラン、ペクチン、紅藻抽出物、ホスファチジン酸アンモニウム、ポリアクリル酸ナトリウム、ポリオキシエチレン(20)ソルビタントリステアレート、ポリオキシエチレン(20)ソルビタンモノオレート、ポリオキシエチレン(20)ソルビタンモノステアレート、ポリオキシエチレン(20)ソルビタンモノパルミテート、ポリオキシエチレン(20)ソルビタンモノラウレート、ポリオキシエチレン(40)ステアレート、ポリオキシエチレン(8)ステアレート、ポリソルベート(20)、ポリソルベート40、ポリソルベート65、ポリソルベート80、ポリビニルピロリドン、マクロホモプシスガム、マンナン、メチルセルロース、ラムザンガム、レバン、レンネットカゼイン、ローカストビーンガム、CMCなど、種々の物を利用することができる。
【0047】
動植物繊維には羽毛や羊毛、綿花、および合成繊維などが利用できる。吸液性樹脂にはデンプン−アクリロニトリルグラフト重合体加水分解物、デンプン−アクリル酸塩架橋物、カルボキシメチルセルロース架橋体、アクリル酸メチル−酢酸ビニル共重合体ケン化物、アクリル酸重合体塩架橋物などを利用することができる。これにより、蓄熱材をより安定的に繰り返し使用することが可能になる。
【0048】
蓄熱体3の容器は可能な限り小さい方が、蓄熱材の風解あるいは潮解と相分離の影響を長期的に防止し、大きな過冷却度を安定的に維持することができるので適している。たとえば、リン酸水素二ナトリウム・十二水和物で容器の容積が10mL程度の場合の過冷却度は15℃程度になるが、1L程度の場合の過冷却度は10℃程度になるので、容器の実用的な容積は数リットル程度以下となる。
【0049】
蓄熱体3の容器の形状は任意であるが、図1のように細長い形状とすれば、給水経路2から蓄熱槽10に流入する冷水と全ての蓄熱体3とを冷水の流入温度で接触させることができる。すなわち、蓄熱体3を細長い形状にすることは、各蓄熱体3の均一な発核を促す際に好都合である。また、図1では蓄熱体3を直立させて設置しているが、蓄熱槽10が回転して蓄熱体3が横あるいは斜めに寝る姿勢で設置しても、図1と同様に熱媒体が蓄熱槽10内を満たしながら蓄熱体3の長手方向に移動するような入出水口の配置を採れば、本実施例と同様の機能を実現することができる。
【0050】
本発明による熱利用装置においては、過冷却可能な蓄熱材の充填された蓄熱体3が設置され、発核の手段を熱媒体としているので、簡単な構造でしかも動力を用いずに廃熱の有効利用が可能となる。また、過冷却状態を保持することによって確実に蓄熱することができるので、長時間の蓄熱も可能になり、低温の廃熱の有効利用ができる。また、蓄熱体3の形状を細長く、複数個設けることにより、均一な発核を促すことができる。
【0051】
(実施例2)
図3は本発明による他の熱利用装置の構造図である。図において、1〜10は図1と同一あるいは相当するものを示す。11は給水経路2に設けられたバルブ、12は排水経路5に設けられたポンプである。本実施例においては、熱移動の原理は実施例1と同様である。実施例1では浴槽1からの排水に自由落下を利用し、排水のための外部動力を不要としているが、本実施例はポンプ12を設けることで、ポンプ動力は必要となるが浴槽1と蓄熱槽10の位置関係を任意に設定することが可能となる。たとえば、蓄熱槽10を浴室の高所の空いている空間に設置したり、浴室とは別室の空いている空間に設置したり自由に設定することが可能である。
【0052】
(実施例3)
図4は本発明による他の熱利用装置の構造図である。図において、1〜10は図1と同一あるいは相当するものを示す。13は蓄熱槽10の内部に設置したヒーターである。ヒーターのエネルギー源は熱や電気、光など、自由に選択することができる。
【0053】
本実施例は、給湯式の熱利用装置を示す。すなわち、浴槽1に熱媒体である水を加熱してから供給するシステムであり、給水経路2が湯沸かし器9を通過するように設置されているので、給水経路2から浴槽1に温水が供給される。発明の原理は実施例1と変わらないので、その説明を省略する。浴槽1の廃熱の温度が融点より十分に高くないか温度が高くとも排水量が少ない場合には、廃熱が不足して蓄熱材を完全に融解させることができないので、排水直後にヒーター13で蓄熱材を加熱することによって、蓄熱材を完全に融解させることが可能になる。さらに、予期しない気温の低下によって発核予定の時刻までに蓄熱材が発核温度を下回る恐れがある場合には、ヒーター13で蓄熱体3を加熱することによって、無用な発核を避けることができる。
【0054】
(実施例4)
図5は本発明による他の熱利用装置の構造図である。図において、1〜10は図1と同一あるいは相当するものを示す。14は蓄熱槽10と湯沸かし器9との間で熱媒体が循環できるように設けられた循環経路、15は経路を切り替えるための三方弁、16は熱媒体を循環させるためのポンプである。17は循環経路14に設けられた自動空気抜き弁である。本発明は、給湯式の熱利用装置において、浴槽1の廃熱の温度が蓄熱材の融点を上回らない場合に、湯沸かし器9を用いて不足する熱を補う方法を実現するものである。廃熱が十分な場合は、実施例1と変わらないので、その説明を省略する。ただし、給水時、給水経路2を通過する熱媒体が循環経路14を通過しないように、三方弁の向きは循環経路14を閉鎖するようにする。
【0055】
さて、浴槽1の廃熱の温度が融点より十分に高くないか温度が高くとも排水量が少ない場合には、廃熱が不足して蓄熱材を完全に融解させることができないので、湯沸かし器9と循環経路14とを用いて蓄熱材が完全に融解するような操作をする。すなわち、温水の排水後にまず排水経路5のバルブ7とバルブ8を閉じ、三方弁15を三方の流れが通じるように設定する。次に、給水経路2のバルブ6を開き、給水経路2と循環経路14に水を満たしたのちに、バルブ6を閉じる。次に、三方弁15を給水経路2において蓄熱槽10から三方弁15に至る経路と循環経路14とが接続され、給水経路2のうち三方弁から給水経路2の浴槽側出口までの経路は閉鎖されるように設定する。
【0056】
ここで、湯沸かし器9とポンプ16を作動させれば、蓄熱材に熱が追加される。蓄熱材が完全に融解すれば、湯沸かし器9とポンプ16を停止し、バルブ8を開いて排水を行う。以上の操作により、万一の廃熱の不足が補償される。本実施例では、新たに給水することで給水経路2及び循環経路14に水を満たしたが、類似の操作によって浴槽1からの高温の排水で給水経路2及び循環経路14に水を満たし、より省エネルギー性を高めることも可能である。
【0057】
(実施例5)
図6は本発明による他の熱利用装置の構造図である。図において、1〜6、8〜10は図1と同一あるいは相当するものを示す。18は浴槽1と蓄熱槽10との間で熱媒体が循環できるように設けられた循環経路、19は循環経路18中に設けられたバルブ、20は循環経路18中に設けられたポンプである。
【0058】
上述のように構成された熱利用装置においては、排水を行う前に蓄熱槽10に廃熱を輸送するシステムになっているので、排水の洗濯や散水等への有効利用が可能となる。つまり、浴槽1の利用後にバルブ19を開け、ポンプ20を用いて温水を入水口cから蓄熱槽10に移動させ、出水口dを通過して浴槽1に戻らせる。このように排水が循環経路18を循環しているうちに蓄熱体3へ熱が移動し、蓄熱が完了する。蓄熱が完了して温度の低下した排水は、洗濯や散水などに用いられ、残りは排水経路5から排出される。浴槽1の上部の温水から取水し、浴槽1の下部へ戻すように水を循環させるので、浴槽1内に自然に形成される温度成層を崩すことなく、浴槽1の上部の高温層の熱を蓄熱材の融解に有効に利用することができる。
【0059】
(実施例6)
上述の実施例1〜5において、図7に示すように蓄熱槽10の内部で蓄熱体3を取り巻くような管を排水系路5とすれば、給水と排水とが蓄熱槽10の中で同一の空間を通過することがなく、給水路2及び蓄熱槽10内が排水で汚染されることを防止することができる。
また、これに代わる機能は、図1〜図6に示す蓄熱槽10において、給水時に蓄熱槽10に導入された初めの数リットルの水で蓄熱槽内を洗浄させたのちに、廃棄することで実現することも可能である。
また、これに代わる機能は、給水経路2の流出口bあるいは排水経路5の流入口cにフィルターを付けることによっても実現することが可能である。
【0060】
(実施例7)
図8および図9は、それぞれ本発明による蓄熱槽10の断面構造図を示す。図において、2〜5、10は図1に示すものと同一あるいは相当するものを示す。21は、蓄熱槽10の内部を横断するように設けられた拡散体で、多数の孔を持つ面からなり、経路5から流入した熱媒体を蓄熱槽1の断面全体に均一化する。この拡散体21は、金網、プラスチック網、パンチングメタル等の網状板や、スポンジ等の多孔質体など種々の材質、構造を採ることができる。図8に示す蓄熱槽は縦方向に細長い蓄熱体3を備えた場合で、図9に示す蓄熱槽は横方向に細長い蓄熱体3を備えた場合を示す。
【0061】
次に上述のように構成された蓄熱槽の動作について、図8の配置を例として説明する。説明の都合上、拡散体21で分離される蓄熱槽10の上部領域を領域A、下部領域を領域Bと呼ぶ。図9においても、基本的な動作は同様である。まず、熱の注入過程、つまり風呂の排水を蓄熱槽10に誘導する過程において、潜熱蓄熱材の融点以上の温度にある熱媒体は流入口c→領域B→領域A→流出口dの順に通過し、蓄熱材を融解させる。このとき、領域Bに流入した熱媒体は、拡散体21を通過することによってその流れが蓄熱槽横断面全体に均一化され、熱媒体が蓄熱体3と全体的に接触することになり、効率よく蓄熱することが可能となる。
【0062】
熱の保存過程では、外部環境の影響を受けて蓄熱材の温度は徐々に低下し、やがて凝固点に到達するが、過冷却現象のために凝固は開始されない。蓄熱材の温度はさらに低下し、凝固点よりも低い温度になるが、液体のまま存在することができる。蓄熱槽10の形状や蓄熱槽10を構成する断熱材は、貯蔵期間内に蓄熱材が再結晶化温度を下回らないように設計されているため、蓄熱材の温度は凝固点を切り、再結晶化温度に近づいて行くが、貯蔵期間内に再結晶化することはない。
【0063】
熱の抽出過程、つまり風呂に給水する過程においては、流入口a→領域B→領域A→流出口bの順序で冷水を通過させ、蓄熱材の一部の温度を再結晶化温度まで低下させて凝固を誘発させる。この時、領域Bに注入された冷水は拡散体21を通過して領域Aに到達するため、流入する冷水は蓄熱槽10の下部から蓄熱槽10の断面全体に均一に拡散する。つまり、蓄熱体3の下部に均一に冷水が接触し、過冷却中の蓄熱材の発核を時間的に均一に促す。
【0064】
図8に示す蓄熱槽においては、熱媒体の温度の成層化を利用でき、蓄熱体3の下側から発核させやすいという利点がある。図9に示す蓄熱槽においては、重力方向の寸法が小さいので、蓄熱材の相分離防止の点では図8よりも有利となる。本実施例では、本発明の蓄熱槽を風呂廃熱で利用する場合について説明したが、図10に示すように、蓄熱槽を直接熱源につないで様々な用途で利用できることは、言うまでもない。
【0065】
また、実施例1でも説明したように、発核を促すために蓄熱体の形状は細長い形状が望ましい。本発明の蓄熱装置においては、蓄熱のために流入される温水や過冷却中の蓄熱材の発核を促すための冷熱が均一に拡散するため、温水、冷水それぞれが蓄熱体3に対して持つ作用を効果的に利用することができ、効率よく熱エネルギーを回収利用することができる。
【0066】
(実施例8)
図11、図12は蓄熱槽10を湯沸かし器9の内部に納めた例を示している。これにより、湯沸かし器9と一体化したコンパクトな蓄熱式給湯機を提供することができる。特に図12の場合には、蓄熱槽を湯沸かし器9の燃焼排気経路に暴露させることができるので、追い焚き時の廃熱で蓄熱槽を予熱し、図11の場合よりも大量の蓄熱材を安定的に過冷却貯蔵させ、より多くの熱を回収利用させることができる。図12の場合には、断熱材4は湯沸かし器9と蓄熱槽3を収納する筐体に設けるのが効果的である。
【0067】
(実施例9)
上述の実施例は、一種類の蓄熱材を用いた熱利用装置であったが、図13に示すように複数の過冷却可能な蓄熱材の充填された蓄熱槽を用意し、融点の高い蓄熱材の充填された蓄熱槽から融点の低い蓄熱材の充填された蓄熱槽へ順に組み合わせて熱カスケードを形成させることができる。図13では、浴槽1からの約40℃の廃水を融点の高い蓄熱材の順に、すなわちリン酸水素二ナトリウム・十二水和物(凝固点36℃)、硫酸ナトリウム・十水和物(凝固点32℃)、塩化カルシウム・六水和物(凝固点29℃)の順に通過させることによって、それぞれの蓄熱材に廃熱を蓄熱させることができる。
【0068】
また、発核を促す際には、融点の低い蓄熱材の充填された蓄熱槽から融点の高い蓄熱材の充填された蓄熱槽へ順に、すなわち塩化カルシウム・六水和物、硫酸ナトリウム・十水和物、リン酸水素二ナトリウム・十二水和物の順に冷水を通過させることによって、それぞれの蓄熱材の発核を促し、蓄熱材からの潜熱を有効に利用することができる。
【0069】
上述のように、複数の過冷却可能な蓄熱材を組み合わせることによって、さらに廃熱の有効利用度を高めることが可能になる。本実施例では、廃熱として、風呂の湯を用い、過冷却可能な蓄熱材として、リン酸水素二ナトリウム・十二水和物、硫酸ナトリウム・十水和物、塩化カルシウム・六水和物を用いたが、上述の原理を利用するのにこれらのものに限定されるものではない。
【0070】
たとえば、熱利用槽の熱利用温度が200℃であり、熱媒体の供給温度が10℃となる熱利用装置に対しては、マンニトール(凝固点167℃)→塩化マグネシウム・六水和物(同117℃)→硫酸アルミニウム・アンモニウム・十二水和物(同94℃)→酢酸ナトリウム・三水和物(同58℃)→チオ硫酸ナトリウム・五水和物(凝固点48℃)→リン酸水素二ナトリウム・十二水和物(同36℃)→塩化カルシウム・六水和物(同29℃)の順に廃熱から熱を回収して過冷却現象を利用して蓄熱し、熱利用時には上記とは逆の順で熱媒体を通過させて加温させることで、蓄熱材が単一の場合よりも多くの熱を回収・利用することができる。
【0071】
【発明の効果】
以上の構成から成る本発明によると、次のような効果が生じる。
(1)本発明による熱利用装置においては、熱利用槽に熱媒体を供給するための第1の経路の中に過冷却可能な蓄熱材が充填された蓄熱体と、熱利用槽中の温水を蓄熱体に輸送するための第2の経路とを備えているので、熱利用槽の廃熱を蓄熱体中の蓄熱材に過冷却状態で貯蔵することができ、また熱媒体を用いて望ましい時間に容易に発核を促すことができるので、長時間の蓄熱も可能になり、廃熱の効果的な貯蔵と利用を実現することができる。
(2)また、蓄熱体の形状を変化させることによって、過冷却度を制御することができるので、外部環境・水温等の種々の条件に対応することも可能になる。また、断熱材の材質や厚さを制御することによっても外部環境の条件に対応することができる。
(3)さらに、過冷却可能な蓄熱材に相分離防止材を添加すると、蓄熱材の相分離を長期的に防止することができ、蓄熱材を安定的に繰り返し利用することが可能になる。
【0072】
(4)また、本発明による給湯式の熱利用装置においては、廃熱が蓄熱材を完全に融解させるのに不十分な場合に、第3の経路を用いて熱媒体を熱供給手段と蓄熱槽との間で循環させ、不足分の熱を蓄熱材に供給することによって蓄熱材を完全に融解させ、過冷却現象を有効に利用することが可能になる。
(5)また、本発明による給湯式の熱利用装置においては、廃熱が蓄熱材を完全に融解させるのに不十分な場合に、ヒーターを用いて不足分の熱を蓄熱材に供給することによって蓄熱材を完全に融解させ、過冷却現象を有効に利用することが可能になる。
(6)また、本発明による給湯式の熱利用装置においては、給湯や追い焚きの際の燃焼廃熱で蓄熱槽を予熱させることによって大量の蓄熱材を融解させ、過冷却現象を有効に利用することが可能になる。
【0073】
(7)また、本発明による熱利用装置においては、熱利用槽と蓄熱槽との間で熱媒体を授受するための第1の経路と、蓄熱槽から熱利用槽に熱媒体を循環させるための第2の経路とを備えているので、熱利用槽と蓄熱槽との間で熱媒体を循環させることができ、利用済みの熱媒体を熱利用槽に保持した状態で、熱利用槽中の廃熱を蓄熱槽中の蓄熱材に移動させることが可能となる。これにより、廃熱回収後の熱媒体を熱利用槽から抽出し、別な用途に利用することができる。
(8)また、前記第1の経路は前記熱利用槽と蓄熱槽の上部で連通し、前記第2の経路は前記熱利用槽と蓄熱槽の下部で連通しているので、熱媒体を循環させるときに、蓄熱槽内の熱媒体の温度成層を保持した状態で、高温の熱を効率的に蓄熱槽に移動させることができる。
【0074】
(9)また、本発明による蓄熱槽においては、拡散体を備えているので、熱媒体を均一に蓄熱体に接触させることができ、冷水による発核操作を効果的に促進させることができる。
(10)また、本発明による熱利用装置においては、融点の異なる過冷却可能な蓄熱材の充填された蓄熱槽を複数用意し、融解時には蓄熱材の融点の高い順に熱媒体を通過させ、熱回収時には蓄熱材の融点の低い順に熱媒体を通過させることによって、熱カスケードを構成し、廃熱の有効利用度を一段と高めることが可能になる。
【図面の簡単な説明】
【図1】本発明における熱利用装置の構造図である。
【図2】本発明における熱利用装置の熱媒体あるいは蓄熱材の温度の時間的な変化を示す図である。
【図3】本発明による熱利用装置の構造図である。
【図4】本発明による熱利用装置の構造図である。
【図5】本発明による熱利用装置の構造図である。
【図6】本発明による熱利用装置の構造図である。
【図7】本発明による蓄熱槽の構造図である。
【図8】本発明による蓄熱槽の構造図である。
【図9】本発明による蓄熱槽の構造図である。
【図10】本発明による熱利用装置の構造図である。
【図11】本発明による熱利用装置の構造図である。
【図12】本発明による熱利用装置の構造図である。
【図13】本発明による熱利用装置の熱利用方法を示す図である。
【図14】従来の潜熱蓄熱利用装置の基本構成を示す図である。
【符号の説明】
1 浴槽
2 給水経路
3 蓄熱体
4 断熱材
5 排水経路
6、7、8、11、19 バルブ
9 湯沸かし器
10 蓄熱槽
12、16、20 ポンプ
13 ヒーター
14、18 循環経路
15 三方弁
17 自動空気抜き弁
21 拡散体
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a heat utilization device having a heat storage tank for storing heat for a certain period of time and a device utilization management method thereof, and more particularly to a heat storage tank, a heat utilization device that effectively uses waste heat of a bathtub, and heat utilization using this device. Regarding the method.
[0002]
[Prior art]
Conventionally, as a method of effectively using waste heat, for example, an exhaust heat recovery system, a method of using exhaust heat for a bath, and a heat storage tank described in Japanese Patent Application Laid-Open No. 2000-13085 have been proposed. FIG. 14 is a circuit configuration diagram showing a conventional exhaust heat recovery system.
[0003]
In FIG. 14, 31 is a fluid circulation path for circulating a fluid, here, a water circulation path for circulating bath water, 32 is a pump provided in the water circulation path 31, and 33 is a warm heat that stores and uses a fluid having a warm temperature therein. In the use tank, here it is a bathtub. For example, a bath water of about 40 ° C. is stored in the bathtub 33 and used for bathing. 34 is a fluid discharge means for discharging the fluid of the hot water use tank (in this case, the bathtub water of the bathtub 33), which is, for example, a drainage section of the bathtub water, and the bathtub water after the exhaust heat recovery is drained from the drainage section 34. . Reference numeral 35 denotes opening / closing means such as a valve for opening / closing hot water introduced into the bathtub 33. Reference numeral 36 denotes a heating means for supplementarily heating water stored in the bathtub 33, for example, a heater. When the valve 35 is opened and hot water is stored in the bathtub 3 and drained from the drainage part 34, the water that is the fluid in the bathtub 33 is exchanged. Reference numerals 33a and 33b denote an outlet and an inlet of bathtub water from the bathtub 33 to the water circulation path 31, respectively.
[0004]
The warm water that is introduced into the bathtub 33 and stored after the valve 35 is opened is stored in the water circulation path 31 through the outlet 33a and the inlet 33b by the pump 32 in a time zone in which bathing is not performed, such as at night. The heat is recovered by the heat exchanger 39 described later on the heat storage unit 44 side.
[0005]
37 is a water circulation path, 38 is a pump provided in the water circulation path 37, 39 is a first heat exchange section, for example, a water-water heat exchanger, 40 is a city water inlet directly connected to a water pipe, and 41 is an internal A heat storage tank having a heat storage material 42 for storing warm heat, for example, a heat storage tank, 42 is a heat storage material filled in the heat storage tank 41, for example, a latent heat storage material, 43 is a hot water supply port (heat supply path), for example, a valve 35, etc. The fluid introduction means for introducing the hot water heated in the heat storage tank 41 into the bathtub 33 is configured through the opening / closing means. For example, water is circulated in the water circulation path 37 as a heat medium.
[0006]
Inside the heat exchanger 39 that is the first heat exchange section, the bathtub water circulating in the water circulation path 31 and the water that is the heat medium circulating in the water circulation path 37 circulate in separate flow paths and can exchange heat with each other. . The water circulating in the water circulation path 37 by the pump 38 absorbs the heat of the bathtub water in the heat exchanger 39, and heats the latent heat storage material 42 filled in the heat storage material container when circulating in the heat storage tank 41. Tell. In this case, heat exchange is performed between water, which is a heat medium circulating in the water circulation path 37 in the heat storage tank 41, and the latent heat storage material 42, and the heat storage tank 41 operates as a second heat exchange unit. That is, the water circulation path 37 constitutes a heat transport means for transmitting the exhaust heat from the bath water that is the fluid of the bath 33 to the latent heat storage material 42 of the heat storage tank 41. In this configuration, there is no circulation path having another heat exchange part between the second heat exchange part and the latent heat storage material 42, and heat is directly exchanged between the water and the latent heat storage material 42. The
[0007]
The heat storage tank 41 is filled with a plurality of heat storage material containers, and a latent heat storage material 42 such as sodium acetate or aluminum alum is enclosed in the heat storage material container. It has a structure in which water and hot water can circulate around the heat storage material container. In addition, the container for heat storage materials is formed with the material which has heat resistance to some extent, such as a polypropylene and polyethylene, for example. The latent heat storage material 42 is a material that stores and dissipates heat by performing a phase change between liquid and solid. The temperature of heat stored in the heat storage tank 41 by the solidification temperature, that is, the temperature of the heat supplied to the heat supply passage 43. Is different.
[0008]
For example, heat can be stored at a temperature of about 40 ° C. for neopentyl glycol, about 50 ° C. for sodium acetate, about 60 ° C. for polyethylene glycol, and about 90 ° C. for aluminum alum. However, in the configuration of the embodiment, the temperature of the water in the water circulation path 37 after the heat exchange with the water-water heat exchanger 39 does not exceed 40 ° C. Therefore, neopentyl glycol is suitable as the latent heat storage material.
[0009]
In the exhaust heat recovery system configured as described above, when the exhaust heat of the hot water use tank 33 is stored in the heat storage tank 41 using the heat exchanger 39 and the heat use tank 33 is used again, Cold water flows into the heat storage tank 41 from the water inlet 40, and the heat in the heat storage tank 41 is transmitted to the cold water. Hot water changed from the cold water is supplied to the hot heat supply path 43, and water having a temperature higher than that of the direct city water stream can be obtained.
[0010]
[Problems to be solved by the invention]
The conventional waste heat recovery system is configured as described above and stores the waste heat in the latent heat storage material, but if the temperature of the heat storage tank falls below the melting point of the latent heat storage material, the heat storage material will solidify without permission. It starts and releases the hot latent heat stored with great care. For this reason, when the heat utilization interval is widened, the stored high-temperature latent heat is likely to be released without permission, which causes the exhaust heat utilization efficiency to deteriorate. Moreover, no ingenuity is seen in the utilization method of waste heat.
[0011]
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a heat utilization device that has high utilization efficiency of exhaust heat and can store heat for a long time and a method for utilizing the heat. To do.
[0012]
[Means for Solving the Problems]
In the heat utilization apparatus according to the present invention, a heat utilization tank for utilizing the heat medium, a first path for passing the heat medium through the heat medium and supplying the heat medium to the heat utilization tank, Of the heat storage tank, the second path for discharging the heat medium from the heat utilization tank, the heat storage tank provided in the middle of the first path and the second path, and the heat storage tank A heat storage body provided therein and filled with a superheatable heat storage material, and heat supply means for supplying heat to the heat medium are provided.
Further, in the heat utilization apparatus according to the present invention, a heat utilization tank for utilizing the heat of the heat medium, a heat storage tank having a heat storage body into which the heat medium is injected from the outside and capable of being supercooled, A first path for passing the medium and transferring the heat medium between the heat utilization tank and the heat storage tank, and a second path for circulating the heat medium from the heat accumulation tank to the heat utilization tank And heat supply means for supplying heat to the heat medium, the first path communicates with the heat utilization tank and the upper part of the heat storage tank, and the second path communicates with the heat utilization tank and the heat storage tank. It communicates at the bottom of the tank.
Further, the heat medium passing through the first path and the second path is isolated in the heat storage tank.
The means for isolating the heat medium passing through the first path and the second path in the heat storage tank is a tube surrounding the heat storage body.
The heat supply means is provided in the middle of the first path extending from the heat storage tank to the heat utilization tank, and supplies heat to a heat medium passing through the first path. .
Further, a third path for circulating the heat medium passing through the heat supply means to the heat storage tank is provided between the heat supply means and the heat storage tank.
The heat storage tank is placed in a combustion exhaust path of a heat supply means for supplying heat to the heat medium.
[0013]
In addition, a phase separation preventive material is added to the supercoolable heat storage material.
Moreover, the said heat storage body consists of several small containers with which the heat storage material which can be supercooled was filled.
Moreover, the said heat storage body is elongate shape, It is characterized by the above-mentioned.
Moreover, the said heat storage tank is provided with the heater which heats the said heat storage body.
The heat storage tank is covered with a heat insulating material.
The supercoolable heat storage material is disodium hydrogen phosphate dodecahydrate.
The supercoolable heat storage material is sodium acetate trihydrate.
The supercoolable heat storage material is sodium sulfate decahydrate.
The supercoolable heat storage material is sodium thiosulfate pentahydrate.
The supercoolable heat storage material is calcium chloride hexahydrate.
[0014]
Moreover, the heat utilization method in the above-described heat utilization apparatus is the heat utilization using the second path when the utilization of the heat utilization tank is completed after the heat is supplied to the heat utilization tank in which the heat medium is stored. After the waste heat of the tank is transported to the heat storage tank and the heat storage material in the heat storage body is melted, the heat storage material is held in a liquid state using the supercooling phenomenon, and the next heat use tank is used. The heat medium passing through the first path is brought into contact with the heat storage body in which waste heat is stored to eliminate supercooling of the heat storage material in the heat storage body, and the heat medium is solidified of the heat storage material generated at that time. It is injected into the heat utilization tank while absorbing heat.
[0015]
Moreover, the heat utilization method in the above-mentioned heat utilization apparatus is the state where the heat medium in the heat utilization tank is retained when the utilization of the heat utilization tank is completed, and the heat utilization tank → the first path → the heat storage tank → the second. The heat medium is circulated in the order of heat path → heat utilization tank, and while maintaining the temperature stratification of the heat medium in the heat utilization tank, the high-temperature waste heat at the top is injected into the heat accumulation body in the heat accumulation tank, After the heat storage material is melted, the heat storage material is held in a liquid state by utilizing a supercooling phenomenon, and when the next heat use tank is used, the heat medium passing through the first path is used as waste heat. The superheat of the heat storage material in the heat storage body is eliminated by making contact with the heat storage body, and the heat medium is injected into the heat utilization tank while absorbing the solidification heat of the heat storage material generated at that time. And
[0016]
Further, in the heat utilization method in the above-described heat utilization apparatus, when the utilization of the heat utilization tank is finished and the waste heat is sufficient to melt the heat storage material, the heat utilization tank is used using the second path. If the waste heat in the heat storage tank is insufficient to melt the heat storage material by transporting the waste heat to the heat storage tank and melting the heat storage material in the heat storage body, the heat storage tank → first path → heat After melting the heat storage material in the heat storage body while supplementing heat to the heat medium in the heat storage tank by circulation of supply means → third path → heat storage tank, the heat storage material remains liquid using the supercooling phenomenon At the time of using the next heat utilization tank, the heat medium passing through the first path is brought into contact with the heat storage body in which waste heat is stored to eliminate the supercooling of the heat storage material in the heat storage body, The heat medium is injected into the heat utilization tank while absorbing the heat of solidification of the heat storage material generated at that time.
[0017]
Further, the heat utilization method in the above-described heat utilization apparatus is a heat storage tank using exhaust heat from a heat supply means that operates to keep the heat utilization tank after heat is supplied to the heat utilization tank in which the heat medium is stored. When the use of the heat utilization tank is finished, the waste heat of the heat utilization tank is transported to the heat accumulation tank using the second path, and the heat storage material in the heat storage body is melted. Is maintained in a liquid state by utilizing the supercooling phenomenon, and when the next heat utilization tank is used, the heat medium passing through the first path is brought into contact with the heat accumulator in which waste heat is accumulated in the heat accumulator. A heat utilization method for a heat utilization device, wherein overheating of the heat storage material is eliminated, and the heat medium is injected into the heat utilization tank while absorbing the solidification heat of the heat storage material generated at that time.
[0018]
Furthermore, in the heat storage tank according to the present invention, a plurality of heat storage bodies that are installed inside the heat storage tank and are filled with a supercoolable heat storage material, and provided below the heat storage body so as to cross the heat storage tank. And a diffusion body having a plurality of heat medium passages, and an inlet and an outlet through which the heat medium provided in the heat storage tank passes with the diffusion body interposed therebetween.
The diffuser is a net.
Further, the diffusion body is a porous body.
In addition, a phase separation preventive material is added to the supercoolable heat storage material.
Moreover, the said heat storage body is elongate shape, It is characterized by the above-mentioned.
Moreover, the said heat storage tank is provided with the heater which heats the said heat storage body.
The heat storage tank is covered with a heat insulating material.
[0019]
Further, the heat utilization method in the heat storage tank of the present invention, in the heat injection process, injecting a heat medium from the inflow port provided in the lower part of the heat storage tank, passing the heat medium through the diffuser, After injecting heat into the heat storage body, the heat medium is caused to flow out from the outlet provided in the upper part of the heat storage tank, and in the heat extraction process, it is lower than the elimination temperature of the supercooling of the heat storage material from the inlet. Injecting the heat medium at a temperature, passing the heat medium through the diffuser, bringing the heat medium into contact with the lower part of the heat accumulator, eliminating the supercooling of the heat accumulator, and the heat medium generated at that time The heat utilization method of the heat storage tank, wherein the heat storage material is discharged from the outlet while absorbing the solidification heat of the heat storage material.
[0020]
Further, the heat storage tank of the heat utilization apparatus according to the present invention has n heat storage tanks J (n is a natural number of 2 or more). i (1 ≦ i ≦ n−1, i: integer) i + 1 The melting point of the heat storage material is the heat storage tank J i Lower than the melting point of the heat storage material, heat storage tank J i To heat storage tank J i + 1 After the heat medium passes through and the waste heat of the heat utilization tank is stored, the heat storage tank J i + 1 To heat storage tank J i The waste heat is extracted by passing through the heat medium in order.
[0021]
[Action]
In the heat utilization apparatus according to the present invention, the temperature of the heat medium introduced into the heat storage tank from the outside through the first path is T1, the temperature of the heat medium introduced from the heat storage tank to the heat utilization tank through the first path is T2, The heat utilization temperature of the heat utilization tank is T3, the temperature of the heat medium discharged from the heat utilization tank to the heat storage tank through the second path is T4, and the temperature of the heat medium discharged from the heat storage tank to the outside through the second path. T5, Tm is the melting point (freezing point) of the supercoolable heat storage material filled in the heat storage body, T is the supercooling degree (difference between the melting point and the nucleation temperature) of the heat storage material, and Tc is the nucleation temperature.
T1 ≦ Tc <Tm <T4 ≦ T3 (1)
T1 <T2 ≦ Tm (2)
Tm ≦ T5 <T4 (3)
Tc = Tm−ΔT (4)
A heat storage material showing Tm or Tc that has the following relationship is applied.
[0022]
When the heat utilization in the heat utilization tank is completed, the heat medium having the temperature T4 is discharged from the heat utilization tank to the heat storage tank through the second path. Since the temperature T4 of the heat medium discharged from the heat utilization tank to the heat storage tank through the second path as expressed by the equation (1) is higher than the melting point Tm of the heat storage material, the heat storage material receives heat from the heat medium. Melt. The temperature T5 of the heat medium discharged from the heat storage tank to the outside through the second path is lower than T4 as shown in the equation (3) as a reaction of melting the heat storage material. Since the heat supply to the heat storage tank is stopped when there is no drainage in the heat use tank, the temperature of the heat storage material decreases due to heat loss to the environment around the heat storage tank. Although the temperature of the heat storage material will eventually fall below the melting point Tm, the heat storage material can be supercooled. Therefore, unless it reaches Tc, it exists as a liquid in a supercooled state in which the heat of fusion is stored.
[0023]
When the heat utilization in the heat utilization tank is performed again, the heat medium having the temperature T1 is introduced from the outside to the heat storage tank through the first path. Since the temperature T1 of the introduced heat medium is lower than the nucleation temperature Tc of the heat storage material as shown in the equation (1), the heat storage material nucleates and starts to solidify. Since the temperature of the heat storage material during solidification becomes the melting point Tm, the heat medium introduced from the outside into the heat storage tank through the first path is heated by the solidification heat of the heat storage material and becomes T2. The temperature T2 of the heat medium introduced from the heat storage tank to the heat utilization tank through the first path is higher than the temperature T1 of the heat medium introduced from the outside to the heat storage tank through the first path as shown in Expression (2). high.
[0024]
When the heat capacity of the heat utilization tank is assumed to be M and the heat medium is assumed to be introduced into the heat utilization tank without going through the heat storage tank of the first path, the amount of heat necessary for raising the temperature of the heat utilization tank is Q1, If the amount of heat required for raising the temperature of the heat utilization tank is Q2 when the heat medium is introduced into the heat utilization tank via the heat storage tank of the first path by the method,
Q1 = M (T3-T1) (5)
Q2 = M (T3-T2) (6)
become. Therefore, if formula (5) and formula (6) are substituted into formula (2) and rearranged,
Q2 <Q1 (7)
It becomes. In other words, a part of the heat that has been discarded without being used from the conventional heat utilization tank is stored by the heat storage function of the heat storage material, and becomes an auxiliary heat source for raising the temperature of the next heat utilization tank. The amount of heat required for the process is reduced.
[0025]
Hydrates are suitable for regenerative heaters that use the supercooling phenomenon and regenerators for regenerators. However, because hydrates are deliquescent or deliquescent and phase separation is severe, it is necessary to realize a regenerative heating body and regenerator without means for sealing the heat storage material over a long period of time and means for preventing phase separation. I can't. The larger the volume of the heat storage material, the more difficult it is to manufacture a container that seals the heat storage material over a long period of time, and the size in the direction of gravity that causes phase separation must increase. It becomes difficult to prevent wind disintegration and phase separation.
[0026]
Furthermore, according to the inventor's experiment, the degree of supercooling, which is the key to this heat storage method, depends on the volume of the heat storage material, and as the volume of the heat storage material increases, the degree of supercooling decreases, and heat storage using the degree of supercooling It turns out that the benefits of. For this reason, the heat storage body of the heat utilization apparatus by this invention accommodates the heat storage material which can be supercooled inside a several small container with a phase-separation inhibitor. As a result, in the heat utilization apparatus of the present invention, the wind storage or deliquescence and phase separation of the heat storage material can be easily prevented for a long period of time, and the heat storage material is maintained in a state with a large degree of supercooling. A large supercooling phenomenon that could not be achieved can be expressed stably over the long term.
[0027]
In the case of a hot water supply type heat utilization device, since a third path for circulating the heat medium passing through the heat supply means to the heat storage tank is provided between the heat supply means and the heat storage tank, When the temperature of waste heat after use of the tank is low and insufficient to melt the heat storage material, the heat storage tank is used by transporting the heat medium in the heat use tank to the heat storage tank and then using the third path. The residual liquid is circulated between the heat supply means and the heat storage tank, and the insufficient heat is supplied to the heat storage material. Or the heat | fever for a shortage is supplied to a thermal storage material by using the heater installed in the thermal storage tank.
[0028]
In the heat utilization apparatus according to the present invention, the first path for transferring the heat medium between the heat utilization tank and the heat storage tank, and the second path for circulating the heat medium from the heat storage tank to the heat utilization tank. Therefore, when the use of the heat utilization tank is completed, the heat medium in the heat utilization tank is held, and the heat utilization tank → the first path → the heat storage tank → the second path. → The heat medium can be circulated in the order of the heat utilization tank, and while maintaining the temperature stratification of the heat medium in the heat utilization tank, the heat storage body is injected from the high-temperature waste heat at the top to the heat accumulation body. Melt the heat storage material inside. In this case, since only the waste heat is recovered from the heat use tank to the heat storage tank, the heat medium having a lowered temperature can be stored in the heat use tank, and can be reused as necessary.
[0029]
In addition, since the heat storage tank according to the present invention includes a diffuser for diffusing the heat medium, the injected heat medium passes through the diffuser and contacts the plurality of heat accumulators evenly. Heat is evenly supplied to As a result, the heat storage materials in the plurality of heat storage bodies are each uniformly melted.
[0030]
In addition, in the heat utilization apparatus according to the present invention, when a plurality of heat storage tanks filled with supercoolable heat storage materials having different melting points are installed and the heat storage material is melted to store heat, the heat storage tank having a high melting point is used. When the heat medium is sequentially passed through the heat storage tank having a low melting point and heat is extracted by solidifying the heat storage material, the heat medium is sequentially passed from the heat storage tank having a high melting point to the heat storage tank having a low melting point.
[0031]
For example, two heat storage tanks are provided, the melting point of the heat storage material of the first heat storage tank is set to S2, the melting point of the heat storage material of the second heat storage tank is set to S4, and introduced from the outside to the first heat storage tank through the first path. The temperature of the heat medium to be introduced is X1, the temperature of the heat medium introduced from the first heat storage tank to the second heat storage tank through the first path is X2, and the heat utilization tank from the second heat storage tank through the first path X3 is the temperature of the heat medium introduced into the heat source, X4 is the heat utilization temperature of the heat utilization tank, and X5 is the temperature of the heat medium discharged from the heat utilization tank to the second heat storage tank through the second path. The temperature of the heat medium discharged from the second heat storage tank to the first heat storage tank through X6, the temperature of the heat medium discharged from the first heat storage tank through the second path to X7, the first heat storage If the nucleation temperature of the heat storage material of the tank is S1, and the nucleation temperature of the heat storage material of the second heat storage tank is S3,
X1 ≦ S1 <S2 (8)
X1 <X2 ≦ S3 <S4 (9)
X2 <X3 ≦ X4 (10)
S2 <S4 <X5 ≦ X4 (11)
S2 <X6 <X5 (12)
X7 <X6 (13)
A heat storage material showing S1, S2, S3, and S4 having the relationship is applied.
[0032]
When the heat use in the heat use tank is completed, the heat medium having the temperature X5 is discharged from the heat use tank to the second heat storage tank through the second path. Since the temperature X5 of the heat medium discharged from the heat utilization tank to the second heat storage tank through the second path as expressed by Expression (11) is higher than the melting point S4 of the heat storage material of the second heat storage tank, the heat storage material Melts in response to heat from the heat medium. The temperature X6 of the heat medium discharged from the second heat storage tank to the first heat storage tank through the second path is lower than X5 as a reaction obtained by melting the heat storage material as shown in Expression (12). Since the temperature X6 of the heat medium discharged from the second heat storage tank to the first heat storage tank through the second path as in the equation (12) is higher than the melting point S2 of the heat storage material of the first heat storage tank, The heat storage material melts by receiving heat from the heat medium.
[0033]
The temperature X7 of the heat medium discharged from the first heat storage tank to the outside through the second path is lower than X6 as shown in the equation (13) as a reaction of melting the heat storage material. Since the heat supply to each heat storage tank is stopped when there is no drainage of the heat use tank, the temperature of each heat storage material decreases due to heat loss to the environment around the heat storage tank. The temperature of each heat storage material will eventually fall below the melting points S2 and S4, but since each heat storage material can be supercooled, unless it reaches S1 and S3 respectively, it exists as a liquid in the supercooled state in which the heat of fusion is stored. .
[0034]
When the heat utilization in the heat utilization tank is performed again, the heat medium having the temperature X1 is introduced from the outside to the first heat storage tank through the first path. Since the temperature X1 of the introduced heat medium is lower than the nucleation temperature S1 of the heat storage material of the first heat storage tank as shown in the equation (8), the heat storage material nucleates and starts to solidify. Since the temperature of the heat storage material during solidification becomes the melting point S2, the heat medium introduced from the outside into the first heat storage tank through the first path is heated by the heat of solidification of the heat storage material and becomes X2. A heat medium having a temperature X2 is introduced from the first heat storage tank to the second heat storage tank through the first path. Since the temperature X2 of the introduced heat medium is lower than the nucleation temperature S3 of the heat storage material of the second heat storage tank as shown in the equation (9), the heat storage material nucleates and starts to solidify.
[0035]
Since the temperature of the heat storage material during solidification becomes the melting point S4, the heat medium introduced from the first heat storage tank to the second heat storage tank through the first path is heated by the solidification heat of the heat storage material and becomes X3. The temperature X3 of the heat medium introduced from the second heat storage tank to the heat utilization tank through the first path is changed from the first heat storage tank to the second heat storage tank through the first path as shown in Expression (10). It is higher than the temperature X2 of the introduced heat medium. When there is no first heat storage tank, the temperature of the heat medium introduced into the second heat storage tank from the outside is X1, whereas when there is the first heat storage tank, the temperature from the first heat storage tank to the second The temperature of the heat medium introduced into the heat storage tank is X2, which is higher than X1.
[0036]
Therefore, in the case where there is a first heat storage tank than in the case where there is no first heat storage tank, the temperature of the heat medium heated by the second heat storage tank and introduced into the heat utilization tank becomes higher. As a result, the amount of heat required for raising the temperature of the heat utilization tank is reduced. In other words, by preparing multiple heat storage tanks and connecting them in series with respect to the melting point of the heat storage material, waste heat from heat utilization tanks that have been discarded without being used is more effective than when a single heat storage tank is used. Collected and used.
[0037]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments according to the present invention will be described below with reference to the drawings based on examples.
Example 1
FIG. 1 is a structural diagram of a heat utilization apparatus according to the present invention. In the figure, 1 is a bathtub, 2 is a water supply path for supplying water as a heat medium to the bathtub 1, 3 is a heat storage body for storing waste heat from the bathtub 1 provided in the heat storage tank 10, The inside is filled with a heat storage material that can be supercooled. 4 is a heat insulating material provided so as to cover the heat storage tank 10. 5 is a drainage path for transporting waste hot water from the bathtub 1 to the heat storage body 3, 6 is a valve provided in the water supply path 2, and 7 and 8 are valves provided in the drainage path 5. A water heater 9 serves as a heat source for supplying heat to the water in the bathtub 1. The heat storage tank 10 is disposed at a position lower than the bathtub 1.
[0038]
Thereby, drainage of the bathtub 1 is performed by free fall without requiring external power. Since a constant supply water pressure is applied to the water supply side before reaching the valve 6, it is not necessary to provide a special external power for this embodiment even in the water supply. In the water supply path 2, a water inlet a is provided in the lower part of the heat storage tank 10, a water outlet b is provided in the upper part of the heat storage tank 10, and a water inlet c is provided in the lower part of the heat storage tank 10 in the drainage path 5. A water outlet d is provided in the upper part of the tank 10. By setting it as such a positional relationship, the area which contacts the thermal storage body 3 can be maximized while a heat medium flows.
[0039]
In addition, the above-described supercoolable heat storage material can be used by selecting various substances according to the required temperature and the degree of supercooling from the substances having a remarkable supercooling phenomenon. The degree of supercooling is, for example, disodium hydrogen phosphate dodecahydrate (Na 2 HPO 4 ・ 12H 2 In O), the freezing point is about 36 ° C., and the temperature at which crystal nuclei are generated is about 0 ° C. to 36 ° C., and sodium acetate trihydrate (CH 3 COONa 3H 2 In O), the freezing point is about 58 ° C., and the temperature at which crystal nuclei are generated is known to be about −20 ° C. to 58 ° C. (the nucleation temperature of the heat storage material mainly depends on the volume of the heat storage material). And change).
[0040]
Also, sodium thiosulfate pentahydrate (Na 2 S 2 O 2 ・ 5H 2 O, freezing point about 48 ° C), sodium carbonate decahydrate (Na 2 CO 3 ・ 10H 2 O, freezing point about 33 ° C), sodium sulfate decahydrate (Na 2 SO 4 ・ 10H 2 O, freezing point about 32 ° C), calcium chloride hexahydrate (CaCl 2 ・ 6H 2 O, freezing point of about 29 ° C.) and the like also show a large degree of supercooling of 10 ° C. or more depending on volume.
[0041]
Other substances with a remarkable supercooling phenomenon include magnesium chloride hexahydrate (MgCl 2 ・ 6H 2 O, freezing point 117 ° C.), strontium chloride hexahydrate (SrCl 2 ・ 6H 2 O, 115 ° C), aluminum sulfate decahydrate (Al 2 (SO 4 ) 3 ・ 10H 2 O, 112 ° C), aluminum sulfate / ammonium dodecahydrate (NH 4 Al (SO 4 ) 2 ・ 12H 2 O, 94 ° C), potassium sulfate, aluminum, dodecahydrate (KAl (SO 4 ) 2 ・ 12H 2 O, 93 ° C.), magnesium nitrate hexahydrate (Mg (NO 3 ) 2 ・ 6H 2 O, 93 ° C), nickel nitrate (II) hexahydrate (Ni (NO 3 ) 2 ・ 6H 2 O, 57 ° C), calcium carbonate hexahydrate (CaCO 3 ・ 6H 2 O, 29 ° C.), and potassium fluoride tetrahydrate (KF · 4H) 2 Hydrates such as O, 19 ° C), mannitol (HOCH 2 (CHOH) 4 CH 2 OH, 167 ° C) and erythritol (HOCH 2 (CHOH) 2 CH 2 Polyhydric alcohol such as OH (122 ° C.) can be mentioned as a relatively safe substance for the human body, but is not limited thereto.
[0042]
The operation of the heat utilization apparatus configured as described above will be described. FIG. 2 shows temporal changes in the temperature of the heat storage material and water in the heat utilization device. In the first cycle, first, water as a heat medium is supplied to the bathtub 1 from the water supply path 2 passing through the heat storage tank 10. In this case, the valve 6 is opened and the valves 7 and 8 are closed. At this time (time A1), the heat storage body 3 is solid and has the same temperature as the water temperature. Next, when heat is applied to the bathtub from the water heater 9, and the water is heated, the water temperature rises to a temperature at which bathing is possible (time A2), and bathing is performed. After bathing, when the valves 7 and 8 are opened, the valve 6 is closed, and the hot water in the bathtub 1 is moved from the drainage path 5 to the heat storage tank 10, the hot water is drained after contacting the heat storage body 3. 3, the temperature of the heat storage material capable of being supercooled gradually increases in the solid phase (time A3 to A4). When the melting point of the heat storage material is reached at time A4, the heat storage material starts to melt. The heat storage material during melting has a constant temperature. Melting is complete at time A5.
[0043]
After time A5, the temperature of the heat storage material gradually increases while remaining in the liquid phase, and approaches the temperature of the waste water. When the drainage ends at time A6, the heat supply to the heat storage tank 10 is lost, so the temperature of the heat storage material decreases due to heat loss to the environment around the heat storage tank 10. The temperature of the heat storage material eventually reaches the melting point of the heat storage material, but since the heat storage material can be supercooled, it does not start to solidify immediately and remains in the liquid phase while releasing sensible heat to a temperature lower than the melting point. Go down. A heat storage material capable of being supercooled so that this supercooled state can be maintained until the next cycle, that is, the next water supply is selected or insulated. That is, heat insulation is performed so that the temperature of the heat storage material during supercooling does not fall below the nucleation temperature. In the above operation, if the temperature of the hot water after use of the bathtub is below the melting point of the heat storage material, immediately use the water heater 9 to make the temperature of the hot water exceed the melting point so that all the heat storage material is melted. .
[0044]
When water supplied to the heat storage tank 10 from the water supply path 2 is supplied to the bathtub 1 through the water supply in the next cycle, the heat storage body 3 is cooled by the supplied low-temperature water, Nucleation of heat storage material during supercooling is promoted. That is, some molecules of the heat storage material are oriented, crystal nuclei are generated, crystals grow in the heat storage material, and solidification starts. In this case, a heat storage material having a nucleation temperature exceeding the feed water temperature is selected as a solidification start condition. The temperature of tap water varies within a range of about 5 ° C to 25 ° C depending on the season, but for example, the nucleation temperature of disodium hydrogen phosphate dodecahydrate is usually about 20-30 ° C, It can be applied as a heat storage material of the present invention.
[0045]
When solidification is started, the potential energy held as the supercooled liquid is released, so that the kinetic energy of the heat storage material atoms or molecules increases and the temperature of the heat storage material recovers to the freezing point (time B0). In the solidification process, the heat storage material undergoes a phase change from a liquid phase to a solid phase while releasing latent heat at a constant temperature, that is, a melting point (freezing point). At this time, the water that is continuously injected moves to the bathtub 1 while absorbing the latent heat released by the heat storage material, so that the water temperature rises. When the solidification of the heat storage material is completed at time B1, the temperature of the heat storage material decreases while releasing solid sensible heat and approaches the water supply temperature. When the water supply to the bathtub 1 is completed at the time B2, the water heating and the subsequent steps are performed as in the first cycle. By repeating this, the waste heat of warm water is effectively used.
[0046]
To the heat storage material, clay, polysaccharides, paste, animal and plant fibers, liquid absorbent resin, and the like are added as phase separation preventing materials. Polysaccharides and pastes include almond gum, aeromonas gum, acacia gum, azotobacter vinelanzie gum, amased gum, gum arabic, arabinogalactan, alginic acid, sodium alginate, aloe vera extract, welan gum, erwinia mitsuen cis gum, elemi resin, Enterobacter shimanas gum, Enterobacter gum, okra extract, curdlan, seaweed cellulose, cassia gum, casein, casein sodium, brown algae extract, gati gum, carrageenan, caraya gum, carboxymethylcellulose calcium, carboxymethylcellulose sodium, carob bean gum, xanthan gum, kidachi aloe extract , Chitin, chitosan, guar gum, guaiac resin, stearyl citrate, glucosamine, gluten, Ruthen degradation product, kelp extract, yeast cell membrane, kelp mucilage, psyllium seed gum, psyllium husk, acid casein, xanthan gum, gellan gum, sclerogum, sodium stearyl lactate, sesbania gum, cough gum, calcium fibrinoglycolate, fibrin glycol Sodium acid, tamarind gum, tara gum, danmar resin, dextran, sodium starch glycolate, sodium starch phosphate ester, tragacanth gum, triacanthus gum, troro aoi, natto fungus mucilage, natto fungus gum, sodium lactate, microfibrous cellulose, Hydroxypropyl methyl fibrin, hydroxypropyl fibrin, sodium pyrophosphate, tetrasodium pyrophosphate, sodium dihydrogen pyrophosphate, far celerane, glucose polysaccharide, fructose , Pullulan, pectin, red algae extract, ammonium phosphatidate, sodium polyacrylate, polyoxyethylene (20) sorbitan tristearate, polyoxyethylene (20) sorbitan monooleate, polyoxyethylene (20) sorbitan monostea Rate, polyoxyethylene (20) sorbitan monopalmitate, polyoxyethylene (20) sorbitan monolaurate, polyoxyethylene (40) stearate, polyoxyethylene (8) stearate, polysorbate (20), polysorbate 40, Polysorbate 65, polysorbate 80, polyvinylpyrrolidone, macrohomopsis gum, mannan, methylcellulose, rhamzan gum, levan, rennet casein, locust bean gum, CMC, etc. Various things can be used.
[0047]
For animal and plant fibers, feathers, wool, cotton, and synthetic fibers can be used. The liquid-absorbent resin includes starch-acrylonitrile graft polymer hydrolyzate, starch-acrylate cross-linked product, carboxymethyl cellulose cross-linked product, methyl acrylate-vinyl acetate copolymer saponified product, and acrylic acid polymer salt cross-linked product. Can be used. Thereby, it becomes possible to repeatedly use the heat storage material more stably.
[0048]
It is preferable that the container of the heat storage body 3 is as small as possible because it can prevent the long-term effects of wind storage or deliquescence and phase separation of the heat storage material and can stably maintain a large degree of supercooling. For example, when the volume of the container is about 10 mL with disodium hydrogenphosphate dodecahydrate, the degree of supercooling is about 15 ° C., but the degree of supercooling when about 1 L is about 10 ° C. The practical volume of the container is about several liters or less.
[0049]
Although the shape of the container of the heat storage body 3 is arbitrary, if it is made into an elongate shape like FIG. 1, the cold water which flows into the heat storage tank 10 from the water supply path 2 and all the heat storage bodies 3 will be made to contact with the inflow temperature of cold water. be able to. That is, it is convenient to make the heat storage bodies 3 have an elongated shape when promoting uniform nucleation of the heat storage bodies 3. In FIG. 1, the heat storage body 3 is installed upright. However, even if the heat storage tank 10 rotates and the heat storage body 3 is placed in a posture lying down sideways or obliquely, the heat medium stores the heat as in FIG. 1. If the arrangement of the water inlet / outlet that moves in the longitudinal direction of the heat storage body 3 while filling the tank 10 is adopted, the same function as in the present embodiment can be realized.
[0050]
In the heat utilization apparatus according to the present invention, the heat storage body 3 filled with a supercoolable heat storage material is installed and the means of nucleation is used as a heat medium, so that the waste heat can be generated without using power and with a simple structure. Effective use is possible. In addition, since the heat can be reliably stored by maintaining the supercooled state, the heat can be stored for a long time, and the low-temperature waste heat can be effectively used. Moreover, uniform nucleation can be promoted by providing a plurality of elongated shapes of the heat storage body 3.
[0051]
(Example 2)
FIG. 3 is a structural diagram of another heat utilization apparatus according to the present invention. In the figure, 1 to 10 are the same as or equivalent to those in FIG. 11 is a valve provided in the water supply path 2, and 12 is a pump provided in the drainage path 5. In this embodiment, the principle of heat transfer is the same as that of the first embodiment. In the first embodiment, free fall is used for drainage from the bathtub 1 and external power for drainage is unnecessary. However, in this embodiment, the pump 12 is provided, but pump power is required, but the bathtub 1 and the heat storage. The positional relationship of the tank 10 can be arbitrarily set. For example, the heat storage tank 10 can be installed in a free space at a high place in the bathroom, or can be installed in a free space in a separate room from the bathroom.
[0052]
Example 3
FIG. 4 is a structural diagram of another heat utilization apparatus according to the present invention. In the figure, 1 to 10 are the same as or equivalent to those in FIG. Reference numeral 13 denotes a heater installed inside the heat storage tank 10. The energy source of the heater can be freely selected from heat, electricity, and light.
[0053]
The present embodiment shows a hot water supply type heat utilization device. That is, it is a system that supplies water after heating water, which is a heat medium, to the bathtub 1, and since the water supply path 2 is installed so as to pass through the water heater 9, hot water is supplied from the water supply path 2 to the bathtub 1. . Since the principle of the invention is the same as that of the first embodiment, the description thereof is omitted. If the temperature of the waste heat in the bathtub 1 is not sufficiently higher than the melting point or the temperature is high, the amount of waste water is small and the waste heat is insufficient and the heat storage material cannot be completely melted. By heating the heat storage material, the heat storage material can be completely melted. Furthermore, when there is a possibility that the heat storage material may fall below the nucleation temperature by the time when the nucleation is scheduled due to an unexpected decrease in temperature, it is possible to avoid unnecessary nucleation by heating the heat storage body 3 with the heater 13. it can.
[0054]
(Example 4)
FIG. 5 is a structural diagram of another heat utilization apparatus according to the present invention. In the figure, 1 to 10 are the same as or equivalent to those in FIG. 14 is a circulation path provided so that the heat medium can be circulated between the heat storage tank 10 and the water heater 9, 15 is a three-way valve for switching the path, and 16 is a pump for circulating the heat medium. Reference numeral 17 denotes an automatic air vent valve provided in the circulation path 14. This invention implement | achieves the method of supplementing the heat | fever which is insufficient using the water heater 9, when the temperature of the waste heat of the bathtub 1 does not exceed melting | fusing point of a thermal storage material in the hot-water supply-type heat utilization apparatus. When the waste heat is sufficient, the description is omitted because it is not different from the first embodiment. However, the direction of the three-way valve closes the circulation path 14 so that the heat medium passing through the water supply path 2 does not pass through the circulation path 14 during water supply.
[0055]
Now, when the temperature of the waste heat in the bathtub 1 is not sufficiently higher than the melting point or the temperature is high, even if the amount of drainage is small, the waste heat is insufficient and the heat storage material cannot be completely melted. Using the path 14, the heat storage material is completely melted. That is, after the warm water is drained, the valve 7 and the valve 8 of the drainage path 5 are first closed, and the three-way valve 15 is set so that the three-way flow can pass therethrough. Next, the valve 6 of the water supply path 2 is opened. After the water supply path 2 and the circulation path 14 are filled with water, the valve 6 is closed. Next, the path from the heat storage tank 10 to the three-way valve 15 and the circulation path 14 are connected to the three-way valve 15 in the water supply path 2, and the path from the three-way valve to the bathtub-side outlet of the water supply path 2 in the water supply path 2 is closed. Set to be.
[0056]
Here, if the water heater 9 and the pump 16 are operated, heat is added to the heat storage material. When the heat storage material is completely melted, the water heater 9 and the pump 16 are stopped, and the valve 8 is opened to drain water. The above operation compensates for the shortage of waste heat. In this embodiment, the water supply path 2 and the circulation path 14 are filled with water by newly supplying water, but the water supply path 2 and the circulation path 14 are filled with high temperature drainage from the bathtub 1 by a similar operation. It is also possible to improve energy saving.
[0057]
(Example 5)
FIG. 6 is a structural diagram of another heat utilization apparatus according to the present invention. In the figure, 1 to 6 and 8 to 10 are the same as or correspond to those in FIG. 18 is a circulation path provided so that the heat medium can circulate between the bathtub 1 and the heat storage tank 10, 19 is a valve provided in the circulation path 18, and 20 is a pump provided in the circulation path 18. .
[0058]
In the heat utilization apparatus configured as described above, the waste heat is transported to the heat storage tank 10 before draining, so that the drainage can be effectively used for washing or watering. That is, the valve 19 is opened after the use of the bathtub 1, the hot water is moved from the water inlet c to the heat storage tank 10 using the pump 20, and passes through the water outlet d to be returned to the bathtub 1. In this way, heat is transferred to the heat storage body 3 while the waste water is circulating through the circulation path 18, and the heat storage is completed. The waste water whose temperature has decreased after the completion of heat storage is used for washing and watering, and the rest is discharged from the drainage path 5. Since water is circulated so as to take water from the hot water at the upper part of the bathtub 1 and return to the lower part of the bathtub 1, the heat of the high temperature layer at the upper part of the bathtub 1 can be reduced without breaking the temperature stratification naturally formed in the bathtub 1. It can be used effectively for melting the heat storage material.
[0059]
(Example 6)
In the above-described Examples 1 to 5, if the pipe surrounding the heat storage body 3 is the drainage path 5 as shown in FIG. 7, the water supply and drainage are the same in the heat storage tank 10. It is possible to prevent the water supply channel 2 and the heat storage tank 10 from being contaminated with waste water without passing through the space.
In addition, in the heat storage tank 10 shown in FIGS. 1 to 6, an alternative function is to clean the inside of the heat storage tank with the first few liters of water introduced into the heat storage tank 10 during water supply, and then discard it. It can also be realized.
An alternative function can also be realized by attaching a filter to the outlet b of the water supply path 2 or the inlet c of the drainage path 5.
[0060]
(Example 7)
8 and 9 show cross-sectional structural views of the heat storage tank 10 according to the present invention, respectively. In the figure, 2 to 5 and 10 are the same as or equivalent to those shown in FIG. Reference numeral 21 denotes a diffuser provided so as to cross the inside of the heat storage tank 10, which has a surface having a large number of holes, and uniformizes the heat medium flowing in from the path 5 over the entire cross section of the heat storage tank 1. The diffuser 21 can take various materials and structures such as a net-like plate such as a wire net, a plastic net, or a punching metal, or a porous body such as a sponge. The heat storage tank shown in FIG. 8 shows a case where the heat storage tank 3 is elongated in the vertical direction, and the heat storage tank shown in FIG. 9 shows a case where the heat storage tank 3 is elongated in the horizontal direction.
[0061]
Next, operation | movement of the thermal storage tank comprised as mentioned above is demonstrated using the arrangement | positioning of FIG. 8 as an example. For convenience of explanation, the upper region of the heat storage tank 10 separated by the diffuser 21 is referred to as region A, and the lower region is referred to as region B. In FIG. 9, the basic operation is the same. First, in the process of injecting heat, that is, in the process of inducing bath drainage to the heat storage tank 10, the heat medium at a temperature equal to or higher than the melting point of the latent heat storage material passes through the inlet c → region B → region A → outlet d in this order. And melt the heat storage material. At this time, the heat medium flowing into the region B passes through the diffuser 21 so that the flow is uniform over the entire cross section of the heat storage tank, and the heat medium comes into contact with the heat storage body 3 as a whole. It is possible to store heat well.
[0062]
In the heat preservation process, the temperature of the heat storage material gradually decreases under the influence of the external environment and eventually reaches the freezing point, but solidification does not start due to a supercooling phenomenon. The temperature of the heat storage material is further lowered to a temperature lower than the freezing point, but it can exist as a liquid. The shape of the heat storage tank 10 and the heat insulating material constituting the heat storage tank 10 are designed so that the heat storage material does not fall below the recrystallization temperature during the storage period, so the temperature of the heat storage material cuts the freezing point and recrystallizes. It approaches temperature but does not recrystallize within the storage period.
[0063]
In the heat extraction process, that is, the process of supplying water to the bath, cold water is passed in the order of inflow port a → region B → region A → outlet b, and the temperature of a part of the heat storage material is lowered to the recrystallization temperature. To induce clotting. At this time, since the cold water injected into the region B passes through the diffuser 21 and reaches the region A, the inflowing cold water is uniformly diffused from the lower part of the heat storage tank 10 to the entire cross section of the heat storage tank 10. That is, cold water is uniformly in contact with the lower part of the heat storage body 3, and nucleation of the heat storage material being supercooled is urged uniformly over time.
[0064]
In the heat storage tank shown in FIG. 8, stratification of the temperature of the heat medium can be used, and there is an advantage that it is easy to nucleate from the lower side of the heat storage body 3. In the heat storage tank shown in FIG. 9, since the dimension in the direction of gravity is small, it is more advantageous than FIG. 8 in terms of preventing phase separation of the heat storage material. In the present embodiment, the case where the heat storage tank of the present invention is used for bath waste heat has been described, but it goes without saying that the heat storage tank can be directly connected to a heat source and used for various purposes as shown in FIG.
[0065]
Further, as described in the first embodiment, the shape of the heat storage body is preferably an elongated shape in order to promote nucleation. In the heat storage device of the present invention, the hot water flowing in for heat storage and the cold heat for promoting the nucleation of the supercooled heat storage material are uniformly diffused. The action can be effectively used, and the heat energy can be efficiently recovered and used.
[0066]
(Example 8)
11 and 12 show an example in which the heat storage tank 10 is housed in the water heater 9. Thereby, the compact heat storage type water heater integrated with the water heater 9 can be provided. In particular, in the case of FIG. 12, the heat storage tank can be exposed to the combustion exhaust path of the water heater 9, so the heat storage tank is preheated with waste heat at the time of reheating, and a larger amount of heat storage material is more stable than in the case of FIG. Therefore, it can be stored under cooling and more heat can be recovered and utilized. In the case of FIG. 12, it is effective to provide the heat insulating material 4 in a housing that houses the water heater 9 and the heat storage tank 3.
[0067]
Example 9
Although the above-mentioned embodiment was a heat utilization device using one kind of heat storage material, as shown in FIG. 13, a heat storage tank filled with a plurality of supercoolable heat storage materials was prepared, and heat storage with a high melting point was performed. A heat cascade can be formed by combining in order from a heat storage tank filled with a material to a heat storage tank filled with a heat storage material having a low melting point. In FIG. 13, the waste water of about 40 ° C. from the bath 1 is in the order of the heat storage material having the highest melting point, that is, disodium hydrogen phosphate / decahydrate (freezing point 36 ° C.), sodium sulfate / decahydrate (freezing point 32). ° C) and calcium chloride hexahydrate (freezing point 29 ° C) in this order, the waste heat can be stored in each heat storage material.
[0068]
Also, when encouraging nucleation, the heat storage tank filled with the low-melting-point heat storage material is sequentially switched to the heat-storage tank filled with the high-melting-point heat storage material, that is, calcium chloride / hexahydrate, sodium sulfate / dehydrated water. By passing cold water in the order of the Japanese product, disodium hydrogen phosphate and dodecahydrate, nucleation of each heat storage material can be promoted, and the latent heat from the heat storage material can be used effectively.
[0069]
As described above, by combining a plurality of supercoolable heat storage materials, it is possible to further increase the effective utilization of waste heat. In this example, bath water is used as waste heat, and heat storage material that can be supercooled is disodium hydrogen phosphate / decahydrate, sodium sulfate / decahydrate, calcium chloride / hexahydrate. However, the present invention is not limited to these in order to use the principle described above.
[0070]
For example, for a heat utilization device in which the heat utilization temperature of the heat utilization tank is 200 ° C. and the supply temperature of the heat medium is 10 ° C., mannitol (freezing point 167 ° C.) → magnesium chloride hexahydrate (117) ° C) → Aluminum sulfate / ammonium / decahydrate (94 ° C.) → sodium acetate / trihydrate (58 ° C.) → sodium thiosulfate / pentahydrate (48 ° C. freezing point) → dihydrogen phosphate Sodium twelve hydrate (36 ° C) → calcium chloride hexahydrate (29 ° C) in order of heat recovery from waste heat and heat storage using supercooling phenomenon. In the reverse order, the heat medium is passed and heated, so that more heat can be recovered and used than when a single heat storage material is used.
[0071]
【The invention's effect】
According to the present invention having the above configuration, the following effects are produced.
(1) In the heat utilization apparatus according to the present invention, a heat storage body in which a heat storage material capable of being supercooled is filled in a first path for supplying a heat medium to the heat utilization tank, and hot water in the heat utilization tank. And a second path for transporting the heat storage body to the heat storage body, the waste heat of the heat utilization tank can be stored in the heat storage material in the heat storage body in a supercooled state, and it is desirable to use a heat medium Since nucleation can be easily promoted in time, heat can be stored for a long time, and effective storage and use of waste heat can be realized.
(2) Further, since the degree of supercooling can be controlled by changing the shape of the heat storage body, it is possible to cope with various conditions such as the external environment and water temperature. In addition, the conditions of the external environment can be met by controlling the material and thickness of the heat insulating material.
(3) Furthermore, when a phase separation preventing material is added to a heat storage material that can be supercooled, phase separation of the heat storage material can be prevented in the long term, and the heat storage material can be used stably and repeatedly.
[0072]
(4) Further, in the hot water supply type heat utilization apparatus according to the present invention, when the waste heat is insufficient to completely melt the heat storage material, the heat medium is stored with the heat supply means using the third path. By circulating between the tanks and supplying the insufficient amount of heat to the heat storage material, the heat storage material can be completely melted and the supercooling phenomenon can be used effectively.
(5) In addition, in the hot water supply type heat utilization apparatus according to the present invention, when the waste heat is insufficient to completely melt the heat storage material, a shortage of heat is supplied to the heat storage material using a heater. As a result, the heat storage material can be completely melted and the supercooling phenomenon can be used effectively.
(6) Moreover, in the hot water supply type heat utilization apparatus according to the present invention, a large amount of heat storage material is melted by preheating the heat storage tank with combustion waste heat at the time of hot water supply or reheating, and the supercooling phenomenon is effectively utilized. It becomes possible to do.
[0073]
(7) Moreover, in the heat utilization apparatus by this invention, in order to circulate a heat medium to the heat utilization tank from the 1st path | route for transferring a heat medium between a heat utilization tank and a thermal storage tank, and a thermal storage tank Since the heat medium can be circulated between the heat utilization tank and the heat storage tank and the used heat medium is held in the heat utilization tank, It becomes possible to move the waste heat to the heat storage material in the heat storage tank. Thereby, the heat medium after waste heat collection | recovery can be extracted from a heat utilization tank, and can be utilized for another use.
(8) Since the first path communicates with the upper part of the heat utilization tank and the heat storage tank, and the second path communicates with the lower part of the heat utilization tank and the heat storage tank, the heat medium is circulated. When this is done, high temperature heat can be efficiently transferred to the heat storage tank while maintaining the temperature stratification of the heat medium in the heat storage tank.
[0074]
(9) Moreover, in the heat storage tank by this invention, since the diffuser is provided, a heat carrier can be made to contact a heat storage body uniformly, and the nucleation operation by cold water can be promoted effectively.
(10) Moreover, in the heat utilization apparatus according to the present invention, a plurality of heat storage tanks filled with supercoolable heat storage materials having different melting points are prepared, and the heat medium is passed through the heat storage materials in descending order when melting, By passing the heat medium in ascending order of the melting point of the heat storage material at the time of recovery, it is possible to configure a heat cascade and further increase the effective utilization of waste heat.
[Brief description of the drawings]
FIG. 1 is a structural diagram of a heat utilization device according to the present invention.
FIG. 2 is a diagram showing temporal changes in temperature of a heat medium or a heat storage material of a heat utilization device according to the present invention.
FIG. 3 is a structural diagram of a heat utilization device according to the present invention.
FIG. 4 is a structural diagram of a heat utilization device according to the present invention.
FIG. 5 is a structural diagram of a heat utilization device according to the present invention.
FIG. 6 is a structural diagram of a heat utilization device according to the present invention.
FIG. 7 is a structural diagram of a heat storage tank according to the present invention.
FIG. 8 is a structural diagram of a heat storage tank according to the present invention.
FIG. 9 is a structural diagram of a heat storage tank according to the present invention.
FIG. 10 is a structural diagram of a heat utilization device according to the present invention.
FIG. 11 is a structural diagram of a heat utilization device according to the present invention.
FIG. 12 is a structural diagram of a heat utilization device according to the present invention.
FIG. 13 is a diagram showing a heat utilization method of the heat utilization apparatus according to the present invention.
FIG. 14 is a diagram showing a basic configuration of a conventional latent heat storage utilization device.
[Explanation of symbols]
1 Bathtub
2 water supply route
3 thermal storage
4 Insulation
5 Drainage route
6, 7, 8, 11, 19 Valve
9 Water heater
10 Thermal storage tank
12, 16, 20 Pump
13 Heater
14, 18 Circulation route
15 Three-way valve
17 Automatic air vent valve
21 Diffuser

Claims (30)

熱媒体の熱を利用するための熱利用槽と、前記熱利用槽に熱媒体を供給するための第1の経路と、前記熱利用槽から熱媒体を排出するための第2の経路と、前記第1の経路及び前記第2の経路の途中に設けられた蓄熱槽と、前記蓄熱槽の中に設けられ、過冷却中の自発的発核温度が前記第1の経路を通じて外部から前記蓄熱槽へ熱媒体が導入される直前までの蓄熱槽の温度よりも低く、かつ該自発的発核温度が前記第1の経路を通じて外部から前記蓄熱槽へ導入される熱媒体の温度以上である過冷却可能な蓄熱材の充填された蓄熱体と、前記熱媒体に熱を供給するための熱供給手段とを備えたことを特徴とする熱利用装置。A heat utilization tank for utilizing the heat of the heat medium; a first path for supplying the heat medium to the heat utilization tank; a second path for discharging the heat medium from the heat utilization tank; A heat storage tank provided in the middle of the first path and the second path, and a spontaneous nucleation temperature during supercooling provided in the heat storage tank from the outside through the first path. The temperature is lower than the temperature of the heat storage tank until just before the heat medium is introduced into the tank, and the spontaneous nucleation temperature is equal to or higher than the temperature of the heat medium introduced into the heat storage tank from the outside through the first path. A heat utilization apparatus comprising: a heat storage body filled with a heat storage material capable of being cooled; and heat supply means for supplying heat to the heat medium. 熱媒体の熱を利用するための熱利用槽と、外部から熱媒体が注入され、過冷却可能な蓄熱体を備えた蓄熱槽と、前記熱利用槽と前記蓄熱槽との間で熱媒体を授受するための第1の経路と、前記蓄熱槽から前記熱利用槽に熱媒体を循環させるための第2の経路と、前記熱媒体に熱を供給するための熱供給手段とを備え、前記第1の経路は前記熱利用槽と蓄熱槽の上部で連通し、前記第2の経路は前記熱利用槽と蓄熱槽の下部で連通し、前記蓄熱体には過冷却中の自発的発核温度が前記第1の経路を通じて外部から前記蓄熱槽へ熱媒体が導入される直前までの蓄熱槽の温度よりも低く、かつ該自発的発核温度が前記第1の経路を通じて外部から前記蓄熱槽へ導入される熱媒体の温度以上である蓄熱材が充填されていることを特徴とする熱利用装置。A heat utilization tank for utilizing the heat of the heat medium, a heat storage tank provided with a heat storage body into which the heat medium is injected from the outside and capable of supercooling, and a heat medium between the heat utilization tank and the heat storage tank. A first path for transferring and receiving, a second path for circulating a heat medium from the heat storage tank to the heat utilization tank, and a heat supply means for supplying heat to the heat medium, first path communicates with the upper portion of the thermal storage tank and the heat utilization vessel, said second path to communicate with the lower portion of the heat storage tank and the heat utilization vessel, said heat storage body spontaneous nucleation in supercooled The temperature is lower than the temperature of the heat storage tank until just before the heat medium is introduced from the outside into the heat storage tank through the first path, and the spontaneous nucleation temperature is externally through the first path from the heat storage tank. heat utilization device heat storage material is a temperature above the heat medium introduced into the features that you have been filled 前記第1の経路と前記第2の経路を通過する熱媒体は、前記蓄熱槽内で隔離されていることを特徴とする請求項1または請求項2に記載の熱利用装置。The heat utilization apparatus according to claim 1 or 2, wherein the heat medium passing through the first path and the second path is isolated in the heat storage tank. 前記第1の経路と前記第2の経路を通過する熱媒体を前記蓄熱槽内で隔離する手段は、前記蓄熱体を取り巻きながら下方から上方に向かう管であることを特徴とする請求項3に記載の熱利用装置。Wherein the means for isolating the heat medium in the heat storage tank to a first path passing through the second path, claims, characterized in that the downward while-out winding take the heat accumulator is a tube an upward 3. The heat utilization apparatus according to 3. 前記熱供給手段は、前記蓄熱槽から前記熱利用槽へと延びる前記第1の経路の途中に設けられ、前記第1の経路を通過する熱媒体に熱を供給することを特徴とする請求項1乃至請求項4のいずれか1項に記載の熱利用装置。 The heat supply means is provided in the middle of the first path extending from the heat storage tank to the heat utilization tank, and supplies heat to a heat medium passing through the first path. The heat utilization apparatus according to any one of claims 1 to 4. 前記熱供給手段を通過する熱媒体を前記蓄熱槽に循環させるための第3の経路が前記熱供給手段と蓄熱槽との間に設けられていることを特徴とする請求項1乃至請求項5のいずれか1項に記載の熱利用装置。 6. A third path for circulating a heat medium passing through the heat supply means to the heat storage tank is provided between the heat supply means and the heat storage tank. The heat utilization apparatus of any one of these. 前記蓄熱槽は、前記熱媒体に熱を供給するための熱供給手段の燃焼排気経路中に置かれていることを特徴とする請求項1乃至6のいずれか1項に記載の熱利用装置。 The heat utilization apparatus according to any one of claims 1 to 6, wherein the heat storage tank is placed in a combustion exhaust path of heat supply means for supplying heat to the heat medium. 前記過冷却可能な蓄熱材には、相分離防止材が添加されていることを特徴とする請求項1乃至請求項7のいずれか1項に記載の熱利用装置。 The heat utilization apparatus according to any one of claims 1 to 7, wherein a phase separation preventing material is added to the supercoolable heat storage material. 前記蓄熱体は、過冷却可能な蓄熱材の充填された複数の小容器からなることを特徴とする請求項1乃至請求項8のいずれか1項に記載の熱利用装置。 The heat utilization apparatus according to any one of claims 1 to 8, wherein the heat storage body includes a plurality of small containers filled with a supercoolable heat storage material. 前記蓄熱体は、細長い形状であることを特徴とする請求項1乃至請求項9のいずれか1項に記載の熱利用装置。 The heat utilization apparatus according to any one of claims 1 to 9, wherein the heat storage body has an elongated shape. 前記蓄熱槽は、前記蓄熱体を加熱するヒーターが設けられていることを特徴とする請求項1乃至請求項10のいずれか1項に記載の熱利用装置。 The said heat storage tank is provided with the heater which heats the said thermal storage body, The heat utilization apparatus of any one of Claim 1 thru | or 10 characterized by the above-mentioned. 前記蓄熱槽は、断熱材で覆われていることを特徴とする請求項1乃至請求項11のいずれか1項に記載の熱利用装置。 The heat utilization apparatus according to claim 1, wherein the heat storage tank is covered with a heat insulating material. 前記過冷却可能な蓄熱材は、リン酸水素二ナトリウム・十二水和物であることを特徴とする請求項1乃至請求項12のいずれか1項に記載の熱利用装置。 The heat utilization apparatus according to any one of claims 1 to 12, wherein the supercoolable heat storage material is disodium hydrogen phosphate dodecahydrate. 前記過冷却可能な蓄熱材は、酢酸ナトリウム・三水和物であることを特徴とする請求項1乃至請求項12のいずれか1項に記載の熱利用装置。 The heat utilization apparatus according to any one of claims 1 to 12, wherein the supercoolable heat storage material is sodium acetate trihydrate. 前記過冷却可能な蓄熱材は、硫酸ナトリウム・十水和物であることを特徴とする請求項1乃至請求項12のいずれか1項に記載の熱利用装置。 The heat utilization apparatus according to any one of claims 1 to 12, wherein the supercoolable heat storage material is sodium sulfate decahydrate. 前記過冷却可能な蓄熱材は、チオ硫酸ナトリウム・五水和物であることを特徴とする請求項1乃至請求項12のいずれか1項に記載の熱利用装置。 The heat utilization apparatus according to any one of claims 1 to 12, wherein the supercoolable heat storage material is sodium thiosulfate pentahydrate. 前記過冷却可能な蓄熱材は、塩化カルシウム・六水和物であることを特徴とする請求項1乃至請求項12のいずれか1項に記載の熱利用装置。 The heat utilization apparatus according to any one of claims 1 to 12, wherein the supercoolable heat storage material is calcium chloride hexahydrate. 熱媒体の貯蔵された熱利用槽に熱が供給されたのちに、熱利用槽の利用が終了すると、前記第2の経路を用いて熱利用槽の廃熱を前記蓄熱槽に輸送して蓄熱体中の蓄熱材を融解させたのちに、蓄熱材を過冷却現象を利用して液体のままで保持し、次の熱利用槽の利用時には、前記第1の経路を通過する熱媒体を廃熱の蓄熱された蓄熱体と接触させて蓄熱体中の蓄熱材の過冷却を解消させ、該熱媒体はその時に発生する該蓄熱材の凝固熱を吸収しながら熱利用槽に注入されることを特徴とする請求項1に記載の熱利用装置を使用した熱利用方法。 After the heat is supplied to the heat use tank in which the heat medium is stored, when the use of the heat use tank is completed, the waste heat of the heat use tank is transported to the heat storage tank using the second path to store the heat. After the heat storage material in the body is melted, the heat storage material is held in a liquid state by utilizing a supercooling phenomenon, and the heat medium passing through the first path is discarded when the next heat use tank is used. The heat storage medium in contact with the heat storage body where heat is stored is canceled to eliminate the supercooling of the heat storage material in the heat storage body, and the heat medium is injected into the heat utilization tank while absorbing the solidification heat of the heat storage material generated at that time. A heat utilization method using the heat utilization apparatus according to claim 1. 熱利用槽の利用が終了すると、熱利用槽中の熱媒体は保持された状態で、熱利用槽、第1の経路、蓄熱槽、第2の経路、熱利用槽という順で熱媒体を循環させ、熱利用槽中の熱媒体の温度成層を保持しながら、上部の高温の廃熱から蓄熱槽中の蓄熱体に注入し、蓄熱体中の蓄熱材を融解させたのちに、蓄熱材を過冷却現象を利用して液体のままで保持し、次の熱利用槽の利用時には、前記第1の経路を通過する熱媒体を廃熱の蓄熱された蓄熱体と接触させて蓄熱体中の蓄熱材の過冷却を解消させ、該熱媒体はその時に発生する該蓄熱材の凝固熱を吸収しながら熱利用槽に注入されることを特徴とする請求項2に記載の熱利用装置を使用した熱利用方法。 When the use of the heat utilization tank is completed, the heat medium in the heat utilization tank is held, and the heat medium is circulated in the order of the heat utilization tank, the first path, the heat storage tank, the second path, and the heat utilization tank. The heat storage medium in the heat storage tank is injected into the heat storage body in the heat storage tank from the high-temperature waste heat in the upper part, and after melting the heat storage material in the heat storage body, the heat storage material is Using the supercooling phenomenon, the liquid is held as it is, and when the next heat utilization tank is used, the heat medium passing through the first path is brought into contact with the heat accumulator in which waste heat is accumulated. 3. The heat utilization device according to claim 2, wherein the heat storage material is injected into the heat utilization tank while eliminating the supercooling of the heat storage material and absorbing the solidification heat of the heat storage material generated at that time. Heat utilization method. 熱利用槽の利用が終了し、その廃熱が蓄熱材を融解させるのに十分な場合は、前記第2の経路を用いて前記熱利用槽の廃熱を前記蓄熱槽に輸送して蓄熱体中の蓄熱材を融解させ、熱利用槽の廃熱が蓄熱材を融解させるのに不十分な場合は、蓄熱槽、第1の経路、熱供給手段、第3の経路、蓄熱槽という循環によって蓄熱槽中の熱媒体に熱を補いながら蓄熱体中の蓄熱材を融解させたのちに、蓄熱材を過冷却現象を利用して液体のままで保持し、次の熱利用槽の利用時には、前記第1の経路を通過する熱媒体を廃熱の蓄熱された蓄熱体と接触させて蓄熱体中の蓄熱材の過冷却を解消させ、該熱媒体はその時に発生する該蓄熱材の凝固熱を吸収しながら熱利用槽に注入されることを特徴とする請求項6に記載の熱利用装置を使用した熱利用方法。 When the use of the heat utilization tank is completed and the waste heat is sufficient to melt the heat storage material, the waste heat of the heat utilization tank is transported to the heat storage tank using the second path to store the heat storage body. When the heat storage material inside is melted and the waste heat of the heat utilization tank is insufficient to melt the heat storage material, the heat storage tank, the first path, the heat supply means, the third path, and the heat storage tank After melting the heat storage material in the heat storage body while supplementing the heat medium in the heat storage tank, hold the heat storage material in a liquid state using the supercooling phenomenon, and when using the next heat utilization tank, The heat medium passing through the first path is brought into contact with the heat storage body in which waste heat is stored to eliminate supercooling of the heat storage material in the heat storage body, and the heat medium generates the solidification heat of the heat storage material generated at that time. It inject | pours into a heat utilization tank, absorbing a heat | fever utilization method using the heat utilization apparatus of Claim 6. 熱媒体の貯蔵された熱利用槽に熱が供給されたのちに、熱利用槽の保温のために動作する熱供給手段の排熱で蓄熱槽を予熱し、熱利用槽の利用が終了すると、前記第2の経路を用いて熱利用槽の廃熱を前記蓄熱槽に輸送して蓄熱体中の蓄熱材を融解させたのちに、蓄熱材を過冷却現象を利用して液体のままで保持し、次の熱利用槽の利用時には、前記第1の経路を通過する熱媒体を廃熱の蓄熱された蓄熱体と接触させて蓄熱体中の蓄熱材の過冷却を解消させ、該熱媒体はその時に発生する該蓄熱材の凝固熱を吸収しながら熱利用槽に注入されることを特徴とする請求項7に記載の熱利用装置を使用した熱利用装置の熱利用方法。 After heat is supplied to the heat utilization tank in which the heat medium is stored, the heat accumulation tank is preheated with the exhaust heat of the heat supply means that operates to keep the heat utilization tank, and when the use of the heat utilization tank is finished, After the waste heat of the heat utilization tank is transported to the heat storage tank using the second path and the heat storage material in the heat storage body is melted, the heat storage material is held in a liquid state using a supercooling phenomenon. When the next heat utilization tank is used, the heat medium passing through the first path is brought into contact with the heat storage body in which waste heat is stored to eliminate the supercooling of the heat storage material in the heat storage body, The heat utilization method of the heat utilization device using the heat utilization device according to claim 7, wherein the heat utilization material is injected into the heat utilization tank while absorbing the solidification heat of the heat storage material generated at that time. 熱媒体を貯蔵するための蓄熱槽において、蓄熱槽の内部に設置され、過冷却可能な蓄熱材の充填された複数の蓄熱体と、前記蓄熱体の下部に蓄熱槽を横断するように設けられた複数の熱媒体通路を持つ拡散体と、前記拡散体を挟んで蓄熱槽に設けられた熱媒体の通過する流入口と流出口とを備え、前記蓄熱材は過冷却中の自発的発核温度が過冷却中に前記流入口から前記蓄熱槽へ熱媒体が導入される直前までの蓄熱槽の温度よりも低く、かつ該自発的発核温度が過冷却中に流入口を通じて前記蓄熱槽へ導入される熱媒体の温度以上であることを特徴とする蓄熱槽。In the heat storage tank for storing the heat medium, the heat storage tank is installed inside the heat storage tank and filled with a superheatable heat storage material, and provided below the heat storage body so as to cross the heat storage tank. A diffuser having a plurality of heat medium passages, and an inlet and an outlet through which the heat medium provided in the heat storage tank is interposed with the diffuser interposed therebetween, and the heat storage material is spontaneously nucleated during supercooling. The temperature is lower than the temperature of the heat storage tank until just before the heat medium is introduced from the inlet to the heat storage tank during supercooling, and the spontaneous nucleation temperature is passed through the inlet to the heat storage tank during supercooling. A heat storage tank characterized by being at or above the temperature of the heat medium to be introduced . 前記拡散体は、網であることを特徴とする請求項22に記載の蓄熱槽。 The heat storage tank according to claim 22, wherein the diffuser is a net. 前記拡散体は、多孔質体であることを特徴とする請求項22に記載の蓄熱槽。 The heat storage tank according to claim 22, wherein the diffuser is a porous body. 前記過冷却可能な蓄熱材には、相分離防止材が添加されていることを特徴とする請求項22乃至請求項24のいずれか1項に記載の蓄熱槽。 The heat storage tank according to any one of claims 22 to 24, wherein a phase separation preventing material is added to the supercoolable heat storage material. 前記蓄熱体は、細長い形状であることを特徴とする請求項22乃至請求項25のいずれか1項に記載の蓄熱槽。 The heat storage tank according to any one of claims 22 to 25, wherein the heat storage body has an elongated shape. 前記蓄熱槽は、前記蓄熱体を加熱するヒーターが設けられていることを特徴とする請求項22乃至請求項26の1ずれか1項に記載の蓄熱槽。 27. The heat storage tank according to any one of claims 22 to 26, wherein the heat storage tank is provided with a heater for heating the heat storage body. 前記蓄熱槽は、断熱材で覆われていることを特徴とする請求項22乃至請求項27のいずれか1項に記載の蓄熱槽。 The heat storage tank according to any one of claims 22 to 27, wherein the heat storage tank is covered with a heat insulating material. 熱の注入過程においては、蓄熱槽の下部に設けられた前記流入口より熱媒体を注入し、該熱媒体を前記拡散体を通過させて、前記蓄熱体に熱を注入した後に、蓄熱槽の上部に設けられた前記流出口より熱媒体を流出させ、熱の抽出過程では、前記流入口より前記蓄熱材の過冷却の解消温度よりも低い温度の熱媒体を注入し、該熱媒体を前記拡散体を通過させて、前記蓄熱体の下部に熱媒体を接触させ、蓄熱材の過冷却を解消させ、該熱媒体はその時に発生する該蓄熱材の凝固熱を吸収しながら前記流出口より流出されることを特徴とする請求項22に記載の蓄熱槽を使用した蓄熱槽の熱利用方法。 In the heat injection process, a heat medium is injected from the inlet provided in the lower part of the heat storage tank, the heat medium is passed through the diffuser, and heat is injected into the heat storage body. The heat medium is caused to flow out from the outlet provided in the upper portion, and in the heat extraction process, a heat medium having a temperature lower than the temperature at which the superheater is cooled is injected from the inlet, and the heat medium is injected into the heat medium. Passing through the diffuser, contacting the heat medium to the lower part of the heat storage body, eliminating the supercooling of the heat storage material, the heat medium from the outlet while absorbing the solidification heat of the heat storage material generated at that time The heat utilization method of the heat storage tank using the heat storage tank of Claim 22 characterized by the above-mentioned. 前記蓄熱槽はn個(nは2以上の自然数)の蓄熱槽Ji(1≦i≦n−1、i:整数)からなり、蓄熱槽Ji+1の蓄熱材の融点は、蓄熱槽Jiの蓄熱材の融点よりも低く、蓄熱槽Jiから蓄熱槽Ji+1へ順に熱媒体が通過して熱利用槽の廃熱が貯蔵されたのちに、蓄熱槽Ji+1から蓄熱槽Jiへ順に熱媒体が通過して廃熱が抽出されることを特徴とする請求項1に記載の熱利用装置。 The heat storage tank is composed of n (n is a natural number of 2 or more) heat storage tanks Ji (1 ≦ i ≦ n−1, i: integer), and the melting point of the heat storage material of the heat storage tank Ji + 1 is the heat storage material of the heat storage tank Ji. After the heat medium passes in order from the heat storage tank Ji to the heat storage tank Ji + 1 and the waste heat of the heat utilization tank is stored, the heat medium passes in order from the heat storage tank Ji + 1 to the heat storage tank Ji and is discarded. The heat utilization apparatus according to claim 1, wherein heat is extracted.
JP2002130018A 2002-05-01 2002-05-01 Heat storage tank, heat utilization device and heat utilization method thereof Expired - Lifetime JP3752536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002130018A JP3752536B2 (en) 2002-05-01 2002-05-01 Heat storage tank, heat utilization device and heat utilization method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002130018A JP3752536B2 (en) 2002-05-01 2002-05-01 Heat storage tank, heat utilization device and heat utilization method thereof

Publications (2)

Publication Number Publication Date
JP2003322409A JP2003322409A (en) 2003-11-14
JP3752536B2 true JP3752536B2 (en) 2006-03-08

Family

ID=29543249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002130018A Expired - Lifetime JP3752536B2 (en) 2002-05-01 2002-05-01 Heat storage tank, heat utilization device and heat utilization method thereof

Country Status (1)

Country Link
JP (1) JP3752536B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111720995A (en) * 2017-02-28 2020-09-29 美的集团股份有限公司 Water heater

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4714923B2 (en) * 2005-03-31 2011-07-06 独立行政法人産業技術総合研究所 Heat storage device
JP4830639B2 (en) * 2006-05-31 2011-12-07 Jfeエンジニアリング株式会社 Latent heat storage material
JP5594752B2 (en) * 2007-10-22 2014-09-24 独立行政法人産業技術総合研究所 Heat storage device
WO2010042113A1 (en) * 2008-10-07 2010-04-15 James Vu Heat energy recovery system
JP2013076542A (en) * 2011-09-30 2013-04-25 Toto Ltd Bathroom dryer
KR101190273B1 (en) 2012-07-27 2012-10-12 김환중 Serial-connected electric boiler
JP6160497B2 (en) * 2014-01-28 2017-07-12 三菱電機株式会社 Hot water storage water heater
JP6288352B2 (en) * 2017-06-07 2018-03-07 三菱電機株式会社 Hot water storage water heater
JP7266282B2 (en) * 2018-02-07 2023-04-28 株式会社ヤノ技研 Heat storage material composition
JP6674495B2 (en) * 2018-03-16 2020-04-01 東邦瓦斯株式会社 Thermal storage system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111720995A (en) * 2017-02-28 2020-09-29 美的集团股份有限公司 Water heater

Also Published As

Publication number Publication date
JP2003322409A (en) 2003-11-14

Similar Documents

Publication Publication Date Title
Douvi et al. Phase change materials in solar domestic hot water systems: A review
ES2828525T3 (en) Thermal energy storage system combining heat sensitive solid material and phase change material
JP3752536B2 (en) Heat storage tank, heat utilization device and heat utilization method thereof
Shukla et al. Solar water heaters with phase change material thermal energy storage medium: A review
CN103712255B (en) A kind of releasing across solar energy-phase-changing energy-storing classification in season can heating system and method
CN208735723U (en) Heating and cooling system
Hua et al. Research progress of seasonal thermal energy storage technology based on supercooled phase change materials
CN103635757B (en) solar water heater
WO2019061689A1 (en) Cross-season cold and heat storage system
CN202884379U (en) Thermal insulating pipe
Vikram et al. An improvement in the solar water heating systems by thermal storage using phase change materials
CN201000294Y (en) Composite phase-change cold-storage heat accumulator
JP2011038760A (en) Thermal storage device for heat
JP2012180993A (en) Latent heat storing hot water storage tank and hot water supply device
CN108019983A (en) New type solar energy list tank phase-change heat storage absorption heat pump
CN203671962U (en) Solar water heater with heat storage and release functions
CN206670428U (en) Phase transition heat accumulation unit and water heater
CN201327218Y (en) Medium-high temperature heat energy accumulation container
CN102654318A (en) Solar photo-thermal generation phase-change energy storage medium melting and anti-condensation technology and device
CN101779088B (en) Hot-water appliance
EP3299759A1 (en) System and method for thermochemical storage of energy
CN202613812U (en) Melting and anti-condensation device of solar photo-thermal power generation phase-change energy storing media
CN209689451U (en) Regenerative apparatus easy to assemble
JPS6152550A (en) Hot water supplying system utilizing chemical heat storage
CN107144028B (en) A kind of Solar use method that solid heat storage is precipitated

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

R150 Certificate of patent or registration of utility model

Ref document number: 3752536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term