JP3751012B2 - 半導体プラズマ装置における圧力系の制御方法及びその装置 - Google Patents

半導体プラズマ装置における圧力系の制御方法及びその装置 Download PDF

Info

Publication number
JP3751012B2
JP3751012B2 JP2003196469A JP2003196469A JP3751012B2 JP 3751012 B2 JP3751012 B2 JP 3751012B2 JP 2003196469 A JP2003196469 A JP 2003196469A JP 2003196469 A JP2003196469 A JP 2003196469A JP 3751012 B2 JP3751012 B2 JP 3751012B2
Authority
JP
Japan
Prior art keywords
gas
pressure
control
processing chamber
absence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003196469A
Other languages
English (en)
Other versions
JP2004062897A (ja
Inventor
光明 小美野
内澤  修
康広 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Ham Let Motoyama Japan Ltd
Original Assignee
Tokyo Electron Ltd
Ham Let Motoyama Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd, Ham Let Motoyama Japan Ltd filed Critical Tokyo Electron Ltd
Priority to JP2003196469A priority Critical patent/JP3751012B2/ja
Publication of JP2004062897A publication Critical patent/JP2004062897A/ja
Application granted granted Critical
Publication of JP3751012B2 publication Critical patent/JP3751012B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Control Of Fluid Pressure (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、例えば半導体製造工程に使用される半導体プラズマ装置における圧力系の制御方法及びその装置に関するものである。
【0002】
【従来の技術】
一般に、半導体製造装置の製造工程においては、半導体ウエハやLCD用ガラス等の被処理体(以下にウエハ等という)を薬液やリンス液(洗浄液)等の処理液が貯留された処理槽に順次浸漬して洗浄を行う洗浄処理方法が広く採用されている。また、このような洗浄処理においては、洗浄後のウエハ等の表面に例えばIPA(イソプロピルアルコール)等の揮発性を有する有機溶剤の蒸気からなる乾燥ガスを接触させ、乾燥ガスの蒸気を凝縮あるいは吸着させて、ウエハ等の水分の除去及び乾燥を行う乾燥処理が施されている。
【0003】
従来のこの種の乾燥処理装置は、キャリアガス例えば窒素(N2)等の不活性ガスの供給部と、乾燥ガス例えばIPA(イソプロピルアルコール)を加熱して蒸気を生成する蒸気発生器と、この蒸気発生器で生成された蒸気すなわち乾燥ガスを乾燥処理室に供給すべく開閉弁を介設する供給管路と、供給管路を加熱するヒータとを具備してなる。したがって、乾燥処理においては、使用されるN2ガスや乾燥ガス等の温度制御は重要であるため、従来では、N2ガス供給管路、乾燥ガス供給管路や蒸気発生器中に配設されるヒータの温度制御を行なっている。
【0004】
また、半導体製造工程において、ウエハ等に微細なパターンを形成するためにドライエッチング技術は必須とされている。このドライエッチングは、真空中で反応性ガスを用いてプラズマを生成し、そのプラズマ中のイオン,中性ラジカル,原子,分子を用いて、ウエハ等上の種々の材料をエッチングするものである。そのため、エッチング材料により種々のガスが用いられている。
【0005】
一般に、この種のエッチング装置は、密閉の処理室を有する容器にエッチングガス導入部を設けると共に、処理室内を所定の減圧雰囲気(真空)にするための真空排気口が形成され、また処理室内に対峙して配置されるサセプタを兼用する平板電極の一方に高周波電源を接続し、他方の平板電極を容器にアースしている。そして、エッチングする材料や使用する反応性ガスの種類によって処理室内を所定の減圧雰囲気にした状態で、両電極間に高周波電力によってプラズマ放電を発生させ、この発生したプラズマ中のイオン,電子及び中性の活性種によってウエハ等のエッチングを行なう。したがって、エッチング処理においては、処理室内を所定の減圧雰囲気にするための圧力制御は重要であるため、従来では、真空排気口に接続する排出管路に圧力調整手段を配設して処理室内の圧力を制御している。
【0006】
【発明が解決しようとする課題】
しかしながら、従来のこの種の乾燥処理やエッチング処理においては、ガスの種類やガスの供給状態別に制御定数を変更させて温度制御や圧力制御を行なうものではなかった。このため、例えば熱あるいは圧力負荷の厳しい状態の制御定数を使用して熱あるいは圧力負荷の緩い状態を制御する場合はよいが、逆の事態が起きると、途端に制御が破綻をきたすという問題があった。この場合、負荷の重軽だけならまだよいが、負荷状態が全く異なる状態間では制御定数の共通化は基本的にできないという不都合がある。
【0007】
この発明は上記事情に鑑みなされたもので、使用するガスの流れの有無による負荷に応じた制御定数を予め記憶して、各状態に応じて制御定数を選択して圧力等を制御するようにした半導体プラズマ装置における圧力系の制御方法及びその装置を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
上記目的を達成するために、請求項1記載の発明は、所定のガスの流れの有無による流量負荷に応じた制御定数と、プラズマ生成手段によって処理室に生成されるプラズマのプラズマ生成の有無に応じた制御定数とを予め記憶しておき、 上記ガスの上記流量負荷の検知信号に基づき、上記制御定数を選択して上記処理室の圧力を調整する圧力調整手段を制御して上記処理室を所定の圧力に保ち、 上記ガスの上記流量負荷の検知信号と、上記プラズマ生成有無の検知信号とに基づき、上記制御定数を選択して上記圧力調整手段を制御して上記処理室を所定の圧力に保つことを特徴とする。
【0009】
請求項1記載の発明において、上記ガスは異なる種類の複数のガスであっても圧力調整可能である(請求項2)。
【0010】
また、上記ガスの上記流量負荷の検知信号に基づき、上記ガスの流れが有ると判断される場合に、検知された上記流量負荷の大きさに応じて制御定数を選択して上記圧力調整手段を制御して上記処理室を所定の圧力に保つことが可能である(請求項3)。
【0011】
また、上記ガスの上記流量負荷の検知信号と、上記プラズマ生成有無の検知信号とに基づき、上記ガスの流れが有り、上記プラズマ生成が無いと判断される場合に、予め記憶された制御定数を選択して上記圧力調整手段を制御して上記処理室を所定の圧力に保つことが可能である(請求項4)。
【0012】
また、上記ガスの上記流量負荷の検知信号と、上記プラズマ生成有無の検知信号とに基づき、上記ガスの流れが有り、上記プラズマ生成が有ると判断される場合に、予め記憶された制御定数を選択して上記圧力調整手段を制御して上記処理室を所定の圧力に保つことが可能である(請求項5)。
【0013】
請求項6記載の発明は、処理室内にガスを供給する供給管路と、 上記処理室に接続される排出管路と、 上記排出管路に介設されて上記処理室内の圧力を調整する圧力調整手段と、 上記供給管路に介設されて上記ガスの流量負荷を検知するガス負荷検知手段と、 プラズマ生成手段によって上記処理室に生成されるプラズマのプラズマ生成有無を検知するプラズマ生成有無検知手段と、 上記ガスの流れの有無と、上記処理室に生成されるプラズマのプラズマ生成有無とに応じた制御定数を予め記憶する制御手段とを具備し、 上記ガス負荷検知手段によって上記ガスの上記流量負荷を検知すると共に、上記プラズマ生成有無検知手段によって上記処理室に生成されるプラズマのプラズマ生成有無を検知し、これら検知信号を上記制御手段に伝達し、上記ガスの流れの有無に応じた制御定数の選択及び、上記ガスの流れの有無と、上記処理室に生成されるプラズマの生成有無とに応じた制御定数の選択による上記制御手段からの制御信号に基づいて上記処理室が所定圧力になるように上記圧力調整手段を制御する、ことを特徴とする。
【0014】
請求項1,3〜6記載の発明によれば、所定のガスの流れの有無による流量負荷に応じた制御定数と、プラズマ生成手段によって処理室に生成されるプラズマのプラズマ生成の有無に応じた制御定数とを予め記憶しておき、ガスの流量負荷の検知信号に基づき、制御定数を選択して処理室の圧力を調整する圧力調整手段を制御し、ガスの流量負荷の検知信号と、プラズマ生成有無の検知信号とに基づき、制御定数を選択して処理室の圧力を調整することにより、処理室に供給されるガスの流量負荷の検知結果と、プラズマ生成有無の検知結果に基づき、制御定数を選択して処理室の圧力を最適状態に制御することができる。この場合、ガスは異なる種類の複数のガスであっても圧力制御可能である(請求項2)。
【0015】
【発明の実施の形態】
以下に、この発明の実施の形態を図面に基づいて詳細に説明する。
◎参考実施形態
図1はこの発明に係るガスの制御装置を半導体ウエハの洗浄・乾燥処理システムに適用した場合の構成図である。
【0016】
上記洗浄・乾燥処理システムは、キャリアガス例えば窒素(N2)ガスの供給源1に供給管路2aを介して接続するN2ガス加熱手段としてのN2ガス加熱器3(以下に単に加熱器という)と、この加熱器3に供給管路2bを介して接続する一方、乾燥ガス用液体例えばIPAの供給源4に供給管路2cを介して接続する混合ガス(蒸気)発生手段としての蒸気発生器5と、この蒸気発生器5と乾燥処理室6(以下に単に処理室という)とを接続する供給管路2dに配設される流量制御手段7とを具備してなる。この場合、N2ガス供給源1と加熱器3とを接続する供給管路2aには開閉弁8aが介設されている。また、IPA供給源4と蒸気発生器5とを接続する供給管路2cには開閉弁8bが介設され、この開閉弁8bのIPA供給源側には分岐路9及び開閉弁8cを介してIPA回収部10が接続されている。また、図1に二点鎖線で示すように、蒸気発生器5には、必要に応じてIPAのドレン管5aが接続され、このドレン管5aにドレン弁5cが介設されると共に、チェッキ弁5dを介設する分岐路5bが接続されている。このようにドレン管5c、ドレン弁5d等を接続することにより、蒸気発生器5内をクリーニングする際の洗浄液等の排出に便利となる。
【0017】
上記加熱器3は、図2(a)に示すように、N2ガスの供給管路2aに連通する導入管11と、この導入管11内に挿入され、導入管11の内壁面との間に螺旋状流路12を形成する流路形成管13と、この流路形成管13の内方に挿入される加熱手段例えばカートリッジヒータ14とで主要部が構成されている。この場合、導入管11は、一端に供給管路2aと接続する流入口11aを有し、他端部の側面に、供給管路2bに接続する流出口11bが設けられている。また、流路形成管13は、図2(b)に示すように、その外周面に例えば台形ねじのような螺旋状の凹凸溝15が形成されて、この螺旋状凹凸溝15と導入管11の内壁面11cとで螺旋状流路12が形成されている。なお、螺旋状流路12は必ずしもこのような構造である必要はなく、例えば導入管11の内壁面に螺旋状凹凸溝を形成し、流路形成管13の外周面を平坦面としてもよく、導入管11の内壁面及び流路形成管13の外周面の双方に螺旋状凹凸溝を形成して螺旋状流路を形成するようにしてもよく、あるいはコイルスプングを用いて螺旋状流路12を形成してもよい。
【0018】
上記のように、N2ガス供給源1側の供給管路2aに接続する導入管11と、この導入管11内に挿入される流路形成管13又はコイルスプリングとの間に螺旋状流路12を形成し、流路形成管13内にカートリッジヒータ14を挿入することにより、N2ガスの流路とカートリッジヒータ14との接触する流路長さを長くすると共に、螺旋状の流れを形成して、それがない場合に比べ流速を早めることができ、その結果レイノルズ数(Re数)及びヌッセルト数(Nu数)を増大して、境界層を乱流領域に入れ、加熱器3の伝熱効率の向上を図ることができる。したがって、1本のカートリッジヒータ14で効率よくN2ガスを所定温度例えば200℃に加熱することができるので、加熱器3を小型化することができる。なお、加熱温度を更に高める必要がある場合は、導入管11の外側に外筒ヒータを配設すればよい。
【0019】
上記蒸気発生器5は、図3に示すように、キャリアガスの供給管路2bに接続する例えばステンレス鋼製のパイプ状本体20にて形成されており、このパイプ状本体20の内周面にキャリアガスの流れ方向に沿って漸次狭小となる先細ノズル部21aと、この先細ノズル部21aの狭小部21bから流れ方向に沿って徐々に拡開する末広ノズル部21cとからなるラバールノズル21が形成されている。このラバールノズル21は、ラバールノズル21の流入側圧力(一次圧力)と流出側圧力(二次圧力)との圧力差によって衝撃波が形成される。例えば、一次圧力(Kgf/cm2G)とN2ガスの通過流量(Nl/min)を適宜選択することによって衝撃波を形成することができる。この場合、ラバールノズル21の一次側と二次側を接続する分岐路22に圧力調整弁23を介設して、この圧力調整弁23の調節によって衝撃波の発生条件を適宜設定している。なお、一次側圧力を高めることが可能であれば、圧力調整弁23を用いなくても衝撃波形成が可能となる。
【0020】
なお、一次側でN2ガスの圧力あるいは流量を所定の高い圧力範囲で調整することが可能であれば、圧力調整弁23を用いなくても衝撃波形成が可能となる。すなわち、図11に示すように、N2ガス供給源1にN2ガスの圧力あるいは流量を調節するN2ガス圧力調整手段1aを接続することによって分岐路22及び圧力調整弁23を除去することができる。この場合、所定の高い圧力範囲のN2ガスを供給できるようにN2ガス供給源1は通常よりも高い圧力のN2ガスを供給できる必要がある。N2ガス圧力調整手段1aによってN2ガス供給源1から供給されるN2ガスの高圧の程度を調整することによって、衝撃波形成部21の流入側圧力(一次圧力)と流出側圧力(二次圧力)との圧力差を調節し衝撃波の発生条件を適宜設定することができる。
【0021】
このように形成されるラバールノズル21の末広ノズル部21cの途中にはIPA供給口24が開設されている。この供給口24にIPA供給管すなわち供給管路2cを介してIPA供給源4が接続されている。また、末広ノズル部21cの流出側のパイプ状本体20内に内筒ヒータ25が挿入され、その外側には外筒ヒータ26が配設されて、これら内筒ヒータ25と外筒ヒータ26とで蒸気発生器5の加熱手段が構成されている。なおこの場合、ラバールノズル21及びIPA供給口24付近にヒータを設けてもよい。
【0022】
上記のように構成することにより、IPA供給源4から供給されるIPAをラバールノズル21の供給口24から供給すると、ラバールノズル21で形成された衝撃波によってIPAが霧状にされ、その後ヒータ25,26の加熱によってIPA蒸気が生成される。
【0023】
なお、上記説明では、供給口24をラバールノズル21の二次側すなわち衝撃波発生後側に設けた場合について説明したが、必ずしもこのような構成とする必要はなく、供給口24をラバールノズル21の一次側すなわち衝撃波発生前の位置に設けて、N2ガスとIPAとを混合した後に衝撃波によって霧状にしてもよい。
【0024】
上記流量制御手段7は、図1に示すように、供給管路2dに介設される開度調整弁例えばダイヤフラム弁30と、上記処理室6内の圧力を検出する検出手段である圧力センサ31からの信号と予め記憶された情報とを比較演算する制御手段例えばCPU40(中央演算処理装置)からの信号に基いてダイヤフラム弁30の作動圧を制御する制御弁例えばマイクロバルブ32とを具備してなる。
【0025】
この場合、マイクロバルブ32は、例えば図4に示すように、上記ダイヤフラム弁30の作動流体例えば空気の流入路33に排出路34を連通し、この排出路34と対向する面に可撓性部材35を介して制御液体例えば熱伸縮性オイル36を収容する室37を形成すると共に、室37における可撓性部材35と対向する面に配設される複数の抵抗ヒータ38を配設してなる。なおこの場合、可撓性部材35は、上部材35aと下部材35cとの間に介在される中部材35bを有すると共に、下部材35cと接合する台座35dを有しており、可撓性部材35の撓み変形によって中部材35bが排出路34を開閉し得るように構成されている。なお、このマイクロバルブ32は全体がシリコンにて形成されている。
【0026】
このように構成することにより、上記CPU40からの信号をデジタル/アナログ変換させて抵抗ヒータ38に伝達されると、抵抗ヒータ38が加熱されると共に、制御液体すなわちオイル36が膨脹収縮し、これにより可撓性部材35が流入側に出没移動して排出路34の上部が開状態となり、制御流体すなわちガス圧力を調節することができる。したがって、マイクロバルブ32によって遅延制御された流体すなわち空気によってダイヤフラム弁30を作動して予め記憶された情報と処理室6内の圧力を比較し、ダイヤフラム弁30の作動を制御してN2ガスを処理室6内に供給することができ、処理室6内の圧力回復の時間制御を行うことができる。
【0027】
また、上記処理室6は、図5に示すように、例えばフッ化水素酸等の薬液や純水等の洗浄液を貯留(収容)し、貯留した洗浄液にウエハWを浸漬する洗浄槽50の上部に形成されており、その上方に設けられたウエハWの搬入・搬出用の開口部50aに蓋体51が開閉可能に装着されている。また、処理室6と洗浄槽50との間には、複数例えば50枚のウエハWを保持してこのウエハWを洗浄槽50内及び処理室6内に移動する保持手段例えばウエハボート52が設けられている。また、処理室6内には、処理室6内に供給されたIPAガスを冷却する冷却管53を配設してもよい。なお、洗浄槽50は、底部に排出口54を有する内槽55と、この内槽55からオーバーフローした洗浄液を受け止める外槽56とで構成されている。なおこの場合、内槽55の下部に配設される薬液又は純水の供給ノズル57から内槽55内に供給され貯留される薬液又は純水にウエハWが浸漬されて洗浄されるようになっている。また、外槽56の底部に設けられた排出口56aに排出管56bが接続されている。このように構成することにより、洗浄処理されたウエハWはウエハボート52によって処理室6内に移動され、処理室6内に供給されるIPAガスと接触し、IPAガスの蒸気を凝縮あるいは吸着させて、ウエハWの水分の除去及び乾燥が行なわれる。
【0028】
なお、供給管路2dには、上記ダイヤフラム弁30の下流側(二次側)にフィルタ60が介設されており、パーティクルの少ない乾燥ガスを供給できるように構成されている。また、供給管路2dの外側には保温用ヒータ62が配設されてIPAガスの温度を一定に維持し得るように構成されている。更に、供給管路2dの処理室6側にはIPAガスの温度センサ61(温度検出手段)が配設されて、供給管路2d中を流れるIPAガスの温度が測定されるようになっている。
【0029】
一方、図1に示すように、上記供給管路2aには、この供給管路2aを流れるN2ガスの流れの有無による負荷を検知するガス負荷検知手段例えば流量検知センサ41(以下に流量センサ41という)が介設され、上記供給管路2dには、この供給管路2dを流れるIPAガスの流れの有無による負荷を検知するガス負荷検知手段例えば流量検知センサ42(以下に流量センサ42という)が介設されている。また、IPA供給管路2cにはIPAの流れの有無を検知し得るIPA供給ポンプ43(流体流れ検知手段)が介設されている。
【0030】
上記流量検知センサ41,42及びIPA供給ポンプ43によって検知された負荷検知信号は、上記CPU40に伝達され、CPU40において予め記憶されたN2ガス,IPAガス及びIPAの流れの有無による流量負荷に応じた情報、すなわち、ガスの流れの有無に応じて、対応する複数の制御モード、各々の制御モード毎に採用する比例動作、積分動作及び微分動作の3動作を含むPID制御定数(制御定数)に基づいて演算処理され、その制御信号によって上記N2ガス加熱器3、蒸気発生器5のヒータ25,26及び保温ヒータ62が制御される。PID制御定数(以下にPID定数という)はCPU40内のデータテーブルに格納されている。
【0031】
次に、上記洗浄・乾燥処理システムにおけるN2ガス、IPA及びIPAガス(乾燥ガス;混合ガス)の温度制御について、図6ないし図8のフローチャートを参照して説明する。
【0032】
☆N2ガス加熱器の温度制御
図6に示すように、まず、N2ガス加熱器3におけるN2ガスの流量や供給タイミング等をセットしたプロセスモードを確認した後(ステップA)、流量センサ41によってN2ガスは流れているか否かを確認する(ステップB)。N2ガスが流れていない場合は、CPU40からの制御信号によってヒートアップモードにし(ステップC)、予めオートチューニングにより得たPID定数(P11,I11,D11)に基づいてN2ガス加熱器3をヒートアップモードに対する温度制御を行なう(ステップD,E)。このようにしてプロセスモードが終了したか否かが判断され(ステップF)、プロセスモード終了の場合はヒートアップモードに対する温度制御を終了し、終了していない場合は再度プロセスモードを確認する(ステップA)。
【0033】
一方、供給管路2aにN2ガスが流れている場合は、N2ガスフローモードになり(ステップG)、予めオートチューニングにより得たPID定数(P21,I21,D21)に基づいてN2ガス加熱器3をN2ガスフローモードに対する温度制御を行なう(ステップH,I)。このようにしてプロセスモードが終了したか否かが判断され(ステップJ)、プロセスモード終了の場合はN2ガスフローモードに対する温度制御を終了し、終了していない場合は再度プロセスモードを確認した後(ステップA)、上述の手順を繰り返してN2ガス加熱器の温度制御を行なう。
【0034】
したがって、N2ガス供給源1から供給管路2aにN2ガスが供給されたか否かの状態に応じて、予め記憶されたPID定数(制御定数)を選択してN2ガス加熱器3を予備加熱あるいは加熱してN2ガスの温度を最適状態にすることができる。
【0035】
なお、上述の説明においては、N2ガスフローモード(ステップH,I)において、流量センサ41によって検出したN2ガスの流れの有無に基づいたPID定数(P21,I21,D21)のみをデータテーブルに予め記憶した場合の例を示したが、流量センサ41によって検出した流量負荷の大きさ、すなわちN2ガスの流量の大きさに応じて多段階的にPID定数を予め記憶しておくことも可能である。これによって、データテーブルにはN2ガスの流量負荷の大きさに応じて採用されるPID定数が予め記憶されているので、流量負荷の大きさに応じて多段階的に高精度なPID定数を設定選択することができ、選択したPID定数に基づいてN2ガス加熱器3を高精度に制御することができ、N2ガスの温度を最適状態に高精度に制御することができる。
【0036】
☆蒸気発生器の温度制御
図7に示すように、まず、蒸気発生器5におけるN2ガス及びIPAの流量や供給タイミング等をセットしたプロセスモードを確認した後(ステップA)、流量センサ41によってN2ガスは流れているか否かを確認する(ステップB)。N2ガスが流れていない場合は、CPU40からの制御信号によってヒートアップモードにし(ステップC)、予めオートチューニングにより得たPID定数(P12,I12,D12)に基づいて蒸気発生器5のヒータ25,26をヒートアップモードに対する温度制御を行なう(ステップD,E)。このようにしてプロセスモードが終了したか否かが判断され(ステップF)、プロセスモード終了の場合はヒートアップモードに対する温度制御を終了し、終了していない場合は再度プロセスモードを確認する(ステップA)。
【0037】
一方、供給管路2aにN2ガスが流れている場合は、次に、IPA供給ポンプ43の駆動の有無によってIPAが供給されているか否かが判断され(ステップG)、IPAが供給されていない場合は、CPU40からの制御信号によってN2ガスフローモードとなり(ステップH)、予めオートチューニングにより得たPID定数(P22,I22,D22)に基づいてN2ガスが通過する蒸気発生器5のヒータ25,26をN2ガスフローモードに対する温度制御を行なう(ステップI,J)。このようにしてプロセスモードが終了したか否かが判断され(ステップK)、プロセスモード終了の場合は加熱を終了し、終了していない場合は再度プロセスモードを確認する(ステップA)。
【0038】
更に、供給管路2cを介してIPAが流れている場合は、CPU40からの制御信号によってN2+IPAフローモードになり(ステップL)、予めオートチューニングにより得たPID定数(P32,I32,D32)に基づいて蒸気発生器5のヒータ25,26を加熱する(ステップM,N)。このようにしてプロセスモードが終了したか否かが判断され(ステップO)、プロセスモード終了の場合は加熱を終了し、終了していない場合は再度プロセスモードを確認した後(ステップA)、上述の手順を繰り返して蒸気発生器5のヒータ25,26のN2+IPAフローモードに対する温度制御を行なう。
【0039】
したがって、N2ガス供給源1から供給管路2aにN2ガスが供給されたか否かの状態、あるいは、IPA供給源4から供給管路2cを介して蒸気発生器5にIPAが供給されたか否かに応じて、予め記憶されたPID定数(制御定数)を選択してN2ガス加熱器3又は蒸気発生器5のヒータ25,26を温度制御してN2ガスの温度及び乾燥ガスの温度を最適状態にすることができる。
【0040】
なお、上述の説明においては、N2+IPAフローモード(ステップL)において、流量センサ41によって検出したN2ガスの流れの有無とIPA供給ポンプ43の駆動の有無とに基づいたPID定数(P32,I32,D32)のみをデータテーブルに予め記憶した場合の例を示したが、N2ガスの流量の大きさとIPA供給量の大きさとに応じて多段階的にPID定数を予め記憶しておくことも可能である。これによって、データテーブルにはN2ガスの流量負荷の大きさとIPA供給量の大きさとに応じて採用されるPID定数が予め記憶されているので、N2ガス及びIPAの流量負荷の大きさに応じて多段階的に高精度なPID定数を設定選択することができ、選択したPID定数に基づいて蒸気発生器5のヒータ25,26を高精度に制御することができ、N2ガスの温度及び乾燥ガスの温度を最適状態に高精度に制御することができる。
【0041】
☆乾燥ガスの温度制御
図8に示すように、まず、蒸気発生器5におけるN2ガス及びIPAの流量や供給タイミング等をセットしたプロセスモードを確認した後(ステップA)、流量センサ41によってN2ガスは流れているか否かを確認する(ステップB)。N2ガスが流れていない場合は、CPU40からの制御信号によってヒートアップモードにし(ステップC)、予めオートチューニングにより得たPID定数(P13,I13,D13)に基づいて保温ヒータ62をヒートアップモードに対する温度制御を行なう(ステップD,E)。このようにしてプロセスモードが終了したか否かが判断され(ステップF)、プロセスモード終了の場合はヒートアップモードに対する温度制御を終了し、終了していない場合は再度プロセスモードを確認する(ステップA)。
【0042】
一方、供給管路2aにN2ガスが流れている場合は、次に、IPA供給ポンプ43の駆動の有無によってIPAが供給されているか否かが判断され(ステップG)、IPAが供給されていない場合は、CPU40からの制御信号によってN2ガスフローモードとなり(ステップH)、予めオートチューニングにより得たPID定数(P23,I23,D23)に基づいてN2ガスが通過する保温ヒータ62をN2ガスフローモードに対する温度制御を行なう(ステップI,J)。このようにしてプロセスモードが終了したか否かが判断され(ステップK)、プロセスモード終了の場合はN2ガスフローモードに対する温度制御を終了し、終了してない場合は再度プロセスモードを確認する(ステップA)。
【0043】
更に、供給管路2cを介してIPAが流れている場合は、流量センサ42によって乾燥ガス(N2+IPA)の通過が検知されてCPU40からの制御信号によってN2+IPAフローモードになり(ステップL)、予めオートチューニングにより得たPID定数(P33,I33,D33)に基づいて保温ヒータ62をN2+IPAフローモードに対する温度制御を行なう(ステップM,N)。このようにしてプロセスモードが終了したか否かが判断され(ステップO)、プロセスモード終了の場合はN2+IPAフローモードに対する温度制御を終了し、終了していない場合は再度プロセスモードを確認した後(ステップA)、上述の手順を繰り返して保温ヒータ62の温度制御を行なう。
【0044】
したがって、N2ガス供給源1から供給管路2aにN2ガスが供給されたか否かの状態、IPA供給源4から供給管路2cを介して蒸気発生器5にIPAが供給されたか否かの状態、あるいは、供給管路2dを乾燥ガスが流れているか否かの状態に応じて、予め記憶されたPID定数(制御定数)を選択してN2ガス加熱器3の温度制御、また蒸気発生器5のヒータ25,26の温度制御、あるいは保温ヒータ62を温度制御してN2ガスの温度及び乾燥ガスの温度を最適状態にすることができる。
【0045】
なお、上述の説明においては、N2+IPAフローモード(ステップL)において、流量センサ42によって乾燥ガス(N2+IPA)の通過の有無に基づいたPID定数(P33,I33,D33)のみをデータテーブルに予め記憶した場合の例を示したが、流量センサ42によって乾燥ガス(N2+IPA)の通過流量の大きさに応じて多段階的にPID定数を予め記憶しておくことも可能である。これによって、データテーブルには乾燥ガス(N2+IPA)の通過流量の大きさに応じて採用されるPID定数が予め記憶されているので、乾燥ガス(N2+IPA)の通過流量の大きさに応じて多段階的に高精度なPID定数を設定選択することができ、選択したPID定数に基づいて保温ヒータ62を高精度に制御することができ、N2ガスの温度及び乾燥ガスの温度を最適状態に高精度に制御することができる。
【0046】
◎実施形態
図9はこの発明に係る圧力系の制御装置の実施形態の概略構成図である。実施形態は、この発明に係る圧力系の制御装置をエッチング装置の圧力制御に適用した場合である。
【0047】
上記エッチング装置は、密閉可能な処理室71を有する容器70と、この容器70に設けられたガス導入部と異なる種類のガス供給源(図示せず)とを接続するガス供給管路72a〜72cと、処理室71に設けられた真空排気口に接続する排出管路すなわち排気管路73と、排気管路73に接続する真空排気装置例えば真空ポンプ74とを具備してなる。
【0048】
この場合、上記容器70内には処理室71へのガスの供給を兼ねる上下方向に対峙する上部平板電極75とサセプタを兼用する下部平板電極76が配置されており、ウエハWを載置する下部平板電極76には高周波電源77が接続され、上部平板電極75は容器70を介して接地されている。
【0049】
また、上記ガス供給管路72a〜72cには、それぞれ各種ガス流量を検知制御するマスフローコントローラ78a〜78cとエアー操作開閉弁79a〜79cが介設されており、マスフローコントローラ78a〜78cにて検知制御された検知信号は制御手段例えばCPU40Aに伝達されるように構成されている。
【0050】
一方、排気管路73の真空排気口側には、処理室71内の圧力調整手段としてのコントロールバルブ80が介設されると共に、その下流側にターボ分子ポンプ81が介設されている。この場合、コントロールバルブ80はCPU40Aからの制御信号に基づいて開度が調節されるように構成されている。
【0051】
また、上記容器70の側壁には処理室71内を監視するための窓82が設けられており、この窓82の外側には、上記高周波電源77からの高周波電力の印加によって発生するプラズマ発光の有無を検出するためのモノクロメータ83が配設され、このモノクロメータ83にて検知された検知信号がCPU40Aに伝達されるように構成されている。また、容器70と排気管路73におけるターボ分子ポンプ81と真空ポンプ74との間には、各部の圧力を測定するための圧力計84,85がそれぞれ設置されている。
【0052】
上記のように構成されるエッチング装置において、図示しない搬送手段によって下部平板電極76上にウエハWを載置した後、CPU40Aからの制御信号に基づいてコントロールバルブ80を調整すると共に、真空ポンプを駆動して処理室71内を所定の減圧雰囲気にし、そして、所定のガス供給源からガスを処理室71内に供給する一方、高周波電源77から高周波電力を印加して電極75,76間にプラズマ放電を発生させ、この発生したプラズマ中のイオン,電子及び中性の活性種によってウエハWのエッチングを行なう。
【0053】
この際、各種ガスの流量やプラズマの点火により処理室71内の圧力が変化する。したがって、この発明では、CPU40Aに予め記憶された各ガスの流量の有無による負荷に応じたPID定数(制御定数)を選択してコントロールバルブ80を制御することにより、処理圧力を最適圧力に制御している。すなわち、上述した参考実施形態と同様に、ガスの流れの有無に応じて、対応する複数の制御モード、各々の制御モード毎に採用する比例動作、積分動作及び微分動作の3動作を含むPID定数(制御定数)に基づいて演算処理され、その制御信号によって処理室71内の圧力が最適圧力に制御される。
【0054】
次に、実施形態の圧力制御の形態について、図10のフローチャートを参照して説明する。まず、使用されるガスの種類や流量及び供給タイミング等をセットしたプロセスモードを確認した後(ステップA)、マスフローコントローラ78a〜78cによってガスは流れているか否かを確認する(ステップB)。ガスが流れていない場合は、CPU40Aからの制御信号によって真空到達モード(処理室71内のリークが正常かどうかをチェックするモード。)にし(ステップC)、予めオートチューニングにより得たPID定数(P1,I1,D1)に基づいてコントロールバルブ80の開度を調節する(ステップD,E)。このようにしてプロセスモードが終了したか否かが判断され(ステップF)、プロセスモード終了の場合はコントロールバルブ80の開度調節を終了し、終了していない場合は再度プロセスモードを確認する(ステップA)。
【0055】
一方、ガス供給管路72a〜72cにガスが流れている場合は、次に、高周波電源77の高周波電力の印加によってプラズマが発生されているか否かがモノクロメータ83によって判断され(ステップG)、プラズマ発生のない場合は、CPU40Aからの制御信号によってガスフローモードとなり(ステップH)、予めオートチューニングにより得たPID定数(P2,I2,D2)に基づいてコントロールバルブ80の開度を調節する(ステップI,J)。このようにしてプロセスモードが終了したか否かが判断され(ステップK)、プロセスモード終了の場合はコントロールバルブ80の開度調節を終了し、終了していない場合は再度プロセスモードを確認する(ステップA)。
【0056】
更に、モノクロメータ83によってプラズマ発光が確認されてプラズマが発生している場合にはプラズマモードになり(ステップL)、予めオートチューニングにより得たPID定数(P3,I3,D3)に基づいてコントロールバルブ80の開度を調節する(ステップM,N)。このようにしてプロセスモードが終了したか否かが判断され(ステップO)、プロセスモード終了の場合はコントロールバルブ80の開度調節を終了し、終了していない場合は再度プロセスモードを確認した後(ステップA)、上述の手順を繰り返してコントロールバルブ80の開度を調節する。
【0057】
したがって、ガス供給源から供給管路72a〜72cを介して処理室71内にガスが供給されたか否かの状態、あるいは、プラズマが発生しているか否かの状態に応じて、予め記憶されたPID定数(制御定数)を選択してコントロールバルブ80の開度を調節して処理室71内の処理圧力を最適状態にすることができる。
【0058】
◎その他の実施形態
上記実施形態では、この発明に係る圧力系の制御装置をプラズマエッチング装置に適用した場合について説明したが、プラズマ処理以外のエッチング装置あるいは処理室内を所定の圧力に制御して各種ガスを供給して処理する装置例えばCVD装置やスパッタ装置等にも適用できることは勿論である。
【0059】
【発明の効果】
以上に説明したように、この発明によれば、以下のような優れた効果が得られる。
【0060】
所定のガスの流れの有無による流量負荷に応じた制御定数と、プラズマ生成手段によって処理室に生成されるプラズマのプラズマ生成の有無に応じた制御定数とを予め記憶しておき、ガスの流量負荷の検知信号に基づき、制御定数を選択して処理室の圧力を調整する圧力調整手段を制御し、ガスの流量負荷の検知信号と、プラズマ生成有無の検知信号とに基づき、制御定数を選択して処理室の圧力を調整するので、処理室に供給されるガスの流量負荷の検知結果と、プラズマ生成有無の検知結果に基づき、制御定数を選択して処理室の圧力を最適状態に制御することができる。
【図面の簡単な説明】
【図1】 この発明に係るガス系の制御装置の参考実施形態を示す概略構成図である。
【図2】 参考実施形態におけるキャリアガス加熱器の断面図(a)及びその要部の一部断面図(b)である。
【図3】 参考実施形態における蒸気発生器の一例を示す断面図である。
【図4】 参考実施形態における流量制御手段及びその制御弁の一例を示す断面図である。
【図5】 参考実施形態における処理室を示す概略断面図である。
【図6】 参考実施形態におけるキャリアガス加熱器の温度制御方法を示すフローチャートである。
【図7】 参考実施形態における蒸気発生器の温度制御方法を示すフローチャートである。
【図8】 参考実施形態における乾燥ガス供給部の温度制御を示すフローチャートである。
【図9】 この発明に係る圧力系の制御装置の実施形態を示す概略構成図である。
【図10】 実施形態における圧力制御方法を示すフローチャートである。
【図11】 図1に示したガス系の制御装置の別の例を示す概略構成図である。
【符号の説明】
W 半導体ウエハ
40A CPU(制御手段)
71 処理室
72a〜72c ガス供給管路
73 排気管路(排出管路)
78a〜78c マスフローコントローラ(ガス負荷検知手段)
80 コントロールバルブ(圧力調整手段)
83 モノクロメータ(プラズマ生成有無検知手段)

Claims (6)

  1. 所定のガスの流れの有無による流量負荷に応じた制御定数と、プラズマ生成手段によって処理室に生成されるプラズマのプラズマ生成の有無に応じた制御定数とを予め記憶しておき、
    上記ガスの上記流量負荷の検知信号に基づき、上記制御定数を選択して上記処理室の圧力を調整する圧力調整手段を制御して上記処理室を所定の圧力に保ち、上記ガスの上記流量負荷の検知信号と、上記プラズマ生成有無の検知信号とに基づき、上記制御定数を選択して上記圧力調整手段を制御して上記処理室を所定の圧力に保つことを特徴とする半導体プラズマ装置における圧力系の制御方法。
  2. 請求項1記載の半導体プラズマ装置における圧力系の制御方法において、
    上記ガスが異なる種類の複数のガスを含むことを特徴とする半導体プラズマ装置における圧力系の制御方法。
  3. 請求項1記載の半導体プラズマ装置における圧力系の制御方法において、
    上記ガスの上記流量負荷の検知信号に基づき、上記ガスの流れが有ると判断される場合に、検知された上記流量負荷の大きさに応じて制御定数を選択して上記圧力調整手段を制御して上記処理室を所定の圧力に保つことを特徴とする半導体プラズマ装置における圧力系の制御方法。
  4. 請求項1記載の半導体プラズマ装置における圧力系の制御方法において、
    上記ガスの上記流量負荷の検知信号と、上記プラズマ生成有無の検知信号とに基づき、上記ガスの流れが有り、上記プラズマ生成が無いと判断される場合に、予め記憶された制御定数を選択して上記圧力調整手段を制御して上記処理室を所定の圧力に保つことを特徴とする半導体プラズマ装置における圧力系の制御方法。
  5. 請求項1記載の半導体プラズマ装置における圧力系の制御方法において、
    上記ガスの上記流量負荷の検知信号と、上記プラズマ生成有無の検知信号とに基づき、上記ガスの流れが有り、上記プラズマ生成が有ると判断される場合に、予め記憶された制御定数を選択して上記圧力調整手段を制御して上記処理室を所定の圧力に保つことを特徴とする半導体プラズマ装置における圧力系の制御方法。
  6. 処理室内にガスを供給する供給管路と、
    上記処理室に接続される排出管路と、
    上記排出管路に介設されて上記処理室内の圧力を調整する圧力調整手段と、
    上記供給管路に介設されて上記ガスの流量負荷を検知するガス負荷検知手段と、
    プラズマ生成手段によって上記処理室に生成されるプラズマのプラズマ生成有無を検知するプラズマ生成有無検知手段と、
    上記ガスの流れの有無と、上記処理室に生成されるプラズマのプラズマ生成有無とに応じた制御定数を予め記憶する制御手段とを具備し、
    上記ガス負荷検知手段によって上記ガスの上記流量負荷を検知すると共に、上記プラズマ生成有無検知手段によって上記処理室に生成されるプラズマのプラズマ生成有無を検知し、これら検知信号を上記制御手段に伝達し、上記ガスの流れの有無に応じた制御定数の選択及び、上記ガスの流れの有無と、上記処理室に生成されるプラズマの生成有無とに応じた制御定数の選択による上記制御手段からの制御信号に基づいて上記処理室が所定圧力になるように上記圧力調整手段を制御する、ことを特徴とする半導体プラズマ装置における圧力系の制御装置。
JP2003196469A 1997-08-12 2003-07-14 半導体プラズマ装置における圧力系の制御方法及びその装置 Expired - Fee Related JP3751012B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003196469A JP3751012B2 (ja) 1997-08-12 2003-07-14 半導体プラズマ装置における圧力系の制御方法及びその装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP23026097 1997-08-12
JP2003196469A JP3751012B2 (ja) 1997-08-12 2003-07-14 半導体プラズマ装置における圧力系の制御方法及びその装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP21366798A Division JP3470218B2 (ja) 1997-08-12 1998-07-29 ガス系の制御方法及びその装置

Publications (2)

Publication Number Publication Date
JP2004062897A JP2004062897A (ja) 2004-02-26
JP3751012B2 true JP3751012B2 (ja) 2006-03-01

Family

ID=31948867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003196469A Expired - Fee Related JP3751012B2 (ja) 1997-08-12 2003-07-14 半導体プラズマ装置における圧力系の制御方法及びその装置

Country Status (1)

Country Link
JP (1) JP3751012B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015445A1 (ja) * 2005-08-02 2007-02-08 Dialight Japan Co., Ltd. プラズマ発生装置およびこれを用いた成膜方法
JP4961223B2 (ja) * 2007-01-31 2012-06-27 株式会社日立ハイテクノロジーズ プラズマ処理装置の圧力制御方法
JP6518505B2 (ja) * 2015-05-12 2019-05-22 株式会社日立ハイテクノロジーズ プラズマ処理装置およびプラズマ処理方法
CN112286242B (zh) * 2019-07-25 2024-07-16 北京康斯特仪表科技股份有限公司 一种气体压力控制装置

Also Published As

Publication number Publication date
JP2004062897A (ja) 2004-02-26

Similar Documents

Publication Publication Date Title
KR100483310B1 (ko) 건조처리방법및그장치
US6167323A (en) Method and system for controlling gas system
US11698648B2 (en) Gas supply system and gas supply method
TWI675937B (zh) 基板處理裝置、氣體供給方法、基板處理方法及成膜方法
US6157774A (en) Vapor generating method and apparatus using same
TWI837124B (zh) 用於空間分辨晶圓溫度控制的虛擬感測器
US20040129224A1 (en) Cooling mechanism with coolant, and treatment device with cooling mechanism
JPH09172001A (ja) 半導体製造装置の温度制御方法および装置
US10607819B2 (en) Cleaning method and processing apparatus
CN111223795A (zh) 热处理装置和热处理方法
JP2020047911A (ja) 基板処理装置、半導体装置の製造方法及びプログラム
KR101117188B1 (ko) 기판 처리 장치
JP3751012B2 (ja) 半導体プラズマ装置における圧力系の制御方法及びその装置
JPH11110050A (ja) 圧力及び流量の制御方法並びにその装置
JP3470218B2 (ja) ガス系の制御方法及びその装置
CN108573900B (zh) 基板处理装置
TW202303810A (zh) 成膜設備
CN111489985B (zh) 热介质的控制方法和热介质控制装置
US20010052359A1 (en) Method of substrate temperature control and method of assessing substrate temperature controllability
KR101886763B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR20210024141A (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
WO2021181498A1 (ja) 基板処理装置、排気流量制御装置及び半導体装置の製造方法
CN115132559A (zh) 温度控制装置、基片处理装置和压力控制方法
US20220010428A1 (en) Substrate support, apparatus for processing substrate, and method of adjusting temperature of substrate
US20220189795A1 (en) Apparatus for treating substrate and temperature control method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050526

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees