JP3750914B2 - Method and apparatus for forming thin film on printed wiring board - Google Patents

Method and apparatus for forming thin film on printed wiring board Download PDF

Info

Publication number
JP3750914B2
JP3750914B2 JP2000160002A JP2000160002A JP3750914B2 JP 3750914 B2 JP3750914 B2 JP 3750914B2 JP 2000160002 A JP2000160002 A JP 2000160002A JP 2000160002 A JP2000160002 A JP 2000160002A JP 3750914 B2 JP3750914 B2 JP 3750914B2
Authority
JP
Japan
Prior art keywords
wiring board
printed wiring
thin film
liquid
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000160002A
Other languages
Japanese (ja)
Other versions
JP2001339144A (en
Inventor
孝祐 稲谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Original Assignee
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd filed Critical Origin Electric Co Ltd
Priority to JP2000160002A priority Critical patent/JP3750914B2/en
Publication of JP2001339144A publication Critical patent/JP2001339144A/en
Application granted granted Critical
Publication of JP3750914B2 publication Critical patent/JP3750914B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、スルーホールのような多数の透孔が形成されたプリント配線基板にフォトレジスト層のような薄膜を形成する方法及び装置に関する。
【0002】
【従来技術】
プリント配線基板の全面に均一の厚みのフォトレジスト膜を形成する従来方法として、特開平5−67861号公報に開示された方法がある。これは、基板をフォトレジスト槽に浸漬して両面全面にフォトレジスト液を塗布し、引き上げ、乾燥させた後に180度回し、しかる後に再び浸漬、引き上げ、乾燥のサイクルを1回以上行う方法である。この方法は比較的均一な膜厚のフォトレジスト膜を得ることができると前記公報に記述されている。
【0003】
【発明が解決しようとする課題】
しかしこの方法の第1の欠点はスルーホール又はビアのような透孔がレジスト材料で埋められてしまう点である。また、第2の欠点はプリント配線基板の両面にフォトレジスト膜が形成されてしまうので、片方の面にだけにフォトレジスト膜を形成しようとすると、プリント配線基板の片面をマスクするマスキング工程が必要になることである。
【0004】
本発明はこのような従来の問題点を解決し、プリント配線基板の透孔にフォトレジスト材料のような液状材料が実質的に入らない、又は入っても裏面へにじみ出ないプリント配線基板への薄膜形成方法を提供することを課題としている。
【0005】
【課題を解決するための手段】
本発明の請求項1は、上記の課題を解決するため、透孔が形成されたプリント配線基板にフォトレジスト材料などの液状材料を供給すると共に回転処理を行って、前記液状材料が前記透孔を通して裏面へにじみ出ない所望の膜厚の薄膜を前記プリント配線基板の片面に形成する方法において、前記プリント配線基板は、前記プリント配線基板の下面に間隙が形成されるように受け台に支承され、前記プリント配線基板を一定回転数又は加速回転数で第1の回転処理を行いながら、前記液状材料を前記プリント基板の中央に供給し、前記液状材料の供給停止後には前記第1の回転処理に連続して前記第1の回転処理の回転数と同等以上の回転数で第2の回転処理を行うことを特徴とするプリント配線基板の薄膜形成方法を提案するものである。
【0006】
本発明の請求項2は、上記の課題を解決するため、請求項1において、前記液状材料は10cps〜2,000cpsの範囲の粘度を有するフォトレジスト材料であり、前記一定回転数は100rpm〜2,000rpmの範囲であることを特徴とするプリント配線基板の薄膜形成方法を提案するものである。
【0007】
本発明の請求項3は、上記の課題を解決するため、請求項1において、前記液状材料は10cps〜2,000cpsの範囲の粘度を有するフォトレジスト材料であり、前記加速回転数は時間と共にほぼ2,000rpmまでの範囲内で増加することを特徴とするプリント配線基板の薄膜形成方法を提案するものである。
【0008】
本発明の請求項4は、上記の課題を解決するため、請求項1ないし請求項3のいずれかにおいて、前記第1の回転処理に要する時間は前記第2の回転処理に要する時間よりも長いことを特徴とするプリント配線基板の薄膜形成方法を提案するものである。
【0009】
本発明の請求項5は、上記の課題を解決するため、請求項1ないし請求項4のいずれかにおいて、前記回転処理と前記液状材料の供給が行われるとき、前記プリント配線基板の下面に形成された前記間隙の空気圧を大気圧よりも高くすることを特徴とするプリント配線基板の薄膜形成方法を提案するものである。
【0010】
本発明の請求項6は、上記の課題を解決するため、請求項5において、
前記回転処理の時間の経過に伴って前記空気圧を段階的に又は連続的に大気圧に近づけて行くことを特徴とするプリント配線基板の薄膜形成方法を提案するものである。
【0011】
本発明の請求項7は、上記の課題を解決するため、透孔が形成されたプリント配線基板を支承する受け台と、前記プリント配線基板にフォトレジスト材料などの液状材料を供給する液体供給ノズルを備える液体供給装置と、前記液状材料の供給された前記プリント配線基板を前記受け台と一緒に所定の回転処理パターンに従って回転させる回転駆動装置とを備えたプリント配線基板の薄膜形成装置において、前記受け台は前記プリント配線基板を支承する受け部を有し、該受け部に支承された前記プリント配線基板の下面の大部分は、前記受け台の上面から1mm以上離れていることを特徴とするプリント配線基板の薄膜形成装置を提案するものである。
【0012】
本発明の請求項8は、上記の課題を解決するため、透孔が形成されたプリント配線基板を支承する受け台と、前記プリント配線基板にフォトレジスト材料などの液状材料を供給する液体供給ノズルを備える液体供給装置と、前記液状材料の供給された前記プリント配線基板を前記受け台と一緒に所定の回転処理パターンに従って回転させる回転駆動装置とを備えたプリント配線基板の薄膜形成装置において、前記受け台は前記プリント配線基板を支承する受け部を有し、該受け部は前記プリント配線基板の下面との間に気圧室となる間隙を形成する底面部とそれから延びる側壁部とを有し、前記底面部には複数の小孔が設けられており、これら小孔を通して前記気圧室に気流を供給し得る空気供給機構を備え、前記回転処理中には前記プリント配線基板の下面側に形成される前記気圧室の気圧を大気圧よりも高くすることを特徴とするプリント配線基板の薄膜形成装置を提案するものである。
【0014】
【発明の実施の形態及び実施例】
本発明は、透孔を有するプリント回路基板にフォトレジスト材料を回転(スピン)させて一様なフォトレジスト膜を形成する際にフォトレジスト材料が透孔に入らないように、あるいは入ったとしても透孔を通して裏側に回らないようにするものである。図1及び図2により本発明の基本的な1実施例について説明する。図示しない液体供給機構に接続されている液体供給ノズル1はプリント回路基板2の中央に液状のフォトレジスト材料3を供給する。プリント回路基板2は受け台4に設けられた4個の基板支持部材4a、4b、4c、4dにより支持される。受け台4の中心部は回転軸部材5に固定され、回転軸部材5の回転と一緒に回転する。ここで、種々の大きさのプリント回路基板に対応できるよう基板支持部材4a〜4dは放射内外方向に移動できる構造が好ましく、また基板支持部材は4個に限ることはなく、3個又は5個などでも良い。
【0015】
液体供給ノズル1からプリント回路基板2の中央への液状フォトレジスト材料3の供給は、後述するようにプリント回路基板2が一定回転数以上の状態で行われる。プリント回路基板2が停止の状態で液状フォトレジスト材料3をプリント回路基板2上に供給した場合には、液状フォトレジスト材料3には図2に示すように圧力Pが作用するので、液状フォトレジスト材料3はスルーホール又はビアのような透孔H内に入ろうとする。ここで圧力Pは、液状フォトレジスト材料3の比重をγ、フォトレジスト材料層の高さをhとするとき、P=γhで表される。一方、液状フォトレジスト材料3とプリント回路基板面との間には界面張力Tが作用し、液状フォトレジスト材料3を透孔H内に入れようとする力に逆らう力を働かせる。本来の目的から液状フォトレジスト材料3とプリント回路基板2間の濡れ性を高めてあり、前記作用する界面張力Tが低くなるように設定されているので、液状フォトレジスト材料3は容易に透孔H内に入ってしまう。
【0016】
したがって、この発明ではプリント回路基板2が一定回転速度以上の状態で液体供給ノズル1からプリント回路基板2の中央への液状フォトレジスト材料3を供給する。この場合には、液状フォトレジスト材料3が広がるときのプリント回路基板2の透孔Hの直上の液状フォトレジスト材料3の移動速度をv、重力をgとするとき、透孔H内に作用する圧力Pは、P=γh−γ /2gとなり、プリント回路基板2の停止時よりも小さくなることは明らかである。移動速度vはプリント回路基板2の回転速度に応じて大きくなるので、その回転速度がある値以上の場合には圧力Pを液状フォトレジスト材料3が透孔Hに深く入らない値にすることができる。また、液状フォトレジスト材料3はプリント回路基板2上に供給された後、回転力により瞬時に外方向に広がるので液膜の厚みは小さくなり、つまりhが小さくなるので、液状フォトレジスト材料3が広がるのに伴い圧力Pは小さくなり、透孔H内に入り難くなる。したがって、液状フォトレジスト材料3が透孔H内に入り易いのは、液体供給ノズル1から液状フォトレジスト材料3が供給されるプリント回路基板2の中央近傍であるので、液体供給ノズル1から液状フォトレジスト材料3を供給するときには、プリント回路基板2が一定以上の回転速度で回転していなければならない。
【0017】
また、図2に示すようにプリント回路基板2と受け台4との間隔がある程度以上であれば、図示のような気流が流れ易くなり、プリント回路基板2の下面が負圧になるのを防ぐことができ、液状フォトレジスト材料3が透孔H内に吸い込まれるのを防止することができる。例えば、プリント回路基板2を受け台4上に載置し、回転処理を行った場合には、プリント回路基板2と受け台4との間には微小な間隙が存在するのでその間隙は負圧状態になり、液状フォトレジスト材料3は透孔H内に吸い込まれる。しかし、各種実験によるとプリント回路基板2の下面と受け台4の上面との間の間隙がほぼ1mm以上あれば、プリント回路基板2の下面が影響を及ぼす程度の大きさの負圧になるのを防ぐことができ、液状フォトレジスト材料3が透孔H内に吸い込まれるのを防止することができることを確認した。
【0018】
次に、図3によりフォトレジスト材料などをプリント回路基板に回転により塗布する薄膜形成装置の一実施例を説明する。図3において、図1及び図2で用いた記号と同じ記号は相当する部材を示す。受け台4は、回転軸部材5に固定されたベース部4Aと、プリント回路基板2を受けてこれと気圧室を形成する受け部4Bとからなる。ベース部4Aはプリント回路基板2の形状に対応する4角の底面部4A1を備え、底面部4A1の中央に穴4A2が形成されており、その穴の中心に回転軸部材5の中心軸線が合致するように、回転軸部材5に固定されている。ベース部4Aの4辺の最外側には適当な高さの側壁4A3が設けられ、側壁4A3の上面に受け部Bが固定される。受け部4Bは、多数の小孔hを有する4角形板材又は多孔質材料からなる板材で構成された通気性底部4B1と、通気性底部4B1の4辺の最外側に設けられた適当な高さの側壁部4B2とを有する。側壁部4B2には、プリント回路基板2を受入れ保持するための段差部4B3が形成されている。ベース部4Aの底面部4A1と受け部4Bの通気性底部4B1下面との間の間隙4Cは空気をほぼ均一に多数の小孔bを通過させる空気通路を形成する。また、段差部4B3に搭載されたプリント回路基板2と受け部4Bとは大気圧よりも高い気圧状態を保持し得る気圧室4Dを形成する。回転軸部材5は中央に空気通路5Aを有し、その途中に非接触で気密状態を保持できる一般的な構造のラビリンスシール部6を通して固定の空気供給パイプ7に結合される。また、回転軸部材5はモータのような駆動装置8に結合される。
【0019】
次に、プリント回路基板2にフォトレジスト膜を形成する幾つかの方法について説明する。先ず、受け台4の段差部4B3にプリント回路基板2を搭載し、図示しない液体供給ノズル装置を動作させて液体供給ノズル1をプリント回路基板2の中央まで移動させる。このとき回転駆動装置8を動作させ、受け台4を一定回転数又は加速回転数で回転させる。この第1の実施例の方法では空気供給機構を駆動せず、気圧室4Dの気圧を高めずに大気圧のまま、つまりプリント回路基板2のの両面側が大気圧の状態でプリント回路基板2に液体供給ノズル1からフォトレジスト材料3を供給する。この実施例で用いるフォトレジスト材料3は10〜2,000cpsの範囲の粘度、好ましくは50〜1,600cpsの範囲の粘度を有するものである。そして図4に示すように、100〜2,000rpmの範囲内、好ましくは300〜1,700rpmの範囲内の一定回転数R1になる時刻t1以降にフォトレジスト材料3を液体供給ノズル1からプリント回路基板2上に供給し始め、時刻t2で液状材料3の供給を停止すると共に、回転数をR2まで上げる。このように先ず、フォトレジスト材料3を供給しながら一定回転で処理する第1の回転処理を時刻t1〜t2の期間T1で行う。この条件では、回転によって実質的にプリント回路基板2の上面側に対して下面側が負圧状態になることはない。
【0020】
ここで、フォトレジスト材料3の粘度が10cpsよりも低い場合には回転数を調整してもフォトレジスト材料3がプリント回路基板2の透孔(図示せず)を裏面近傍までに入ってしまうので、好ましくない。また、フォトレジスト材料3の粘度が2,000cpsよりも大きい場合にはプリント回路基板2の透孔にフォトレジスト材料3が入ることは無いが、回転数を調整してもプリント回路基板2上に均一な膜を形成することが難しい。また、回転数R1が100rpm以下の場合にはフォトレジスト材料3の粘度10〜2,000cpsの範囲内であってもその内の低い方の粘度のフォトレジスト材料3はプリント回路基板2の透孔を裏面近傍までに入ってしまうので好ましくなく、回転数R1が2,000rpm以上の場合には透孔の部分で膜が形成されないか、あるいは薄すぎることがあり、好ましくない。
【0021】
次に、一定の回転数R2で一定時間処理した後、時刻t3で回転数をゼロまで降下させる。回転数をR2まで上げ始めた時刻t2から回転数がほぼゼロに降下する時刻t3までの時間T2を第2の回転処理に要した時間とする。この第2の回転処理の時間T2は第1の回転処理の時間T1よりも短くなければならない。この第2の回転処理は第1の回転処理で得られた薄膜を更に均一化し、所望の膜厚にするためのものであるので、第2の回転処理の時間T2を第1の回転処理の時間T1よりも長くすると、プリント回路基板2の透孔の部分で膜が薄くなり過ぎたり、穴が明いてしまう場合があり、好ましくない。このような条件で回転処理を行うことにより、プリント回路基板2のスルーホールなどの透孔にフォトレジスト材料がほとんど入らずに、また入ったとしてもプリント回路基板2の裏面ににじみ出ることの無い状態で、プリント回路基板2にほぼ均一な厚みのフォトレジスト膜を形成することができる。
【0022】
次に第2の実施例を図5により説明する。この実施例でも前記実施例と同様に気圧室4Dの気圧を高めずに大気圧のまま、つまりプリント回路基板2の両面側が大気圧の状態ですべての回転処理を行う。また、フォトレジスト材料3も前記実施例の場合と同様に10〜2,000cpsの範囲の粘度、好ましくは50〜1,600cpsの範囲の粘度を有する。この実施例では回転数を線形的に上昇させる加速回転で、その回転数が100rpmを越えた時刻t1の近傍でプリント回路基板2に液体供給ノズル1からフォトレジスト材料3を供給し、予め決めた回転数r1になった時刻t2でフォトレジスト材料3の供給を止めると共に、その回転数r1を時刻t3まで保持し、時刻t3で回転数r1よりも高い予め決めた回転数r2に上昇させ始める。そして回転数r2で一定時間、プリント回路基板2を回転させ、時刻t4でその回転数をほぼゼロまで低下させる。液体供給ノズル1からフォトレジスト材料3を供給しながらプリント回路基板2を加速回転させる第1の回転処理の時間T1は、前記実施例の理由と同じ理由から第2の回転処理の時間T2よりも長い。
【0023】
この実施例でも、プリント回路基板2のスルーホールなどの透孔にフォトレジスト材料がほとんど入らずに、また入ったとしてもプリント回路基板2の裏面ににじみ出ることの無い状態で、プリント回路基板2にほぼ均一な厚みのフォトレジスト膜を形成することができる。なお、この第2の実施例において、急速に回転数を100rpmまで上げて時刻t2までの時間を短くしても良く、また時間と共に回転数を上げる加速回転は時間に対して直線的に上昇させるだけでなく、時間に対して曲線的になるような線形的な回転数の上昇でも勿論よい。このことは回転駆動装置8に種々の回転パターンをメモリしておき、入力条件によって回転数が変わるようにしておくことにより容易に所望の回転が得られる。また、これら実施例において、第2の回転処理のパターンは図示のもの以外に数段階で回転数を上昇させたり、時間に対して線形的に回転数を上昇させるものであってもほぼ同様な効果が得られることを確認している。
【0024】
以上の実施例では、プリント回路基板2と受け部4Bとの間に形成される気圧室4Dを大気圧のままで回転処理を行ったので、液状材料として粘度が10〜2,000cpsの範囲内フォトレジスト材料3を用いたが、粘度がこの範囲外の液状材料を透孔をもつプリント回路基板2に塗布してほぼ均一の膜厚の層を得たい場合がある。このような場合、気圧室4Dの気圧を大気圧よりも大きくし、大きさを調整すればよいことが分かった。
【0025】
次に、図3を用いて本発明の他の1実施例について説明する。この実施例では粘度が10cpsよりも小さな液状材料3を用いることができ、気圧室4Dの気圧は主としてプリント回路基板2の透孔の径と液状材料3の粘度に依存する形で調整される。先ず、受け台4の受け部4Bの段差部4B3にプリント回路基板2を搭載した後、空気供給パイプ7に接続された図示しない空気供給機構を動作させて空気を通気性底部4B1の小孔hを通して気圧室4Dに送り込んで、気圧室4Dの気圧を所定の値に調整する。しかる後に、プリント回路基板2を所定の一定回転数で回転させた状態で液体供給ノズル1からプリント回路基板2の中央に液状材料3を供給し、その回転数で所定時間処理した後に回転数をゼロにする。回転処理の方法は回転数を違えて前述の実施例と同様な方法で行なっても良いが、この実施例では最初から最後まで所定の一定回転数で回転処理を行った。
【0026】
空気流は、気圧室4Dの気圧は前述のようにプリント回路基板2の透孔の径と液状材料3の粘度に依存するので一概に範囲を定めることはできないが、プリント回路基板2の透孔の径が大きく、液状材料3の粘度が小さいほど気圧を高くする必要がある。その調整の目安としては、プリント回路基板2の透孔のある径で、液状材料3の粘度がある値のとき、回転処理の結果、液状材料3がプリント回路基板2の透孔に入って裏面に回り込む場合には、気圧を高める必要があり、また透孔からの空気流で液状材料3による膜に穴が明いたり、膜が持ち上がってしまう場合には気圧を低くする必要がある。気圧室4Dの気圧がこの好ましく調整されている場合には、プリント回路基板2の透孔部分でも液状材料3による膜はほぼ平坦である。実際の装置では、回転処理中にプリント回路基板2の透孔を液状材料3による膜で覆った段階では透孔から空気は漏れないが、プリント回路基板2を受け台4の段差部4B3に搭載しているだけであるので、プリント回路基板2と段差部4B3との間から空気が漏れるので、所定の気圧を維持するよう回転処理中には空気を気圧室4Dに送る必要がある。
【0027】
例えば、直径が0.3mmの透孔の場合の各種実験によると気圧室4Dの気圧は大気圧の2倍以下の範囲内で前述のような気圧に調整される。また、回転処理の時間の経過に伴ってプリント回路基板2の液状材料3による膜の厚みは薄くなるので、これに伴い気圧室4Dの気圧を連続的に、又は段階的に微調整、つまり低くするのが好ましい。これは空気供給機構に気流の微調整が可能なバルブ手段を設け、タイマとの組み合わせで制御することができる。
【0028】
【発明の効果】
以上述べたように本発明によれば、プリント配線基板の透孔にフォトレジスト材料のような液状材料が実質的に入らない、又は入っても裏面へにじみ出ずに、プリント配線基板の片面へ所望の膜厚の薄膜を形成することができる。
【図面の簡単な説明】
【図1】 本発明に係るプリント配線基板に薄膜を形成する方法の1実施例を説明するための図である。
【図2】 本発明に係るプリント配線基板の薄膜を形成する方法の1実施例を説明するための図である。
【図3】 本発明に係るプリント配線基板の薄膜形成装置の1実施例を説明する図である。
【図4】 本発明に係るプリント配線基板の薄膜形成方法の1実施例を説明するための図である。
【図5】 本発明に係るプリント配線基板の薄膜形成方法の他の実施例を説明するための図である。
【符号の説明】
1・・・液体供給ノズル 5・・・回転軸部材
2・・・プリント回路基板 6・・・ラビリンスシール部
3・・・液状材料 7・・・空気供給パイプ
4・・・受け台 8・・・回転駆動装置
4A・・受け台4のベース部 4B・・・受け台4の受け部
4A1・・ベース部の底面部 4B1・・通気性底部
4A2・・底面部の穴 4B2・・受け部の側壁部
4A3・・ベース部の側壁 4B3・・受け部の段差部
4C・・・間隙(空気通路) 4D・・・気圧室
4a〜4d・・基板支持部材 H・・・透孔
[0001]
[Industrial application fields]
The present invention relates to a method and an apparatus for forming a thin film such as a photoresist layer on a printed wiring board in which a large number of through holes such as through holes are formed.
[0002]
[Prior art]
As a conventional method for forming a photoresist film having a uniform thickness on the entire surface of a printed wiring board, there is a method disclosed in Japanese Patent Application Laid-Open No. 5-67861. This is a method in which a substrate is immersed in a photoresist tank, a photoresist solution is applied to the entire surface of the substrate, pulled up, dried, rotated 180 degrees, and then immersed, pulled up, and dried once or more. . This method describes that a photoresist film having a relatively uniform film thickness can be obtained.
[0003]
[Problems to be solved by the invention]
However, the first drawback of this method is that through holes such as through holes or vias are filled with a resist material. The second drawback is that a photoresist film is formed on both sides of the printed wiring board. Therefore, if a photoresist film is formed only on one side, a masking process for masking one side of the printed wiring board is required. Is to become.
[0004]
The present invention solves such conventional problems, and a thin film on a printed wiring board in which a liquid material such as a photoresist material does not substantially enter the through hole of the printed wiring board or does not bleed out even if it enters. It is an object to provide a forming method.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, a liquid material such as a photoresist material is supplied to a printed wiring board in which a through hole is formed, and a rotation process is performed. In the method of forming a thin film having a desired film thickness that does not bleed through the back surface on one side of the printed wiring board, the printed wiring board is supported by a cradle so that a gap is formed on the lower surface of the printed wiring board. The liquid material is supplied to the center of the printed circuit board while performing the first rotation processing of the printed wiring board at a constant rotation speed or acceleration rotation speed, and after the supply of the liquid material is stopped, the first rotation processing is performed. The present invention proposes a method for forming a thin film on a printed wiring board, wherein the second rotation process is continuously performed at a rotation speed equal to or higher than the rotation speed of the first rotation process.
[0006]
According to a second aspect of the present invention, in order to solve the above-mentioned problem, in the first aspect, the liquid material is a photoresist material having a viscosity in a range of 10 cps to 2,000 cps, and the constant rotational speed is 100 rpm to 2. The present invention proposes a method for forming a thin film on a printed wiring board, characterized by being in the range of 1,000 rpm.
[0007]
According to a third aspect of the present invention, in order to solve the above-mentioned problem, in the first aspect, the liquid material is a photoresist material having a viscosity in a range of 10 cps to 2,000 cps, and the acceleration rotational speed is substantially increased with time. The present invention proposes a method for forming a thin film on a printed wiring board characterized by increasing within a range up to 2,000 rpm .
[0008]
According to a fourth aspect of the present invention, in order to solve the above-mentioned problem, in any one of the first to third aspects, the time required for the first rotation processing is longer than the time required for the second rotation processing. The present invention proposes a method for forming a thin film on a printed wiring board, which is characterized by the above.
[0009]
According to a fifth aspect of the present invention, in order to solve the above-described problem, the substrate according to any one of the first to fourth aspects is formed on the lower surface of the printed wiring board when the rotation process and the supply of the liquid material are performed. The present invention proposes a method for forming a thin film on a printed wiring board, wherein the air pressure in the gap is made higher than atmospheric pressure .
[0010]
Claim 6 of the present invention, for solving the above problems, in claim 5,
The present invention proposes a method for forming a thin film on a printed wiring board, wherein the air pressure is brought close to atmospheric pressure stepwise or continuously with the lapse of time of the rotation process .
[0011]
According to a seventh aspect of the present invention, in order to solve the above problems, a cradle for supporting a printed wiring board in which a through hole is formed, and a liquid supply nozzle for supplying a liquid material such as a photoresist material to the printed wiring board. In a thin film forming apparatus for a printed wiring board, comprising: a liquid supply apparatus comprising: a rotation driving device that rotates the printed wiring board supplied with the liquid material together with the cradle according to a predetermined rotation processing pattern; The cradle has a receiving part for supporting the printed wiring board, and most of the lower surface of the printed wiring board supported by the receiving part is separated from the upper surface of the cradle by 1 mm or more. A thin film forming apparatus for a printed wiring board is proposed.
[0012]
According to an eighth aspect of the present invention, in order to solve the above problems, a cradle for supporting a printed wiring board in which a through hole is formed, and a liquid supply nozzle for supplying a liquid material such as a photoresist material to the printed wiring board. in the thin film forming apparatus of a printed wiring board having a liquid supply device, and a rotary driving device for rotating in accordance with a predetermined rotation processing pattern supplied the printed wiring board together with pedestal above the liquid material having the The cradle has a receiving part for supporting the printed wiring board, and the receiving part has a bottom surface part that forms a gap serving as a pressure chamber between the lower surface of the printed wiring board and a side wall part extending therefrom. The bottom surface portion is provided with a plurality of small holes, and is provided with an air supply mechanism that can supply an air flow to the atmospheric pressure chamber through the small holes. It proposes a thin-film forming apparatus of a printed wiring board, characterized in that the pressure of the pressure chamber which is formed on the lower surface side of the wiring board is higher than the atmospheric pressure.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, when a uniform photoresist film is formed by rotating (spinning) a photoresist material on a printed circuit board having a through-hole, the photoresist material does not enter the through-hole or even if it enters. It does not turn to the back side through the through hole. A basic embodiment of the present invention will be described with reference to FIGS. A liquid supply nozzle 1 connected to a liquid supply mechanism (not shown) supplies a liquid photoresist material 3 to the center of the printed circuit board 2. The printed circuit board 2 is supported by four board support members 4a, 4b, 4c, and 4d provided on the cradle 4. The center portion of the cradle 4 is fixed to the rotary shaft member 5 and rotates together with the rotation of the rotary shaft member 5. Here, it is preferable that the substrate support members 4a to 4d be movable in the radial direction so as to be compatible with printed circuit boards of various sizes, and the number of substrate support members is not limited to four, but three or five. Etc.
[0015]
The supply of the liquid photoresist material 3 from the liquid supply nozzle 1 to the center of the printed circuit board 2 is performed in a state where the printed circuit board 2 is at a certain rotational speed or more as will be described later. When the liquid photoresist material 3 is supplied onto the printed circuit board 2 while the printed circuit board 2 is stopped, a pressure P acts on the liquid photoresist material 3 as shown in FIG. The material 3 tries to enter a through hole H such as a through hole or a via. Here, the pressure P is expressed by P = γh, where γ is the specific gravity of the liquid photoresist material 3 and h is the height of the photoresist material layer. On the other hand, an interfacial tension T acts between the liquid photoresist material 3 and the printed circuit board surface, and exerts a force against the force to put the liquid photoresist material 3 into the through hole H. Since the wettability between the liquid photoresist material 3 and the printed circuit board 2 is enhanced for the original purpose and the acting interfacial tension T is set to be low, the liquid photoresist material 3 is easily perforated. Enter H.
[0016]
Accordingly, in the present invention, the liquid photoresist material 3 is supplied from the liquid supply nozzle 1 to the center of the printed circuit board 2 in a state where the printed circuit board 2 is at a certain rotational speed or higher. In this case, when the movement speed of the liquid photoresist material 3 immediately above the through hole H of the printed circuit board 2 when the liquid photoresist material 3 spreads is v and gravity is g, it acts in the through hole H. It is clear that the pressure P becomes P = γh−γ v 2 / 2g, which is smaller than when the printed circuit board 2 is stopped. Since the moving speed v increases in accordance with the rotational speed of the printed circuit board 2, the pressure P is set to a value at which the liquid photoresist material 3 does not enter the through hole H when the rotational speed is a certain value or more. it can. Further, after the liquid photoresist material 3 is supplied onto the printed circuit board 2, the liquid film material is instantly spread outward by the rotational force, so that the thickness of the liquid film is reduced, that is, h is reduced. As it expands, the pressure P decreases and it becomes difficult to enter the through hole H. Therefore, the liquid photoresist material 3 is likely to enter the through hole H in the vicinity of the center of the printed circuit board 2 to which the liquid photoresist material 3 is supplied from the liquid supply nozzle 1. When the resist material 3 is supplied, the printed circuit board 2 must be rotated at a certain rotational speed.
[0017]
Further, as shown in FIG. 2, if the distance between the printed circuit board 2 and the cradle 4 is not less than a certain level, the airflow as shown in the figure is easy to flow, and the lower surface of the printed circuit board 2 is prevented from becoming negative pressure. It is possible to prevent the liquid photoresist material 3 from being sucked into the through holes H. For example, when the printed circuit board 2 is placed on the cradle 4 and rotated, a minute gap exists between the printed circuit board 2 and the cradle 4 so that the gap is negative pressure. The liquid photoresist material 3 is sucked into the through holes H. However, according to various experiments, if the gap between the lower surface of the printed circuit board 2 and the upper surface of the cradle 4 is approximately 1 mm or more, the negative pressure is large enough to adversely affect the lower surface of the printed circuit board 2. It was confirmed that the liquid photoresist material 3 can be prevented from being sucked into the through holes H.
[0018]
Next, an embodiment of a thin film forming apparatus for applying a photoresist material or the like to a printed circuit board by rotation will be described with reference to FIG. 3, the same symbols as those used in FIGS. 1 and 2 indicate the corresponding members. The cradle 4 includes a base portion 4A fixed to the rotating shaft member 5 and a receiving portion 4B that receives the printed circuit board 2 and forms a pressure chamber. The base portion 4A has a square bottom surface portion 4A1 corresponding to the shape of the printed circuit board 2, and a hole 4A2 is formed at the center of the bottom surface portion 4A1, and the center axis of the rotary shaft member 5 matches the center of the hole. In this way, the rotary shaft member 5 is fixed. Base side wall of the outermost appropriate for height of four sides of 4A 4A3 is provided, the receiving part 4 B on the upper surface of the side wall 4A3 is fixed. The receiving portion 4B has a breathable bottom portion 4B1 made of a square plate material having a large number of small holes h or a plate material made of a porous material, and an appropriate height provided on the outermost side of the four sides of the breathable bottom portion 4B1. Side wall portion 4B2. A stepped portion 4B3 for receiving and holding the printed circuit board 2 is formed on the side wall portion 4B2. A gap 4C between the bottom surface portion 4A1 of the base portion 4A and the lower surface of the air-permeable bottom portion 4B1 of the receiving portion 4B forms an air passage through which air passes through a large number of small holes b almost uniformly. Further, the printed circuit board 2 mounted on the stepped portion 4B3 and the receiving portion 4B form a pressure chamber 4D capable of maintaining a pressure state higher than the atmospheric pressure. The rotary shaft member 5 has an air passage 5A in the center, and is coupled to a fixed air supply pipe 7 through a labyrinth seal portion 6 having a general structure capable of maintaining an airtight state in a non-contact manner. The rotating shaft member 5 is coupled to a driving device 8 such as a motor.
[0019]
Next, several methods for forming a photoresist film on the printed circuit board 2 will be described. First, the printed circuit board 2 is mounted on the stepped portion 4B3 of the cradle 4 and the liquid supply nozzle device (not shown) is operated to move the liquid supply nozzle 1 to the center of the printed circuit board 2. At this time, the rotation driving device 8 is operated to rotate the cradle 4 at a constant rotation speed or an acceleration rotation speed. In the method of the first embodiment, the air supply mechanism is not driven, the atmospheric pressure of the atmospheric pressure chamber 4D is not increased, and the atmospheric pressure is maintained, that is, the both sides of the printed circuit board 2 are at atmospheric pressure. A photoresist material 3 is supplied from the liquid supply nozzle 1. The photoresist material 3 used in this example has a viscosity in the range of 10 to 2,000 cps, preferably in the range of 50 to 1,600 cps. Then, as shown in FIG. 4, the photoresist material 3 is transferred from the liquid supply nozzle 1 to the printed circuit after time t1 when the rotation speed R1 is within a range of 100 to 2,000 rpm, preferably 300 to 1,700 rpm. The supply onto the substrate 2 starts, and at the time t2, the supply of the liquid material 3 is stopped and the rotation speed is increased to R2. As described above, first, the first rotation process in which the photoresist material 3 is supplied and processed at a constant rotation is performed in the period T1 between the times t1 and t2. Under this condition, the lower surface side does not substantially become a negative pressure state with respect to the upper surface side of the printed circuit board 2 due to the rotation.
[0020]
Here, when the viscosity of the photoresist material 3 is lower than 10 cps, the photoresist material 3 enters the through hole (not shown) of the printed circuit board 2 to the vicinity of the back surface even if the rotational speed is adjusted. It is not preferable. Further, when the viscosity of the photoresist material 3 is larger than 2,000 cps, the photoresist material 3 does not enter the through hole of the printed circuit board 2, but it remains on the printed circuit board 2 even if the rotational speed is adjusted. It is difficult to form a uniform film. Further, when the rotational speed R1 is 100 rpm or less, even if the viscosity of the photoresist material 3 is in the range of 10 to 2,000 cps, the lower viscosity of the photoresist material 3 does not pass through the printed circuit board 2. In the vicinity of the back surface. When the rotational speed R1 is 2,000 rpm or more, the film may not be formed at the through-hole portion or may be too thin.
[0021]
Next, after processing for a fixed time at a fixed rotation speed R2, the rotation speed is lowered to zero at time t3. The time T2 from the time t2 when the rotation speed starts to R2 to the time t3 when the rotation speed drops to almost zero is defined as the time required for the second rotation process. The time T2 of the second rotation process must be shorter than the time T1 of the first rotation process. Since the second rotation process is for further uniforming the thin film obtained by the first rotation process to obtain a desired film thickness, the time T2 of the second rotation process is set to the value of the first rotation process. If the time is longer than the time T1, the film may be too thin or a hole may be formed in the through hole portion of the printed circuit board 2, which is not preferable. By performing the rotation process under such conditions, almost no photoresist material enters the through hole such as the through hole of the printed circuit board 2, and even if it does not bleed out to the back surface of the printed circuit board 2. Thus, a photoresist film having a substantially uniform thickness can be formed on the printed circuit board 2.
[0022]
Next, a second embodiment will be described with reference to FIG. In this embodiment as well, as in the previous embodiment, all the rotation processes are performed while maintaining the atmospheric pressure without increasing the atmospheric pressure in the atmospheric pressure chamber 4D, that is, with both sides of the printed circuit board 2 being at atmospheric pressure. The photoresist material 3 also has a viscosity in the range of 10 to 2,000 cps, preferably in the range of 50 to 1,600 cps, as in the case of the above embodiment. In this embodiment, the photoresist material 3 is supplied from the liquid supply nozzle 1 to the printed circuit board 2 in the vicinity of time t1 when the rotational speed exceeds 100 rpm by acceleration rotation that linearly increases the rotational speed, and is determined in advance. At time t2 when the rotational speed r1 is reached, the supply of the photoresist material 3 is stopped, and the rotational speed r1 is held until time t3, and at time t3, it is started to increase to a predetermined rotational speed r2 higher than the rotational speed r1. Then, the printed circuit board 2 is rotated at a rotational speed r2 for a certain time, and the rotational speed is reduced to almost zero at time t4. The first rotation processing time T1 for accelerating and rotating the printed circuit board 2 while supplying the photoresist material 3 from the liquid supply nozzle 1 is longer than the second rotation processing time T2 for the same reason as in the above embodiment. long.
[0023]
In this embodiment as well, the photoresist material hardly enters the through-hole such as the through hole of the printed circuit board 2 and does not ooze out to the back surface of the printed circuit board 2 even if it enters. A photoresist film having a substantially uniform thickness can be formed. In this second embodiment, the rotational speed may be rapidly increased to 100 rpm to shorten the time until time t2, and the acceleration rotation that increases the rotational speed with time increases linearly with respect to time. As a matter of course, a linear increase in the number of revolutions that is curved with respect to time may be used. This is because a desired rotation can be easily obtained by storing various rotation patterns in the rotation drive device 8 and changing the number of rotations according to the input conditions. In these embodiments, the pattern of the second rotation process is substantially the same even if the number of rotations is increased in several stages other than the illustrated one, or the number of rotations is increased linearly with respect to time. It has been confirmed that the effect is obtained.
[0024]
In the above embodiment, since the atmospheric pressure chamber 4D formed between the printed circuit board 2 and the receiving portion 4B is rotated at the atmospheric pressure, the liquid material has a viscosity within the range of 10 to 2,000 cps. Although the photoresist material 3 is used, there is a case where a liquid material having a viscosity outside this range is applied to the printed circuit board 2 having the through holes to obtain a layer having a substantially uniform film thickness. In such a case, it was found that the air pressure in the air pressure chamber 4D may be made larger than the atmospheric pressure and the size adjusted.
[0025]
Next, another embodiment of the present invention will be described with reference to FIG. In this embodiment, the liquid material 3 having a viscosity smaller than 10 cps can be used, and the pressure in the pressure chamber 4D is adjusted mainly depending on the diameter of the through hole of the printed circuit board 2 and the viscosity of the liquid material 3. First, after mounting the printed circuit board 2 on the stepped portion 4B3 of the receiving portion 4B of the receiving base 4, an air supply mechanism (not shown) connected to the air supply pipe 7 is operated to allow air to pass through the small holes h of the breathable bottom portion 4B1. The pressure in the pressure chamber 4D is adjusted to a predetermined value. Thereafter, the liquid material 3 is supplied from the liquid supply nozzle 1 to the center of the printed circuit board 2 in a state where the printed circuit board 2 is rotated at a predetermined constant rotation speed. Set to zero. The rotation processing method may be the same as that of the above-described embodiment except for the rotation speed. In this embodiment, the rotation processing is performed at a predetermined constant rotation speed from the beginning to the end.
[0026]
As described above, the air flow depends on the diameter of the through hole of the printed circuit board 2 and the viscosity of the liquid material 3 as described above. As the diameter of the liquid material 3 increases and the viscosity of the liquid material 3 decreases, it is necessary to increase the atmospheric pressure. As a guideline for the adjustment, when the diameter of the printed circuit board 2 has a through-hole and the viscosity of the liquid material 3 is a certain value, the liquid material 3 enters the through-hole of the printed circuit board 2 as a result of the rotation process. In the case of wrapping around, it is necessary to increase the atmospheric pressure, and if the film made of the liquid material 3 is perforated by the air flow from the through holes or the film is lifted, the atmospheric pressure needs to be lowered. When the atmospheric pressure in the atmospheric pressure chamber 4D is preferably adjusted, the film made of the liquid material 3 is almost flat even in the through hole portion of the printed circuit board 2. In an actual apparatus, air does not leak from the through-hole when the through-hole of the printed circuit board 2 is covered with a film made of the liquid material 3 during the rotation process, but the printed circuit board 2 is mounted on the stepped portion 4B3 of the receiving base 4. Therefore, since air leaks from between the printed circuit board 2 and the stepped portion 4B3, it is necessary to send air to the pressure chamber 4D during the rotation process so as to maintain a predetermined pressure.
[0027]
For example, according to various experiments in the case of a through-hole having a diameter of 0.3 mm, the atmospheric pressure in the atmospheric pressure chamber 4D is adjusted to the above-described atmospheric pressure within a range not more than twice the atmospheric pressure. In addition, since the thickness of the film made of the liquid material 3 of the printed circuit board 2 becomes thinner as the rotation processing time elapses, the atmospheric pressure in the atmospheric pressure chamber 4D is finely adjusted continuously or stepwise in accordance with this. It is preferable to do this. This can be controlled in combination with a timer provided with valve means capable of finely adjusting the airflow in the air supply mechanism.
[0028]
【The invention's effect】
As described above, according to the present invention, a liquid material such as a photoresist material does not substantially enter the through hole of the printed wiring board, or even if it enters, it does not ooze out to the back surface, and is desired on one side of the printed wiring board. It is possible to form a thin film having a thickness of.
[Brief description of the drawings]
FIG. 1 is a view for explaining one embodiment of a method for forming a thin film on a printed wiring board according to the present invention.
FIG. 2 is a view for explaining one embodiment of a method for forming a thin film of a printed wiring board according to the present invention.
FIG. 3 is a view for explaining an embodiment of a thin film forming apparatus for a printed wiring board according to the present invention.
FIG. 4 is a view for explaining one embodiment of a method for forming a thin film of a printed wiring board according to the present invention.
FIG. 5 is a view for explaining another embodiment of a method for forming a thin film on a printed wiring board according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Liquid supply nozzle 5 ... Rotary shaft member 2 ... Printed circuit board 6 ... Labyrinth seal part 3 ... Liquid material 7 ... Air supply pipe 4 ... Receptacle 8 ... · Rotation drive device 4A ··· Base portion 4B ························· Base portion 4A1 of the base 4 ·· Base portion 4B1 · · Breathable bottom portion 4A2 · · Hole 4B2 on the bottom portion ··· Side wall 4A3 ·· Base side wall 4B3 ·· Step portion 4C of receiving portion ··· Gap (air passage)

Claims (8)

透孔が形成されたプリント配線基板にフォトレジスト材料などの液状材料を供給すると共に回転処理を行って、前記液状材料が前記透孔を通して裏面へにじみ出ない所望の膜厚の薄膜を前記プリント配線基板の片面に形成する方法において、
前記プリント配線基板は、前記プリント配線基板の下面に間隙が形成されるように受け台に支承され、前記プリント配線基板を一定回転数又は加速回転数で第1の回転処理を行いながら、前記液状材料を前記プリント基板の中央に供給し、前記液状材料の供給停止後には前記第1の回転処理に連続して前記第1の回転処理の回転数と同等以上の回転数で第2の回転処理を行うことを特徴とするプリント配線基板の薄膜形成方法。
A liquid material such as a photoresist material is supplied to the printed wiring board in which the through holes are formed, and a rotation process is performed to form a thin film having a desired film thickness so that the liquid material does not bleed through the through holes to the back surface. In the method of forming on one side of
The printed wiring board is supported by a cradle so that a gap is formed on the lower surface of the printed wiring board, and the liquid state is performed while the printed wiring board is subjected to a first rotation process at a constant rotation speed or an acceleration rotation speed. The material is supplied to the center of the printed circuit board, and after the supply of the liquid material is stopped, the second rotation process is performed at a rotation speed equal to or higher than the rotation speed of the first rotation process after the first rotation process. A method for forming a thin film of a printed wiring board, comprising:
請求項1において、
前記液状材料は10cps〜2,000cpsの範囲の粘度を有するフォトレジスト材料であり、前記一定回転数は100rpm〜2,000rpmの範囲であることを特徴とするプリント配線基板の薄膜形成方法。
In claim 1,
The method for forming a thin film on a printed wiring board, wherein the liquid material is a photoresist material having a viscosity in a range of 10 cps to 2,000 cps, and the constant rotational speed is in a range of 100 rpm to 2,000 rpm.
請求項1において、
前記液状材料は10cps〜2,000cpsの範囲の粘度を有するフォトレジスト材料であり、前記加速回転数は時間と共にほぼ2,000rpmまでの範囲内で増加することを特徴とするプリント配線基板の薄膜形成方法。
In claim 1,
The liquid material is a photoresist material having a viscosity in the range of 10 cps to 2,000 cps, and the accelerated rotational speed increases within a range of up to about 2,000 rpm with time. Method.
請求項1ないし請求項3のいずれかにおいて、
前記第1の回転処理に要する時間は前記第2の回転処理に要する時間よりも長いことを特徴とするプリント配線基板の薄膜形成方法。
In any one of Claims 1 thru | or 3 ,
A method for forming a thin film on a printed wiring board, wherein a time required for the first rotation process is longer than a time required for the second rotation process.
請求項1ないし請求項4のいずれかにおいて、
前記回転処理と前記液状材料の供給が行われるとき、
前記プリント配線基板の下面に形成された前記間隙の空気圧を大気圧よりも高くすることを特徴とするプリント配線基板の薄膜形成方法。
In any one of Claim 1 thru | or 4,
When the rotation process and the supply of the liquid material are performed,
A method for forming a thin film on a printed wiring board, wherein the air pressure in the gap formed on the lower surface of the printed wiring board is made higher than atmospheric pressure.
請求項において、
前記回転処理の時間の経過に伴って前記空気圧を段階的に又は連続的に大気圧に近づけて行くことを特徴とするプリント配線基板の薄膜形成方法。
In claim 5 ,
A method for forming a thin film on a printed wiring board, wherein the air pressure is gradually or continuously brought close to an atmospheric pressure as time of the rotation process elapses.
透孔が形成されたプリント配線基板を支承する受け台と、前記プリント配線基板にフォトレジスト材料などの液状材料を供給する液体供給ノズルを備える液体供給装置と、前記液状材料の供給された前記プリント配線基板を前記受け台と一緒に所定の回転処理パターンに従って回転させる回転駆動装置とを備えたプリント配線基板の薄膜形成装置において、
前記受け台は前記プリント配線基板を支承する受け部を有し、該受け部に支承された前記プリント配線基板の下面の大部分は前記受け台の上面から1mm以上離れていることを特徴とするプリント配線基板の薄膜形成装置。
A cradle for supporting a printed wiring board in which through holes are formed, a liquid supply device including a liquid supply nozzle for supplying a liquid material such as a photoresist material to the printed wiring board, and the print supplied with the liquid material In a thin film forming apparatus for a printed wiring board, comprising: a rotation driving device that rotates the wiring board together with the cradle according to a predetermined rotation processing pattern;
The cradle has a receiving portion for supporting the printed wiring board, the majority of the lower surface of the printed circuit board which is supported in the receiving part, and characterized in that apart than 1mm from the cradle of the upper surface A printed circuit board thin film forming apparatus.
透孔が形成されたプリント配線基板を支承する受け台と、前記プリント配線基板にフォトレジスト材料などの液状材料を供給する液体供給ノズルを備える液体供給装置と、前記液状材料の供給された前記プリント配線基板を前記受け台と一緒に所定の回転処理パターンに従って回転させる回転駆動装置とを備えたプリント配線基板の薄膜形成装置において、
前記受け台は前記プリント配線基板を支承する受け部を有し、該受け部は前記プリント配線基板の下面との間に気圧室となる間隙を形成する底面部とそれから延びる側壁部とを有し、前記底面部には複数の小孔が設けられており、これら小孔を通して前記気圧室に気流を供給し得る空気供給機構を備え、前記回転処理中には前記プリント配線基板の下面側に形成される前記気圧室の気圧を大気圧よりも高くすることを特徴とするプリント配線基板の薄膜形成装置。
A cradle for supporting a printed wiring board in which through holes are formed, a liquid supply device including a liquid supply nozzle for supplying a liquid material such as a photoresist material to the printed wiring board, and the print supplied with the liquid material In a thin film forming apparatus for a printed wiring board, comprising: a rotation driving device that rotates the wiring board together with the cradle according to a predetermined rotation processing pattern;
The cradle has a receiving part for supporting the printed wiring board, and the receiving part has a bottom part forming a gap serving as a pressure chamber between the lower surface of the printed wiring board and a side wall part extending therefrom. The bottom surface portion is provided with a plurality of small holes, provided with an air supply mechanism capable of supplying airflow to the atmospheric pressure chamber through the small holes, and formed on the lower surface side of the printed wiring board during the rotation process. An apparatus for forming a thin film on a printed wiring board, wherein the atmospheric pressure of the atmospheric pressure chamber is higher than atmospheric pressure.
JP2000160002A 2000-05-30 2000-05-30 Method and apparatus for forming thin film on printed wiring board Expired - Fee Related JP3750914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000160002A JP3750914B2 (en) 2000-05-30 2000-05-30 Method and apparatus for forming thin film on printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000160002A JP3750914B2 (en) 2000-05-30 2000-05-30 Method and apparatus for forming thin film on printed wiring board

Publications (2)

Publication Number Publication Date
JP2001339144A JP2001339144A (en) 2001-12-07
JP3750914B2 true JP3750914B2 (en) 2006-03-01

Family

ID=18664254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000160002A Expired - Fee Related JP3750914B2 (en) 2000-05-30 2000-05-30 Method and apparatus for forming thin film on printed wiring board

Country Status (1)

Country Link
JP (1) JP3750914B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101044471B1 (en) 2004-05-31 2011-06-27 엘지디스플레이 주식회사 Photo resist of low viscosity and mathod for forming pattern using thereof
JP6171829B2 (en) 2013-01-30 2017-08-02 株式会社デンソー Manufacturing method of multilayer substrate for BGA type component mounting

Also Published As

Publication number Publication date
JP2001339144A (en) 2001-12-07

Similar Documents

Publication Publication Date Title
JP5681560B2 (en) Substrate drying method and substrate processing apparatus
JP6325067B2 (en) Substrate drying method and substrate processing apparatus
JP4749830B2 (en) Resist coating method and resist coating apparatus
JP6212066B2 (en) Coating processing method, computer storage medium, and coating processing apparatus
JP6356207B2 (en) Substrate drying method and substrate processing apparatus
JP3752149B2 (en) Application processing equipment
JP3800282B2 (en) Coating liquid application method
JP2015092619A (en) Substrate drying method and substrate processing apparatus
JP2007115907A (en) Resist coating method and resist coating device
JP2018139331A (en) Substrate drying method and substrate processing apparatus
JP3750914B2 (en) Method and apparatus for forming thin film on printed wiring board
KR19980024660A (en) Resist coating device and resist coating method
JP2010253403A (en) Apparatus and method of forming coating film
JPH0839377A (en) Method and device for removing work from vacuum chuck device
JP4111479B2 (en) Wafer rotation holding device
JP2003017464A (en) Method and apparatus for etching side of semiconductor wafer
JP3466898B2 (en) Coating film forming method and coating device
JPH08299878A (en) Rotary coating apparatus and rotary coating method
JP3512270B2 (en) Rotary substrate coating device
JP3667222B2 (en) Application processing equipment
JPH02224220A (en) Resist coater
TW202213488A (en) Substrate processing apparatus and substrate processing method
JP3846873B2 (en) Vacuum drying apparatus and vacuum drying method
JPH01200623A (en) Semiconductor manufacturing equipment
JPH02160074A (en) Coater

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees